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Additive manufacturing usually involves the complex interaction of design,
materials, and manufacturing, often resulting in long and cost-intensive
iterative evaluation cycles. Therefore, it is critical for it to be aligned with the
Materials Genome Initiative to develop, produce, and deploy high-throughput
components. Recognizing a need, this study leverages a feature-based quali-
fication (FBQ) methodology to decompose a complex structure by identifying
critical performance-limiting features, for the purpose of reducing the cost and
time of DED process qualification. A hybrid-physics-based multi-objective
optimization tool was used to predict processing-structure-property relation-
ships in thin-walled builds. The probabilistic ML models achieved targeted
predictions with half the sample space when compared with conventional
DOEs, while also being 37–50% more reliable with respect to regression tools
with linear basis function. Although the current model developed is specific to
Ti64 builds in a RPMi557 powder-feed DED machine, the FBQ methodology
may be more universally employed to other material-modality combinations.

INTRODUCTION

The flexibility of additive manufacturing (AM)
processes, with ‘new, unlimited dimensions’ of man-
ufacturing, allows for significant customization of
material properties, geometry, and surface condi-
tions through variation in process and processing
conditions.1 However, this flexibility has one
notable drawback—the complex interaction of
design, materials, and manufacturing often leads
to long iterative evaluation cycles. All this also
drives uncertainty about component performance of
AM parts, leading to long product qualification
times and costs.

Currently, it can take several years to go from
part concept to production on mission critical addi-
tively manufactured components. This is incredibly
prohibitive to the broad adoption of AM technologies
for use in sustainment applications where cost and
readiness are vital to the acquisition process. The
AM product qualification timeline is comprised of

design engineering and supply chain substantiation
and development, but the longest task in the
timeline is process authentication. Process substan-
tiation in the past has been an extremely iterative
cycle of preparing builds, printing parts, post-pro-
cessing, conducting dimensional inspection, mate-
rial performance evaluation, and functional
performance evaluation. Component performance
includes both form and function—relative to
requirements—during design, operation, and sus-
tainment. That is, it needs to perform its intended
function and also do so for a sustained and pre-
dictable period of life. Historically, performance
prediction for traditionally manufactured compo-
nents primarily relied on coupon testing from which
design performance curves were constructed using
various statistical measures and safety factors. This
approach has been, and continues to be, costly. It’s
clear that the conventional test-and-fit approach
will not be cost-effective for designing or qualifying
additively manufactured components. Also, in the
same vein, developing the complex processing-
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microstructure-performance understanding and
relations is time consuming for the needs these
components fulfill in current designs.

With the above argument in mind, it is clear that
new methods and tools are needed by the AM
community to reduce process substantiation time
and cost, and increase the probability of successful
transition to production. In the past, probabilistic
methods and tools have been successfully used by
General Electric (GE) to predict the performance of
powder bed AM processes. The current approach
using directed energy deposition (DED) additive
modality leverages on similar probabilistic modeling
tools and techniques to develop a performance
catalog based on feature-based qualification (FBQ)
methodology. The principle of this approach is to
identify performance-critical features within a part,
and subsequently conduct subscale feature-based
design of experiments (DOEs) connecting build
process parameters, additive characteristics, and
material property relationships. The associated
data is fed into a GE Bayesian Hybrid Modeling
framework (GEBHM) in conjunction with Intelli-
gent Design Analysis of Computer Experiments
(IDACE) to build predictive models allowing for
shortening the timeline and cost to go from design to
manufacturing qualification. The schematic in
Fig. 1 illustrates such an approach, where a thin-
wall build feature within an High Pressure Com-
pressor concept part has been identified for con-
ducting multi-objective optimization on process-
structure-property response surfaces.

The material of choice for this study is Ti-6Al-4V
(Ti64), an alloy that has more than a 30% market
share in the ever-growing field of additive

manufacturing (AM powder revenue is projected to
reach $2.1B in 2025).2 Among the various market
segments, the biggest drivers are healthcare and
aerospace, where the yearly Ti64 powder production
is estimated to be 600K lbs and 350K lbs, respec-
tively. Among the various additive powder-based
modalities, DED provides an opportunity to build
parts at large volume, with build rates significantly
faster than L/EB-PBF (Laser/Electron Beam Pow-
der Bed Fusion) techniques.3 Yet, to date, very few if
any validated methodologies (aside from trial-and-
error experimentation) exist to aid in predicting the
performance of Ti-6Al-4V components built using
high-throughput powder-blown DED-based additive
manufacturing.

Using the above material-modality combination,
the performance catalog and FBQ methodology does
enable more efficient design of components targeted
for DED production by providing the engineering
community with a feature-based performance and
property data tool. The approach leverages a single
experimental trial to benefit a wide range of prod-
ucts and geometric features where the mechanical
properties and microstructural characteristics can
be readily predicted. Manufacturing engineers may
employ the feature-based process when preparing a
component build and use the FBQ methodology to
define the qualification work scope, testing require-
ments, and acceptance criteria. Although the model
developed in this body of work is based on, and
limited to, static properties, broadly applying the
methodology and tool will help reduce the time,
effort, and cost to bring DED components to
production.

Fig. 1. Schematic of feature-based qualification methodology showing a concept part, selection of critical (thin wall) feature builds and using
quantitative characterization and testing data to generate physics-based Bayesian hybrid models.
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MATERIALS AND METHODS

Feature Selection

To achieve the overall program objectives and
deliverables, a conceptual example component, rep-
resentative of the aviation and aerospace industry
and procedural guide/framework for feature-based
decomposition was developed. In the current study,
a concept part (Fig. 1), was designed to mimic a
typical pressure case used in gas turbines. The
design aspects are consistent with usual parts of
this nature, such as the overhang angle of flanges or
the included angle of holes and intersections. A
‘feature’ within the aforementioned concept part can
be defined as a nominal geometric form, commonly
named and used to characterize a shape, such as
thin walls, rhombus or teardrop shaped holes, edges
and overhangs. A feature can also be defined or
classified as a result of build characteristics neces-
sary to construct a physical shape, some of which
are unique to additive manufacturing processes
such as up-skin, or down-skin. From the operations
perspective, there may be features within the
component where stress levels are near the critical
levels for the material’s properties or where there is
general concern or uncertainty about the result of
an AM build strategy and parameters. Several
features could be potentially identified from the
concept part—though the current manuscript is
focused on discussions around thin vertical wall
features only.

Powder Composition and Analyses

In the current DED-based effort, Ti-6Al-4V pow-
ders in the size range 45–105 lm were used. Two
different powder lots were procured for feature-
based DOE (thin vertical wall) builds: Lot # 18-G416
and Lot # 192-G2021. The concept part was built
using single recycled powder from Lot # 192-G2021,
while the Lot # 18-G416 was used in thin vertical
wall builds for validation trials. Each powder lot
was subjected to standard procedures to obtain
accurate chemical analyses as well as determine
their physical characteristics like particle size dis-
tribution, flowability, and density (apparent and
tap). See supplementary Tables S1 and S2 that
compare the two lots of powder being used in this
study.

As evident from the Tables, the two powder lots
are very similar to each other with respect to
flowability, apparent and tap density, as well as
oxygen content. The major difference lies in the
powder size distribution, where Lot # 18-G416
seems to have the size distribution peak skewed
towards lower particle size. In terms of minor
elemental additions, the nitrogen content for Lot #
192-G2021 is observed to be more than that found in
Lot # 18-G416.

Powder Blown DED Machine

The RPMI 557 additive manufacturing machine
was used to construct all component and test builds
in the current effort. The RPMi 557 machine is a
laser, blown powder, directed energy deposition
(LBP-DED) additive manufacturing process in
which metal powder is injected into the focused
beam of a high-power laser under an inert atmo-
sphere of< 10 ppm of oxygen. The general equip-
ment capabilities of this machine are listed below.

Equipment Information

� X/Y travel: (1524 mm)
� Z travel: (2133 mm)
� RT positioner—(610 mm diameter) (1000 kg

capacity)
� 3 + 2 axis of operation
� 3 kW IPG YAG CW laser (5 modules)
� Powder feeders—dual (45 lm fi 150 lm PSD)
� Shield/carrier gas—argon
� Glovebox environment—inert,< 10 ppm O2

� Nozzle angle—25 deg

Build DOEs

The criteria for setting up build DOEs for the thin
vertical wall feature was to (i) successfully build
predetermined feature dimensions (length and
height) of interest, (ii) explore as wide a range of
build process parameters as possible which also
determines the width of thin-wall structures, and
(iii) employ different tool path strategies to fabricate
similar build geometries.

The following is a deep dive into the rules that
were set to generate this wide-net build DOE:

� Fully executed builds will have> 99% density.

� Vertical wall geometry

� Depending on build strategy and build parame-
ter combinations, target thickness was in the
range of 0.05¢¢ to 0.5¢¢. Thus, for different tool path
strategies the final wall thickness (as function of bead
width and step-over distance) was measured.

� To minimize buckling tendencies, the maximum
thin-wall height and length were set up to be 6¢¢
and 10¢¢ respectively. Any vertical wall that was built
to the abovementioned targeted dimensions was
considered a success. Within the build DOE for
certain build parameter/tool path strategies the wall
builds were stopped at the onset of distortion, cracks
or underbuilding events. The walls that had a final
build height of< 4¢¢ were considered failed builds.
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Several parameters per wall thickness were tar-
geted by varying:

� Process parameters: beam diameter, laser
power, powder feed rate, and travel speed

� Tool path strategy: single bead (S), triple bead
(T), and contour and hatch (C+H) patterns as
illustrated in Fig. 2. In each case, the outer blue
and green arrows designate beam traversal
vectors during outer contour and inner bulk
builds, respectively.

� The resulting number of sample builds was a
tradeoff between final wall sizes, deposition rate,
and change overs, and best effort for time
allocation.

For all builds the deposition head stand-off distance
was fixed at 0.375¢¢ based on nozzle geometry. As
evident from the compilation in Table I, a wide range
of laser power, beam diameter and travel speed
(referred here as scan velocity) were intentionally
adopted so as to cast a wide-net DOE for this study.

Sample Extraction, Post-Build Heat
Treatment and Test Plan

After completion of thin-wall builds, the next step
was to extract and evaluate the static tensile behav-
ior of these features. The extraction strategy was

devised such that one can evaluate the effect of (i)
build parameter and build strategy on thin vertical
walls, (ii) post-processing (machining of as-built
surface, hot isostatic pressing and subsequent heat
treatment), and (iii) test location (tensile sample
extraction zone and orientation with respect to build
direction). A multi-layered approach was adopted to
correlate build parameter, post-processing, and spec-
imen extraction methodology with the ensuing build
characteristics, zone-based distribution of defects
and microstructural features, and site-specific phys-
ical and mechanical properties.

The top-down approach involves dividing each of
the as-built vertical walls into 6 unique panels, as
shown in Fig. 3. Thus, in the case of a fully
successful thin vertical wall build (wall dimensions
that are 10¢¢ long 9 6¢¢ tall), individual panels that
are � 3.25¢¢ 9 3.25¢¢ define unique zones along
height (top/bottom) or length (left/center/right)
directions. The left and center of each vertical wall
(TL, TC, BL and BC panels) were subjected to pre-
cut up stress relief treatment and will hence forth
will be designated as ‘‘AB + SR.’’ In contrast the
right side of each wall (TR and BR panels) were
subjected to post-cut hot isostatic pressing (HIP-ed)
and heat treatments. These will be addressed as
‘‘HIP + HT.’’

The main goal for such an arrangement was to:

Fig. 2. Schematic showing the (a) single pass, (b) triple pass, and (c) contour and hatch (C+H) tool path strategies that were adopted in the
current study. In each case, the blue and green arrows designate beam traversal vectors during outer contour and inner bulk builds, respectively.
Also, a calculation of average scan length (ASL) per layer of thin-wall build is included for each tool path strategy (Color figure online).
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� Compare the properties and microstructures of
stress relieved panels on left and center locations
of the thin vertical walls.

� Compare properties and microstructures of
stress relieved panels on the left side and fully
HIP’ed and heat-treated panels on the right side
of the thin vertical walls.

The post-processing thermal treatment of the builds
is a critical step to prevent cracking of builds (part
integrity) as well as achieving the desired defect
density and microstructural feature size—both
important aspects for obtaining optimized proper-
ties. The goal was to determine the effect of build
parameters on the microstructure and properties of
DED Ti-6Al-4V: the data from which would be used
to train a Bayesian hybrid model (BHM). Thus, the
first step was to select a heat treatment that would
provide enough stress relief (SR) to minimize

distortion during build removal from the substrate
plate, but at the same time minimize influence on
microstructure and as-built properties. To achieve
this, a 50% SR was selected by using the stress relief
nomograph provided in ASM International’s Mate-
rials Properties handbook on titanium alloys. Sub-
sequently, HIP treatment at 15 ksi and 1650 �F
temperature (�200 �F below the beta transus of Ti-
6Al-4V) was performed on a subset of panels to
ensure closure of as-built porosities. Conducting the
HIP at sub-transus temperature ensured that we do
not grow the prior beta grains while dissolving the
as-built alpha phase. The post-HIP cooling rate was
carefully monitored to prevent subsequent coarsen-
ing of alpha laths. The actual stress relief, HIP, and
heat treatment schedule was compiled (see supple-
mentary Table S3).

Figure 4 shows a subset of thin vertical walls that
went through an iterative cycle of (a) initial build

Fig. 3. Schematic illustration detailing the tensile coupon extraction from a plain wall feature.

Table I. A compilation of thin vertical wall builds where different build parameters are associated with the
actual number of tensile tests conducted for each build

Build ID #
(as per
conditions)

Laser
power
(W)

Beam
diameter

(in)

Tool
path

strategy

Mass
feed rate
(g/min)

Scan
velocity
(in/min)

# of tensile
specimens (as-built
+ stress relieved)

# of tensile
specimens (HIPed
+ heat treated)

1 400 0.03 Single 4.8 40 9 4
2 Single 5.2 40 11 12
3 Triple 4.8 40 8 4
4 C+H 4.8 58 12 6
5 550 0.04 Single 5.2 30 12 6
7 Triple 5.2 40 8 4
8 625 0.04 C+H 5.2 50 12 6
9 1250 0.1 Single 7.5 30 10 5
12 Triple 7.5 40 12 6
13 C+H 7.5 52 12 6
10 1425 0.1 Single 7.5 30 10 5
11 Single 9.5 45 5 3
14 2180 0.1 Single 10.2 26 18 17
15 Triple 10.2 35 12 6
16 C+H 10.2 41 12 6
Total # of
tensile speci-
mens

163 96
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trials that were partially successful, while other
builds failed due to warpage, underbuilds and
cracks, (b) conducting stress simulations using
commercial software (Simufact Engineering Gmbh)
to identify high stress zones, (c) fine tuning build
parameters to result in > 90% successful builds
with 15 uniquely different combinations of build
parameter, build strategy, and wall width, and (d)
finally sectioning of fully built walls into distinct
panels for characterization and testing.

Dog-bone shaped flat tensile coupons were
extracted from each of these panels at three differ-
ent orientations with respect to the build direction,
as shown in Fig. 3. As per this figure, ‘ZYX’ denotes
sample extraction along the vertical direction (par-
allel to build direction), while ‘YZX’ and ‘YZ45’
denote samples being tested at horizontal (perpen-
dicular to build direction) and inclined at 45 degrees
with respect to build direction, respectively.

The nominal thickness of the sheet tensile spec-
imen was kept similar to the as-built thickness of
the thin-wall builds. The broad face of the flat
tensile specimen was machined for approximately 1/
3 of the extracted specimens, while the rest of the
samples were tested with inherent as-built surface
roughness. A summary of the testing procedure
followed for testing dog-bone tensile samples for
thin-wall builds is listed below.

� All tests were conducted at room temperature
(75 �F) according to ASTM E8 specifications. An

extensometer was set to measure 4D elongation
(4 times the gage width).

� Initial testing was conducted with a strain rate
of 0.005 +/� 0.002 in/in/min through 0.2% offset
yield. Once yield had been reached, the tests
were completed to failure at a crosshead speed of
0.250 in/min.

Zone-Based Characterization

Understanding the microstructural hierarchy of as-
built and post-processed Ti-6Al-4V alloy is an impor-
tant step towards its accurate 2D feature quantifica-
tion. For this, images at various magnifications were
compiled to capture various microstructural length
scales of interest. The overarching objective was to
obtain quantitative descriptors of as-built walls and
post-tested tensile specimens that could be incorpo-
rated into the Bayesian hybrid model (BHM). Table II
shows a summary of quantitative measurement
techniques used for estimation of various physical
properties and microstructural and defect analyses,
coupled with associated measurement objectives and
quantifying units of measure.

Bayesian Hybrid Modeling

The current physics-based predictive framework
includes the following features: (i) forward predic-
tion with cross validation, (ii) global sensitivity
analyses, (iii) inverse prediction and optimization,

Fig. 4. (a) Initial build trials of thin-wall builds, and (b) corresponding simulation that exhibits underbuilding and buckling effects. (c) Fine tuning
the build parameters to successfully build thin vertical walls. (d) Smaller panels, as per schematic in Fig. 3, were cut up for microstructural
evaluation and testing.
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and (iv) intelligent data addition to reduce
uncertainty.

The forward modeling was performed with Baye-
sian hybrid modeling (BHM), based on the Los
Alamos National Lab implementation, which has
been extensively developed by GE Research over the
past decade.4 BHM is a Bayesian calibration tech-
nique that enables calibration of low-fidelity simu-
lations to observational or high-fidelity simulation
data, building emulators of either of these two data
types, uncertainty quantification, and updating/
adapting as more data becomes available.5–7 It is
especially suited for sparse data which are expen-
sive to compute or observe and has been shown to be
computationally efficient and robust for noisy data.
BHM is based on auto-adjusted weights (i.e., non-
parametric) which can handle non-linear datasets
better than linear regression, and has also been
enhanced with Bayesian inference for training of
the model parameters which enables reliable uncer-
tainty estimations for prediction. BHM is rooted in
the Gaussian process (GP) which has been well
demonstrated for efficient modeling of sparse data-
sets with noise. GP is a non-parametric model which
is a linear combination of the dataset with auto-
weights according to the spatial distribution. GP is
more robust compared with neural networks and
more capable of handling non-linearity compared
with linear regressions. The GP surrogate model
follows the form as shown in Eq. 1, where m xð Þ is
the mean function at input x and k x; x’ð Þ is the
covariance function. A common covariance function
is the squared exponential kernel as in Eq. 2, where
b is the length scale parameter for each input

dimension, r2 captures the amount of data variance

captured by the model, and k2 quantifies the amount
of variance captured by the residuals.

y xð Þ�GP m xð Þ; k x; x0ð Þð Þ ð1Þ

k x; x0ð Þ ¼ r2 exp �b x� x0ð Þ2
� �

þ Ik2 ð2Þ

The BHM training process is fully Bayesian with
Markov chain Monte Carlo (MCMC) which reduces
the risk of over-tuning and enables effective uncer-
tainty propagation. The GP surrogate generated
from the GEBHM framework ensures high accuracy
and fast prediction for highly non-linear and non-
monotonic design spaces for uncertainty quantifica-
tion and propagation, when a limited number of
model simulations are available. The forward mod-
eling is evaluated with 10-fold cross validation,
which means that the training dataset is divided
into 10 out of which 1 is used as the testing set and
the remaining 9 are used as the training set. Thus,
10 sets of BHM models are built in sequence and
validated using their respective training set,
respectively.

Global sensitivity is part of the BHM capability
based on the variance analysis.8 Variance based
global sensitivity analysis investigates how the
uncertainty of a mathematical/simulation model of
a system can be divided amongst the different
uncertain inputs and their interactions. Here, the
model of a system could also be an actual experi-
ment that studies the system with point-wise eval-
uations. Such methods rank the inputs according to

Table II. A summary of various techniques employed for analytical measurement and quantitative
characterization

Measurement technique Measurement objective Units of measurement

Physical properties Surface profilometer Surface roughness Microns
Archimedes principle Build density g/cc; % density

Defect analysis Optical mosaic and image
analysis

Area fraction of defects % of evaluated cross-
sectional area

Maximum defect size Microns
3D nano CT Total porosity % by evaluated volume

Largest pore size Millimeters
Location of max pore size from wall

surface
Millimeters

Microstructural
descriptor

Optical montage Prior beta grain width Microns

X-ray diffraction Weight fraction of alpha and beta phases % by weight
Lattice parameter of alpha phase ‘c/a’ ratio of hcp alpha

phase
Electron backscattered

diffraction (EBSD)
Build layer thickness Microns per layer

Average texture (index J) Multiples of uniform
density

High resolution SEM and im-
age analyses

Alpha lath length and width Microns

Thickness, aspect ratio and volume frac.
of alpha phase

Microns, % of evaluated
volume
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the following criterion: if the true value of the
uncertain parameters is known, then how much
variance in the output can be reduced? Hence
higher reduction in variance means that the output
is more sensitive to that input. Here it is important
to distinguish between polynomial regression-based
analysis of variance (ANOVA) methods and the
generic variance decomposition methods. ANOVA
methods are also variance decomposition methods
but specialized for only polynomial models. Sobol
indices are defined as in Eq. 3 where Y is the system
response and X is the input variable.

Si ¼
Var½EðYjXiÞ�

VarðYÞ ð3Þ

The Sobol indices are known to be good descrip-
tors of the sensitivity of the model to its input
parameters, since they do not suppose any kind of
linearity or monotonicity in the model. The above
expressions for Sobol indices can be estimated
directly with a model that is relatively inexpensive
to evaluate. However, in reality, simulation models
or physical experiments are rarely inexpensive. In
such problems, meta-models such as Gaussian
processes are of use as they can be evaluated
millions of times to estimate the Sobol indices given
in Eq. 3. Even though meta-models replace the
black box simulation models, computation of Sobol
indices by directly sampling a meta-model quickly
becomes computationally expensive as the number
of dimensions increase. Thus, a specialized method
has been adopted for the Gaussian process to
calculate the semi-analytical solutions of the
sensitivities.9

Inverse/backward predictions are formulated
upon the developed surrogate models. Forward
prediction calls on developed models to predict
properties from given process variables. The input
variables and predicted properties would change
accordingly to accommodate multiple features for
different application conditions. The input variables
should be within the suggested range to avoid
extrapolation beyond the experimental results. Pre-
diction distribution including mean and standard
deviation will be provided from forward predictions.
The standard deviation estimates prediction uncer-
tainty and could be used to adjust the mean value to
acquire conservative prediction. The backward pre-
diction, built upon the forward prediction, is a
multi-objective constrained optimization process to
search for the desired input variables by iteratively
calling on forward prediction. This reverse predic-
tion is formulated in a probabilistic manner lever-
aging the prediction distribution. For optimization
of identified outputs, expected improvements are
adopted as the objective within the identified range,
as in Eq. 4, where EI stands for expected improve-
ment, f � is the optimum from the current dataset,
lðxÞ and rðxÞ are, respectively, the mean and
standard deviation of BHM prediction at x, and

U �ð Þ and / �ð Þ are the cumulative distribution
function and probability density function of the
standard normal distribution, respectively. For pre-
diction at specific output values, maximum likeli-
hood estimation (MLE) is calculated to locate the
unique set of input variables. For this, a popular
genetic algorithm is selected for the iterative search
after setting the objectives.

EI xð Þ ¼ f � � lðxÞð ÞU f � � lðxÞ
rðxÞ

� �
þ r xð Þ/ f � � l xð Þ

r xð Þ

� �

ð4Þ

After model development with an initial dataset,
usually steps are taken to refine the same in terms
of reducing the model uncertainty. Thus, GE’s own
Intelligent Design and Analysis of Computer Exper-
iments (IDACE) tool is adopted for data addition.10

IDACE takes the stochastic prediction from BHM
and ranks the candidate points based on acquisition
function.10,11 Multiple types of acquisition functions
are available within IDACE and maximum uncer-
tainty for model refinement is adopted. In the
current framework, IDACE is fully integrated with
BHM which allows for fast and efficient navigation
in high dimensional spaces by interrogating and
updating the emulator in regions that stochastically
minimize uncertainty. It performs adaptive design
of experiments in an iterative manner which could
make most use of the limited experimental budget
to maximize the expected gain of models. The
uncertainty information computed from the models
is used to guide the placement of new points or
optimal data distribution in the design space. It
enables effective design space exploration and
builds high-quality models with a minimum number
of required additional simulations. The new points
are selected iteratively to optimize the acquisition
function (ranks the value of candidate points). Then
evolutionary algorithms are adopted to determine
the points corresponding to optimal acquisition
functions. In summary, the critical features of
IDACE include (1) multi-objective, constrained opti-
mization based on the expected improvements of
hypervolume in a probabilistic fashion, and (2)
model refinement which reduces the prediction
uncertainty of BHM models with data addition
which could proceed in a greedy fashion or batch-
wise.

RESULTS AND DISCUSSION

Data Assimilation

In the first round of sample extraction and
testing, more than 200 samples were evaluated
using 16 unique build parameters, as shown in
Table I. As discussed earlier, roughly a third of
these were tested under fully HIP-ed and heat-
treated conditions, while the rest were only stress
relieved. Also, a half factorial DOE scheme was
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adopted to extract the testing response of machined
(ground) vs as-built (unground) surfaces on the
broad face of flat tensile specimens.

Post-characterization, the entire set of physical,
material and mechanical property data was assim-
ilated. This assimilation was necessary to perform a
preliminary analysis as well as serving as an input
to developing the Bayesian hybrid model (BHM).
The assimilation process involved associating every
individual measurement to its appropriate speci-
men fabrication, sourcing, treatment, and testing
parameters. Every specimen that underwent char-
acterization was traced using a unique specimen
identifier. Using this identifier, an organized
spreadsheet was constructed where each row was
used to represent a specimen and its attributes. The
columns were used to organize the various specimen
attributes and characterization results. This
spreadsheet was used for the purpose of preliminary
analyses and BHM development.

From the assimilation layout, the input process
variables contain categorical variables and multiple
feed speed parameters. For modeling purposes,
there was benefit in transforming the categorical
variables to numerical variables. Similarly, select-
ing the feed speed that carries the most significance
to the fabrication process was essential in minimiz-
ing the total number of variables.

Among input variables, one of the most crucial
categorical variables is the tool path strategy that is
depicted in Fig. 2. The three strategies considered in
this study have substantial differences. To quantify
these differences, a new continuous variable, aver-
age scan length, was defined. The average scan
length is a measure of the average distance traveled
by the laser in each layer. In the current study, the
thin vertical wall feature was the same among the
three different tool path strategies, namely single
(S), triple (T) and contour and hatch (C+H) passes.
The average scan length (ASL) calculation and
values used for the three strategies are shown in
Fig. 2. In the case of the C+H strategy, the scan
length calculation was limited to the hatch raster,
where n is the total number of unique hatch
patterns created due to the rotating hatch angle,
m is the number of unique raster passes in a given
layer, lj is the length of one of the unique passes and
pj is the number of times this raster pass is
performed in a given layer.

It is to be noted that the average scan length
variable is most influenced by the hatch-hatch
spacing parameter. While calculation of the scan
length is relatively simple for forward prediction-
based model generation, for backward prediction,
the scan length that is generated as an output needs
to be associated with the three different tool path
strategies. For example, if the value were in the
range of 10¢¢ (which is the actual length of the thin-
wall builds), then the predicted strategy would be
single pass. Similarly, if the value were in the range
of 30¢¢ (which is 3 times the length of the thin-wall

build), the predicted strategy would be triple pass.
Any larger number that is predicted in the output
column may be associated with C+H tool path
strategy. In this case, the scan length equation in
Fig. 2, may be used to numerically solve the actual
hatch-hatch spacing. Thus, the hatch-hatch spacing
may be correlated based on the bead width and the
strategy election is based on the scan length value.

Again, to minimize the list of input variables and
to only consider those with physical significance, a
new variable named scan speed was defined. For
build strategies where hatch speed and contour
speed were both available, scan speed was set to the
value used to deposit the bulk of the build. For
example, in the triple pass strategy, in each layer,
the two exterior passes are performed at contour
speed and one interior pass is performed at hatch
speed [as indicated by blue and green arrows in
Fig. 2b, respectively]. Therefore, in this case, the
scan speed was equated to contour speed. Similarly,
in the case of C+H scan strategy the scan speed was
equated to hatch speed, as the majority of the build
incorporated hatch patterns (Fig. 2c). It is to be
noted that for the builds, the ratio of contour speed
to hatch speed was chosen to be 0.775.

Mechanical Test Results

Due to the large number of parameters considered
in this study, a thorough statistical analysis such as
a multi-factor ANOVA analysis was not feasible.
Identifying and estimating the statistical influence
of the process parameters is challenging. However,
such an analysis was not the intention behind this
portion of the study. The chosen process parameters
were expected to span a large portion of the viable
process domain. These parameters were expected to
produce quantifiable differences in the material
outcome and performance. As observed in Fig. 5,
the as-built additively manufactured tensile bars
exhibited better yield strength and tensile strength
than conventional as-cast Ti64 (baseline data as
obtained from the Titanium handbook).

As discussed earlier, a total of 16 unique process
parameters (Table I) were used to fabricate the wall
feature builds. The first order analysis was aimed
towards evaluating success regarding producing
near fully dense material, as well as understanding
variation in performance. While a wide range of
variation was captured, the sources causing this
variation needed to be identified. Thus, data seg-
mentation based on known sources of variation such
as tensile specimen surface condition (as-built vs
machined), and orientation of tensile loading direc-
tion relative to build direction (as-built material is
expected to be anisotropic) was also performed. The
statistical significance of influences from these
factors was assessed through analysis of variance
(ANOVA) study.

The box plots in Fig. 5a, compile the tensile data
from all the thin vertical wall builds. Here all the
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blue boxes represent samples that were stress
relived only (‘‘AB + SR’’, as mentioned above).
Similarly, all red boxes indicate samples that were
HIP-ed and heat treated (‘‘HIP + HT’’ as mentioned
above). From Fig. 5a, the anisotropy in strength can
be realized from the trends in yield strength and
tensile strength values. This anisotropy in strength
was observed to exist even after heat treatment.
Also, the differences in yield and maximum strength
measurements with varying test orientations were
observed to be statistically significant. Overall,
within a given test orientation, the median strength
measurements from specimens with the as-built
surface condition (Machined = N in Fig. 5a) were
observed to be slightly lower than specimens with
the fully machined surface condition (Machined = Y
in Fig. 5a). This difference in strength could be
attributed to the difficulty in measuring the cross-
sectional area of specimens with the as-built surface
condition and the influence of surface roughness.
The variation in %elongation was not as apparent
as it was in the strength performance. No signifi-
cant differences were found under this analysis.
With regards to the Young’s modulus, the variation
in scatter with heat treatment was most apparent.
This variation in stiffness with heat treatment can
be seen clearly between fully machined specimens
(Machined = Y in Fig. 5a). It is to be noted that
within this analysis, some of the measurements
were also flagged as outliers if they were at least 1.5
times the interquartile range from the edge of the
box.

Correlation Among Tensile Properties

To benchmark the performance of the additively
manufactured material against commercially
sourced material, correlation plots relating tensile
and yield strength, and tensile strength, and elon-
gation were charted. It is to be noted that for this
analysis, only the data from fully machined speci-
mens was considered. The correlation charts are
shown in Fig. 5b. The reference lines in the
chart pertain to as-cast mean performance reported
in the ASM Titanium handbook. Among the quad-
rants created by the reference lines, the top right
quadrant pertains to the region where the perfor-
mance is superior to cast material. From a strength
standpoint, the majority of the data from both as-
built (‘‘AB + SR’’) and HIP & aged (‘‘HIP + HT’’)
were observed to be above the as-cast material. Also,
a linear correlation was observed between the
tensile and yield strength performance. Upon HIP
and heat treatment a downward shift along the
trend line was observed. The as-cast values from the
handbook was also observed to be in close vicinity of
the trend line. With regards to tensile strength and
elongation, no apparent trends were observed.
However, a good fraction of additively built Ti64
was observed to have inferior ductility the compared
with as-cast conditions. This observation was true

in the cases of both as-built (‘‘AB + SR’’) and HIP &
aged (‘‘HIP + HT’’) conditions. Also, for a given
range of strength, a wide scatter in elongation was
observed.

Influence of Energy Input

Variation in energy input is known to influence
the fabrication and performance of AM material. As
previously mentioned, a detailed multi-factor anal-
ysis to assess influence of varying energy input
parameters is challenging. However, insights into
variation and statistical significance of process
parameters are still possible. To assess the influence
of energy input, linear energy density, the ratio of
the power over scan speed was considered. Again,
only the tensile data from fully machined specimens
were considered. The data was also segmented by
the tool path strategy and tensile gage orientation.
Figure 5c is the variation in yield strength of fully
machined specimens which were sampled with a
tensile test orientated at 45� relative to the build
direction. For the as-built (‘‘AB + SR’’) material, the
drop in the yield strength with increasing energy
input is apparent. However, post-HIP and heat
treatment (‘‘HIP + HT’’) the yield strength appears
to level out. These observations were also true for
specimens with test orientation along and perpen-
dicular to the build direction. Finally, the trends
were identical for the observed ultimate tensile
strength numbers.

Impact of Build Parameters on Defects
and Microstructure

Careful evaluation of defects and microstructure
in as-built and post-processed Ti64 thin-wall builds
exhibited a tremendous influence of build parame-
ters, namely the linear energy density and build
strategy. A few important findings are elucidated
here. Figure 6a, b, c, and d is a compilation of the x-
ray based 3D nano-computed tomography (CT)
inspection process used to inspect and identify
defects such as cracks and porosity either on the
surface or within the bulk of vertical wall builds.
Sample coupons from different locations of each wall
build were examined so as to obtain a high signal-to-
noise ratio. The center of each coupon was imaged at
6.5 lm/pixel spatial resolution using the microfocus
tube of an industrial nano CT scanner (Vtomex M
300). For this, an x-ray beam with 180 kV acceler-
ating voltage and 120 lA filament current was used
(200 nm focal spot and 0.3 s exposure/frame). The
data was reconstructed, and the volume rendered
using a filtered back-projection method using a
proprietary tool, DATOSTM. The Volume Graphics
Studio Max (v3.2.5) Easy Pore module was used to
quantify and visualize porosity within the samples.
After the analysis was completed, a map of defects
was generated in 3-dimensional space. Key metrics
such as location coordinates, maximum dimension,
volume, surface area, and distance from the nearest
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Fig. 6. A workflow for (a) 3D CT scan of a thin vertical wall build, followed by (b) identification, (c) visualization, and (d) quantification of lack of
fusion and gas voids. The specimens built with C+H build strategy clearly show relatively high porosity %. Electron back scattered diffraction
analyses of as-built thin vertical wall showing (e) inverse pole figure map along build direction, and corresponding (f) c-axis deviation map and (g)
pole figure plot exhibiting predominantly 45-degree orientation of alpha laths with respect to build axis.

Fig. 7. Microstructure of Ti64 thin walls built with (a-b) low, (c-d) medium and (e-f) high linear energy density (laser power/scan velocity). (a), (c)
and (e) are in as-built and stress relieved condition, and (b), (d) and (f) are in HIPed and heat-treated state.
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edge were obtained for each defect. An overall
percent porosity of all defects obtained from this
analysis clearly showed that contour and hatch
(C+H) build strategies (black arrows in Fig. 6d) had
the highest amount of as-built porosity.

Electron backscatter diffraction (EBSD) analyses
were performed on mounted and polished samples
to determine the preferred crystallographic orien-
tation of alpha phase which is a combined effect of
as-built (liquid to solid beta phase) texture and
variant selection process during beta to alpha solid-
state phase transformation. A quantitative measure
of texture was determined using MUD (multiples of
uniform density) value, which is equivalent to the
probability of finding a certain crystallographic
orientation of alpha phase. MUD values from alpha
grains with c-axis orientations at 45� and 90�
relative to the build direction were obtained. Also,
J-index notation was used to obtain a unique
number representing the average degree of texture
observed within a specimen. Usually, J-index
ranges from a value of 1 (corresponding to a
completely random fabric) to infinity (a single
crystal fabric—ideally anisotropic). Thus, higher J-
index value was indicative of greater extent of
texture within a probed area. Figure 6e, f, and g is a
compilation of alpha phase inverse pole figure (IPF),
c-axis deviation and pole figure (PF) maps of thin
and thick wall builds, as observed along wall width.
The images clearly show a preferred crystallo-
graphic orientation of alpha phase (45-degree with
respect to build axis) for thin-wall builds.

Apart from defect variation, the microstructure
of Ti64 is greatly influenced by the build param-
eters, especially linear energy density or LED
(corresponding to the yield strength and tensile
strength values, as discussed in the previous
segment). Figure 7 is a compilation of Ti64
microstructure obtained from similar regions of
as-built (‘‘AB + SR’’) and post-processed (‘‘HIP +
HT’’) thin-wall builds. Figure 7a shows a
microstructure which is nearly 100% martensitic
from an as-built and stress relieved vertical wall,
built with the lowest LED. It is well known that
martensites in Ti64 are formed when the cooling
rate is at its highest. Similarly, Fig. 7c and e
exhibit as-built and stress relieved microstructures
that were built with progressively higher LED
input. It is clear that Fig. 7e shows a closer to
equilibrium alpha/beta microstructure, which indi-
cates that the cooling rate experienced during this
build was much slower than in walls built with
lower LED (Fig. 7a). Thus, in this compilation, the
inverse effect of LED on cooling rate and in turn
its influence on microstructural feature size is
clearly demonstrated. The effect of this microstruc-
ture is also observed in the tensile property
response, as mentioned above in Fig. 5c—with
martensitic structures showing higher strength
and lower ductility, while the closer to equilibrium
alpha/beta structure exhibits relatively lower

strength and higher ductility. Interestingly, Fig. 7b,
d, and f show the corresponding microstructures
from low, medium, and high LED thin-wall builds
in fully HIPed and heat-treated conditions. It is
clear that in all cases the Ti64 alpha/beta
microstructures represent an equilibrium alpha/-
beta microstructure. This is also reflected in the
tensile property response in Fig. 5c. It is evident
that the microstructural variation of HIPed and
HT samples (‘‘HIP + HT’’) with the lowest LED
(Fig. 7b) vs highest LED (Fig. 7f) input is much
less than the difference between as-built and stress
relieved samples (‘‘AB + SR’’) with corresponding
LED inputs (Fig. 7a vs e). Even then, one has to
keep in mind that the mechanistic influence of
post-processing heat treatment that causes tem-
pering of martensites in low LED builds (mi-
crostructural change from Fig. 7a to b) is likely
quite different from coarsening of alpha laths in
high LED builds (microstructural change from
Fig. 7e to f).

Probabilistic Bayesian Hybrid Model
Generation

To balance between buildability and space cover-
age of the initial dataset, the design of experiments
was planned in a hybrid fashion in which 12 builds
were from DED experts and 3 builds were from
space filling in nature. Space filling methods (e.g.,
Latin hyper-cube sampling) are typically used for
design of experiments when no prior information is
available. For the current analyses, input from 266
sets of tensile specimen test data were collected in a
hierarchical manner. An individual BHM model
was developed for each output to accommodate the
varying dataset size and make most use of all the
collected data. Three types of model were developed
to explore the mapping between different categories
of inputs. The first one was the processing-property
(PP) model which mapped from process parameters
(build and post-build history) to mechanical and
physical properties. The second one was the pro-
cessing-microstructure (PM) model which mapped
from process parameters to quantitative defect and
microstructural identifiers. The third model was the
microstructure-property (MP) model, used to map
from defects and microstructure to mechanical and
physical properties. The BHM models were devel-
oped and evaluated for all three types of model and
individual output. The global sensitivities for three
distinct models are summarized in Table III. It is

clear that the R2 varied noticeably between the
outputs. Also, some outputs such as elongation %

were more challenging to predict due to the lower R2

value. For all three models, an R2 larger than 0.5
was considered to be acceptable. An example of the

coefficient of determination (R2) for yield strength in
the processing-property (PP) model is shown in
Fig. 8a. The associate global sensitivities (Fig. 8b)
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exhibit their first order and second order dependen-
cies on build parameter (laser power) and post-
processing (HIP) steps.

Post-model generation, IDACE was adopted for
selection of additional builds. These were selected in
an iterative manner as constrained optimization to
satisfy the two buildability models. The estimated
uncertainty reduction is shown in Fig. 8c. Thus, as
per IDACE recommendation, the addition of 4 data
points (tagged as ‘‘IDACE’’ in Fig. 8d) was expected
to reduce the model uncertainly by 40%. Along with
this, 4 additional builds were also included, half for
model refinement and the other half for model
validation (tagged as ‘‘Expert’’ and ‘‘Expert_valida-
tion’’ in Fig. 8d). Thus, Fig. 8d visualizes the first
buildability model with the proposed additional
builds, along with the existing dataset.

Validation results of the forward model are
provided in Fig. 8e. The additional dataset was
centered in a reduced range between 120 ksi and
150 ksi. The 95% prediction interval (PI) was
conservative to include the prediction error as show
in Fig. 8f. For industrial applications, it is critical
for the system to maintain function even at the
maximum design allowable. Therefore, conservative
estimates were needed in addition to the mean
values. The calculated conservative estimates as the
lower 10th percentile are shown in Fig. 8f. The
experimental validation resulted in < 10% differ-
ence between measured test values versus predic-
tion values for yield strength and tensile strength.
At the end, the BHM and regression were compared
with a basic linear basis function (LR) evaluated
with 10-fold cross-validation (not shown). It was

evident that the BHM was comparable or better
than LR for the examined properties, �37–50%
more accurate for yield strength and tensile
strength.

Summary of Observations

The current study showcases feature-based qual-
ification driven response surfaces connecting pro-
cessing, structure, and properties of vertical thin-
wall DED Ti64 builds. Some of the observations
connecting defects and microstructure to AM pro-
cessing and corresponding static property response
is compiled below:

� Process Map: To be able to validate and deploy
this methodology at a broader scale and scope, one
has to understand the connections between
energy input and the feature build itself. Thus,
there was a significant effort to extract normal-
ized process maps in terms of heat flow in,
coupling build parameters and material addition,
analogous to the study by Thomas et.al. for
generating processing diagrams for the powder
bed AM process.12 The Eqs. 5 through 7 below
show a methodology to use beam diameter of the
incident laser beam (BD) to normalize laser power
(q), scan velocity (v), and layer thickness (l),
respectively. Note that all material parameters
like surface absorptivity (A), thermal conductiv-
ity (k), thermal diffusivity (a), melt temperatures
(Tm), as well as substrate temperature (To) were
assumed to be constant. These are embedded as
constant terms Cqn and Cvn in Eqs. 5 and 6,
respectively. From the abovementioned normal-

Table III. R2 values obtained from 10-fold cross-validation and assessment of Process-Property, Process-
Microstructure, and Microstructure-Property models

Model type Categories Quantities of Interests/Outputs R2

Process to Property Mechanical properties Tensile strength (ksi) 0.82
0.2% yield strength (ksi) 0.88

Elongation (%) 0.16
Modulus (Msi) � 0.03

Physical properties Build thickness (in) 0.97
Bead width (in) 0.49
Density (g/cc) 0.24

Surface roughness–wall front (mils) 0.91
Surface roughness–wall back (mils) 0.94

Build information Materials Weight (g) 0.68
Build time (mins) 0.89

Property to Microstructure Defect analyses Nano-CT based pore volume (%) 0.87
Nano-CT based max defect length (micron) 0.97

Microstructural analyses Texture via EBSD (J-index) 0.92
Alpha lath aspect ratio 0.73

Alpha lath thickness (micron) 0.98
Prior beta grain width (mm) 0.88

Volume fraction of alpha phase 0.93
Microstructure to Property Mechanical properties Tensile strength (ksi) 0.58

0.2% yield Strength (ksi) 0.52
Elongation (%) � 0.32
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Fig. 8. BHM predictions for yield strength (a) cross-validation (b) global sensitivities. Data addition with IDACE (c) estimated uncertainty
reduction with additional build, (d) buildability estimation for the additional dataset. Validation of the forward model (e) prediction with 95%
prediction interval (f) conservative estimates with lower 10th percentile..
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ized parameters (qn, vn, and ln), one can calculate
the energy required to melt a unit volume of
material (En), as shown in Eq. 8.
Taking this analysis a step further, one can deter-
mine the cumulative energy addition per unit layer
stated as normalized planar energy input (Epl) by
multiplying En with the average laser scan length,
ASL (calculation shown in Fig. 2). Plotting Epl vs
mass feed rate (Fig. 9) shows a region of goodness
within the thin-wall build process map. As indicated
in Fig. 9, the red triangles are really the builds that
were not successful in terms of 6¢¢wall height,while all
the other builds (blue circles) within the demarcated
‘‘buildability corridor’’ were successful. As one can see,
this is a great way to bring all the thermal input factors
together and help one guide towards future builds.

qn ¼ A � q
BD
2 � k � Tm � Toð Þa

¼ Cqn �
q
BD
2

ð5Þ

vn ¼
v � BD

2

a
¼ Cvn � v �

BD

2
ð6Þ

ln ¼ 2 � l
BD
2

ð7Þ

En ¼ qn
vn � ln

¼ cqn
cvn

� q

v � l � BD=2
ð8Þ

� Effect of defects: Depending on the size of
geometric discontinuity present in as-built mate-
rial, the defects in Ti64 DED thin-wall builds
may be broken down into two distinct groups–
macro-scale and micro-scale defects.

Macro-scale defects are microns to millimeters
in size and are associated with as-built surface
roughness (function of bead width) and feature-
based discontinuities of finite radius such as
notches and divots (not discussed in this work).
The results clearly point towards a tremendous
sensitivity of macro-scale AM defects on tensile
properties.
Micro-scale defects like lack-of-fusion voids, gas
porosity, and cracks, seemed to have a subdued
effect on properties, primarily due to very low
volume fraction and smaller size of these defects.
However, in some cases where the abovemen-
tioned macro-scale defects were reduced (e.g.,
fully machined samples), the large scatter
observed in property response may be attributed
to these micro-scale defects.

� Baseline microstructural influence: In the as-
built state, the linear energy density or energy
input (ratio of laser power and scan velocity) for
a given feature with fixed build dimensions
seemed to have the biggest influence on tensile
strength and yield strength outcomes. This also
had a strong influence on the associated Ti-6Al-
4V microstructural attributes.

The ductility of such builds is a more complex
phenomenon and its variations are also convo-
luted with build strategies and microstructural
hierarchy (grain size, colony size, and alpha lath
morphologies). If the tool path strategy, along
with build dimensions, are held constant, the
elongation trends are influenced by the conven-
tional microstructural parameters, where cool-
ing rate is the biggest influencer.
Post-build conventional hot isostatic pressing
(HIP) does seem to equilibrate most of the
abovementioned static property variations. How-
ever, the microstructural response to heat treat-
ment is not well understood. This will be vital in
understanding more microstructure sensitive
properties like high/low cycle fatigue and fatigue
crack growth, especially since the starting as-
built microstructure and associated coarsening
mechanisms are quite disparate.

CONCLUSION

In this study, a feature-based qualification
methodology was adopted to identify a thin vertical
wall feature, extracted from a representative com-
ponent (high-pressure compressor case) that was
independently designed and additively fabricated
without any optimization build strategies. Thin
vertical walls of different (uniform) thickness, and
tool path strategies were produced and served as a
baseline and validation data. All the builds were
produced using RPMI’s 557 equipment at Edison
Welding Institute (EWI). A 3-kW IPG fiber laser
was used as the energy source and the material of

Fig. 9. A normalized planar energy input (volumetric energy density
multiplied by actual laser track length) vs mass feed rate plot,
showing a region of goodness for thin vertical wall DOE builds. All the
builds within the ‘buildability corridor’ were successful, while the
shaded region on the left demarcates builds that were not successful
in terms of 6¢¢ wall height.
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choice was Ti-6Al-4V. Sixteen sets of unique pro-
cessing conditions were used to generate a DOE and
the builds were subjected to various post-processing
steps including stress relief treatment, hot isostatic
pressing (HIP), post-HIP aging and low-stress
grinding. More than 250 mechanical tensile test
samples were extracted and tested to generate a
DOE based on the abovementioned variables. Sam-
ples were extracted at 3 different orientations (0, 45,
90 degrees with respect to the build direction) and
from different locations throughout the build geom-
etry (top vs bottom in terms of height, and left,
center, and right in terms of length of the wall).
Also, physical properties (density and surface
roughness) of thin vertical wall features were
determined. A select number of specimens were
subjected to quantitative defect evaluation, and
microstructural assessment. Analyzing the varia-
tion in performance, the process domain considered
in the DOE resulted in a wide range of performance
outcomes. The mechanical performance of the as-
built material was found to be generally better if not
similar to the as-cast material. This was true
primarily for both yield and ultimate strength
values. On the other hand, no discernable trends
were found with the elongation data due to the large
range of scatter. The AM material was found to
exhibit significant anisotropy and heat treatment
was found to be effective in minimizing it.

Using the abovementioned database, an indepen-
dent Bayesian hybrid model (BHM) framework was
generated as follows:

� Forward prediction of process parameters to
tensile mechanical properties,

� Backward prediction from material (tensile
mechanical properties) performance to process
parameters,

� Microstructure to material performance (tensile
mechanical properties).

This study successfully applied statistical design of
experiments (DOE) for systematic planning of the
DED builds. The initial DOE was produced with
half the features from additive experts, and half
from statistical methods. Then, intelligent data
addition was adopted to balance between informa-
tion gain and testing budget. Predictive models

were built with R2> 0.5 (cross validation) for the
four features and different types of properties.
Space-filling schemes were examined, and regres-
sion-based uncertainty reduction was used to
improve modeling accuracy. A set of stochastic
forward models were developed for multiple fea-
tures to link various process parameters,
microstructural characteristics and tensile mechan-
ical properties. The forward models were evaluated
with 10-fold cross-validation and compared with
linear regression, showing noticeable improvements

(�33–57%). After establishing the forward models,
robust backward models were generated for recom-
mending desired deposition strategies and process
parameters. The concept of robust optimization was
introduced to account for the stochastic prediction
from BHM. The backward modeling was rooted in a
genetic algorithm to iteratively perform forward
predictions which optimize the objective function
based on stochastic predictions. Data addition for
the purpose of model refinement with IDACE was
used to adaptively obtain process variables to
improve the model accuracy. All this was achieved
with nearly half the resources used in terms of build
and post-analysis cost and time, when compared
with conventional half factorial DOE models.

As a final note, the current study made significant
progress towards understanding a challenging sub-
ject for all AM processes, which is determining how
part performance critical feature-based DOE can
help generate and predict reliable processing-struc-
ture-property response surfaces (models). The tool
offers the potential to reduce the number of itera-
tions and cycle time to identify processing condi-
tions that achieve a desired component and material
performance. The currently developed modeling
method can benefit various engineering, operations,
and supply chain partners. This approach offers a
tool to deconvolute complexities common to DED
processes and also enables a pathway for acceler-
ated adoption and deployment of DED technology.
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