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We demonstrate a novel strategy for the autonomous development of a ma-
chine-learning model for predicting the equivalent stress–equivalent plastic
strain response of a two-phase composite calibrated to micromechanical finite
element models. A unique feature of the model is that it takes a user-defined
three-dimensional, two-phase microstructure along with user-defined hard-
ening laws for each constituent phase, and outputs the equivalent stress–
plastic strain response of the microstructure modeled using J2-based isotropic
plasticity theory for each constituent phase. Previously, this task was ad-
dressed using linear regression approaches on a large training dataset. In this
work, it is demonstrated that the use of Gaussian process regression together
with a Bayesian sequential design of experiments can lead to autonomous
protocols for optimal generation of the training dataset and the development
of the model. It is shown that this strategy dramatically reduces the time and
effort expended in generating the training set.

INTRODUCTION

Reduced-order, low-computational cost, process-
structure-property (PSP) linkages play a central
role in the efforts related to the design of materials
for targeted combinations of effective properties or
performance characteristics.1–5 This is because the
materials design space (comprising a broad range of
potential chemistries and available options in pro-
cessing) is typically too large to explore with the
computationally expensive physics-based materials
modeling toolsets (e.g., micromechanical finite ele-
ment models, phase-field models). The formulation
and use of high fidelity, reduced-order, surrogate
PSP linkages offer one of the most promising
research avenues for realizing the goals of acceler-
ated materials innovation targeted by the US
Materials Genome Initiative.6 In addition to facili-
tating rapid exploration of the vast materials design
spaces, the low computational cost PSP linkages
play an important role in the objective calibration of

the multiscale physics-based models to the avail-
able, often limited, experimental data.7–9 This is
because the calibration of parameters present in
multiscale models is inherently an inverse problem
that also demands many executions of the forward
models.

Establishing high-fidelity surrogate PSP linkages
requires a suitable framework for the rigorous
quantification of the material internal structure
(i.e., the quantification of ‘S’ in the PSP linkages).10

This is because the material internal structure often
spans a hierarchy of material length scales, from
the subatomic to the macroscale, with each scale
exhibiting a rich variety of defects and/or disorder.
Consequently, the rigorous quantification of the
material internal structure needs a versatile frame-
work that can address the diverse features observed
in the material structure at the different length
scales in the different material systems. A second
challenge comes from the fact that any rigorous
quantification of the material internal structure is
likely to produce a large number of statistical
measures of the microstructure. The number of
microstructure measures constitutes the dimension-
ality of the material structure representation for the
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present discussion (i.e., each microstructure mea-
sure corresponds to one dimension). Our goal of
formulating low computational cost PSP linkages
demands that we seek high-value, but low-dimen-
sional, representations of the material structure. In
recent years, our research group has advanced a
systematic framework called Materials Knowledge
Systems (MKS)2 for extracting data-driven reduced-
order PSP linkages from materials datasets aggre-
gated from either multiscale simulations or multi-
scale experiments. At the core of MKS lies an
approach for high-value, low-dimensional represen-
tation of the material internal structure by bringing
together the concepts of n-point spatial correla-
tions11–13 and principal component analysis
(PCA).14,15 The efficacy of the MKS framework in
producing high-fidelity reduced-order PSP linkages
has been demonstrated in prior work.16–18

There exist many opportunities for the further
development of the MKS framework. Of particular
relevance to this work are the approaches used to
build the reduced-order models after the feature
engineering step (i.e., after the low-dimensional
representations of the material structure are
obtained employing n-point spatial correlations
and PCA). In most of the prior work,16,17,19,20

surrogate models were built using standard regres-
sion techniques. These techniques are indeed ide-
ally suited when there is a reasonably large dataset
available, and there is already evidence (or physical
insights) suggesting a specific model form for cap-
turing the governing physics of the problem. In
many practical applications of the MKS framework
for a broad range of multiscale materials phenom-
ena, one or both of these requirements are not met.
There is therefore a critical need to expand beyond
the standard regression techniques. In the present
work, we specifically explore the utility and benefits
of employing modern machine learning (ML) tools,
specifically Gaussian process regression (GPR),21 in
establishing the desired surrogate PSP linkages.

Several benefits are anticipated from the use of
GPR in the MKS framework for extracting PSP
linkages from materials data. Unlike standard
regression, GPR does not demand the aggregation
of a sufficiently large dataset before building the
surrogate model. In other words, one can start with
a very small number of data points and gradually
build the desired PSP linkages as more data become
available. Furthermore, since GPR provides a rig-
orous assessment of the uncertainty (i.e., variance)
in the predictions made from the surrogate model, it
can provide objective guidance on where one should
generate new training data points. This is particu-
larly important when the data are being generated
using expensive computations or experiments. In
the basic regression techniques, one usually aims to
spread the data points uniformly in the input
domain. Such a simple strategy is unlikely to be
optimal in terms of maximizing the predictive
accuracy of the extracted surrogate model. Using

GPR, one can select inputs for generating new
training data based on systematically minimizing
the uncertainty of the model predictions over the
entire input domain of interest. One can therefore
implement a dynamic selection process that leads to
autonomous (without the need for human interven-
tion) and economical workflows for the extraction of
robust surrogate models for any selected physics-
based multiscale materials model. A second major
advantage of using GPR is that that there is no need
for a priori selection of a specific parametric model
form. GPR employs specialized kernels22,23 on the
training data that serve as efficient interpolators.
These kernels have hyperparameters that are opti-
mized to produce the most reliable surrogate models
from the available training data.

GPR has already been used successfully to
address a limited set of materials problems. Bélisle
et al.24 presented a scalable GPR approach for
predictions of martensite start temperature and
electrical conductivity. Tapia et al.25 used GPR to
predict porosity in stainless steel parts fabricated in
an additive manufacturing process, and to predict
the melt pool depth.26 GPR was used by Hoang
et al.27 to predict the compressive strength of
concrete samples based on composition and process
variables. Yabansu et al.18 used GPR models to
predict the microstructural evolution of Ni-based
superalloys in a thermal aging process. Tallman
et al.28 used a GPR-based approach to drive data
collection for a homogenization model in order to
study deformation of a-Ti. Hashemi et al.29 used an
autoregressive GPR model to predict the time
evolution of structure in FCC metals during static
recrystallization processes. This work is specifically
aimed at using GPR for the autonomous extraction
of PSP linkages.

The main goal of this study is to develop and
demonstrate GPR-based MKS protocols for autono-
mous and economical extraction of reduced-order
PSP models for the bulk (effective) plastic response
of multiphase materials. Specifically, our focus will
be on two-phase composites, where each phase
exhibits an isotropic plastic response. This specific
case study was selected because the viability of the
standard MKS regression techniques for this prob-
lem has already been established.19 Therefore, it
offers an opportunity to evaluate critically the
computational cost of training the new GPR-based
MKS models and their predictive accuracy com-
pared to the previously established models based on
standard regression methods.

METHODS

Mean-Field Theory Approximations
for Plastic Response of Composites

Mean-field theories approximate the effective
response of composites by assuming uniform stress
and/or strain fields within the constituents.30,31 The
specific approach employed in this work builds on
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the approach described initially by Stringfellow
et al.,32,33 and more recently by Latypov et al.19

The problem of interest here is the homogenized
equivalent stress–equivalent plastic strain response
of a composite material made of two isotropic
constituents (i.e., thermodynamic phases), both
following a J2-based associated flow rule34 with
distinct hardening responses. The composite
microstructure is assumed to be adequately cap-
tured in a voxelized 3-D representative volume
element (RVE).34,35 The main state variable of
interest in these models is the resistance to plastic
deformation, henceforth referred to as strength, and
denoted by g. During any imposed deformation, the
evolution of strength (due to strain hardening) at
any material point in the RVE can be expressed as:

_g ¼ h_�; ð1Þ

where _� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3D �D

q

is the equivalent plastic strain
rate, and h represents a hardening law expressed
typically as a nonlinear function of the strength, i.e.,
h ¼ h gð Þ. In the present application, we expect the
two phases present in the composite to exhibit two
distinct hardening laws denoted as h1 gð Þ and h2 gð Þ,
where the subscripts index the different phases
present in the composite.

Prior work employing mean-field approaches32,33

has demonstrated the remarkable utility of simpli-
fied approaches for predicting the overall response
of the composite by tracking only the volume
averaged values of the plastic strain rates and
strengths for each phase. Following the prior work
of Stringfellow and Parks33, we assume here that
Eq. 1 can be applied to phase–volume averaged
quantities as (no summation is implied on the
repeated index):

_gk ¼ hk gð Þ_�k ð2Þ

where gk and _�k now denote the volume averaged
strength and the volume averaged equivalent plas-
tic strain rate, respectively, for the kth phase. With
this simplifying assumption, the problem of predict-
ing the overall response of the composite can be
addressed by partitioning the overall imposed defor-
mation into the phase–volume averaged quantities,
_�k. The phase–volume averaged strengths in each
phase, gk, are updated using Eq. 2, and the effective
(composite) strength, g, is computed. Stringfellow
and Parks33 addressed these challenges using the
self-consistent approach based on the Eshelby solu-
tion for a spherical inclusion in a homogeneous
effective medium. Although the approach yields a
simple model, it only incorporates highly simplified
information on the material microstructure, i.e.,
volume fractions of the constituents.

In the recent work of Latypov et al., 19 the
approach of Stringfellow and Parks33 was extended
to include the higher-order details of the material
microstructure. This was accomplished by extend-
ing the MKS framework2 as shown schematically in

Fig. 1. In this new strategy, calibrated MKS models
are established to predict the strain rate partition-
ing ratios for the soft and hard phases (denoted as v1
and v2, respectively). The ratios are defined through
_�k ¼ vk _�, where _� denotes the macroscopically
imposed equivalent plastic strain rate on the RVE.
The inputs for these models are the microstructure’s
reduced-order representation (PC scores) and
strength contrast, g ¼ g2=g1. A key underlying
assumption in this approach is that the changes in
morphology of the microstructure are minimal for
the small plastic strains imposed; therefore, the PC
scores are kept constant for each prediction of the
stress–plastic strain response. Once the volume-
averaged strain rates _�k are computed, the strain
hardening in each phase is computed using Eq. 2,
and the strengths of each phase are updated as
gk sð Þ ¼ gk tð Þ þ _gkDt, where Dt ¼ s� tð Þ is the time
increment. The value of the strength contrast g is
then updated and used in a different MKS model
developed specifically to predict the effective yield
strength of the composite ðgÞ. This MKS model
takes the PC scores of the microstructure and the
strength contrast, g, as inputs. Repeating the
computations described above, one can then predict
the equivalent stress–equivalent plastic strain
curve for the RVE with high fidelity and very low
computational cost. The PC scores used as inputs to
the effective yield strength MKS model are the same
PC scores used as inputs by the other two MKS
models described above. The only difference is that
the value of g used as input to the yield strength
MKS model is the updated value after the prediction
of the strain rate partitioning ratios. The viability of
this approach was demonstrated in prior work.19

Full Field Numerical Evaluation
of Micromechanical Responses

Datasets are needed to train and subsequently
test the GPR models built in this study. These were
generated using finite element (FE) micromechan-
ical simulations on digitally generated 3-D
RVEs.19,36,37 The results from the micromechanical
FE simulations are treated as the ground-truth for
building the GPR models. The protocols used for
generating the datasets are essentially the same as
those used in prior work,19 and are briefly described
next.

Commercial FE software Abaqus38 was used for
generating the datasets. Each voxel of the 3-D RVE
was converted into a C3D8 element in the FE model.
A J2 rate-independent plasticity model based on the
von Mises yield criterion was selected for this study.
Each RVE was subjected to a velocity gradient

tensor (L), defined as L11 ¼ 10�3 s�1 and

L22 ¼ L33 ¼ �L11=2, with all off-diagonal compo-
nents set to zero. These are imposed as periodic
velocity boundary conditions on the RVE. To min-
imize the effects of elasticity, the elastic modulus of
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each phase was selected to be 106 times larger than
its yield strength.

The MKS models identified in Fig. 1 take only the
microstructure and the strength contrast as inputs
and output the strain rate partitioning ratios and
the effective strength. The data needed to train
these models only require FE simulations per-
formed to small strain levels. Specifically, digitally
generated microstructures were deformed to an
equivalent strain of 0.002. The constituent phases
were assigned strength values without hardening to
enforce the desired strength contrast ratio (one of
the inputs to the MKS models to be built).

Test datasets were also generated the critical
evaluation of the GPR-based framework depicted in
Fig. 1. For this purpose, FE simulations were
conducted on selected digitally created microstruc-
tures to an equivalent strain of 0.1. The hardening
laws for both constituent phases were described by a
power law as:

_gk ¼ h0
k 1 � gk

g1
k

� �ak

_�k ð3Þ

where h0
k, g

1
k , and ak denote hardening parameters

for the phase k. These parameters were selected to
correspond to literature values reported for ferrite
and martensite,39 and are summarized in Table I.

Following the Hill–Mandel principle,40,41 the
macroscopic stress was computed as the volume-
averaged stress tensor over the RVE. The equiva-
lent stress was then computed using the von Mises
definition, which is the same as effective strength in
the rate-independent plastic theory used in this
study. The equivalent plastic strain rate is com-
puted at each integration point in the FE mesh, and
the strain rate partitioning ratios, vk, are obtained

by dividing the average equivalent strain rate in the
kth phase by the macroscopically imposed equiva-
lent strain rate.

Generation of Three-Dimensional (3-D) Digital
Microstructure Volumes

Voxelized 3-D RVEs reflecting a diverse range of
morphological features were generated to serve as
the training and test data, where each voxel is
assigned to either the soft phase or the hard phase.
The RVE size was selected to be 27 9 27 9 27,
which produced good results in previous work.19

Two specific methods were used in this study for the
generation of a large ensemble of diverse RVEs for
the present study. The first technique generated
RVEs through the use of a Gaussian filter,42 where
each voxel is assigned a value drawn randomly from
a uniform distribution over the range (0,1). A 3-D
Gaussian filter with diagonal covariance matrix, R,
is applied to the random field via circular convolu-
tion to obtain a smooth (locally averaged) field.

Fig. 1. The MKS plasticity framework applies a velocity gradient tensor to the RVE. Predictions are then made for the strain partitioning ratios (via
MKS Models I and II) and then for effective yield strength (via MKS Model III). The phase-averaged strain rates are utilized in updating the yield
strengths of each constituent phase. Adapted from.19

Table I. Values of quantities used for strain
hardening law calculations.

Quantity Ferrite (k = 1) Martensite (k = 2)

gkð0Þ 285 MPa 974.4 MPa
g1k 1236 MPa 2330.4 MPa

h0
k

3.0 GPa 1351.2 GPa

ak 2.25 2.25

These values were obtained from a prior study by Tasan et al. 39
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Thresholding is then applied to assign label 1 or 2
(denoting a soft or hard phase, respectively) to each
voxel; this process results in a two-phase 3-D RVE.
The thresholding value determines the phase vol-
ume fractions, while the diagonal values of R control
the average phase size and shape. By suitably
changing the diagonal values of R, one can generate
a diverse range of morphologies ranging between
equiaxed morphologies to plate-like morphologies to
rod-like morphologies, with volume fractions in the
range (0,1). A total of 512 RVEs were generated
using this strategy. The top row of Fig. 2 shows
example RVEs generated using the Gaussian filter
approach.

The Universal Microstructure Generation Frame-
work (UMGF) developed recently43 was used as a
second approach for generating the digital RVEs
used in the present study. This approach utilizes a
user-specified cost function to identify the optimal
placement of objects in the microstructure. Objects
to be used in the microstructure may be called from
a library or defined by the user, allowing for
tremendous morphological flexibility. This method
is also computationally efficient, because it uses
convolution filters for carrying out many of the
computations involved. The UMGF approach used
in this work systematically controls object overlap;
this feature allows it to generate morphologies that
are unobtainable using the Gaussian filter

approach. A total of 286 RVEs were generated using
the UMGF approach. Examples are presented in the
bottom row of Fig. 2, where D represents the sizes of
objects used in the generation.

For each RVE, 10 different values of g, corre-
sponding to integers between 1 and 10, were
assigned. As a result, the total number of distinct
inputs generated for the models was 7980.

Microstructure Quantification

Voxelized microstructures can be conveniently
represented by the array, mk

s , which reflects the
volume fraction of local state, k, in voxels, s.10 Since
each voxel is assigned entirely to a single phase, the
values of mk

s are either 0 or 1 for the RVEs studied.
These microstructures can be featurized using two-
point spatial correlations and PCA.14,15 For two-
phase microstructures, the autocorrelation of a
single local state provides an adequate set of spatial
correlations.44,45 These are mathematically defined
as:

f kkt ¼ 1
Sj j
P

S

s
mk

sm
k
sþt ð4Þ

where f kkt is the probability of finding local state, k;
in spatial bins separated by a specified discretized
vector, t.46 For this study, k ¼ 1 was selected; this
has no consequence on the results.47 Fast Fourier

Fig. 2.. (Top) Example RVEs generated with the Gaussian filter method. (Bottom) Example RVEs generated with the UMGF method. For both
methods, the ensemble was generated to target different hard phase volume fractions (f2) and morphologies.
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transform algorithms allow highly efficient compu-
tation of the autocorrelations.46 Figure 3 shows four
example RVEs exhibiting different phase volume
fractions and morphologies. The figure also presents
three orthogonal sections of the corresponding 3-D
autocorrelations. The value at the origin of the 3-D
autocorrelations reflects the phase volume fraction,
and the averaged inclusion size and shape is
reflected in the contours surrounding the central
peak. The first set of 3-D autocorrelations in Fig. 3
shows a very small central peak because its corre-
sponding RVE has very small inclusions. The second
set of 3-D autocorrelations in Fig. 3 clearly show a
vertical fiber as the central peak, reflecting the
dominant morphology of its RVE. Furthermore, the
spacings between the vertical bands in this set of
autocorrelations reflect the distributions of spacings
between vertical fibers in the RVE. The third and
fourth sets of autocorrelations reflect coarse
equiaxed features in their corresponding RVEs.

Although two-point correlations provide rigorous
statistical descriptions for the microstructure, they
result in high dimensional representations (each
value of f kkt is treated as a dimension). In the
present application, the dimensionality of the auto-
correlations is 19,683, which is the number of voxels
in the generated RVEs. As a result, dimensionality
reduction becomes essential for the development of
ML models. In the MKS framework, dimensionality
reduction is achieved performing PCA on the full
ensemble of microstructures. The autocorrelations
of the nth microstructure (the superscripts on the
two-point statistics have been dropped since we
selected k ¼ 1) can then be expressed as:

f
nð Þ

t �
P

R�

j¼1

a nð Þ
j ujt þ ft ð5Þ

where a nð Þ
j denote PC scores, ujt describes the

basis vectors of the PC space, ft denotes the
ensemble mean, and R� denotes the truncation level
(i.e., the reduced dimensionality of the microstruc-
ture representation). Several prior applications of
MKS have shown that a small number of PCs
(typically 3–8) are adequate for capturing PSP
linkages with high fidelity.17,20,36,37

The PC space representation of the 798 digital
microstructures generated for this study is pre-
sented in Fig. 4 in multiple subspaces. It is noted
that the two microstructure generation methods
produced microstructures occupying different
regions, even in the 3-D PC subspace. Each PC
score reflects the strength of the corresponding PC
basis (ujt in Eq. 5). Each PC basis essentially
reflects a normalized and weighted set of autocor-
relations. Figure 4 also presents the basis maps for
the first two PC scores, along with example RVEs
corresponding to selected locations, from which it is
clear that an increase in the value of PC1 results in
an increase in the phase volume fraction, while a
decrease in the value of PC2 results in the phase
regions being elongated in the y-axis while also
becoming coarser. While some of the microstruc-
tural features represented in the PC scores may be
readily interpreted from their PC basis maps, there
will be many other features in the high-dimensional
(19,683 for the present case) PC basis that are not
easily interpreted.

A general practice is to use a truncated set of PC
scores in the model building effort. Percent variance
capture is a useful measure for selecting the num-
ber of PC scores, since it quantifies the differences
between microstructures. However, this is not nec-
essarily the only criterion: some of the PC scores
contributing to only a small fraction of variance can
exhibit a strong correlation to the effective property

Fig. 3. Example RVEs (top row) and their autocorrelations of the soft phase (bottom row). Only three orthogonal sections of the 3-D
autocorrelations are shown. The autocorrelations contain information such as the hard phase volume fraction (value at the origin), morphology,
and spacing.
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of interest. Based on the prior study,19 we have
decided to use the first 10 PC scores in this study.
These 10 PCs account for over 99.9% of the variance
between the elements of the microstructure ensem-
ble utilized for this study.

Gaussian Process Regression (GPR)

GPR is a nonparametric ML approach to building
surrogate models. A Gaussian process21 is com-
pletely defined by specifying its mean and covari-
ance. Therefore, the target, y, can be expressed as

y ¼ ŷþ �; ŷ � N l xð Þ;K x; x0ð Þð Þ ð6Þ

where ŷ denotes the predicted value, e is the
residual, x is the vector of inputs, and N l;Kð Þ is a
multivariate Gaussian distribution with a mean l
and a covariance K . Generally, the mean of a
Gaussian process is assumed to be zero. The covari-
ance is generally estimated using a kernel function
designed for efficient interpolation between the
training data points. An automatic relevance deter-
mination squared exponential (ARD-SE) kernel21, 22

is used in this study, and is expressed as:

k x; x0ð Þ ¼ r2
f exp � 1

2

P

D

d¼1

xd�x
0
dð Þ2

l2
d

� �

þ r2
ndxx0 ð7Þ

where rf ; ld, and rn serve as hyperparameters
controlling the accuracy of the predictions; rf scales
the variance associated with the predictions, with

increasing the value of rf increasing the probability
of capturing outlier values, but also increasing the
prediction noise; ld is an interpolation hyperparam-
eter, where low values of ld imply short-range
interpolations (and noisier predictions); and rn
controls the homoscedastic Gaussian noise applied
to predictions. The central feature of the ARD-SE
kernel is that it allows different interpolation
parameters for the different input variables. This
feature allows the model to capture the different
levels of contributions of the different inputs to the
accuracy of the prediction, improving its fidelity and
interpretability. The main task in building a reli-
able GPR model reduces to the estimation of the
values of the hyperparameters in Eq. 7. This task is
generally approached as an optimization problem
based on the maximization of the joint log marginal
likelihood of the hyperparameters, given the train-
ing dataset. In this work, a quasi-Newton method,
known as the limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm48–50 is used to optimize
the hyperparameters in Eq. 7.

Once the optimized hyperparameters have been
established, the mean (l�) and covariance (R�) of the
Gaussian predictive distribution for test inputs x�
are computed as:

l� ¼ k�TK�1y ð8Þ

R� ¼ K� � k�TK�1k� ð9Þ

Fig. 4. Projections of the microstructure ensemble in PC space: (Top left) PC1-PC2 projection, (Top Middle) PC1-PC3 projection, (Top right)
PC2-PC3 projection. (Bottom left) 3-D basis vectors for first two PC scores. (Bottom right) Illustration of RVEs on the PC1-PC2 projection of the
PC space. It may be observed that PC1 strongly correlates with soft phase volume fraction, while PC2 strongly correlates with elongation of soft
phase domains along the y-axis.
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where k� is the covariance between the training
inputs x and the test inputs x�, K is the covariance
within the training inputs, and y denotes the target
responses for the training inputs. Superscript T
denotes the transpose operation.

Dynamic Selection Methods

As already discussed, our main focus is on optimal
generation of the training data for establishing
surrogate PSP models from expensive physics-based
micromechanical FE models. This will be accom-
plished through dynamic sequential selection of the
next input to the physics-based simulations. Specif-
ically, we will employ a relatively simple approach
based on the highest predictive variance, known as
the mean squared error (MSE) approach.51–54 In
this approach, a single sample point is added in each
selection cycle in a sequential manner,52 and may be
interpreted as seeking the maximization of infor-
mation added to the surrogate model.

AUTONOMOUS PROTOCOLS
FOR FORMULATION OF THE MKS MODELS

The present application requires the establish-
ment of three different surrogate models, identified
in Fig. 1 as MKS Models I, II, and III. In prior
work,19,36 these were calibrated using all of the
available RVEs and their corresponding microme-
chanical responses, without considering the order in
which new data should be added to the training set.
By contrast, this work seeks to develop protocols for
the autonomous generation of training data that
optimally improve the surrogate models being built.
This is accomplished using a variant of the MSE
approach described in ‘‘Dynamic Selection Methods’’
section, where we identify one new set of inputs for
each model being built. In other words, in each cycle
of training data generation, we have identified three
different sets of inputs: each set is expected to
maximize the information gain for each of the MKS
Models I, II, and III, respectively. Additionally,
when a candidate input is selected, it is removed
from the candidate set so that it cannot be selected
again in future data generation cycles. Note that the
input set for all three MKS models comprises the
same set of variables, which include the first 10 PC
scores of the microstructure (see ‘‘Microstructure
Quantification’’ section) and the strength contrast
value, g. A total of 7980 distinct inputs were
established in ‘‘Generation of Three-Dimensional
(3-D) Digital Microstructure Volumes’’ section for
this purpose. Before applying GPR, each input
variable was scaled to exhibit a unit standard
deviation over the complete set of inputs; this is to
improve the optimization of the hyperparameters in
Eq. 7. A subset of 500 inputs from the total set of
7980 inputs were set aside as the test set. The test
inputs were selected such that they uniformly

covered the eleven-dimensional input space. There-
fore, we were left with 7480 inputs as the candidate
training set for the present work.

Figure 5 provides a schematic of the autonomous
workflow developed and implemented in this work
to build the desired surrogate models. This work-
flow was comprised of the following steps:

1. An initial training dataset was created by
selecting 10 inputs from the set of 7480 candi-
date inputs. FE simulations were conducted for
these, and the results were used to train the
initial GPR-based MKS Models I, II, and III.

2. The single-point MSE approach was used to
select three new inputs (each aimed at maxi-
mizing the fidelity of each MKS model) from the
remaining candidate set.

3. FE simulations were performed for the three
new inputs, and the results were added to the
training dataset.

4. All three GPR models were updated using the
enhanced training set.

5. Steps 2–4 were repeated until the model exhib-
ited the desired predictive accuracy on the test
set (not included in the training set).

Figure 6 demonstrates the improvement in the
GPR-based MKS models with each model update, as
measured by the errors on the test set. It is seen
that the proposed workflow is quite efficient in
systematically improving the MKS models. For
comparison, Fig. 6 also shows the model improve-
ment with random selection of training points. It
can be seen that the single-point MSE approach
used in this work significantly outperforms the
random selections (repeated 10 times). In terms of
error, there are only a very few times in which the
random selection outperforms the single-point MSE
selection; even in these rare cases, the advantage is
not seen in all three models simultaneously, and the
benefit is often lost in the next few updates of the
model. There is a clear benefit to the sequential
design approach in the selection of training points.
The models appear to learn quickly, displaying a
roughly asymptotic behavior. The training in the
present work was stopped after using 190 training
points. For all models, the dynamic selection out-
performed the random selection after this number of
training points.

The final model errors were found to be 3.3%,
7.5%, and 6.1% for g, v1, and v2, respectively. These
errors are higher than those obtained in prior
work,19 where errors of 0.6%, 5.0%, and 4.7%,
respectively, were reported after using 1140 train-
ing points and 380 test points. However, the RVEs
used in the test set for that work covered a much
smaller range in PC space compared to the test set
used for the present work. Even with much fewer
training points and a test set covering a larger
range PC space, the v1 and v2 errors are only
slightly higher for this work compared to those
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obtained previously. Clearly, the dynamic selection
approach utilized in this work produced significant
economy in the training effort (only 190 training
points were used in the present work). Figure 6 also
shows that the model error does not always decrease
in subsequent cycles of model improvement. This is
mainly because of the simplicity of the single-point
MSE approach. Other approaches based on maxi-
mization of information gain are likely to improve
on this aspect.

If one aims to improve the model accuracy, one
might try to include more PC scores (10 PC scores
were used in this work) or explore other feature
engineering approaches (PCA on two-point statis-
tics was used in this work) combined with other
surrogate model building approaches (GPR was
used in this work).

PREDICTION OF THE STRESS–STRAIN
RESPONSES WITH UNCERTAINTY

QUANTIFICATION

Prior work,19 based on simple polynomial-based
regression approaches for establishing the three
MKS models, made predictions only for the expected
stress–strain responses of new microstructures,
without quantifying their prediction uncertainty.
Replacing the polynomial regression models with
GP-based models not only allows for a richer

representation of the underlying model form but
also allows for the quantification of the prediction
uncertainty.

The overall workflow for the prediction of the
equivalent stress–equivalent plastic strain response
follows the workflow shown in Fig. 1, and was
summarized in ‘‘Mean-Field Theory Approximations
for Plastic Response of Composites’’ section. The
stress–strain response is computed by performing
200 increments, with each increment corresponding
to an increase of 5 9 10�3 in the equivalent plastic
strain. For each strain step, the expected value of
the equivalent stress is obtained using the GPR-
based MKS models I, II, and III following the
workflow described earlier. The main changes in the
workflow are related to the computation of the
prediction uncertainty and its propagation through-
out the sequential strain increments in the pre-
dicted stress–strain response.

In the workflow employed in this work, the
prediction uncertainty is propagated to the stress–
strain response by sampling the variables of inter-
est. At the beginning of each strain step, variables
vk are sampled from their respective distributions
and evolved to the end of the time step, providing a
distribution of stress values at the end of the time
step. Standard deviation in the predicted stress
value is then computed from the sampled values. In
the first time step, the phase strengths are assumed

Fig. 5. Schematic describing the autonomous workflow for the development of GPR-based MKS Models identified in Fig. 1. The workflow
involves three main steps: (1) establishing the candidate set of inputs that may be selected for FE evaluation, (2) identifying the next set of inputs
to be evaluated using FE models, and (3) performing the FE simulations and adding them as new training data. This cycle of steps is repeated as
many times as needed until the models exhibit the desired predictive accuracies.

Fig. 6. Model learning efficiency of max uncertainty versus random selection approaches for a test set of 500 inputs. The max uncertainty
selection scheme shows faster error convergence compared to random selection for all models generated in this study.

Autonomous Development of a Machine-Learning Model for the Plastic Response of Two-
Phase Composites from Micromechanical Finite Element Models

2093



to be known with zero variance. For all subsequent
strain steps, the GPR models provide the informa-
tion on the variances for both vk, which are used to
compute the phase strengths. It was found adequate
to represent each distribution at each strain step
using 10 samples (i.e., a higher number of samples
did not significantly influence the computed vari-
ance on the predicted stress value). Sampling from
the normal distributions was performed using built-
in functions in the Numpy module55 of Python. A
total of 1000 samples are obtained from each of the
10g values computed in each step, yielding a
population of 10,000g samples. The mean and
variance of this population are computed to estab-
lish the prediction mean and its uncertainty.

The accuracy of the predicted stress-strain
responses was validated using multiple RVEs that
were not in the training set. Three examples of
these RVEs are shown in Fig. 7, exhibiting hard
phase volume fractions of 0.25, 0.35, and 0.75. The
phases were assigned the hardening parameters in
Table 1, corresponding to dual-phase steels. Note
that the initial strength contrast for these examples
is 3.42 (= 974.4/285), which is distinct from the
values used in the training set. Figure 7 shows the
predicted equivalent stress–equivalent plastic
strain responses using the protocols developed in
this work. These predictions not only include the
expected values but also their associated uncertain-
ties (depicted using ± 2 standard deviations). The
predictions are compared with corresponding
results from FE simulations (considered as
ground-truth).

The GPR-MKS framework developed in this work
shows good agreement with the FE-predicted
stress–strain responses for the very different

microstructures shown in Fig. 7. Note that the
modeling framework developed here is applicable
to virtually any two-phase microstructure 3D RVE
with arbitrary assignment of hardening laws for
each phase. Most importantly, the GPR-MKS
framework is able to generate the full stress-strain
curve prediction in under 3 s on a personal laptop
with an Intel i5 processor, compared to approxi-
mately 4 h required for the FE simulation, executed
on the PACE computing cluster at Georgia Tech.
Therefore, it is clear that the proposed GPR-MKS
framework provides remarkable savings in compu-
tational cost, while retaining a high degree of
accuracy in its predictions.

SUMMARY

This work has demonstrated the benefits of GPR
approaches for the development of low computa-
tional cost MKS surrogate models for the prediction
of the equivalent stress–equivalent plastic strain
responses of arbitrary (user-specified) 3D RVEs of
two (isotropic)-phase microstructures. It has been
shown that the use of GPR approaches allows for
optimal training of the surrogate models with a
minimal number of training data points. This is
particularly useful for building surrogate models
calibrated to computationally expensive physics-
based simulation data. In this work, this was
accomplished using a simple single-point maximum
variance-based approach. It has been shown that
the dynamic selection strategy significantly outper-
forms the random selection of the training data,
especially when large-dimensional input domains
are involved.

Fig. 7. Comparison of the predicted equivalent stress–equivalent plastic strain responses for three different microstructures. The mean
prediction is shown by the center line, the ± 2 SD (4 standard deviations in total) showing prediction uncertainty are shown by the outer lines, and
the FE simulation results (i.e., ground-truth) are shown as circles.

Marshall and Kalidindi2094



ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from
N00014-18-1-2879 for this work.

CONFLICT OF INTEREST

The authors declare that they have no conflict of
interest.

REFERENCES

1. S. Ganapathysubramanian, and N. Zabaras, Comput.
Method Appl. M 193, 5017. (2004).

2. S.R. Kalidindi, Hierarchical Materials Informatics: Novel
Analytics for Materials Data (Elsevier, Amsterdam, 2015).

3. McDowell, D.L. and G.B. Olson, Concurrent design of hier-
archical materials and structures, in Scientific Modeling
and Simulations. (Berlin, Springer, 2008). p. 207.

4. D.L. McDowell, J. Panchal, H.-J. Choi, C. Seepersad, J. Al-
len, and F. Mistree, Integrated Design of Multiscale, Multi-
functional Materials and Products (Butterworth-
Heinemann, Oxford, 2009).

5. G.B. Olson, J. Comput.-Aided Mater. Des. 4, 143. (1998).
6. Materials Genome Initiative for Global Competitiveness.,

N.S.a.T. Council, Editor. 2011.
7. B. Aashranth, S. Kumar, D. Samantaray, and U. Borah,

JOM 71, 2705. (2019).
8. A.R. Castillo, and S.R. Kalidindi, Front. Mater. 6, 136.

(2019).
9. K. Pierson, A. Rahman, and A.D. Spear, JOM 71, 2680.

(2019).
10. S.R. Niezgoda, Y.C. Yabansu, and S.R. Kalidindi, Acta Ma-

ter. 59, 6387. (2011).
11. Adams, B.L., P. Etinghof, and D.D. Sam. Coordinate free

tensorial representation of n-point correlation functions for
microstructure by harmonic polynomials. in Mater. Sci.
Forum. 1994. Trans Tech Publ.

12. S. Torquato, Random heterogeneous materials: microstruc-
ture and macroscopic properties (Springer, Berlin, 2013).

13. B.L. Adams, S.R. Kalidindi, and D.T. Fullwood, Mi-
crostructure Sensitive Design for Performance Optimization
(Elsevier Science, Oxford, 2012).

14. I. Jolliffe, Principal Component Analysis (Springer, Berlin,
2011).

15. S. Wold, K. Esbensen, and P. Geladi, Chemom. Intell. Lab.
Syst. 2, 37. (1987).

16. N.H. Paulson, M.W. Priddy, D.L. McDowell, and S.R. Kali-
dindi, Acta Mater. 129, 428. (2017).

17. E. Popova, T.M. Rodgers, X. Gong, A. Cecen, J.D. Madison,
and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 6, 54.
(2017).

18. Y.C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan,
and S.R. Kalidindi, Acta Mater. 178, 45. (2019).

19. M.I. Latypov, L.S. Toth, and S.R. Kalidindi, Comput.
Method Appl. M 346, 180. (2019).

20. Y.C. Yabansu, P. Steinmetz, J. Hötzer, S.R. Kalidindi, and
B. Nestler, Acta Mater. 124, 182. (2017).

21. Rasmussen, C.E. Gaussian processes in machine learning.
in Summer School on Machine Learning (Berlin: Springer,
2003).

22. C.M. Bishop, Pattern Recognition and Machine Learning
(Springer, Berlin, 2006).

23. Wilson, A. and R. Adams. Gaussian process kernels for
pattern discovery and extrapolation. in International Con-
ference on Machine Learning. 2013.

24. Bélisle, E., Z. Huang, and A. Gheribi. Scalable gaussian
process regression for prediction of material properties. in
Australasian Database Conference. 2014. Springer.

25. G. Tapia, A. Elwany, and H. Sang, Addit. Manuf. 12, 282.
(2016).

26. G. Tapia, S. Khairallah, M. Matthews, W.E. King, and A.
Elwany, Int. J. Adv. Manuf. Tech. 94, 3591. (2018).

27. N.-D. Hoang, A.-D. Pham, Q.-L. Nguyen, and Q.-N. Pham,
Adv. Civ. Eng. 2016, 2861380. (2016).

28. A.E. Tallman, K.S. Stopka, L.P. Swiler, Y. Wang, S.R. Ka-
lidindi, and D.L. McDowell, JOM 71, 2646. (2019).

29. S. Hashemi, and S.R. Kalidindi, Comput. Mater. Sci. 188,
110132. (2021).

30. J.D. Eshelby, Proc. R. Soc. Lond. Ser. A 241, 376. (1957).
31. J.W. Hutchinson, Proc. R. Soc. Lond. Ser. A 348, 101. (1976).
32. R. Stringfellow, D. Parks, and G.B. Olson, Acta Metall.

Mater. 40, 1703. (1992).
33. R.G. Stringfellow, and D.M. Parks, Int. J. Plast. 7, 529.

(1991).
34. S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel,

K. Schneider, C. Soyarslan, and J. Wilmers, Prog. Mater Sci.
96, 322. (2018).

35. S.R. Kalidindi, Int. Mater. Rev. 60, 150. (2015).
36. M.I. Latypov, and S.R. Kalidindi, J. Comput. Phys. 346, 242.

(2017).
37. A. Gupta, A. Cecen, S. Goyal, A.K. Singh, and S.R. Kali-

dindi, Acta Mater. 91, 239. (2015).
38. Hibbett, Karlsson, and Sorensen, ABAQUS/standard: User’s

Manual. (Providence, RI: Hibbitt, Karlsson & Sorensen,
1998).

39. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F.
Roters, and D. Raabe, Acta Mater. 81, 386. (2014).

40. R. Hill, J. Mech. Phys. Solids 11, 357. (1963).
41. Mandel, J., Contribution théorique à l’étude de l’écrouissage
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