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In this paper, Paul’s model is advanced to forecast the tensile modulus of
polymer nanocomposites reinforced by carbon nanotubes (CNT) above perco-
lation onset. The developed model assumes the CNT network density by CNT
aspect ratio (a), percolation onset and CNT density (n). The experimental
results from several samples containing a filler network confirm the pre-
dictability of the advanced model. However, undesirable results are reported
for the samples without the filler network. Also, both a and n directly
manipulate the nanocomposite’s modulus above percolation onset, because
they positively influence the polymer-CNT interfacial area and network size.
The reasonable effects of a, n and percolation onset on the predicted moduli of
nanocomposites validate the developed Paul model.

INTRODUCTION

Carbon nanotubes (CNT) and graphene with
outstanding Young’s modulus,1–3 tensile
strength,4–6 and electrical conductivity7–12 have
been used as a normal reinforcement in polymers
to form nanocomposites.13–28 However, nanoparti-
cles like CNT form aggregates/agglomerates during
the synthesis process, which reduce the surface area
and disturb the networks.29 So, the required uni-
form dispersion of nanoparticles in the polymer
matrix is actually difficult to achieve with CNT as a
reinforcing agent. Among the synthesis methods for
polymer CNT nanocomposites, in situ polymeriza-
tion and solution mixing have many limitations,
such as being environmentally contentious, but melt
blending is a fast, cost-effective, and clean tech-
nique, which has captured considerable attention in
previous studies.30,31 Some important applications
of polymer CNT nanocomposites include molecular
wire and electronics, high strength fibers, sensors,
and field emission.32–35

The networks of CNT above percolation onset
cause the electrical conductivity in polymer
nanocomposites.36–38 This means that percolation
onset is observed when the nanocomposite charac-
teristics such as electrical conductivity meaning-
fully increase due to the nets in the polymer
medium. Studies in the literature have commonly
investigated the percolation threshold by measuring
electrical conductivity.39–41 Researchers have
attempted to get a low percolation threshold by
altering the material and processing parameters. A
similar rapid change is also found in the mechanical
properties of nanocomposites such as fracture
toughness and stiffness.42,43 The critical filler con-
centration for this abrupt increase is consistent with
the electrical percolation threshold, while the mech-
anisms are different.

From a modeling point of view, numerous
researchers have predicted the conductivity of
nanocomposites by percolation onset.44,45 Also,
Ouali et al.46 introduced the percolation term to
the inverse rule of mixtures for the modulus of
composites. Similarly, Lyngaae-Jorgensen et al.47

recommended a model for the modulus of polymer
blends above the percolation onset of one phase.(Received June 3, 2020; accepted September 21, 2020;
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However, the modulus forecast in nanocomposites
with percolating filler has received little attention,
although it explains the unusual improvement in
mechanical properties. The percolation threshold
was inversely related to the particle aspect ratio in
many studies.48,49 Therefore, nanoparticle networks
are created in many polymer CNT nanocomposites
at low filler loadings, owing to the high aspect ratio
of CNT.50,51 Accordingly, it is rational to predict
that an increase in CNT volume fraction in polymer
nanocomposites may result in a sudden growth in
mechanical properties.

Paul suggested a simple model for the tensile
modulus of two-phase composites by matrix modu-
lus, filler modulus, and filler volume concentra-
tion.52 This model takes into account the
macroscopically homogeneous stress in matrix and
filler phases. This model was applied to predict the
tensile modulus of polymer composites and
nanocomposites.53 However, this model cannot con-
sider the networks of filler after percolation onset.
In this paper, Paul’s model is advanced to calculate
the modulus of CNT-reinforced nanocomposites by
network density. We chose the Paul model because
it originated from the homogeneous stress in matrix
and filler phases, which are valid in polymer CNT
nanocomposites. Also, the modulus of polymer
nanocomposites depends on the moduli of matrix
and nanoparticles as well as filler concentrations, as
properly considered by the Paul model. For these
reasons, we developed the Paul model for tensile
modulus of CNT-reinforced nanocomposites in this
paper. The forecasts of the original and advanced
models are compared using experimental data from
several samples above and below the percolation
threshold. Also, the reasonable impacts of the
studied factors on the nanocomposite’s modulus
are evaluated to demonstrate the validity of the
advanced Paul model.

THEORETICAL MODELS

The Paul model for tensile modulus of composites
was stated52 as:

E ¼ Em

1 þ ðm� 1Þ/2=3
f

1 þ ðm� 1Þð/2=3
f � /f Þ

ð1Þ

m ¼ Ef

Em

ð2Þ

where /f is the filler volume portion and Em and Ef

show the moduli of polymer host and filler, respec-
tively. However, the Paul model cannot forecast the
nanocomposite’s modulus by filler network above
percolation onset. For development of this model,
the volume portion of the network after percolation
onset is considered as:

/N ¼ ð1 þ xÞ/f ð3Þ

where x shows the network density in the sam-
ples, because the network density mainly manipu-
lates the volume concentration of networks in
nanocomposites. Actually, there is a direct relation
between /N and x, because the network density
directly manages the network volume fraction in
nanocomposites.

Since the networked CNT significantly affects the
modulus of nanocomposites, the developed Paul
model expresses the relative modulus as the
nanocomposite’s modulus divided by the polymer
matrix modulus (E/Em) and by /N as:

ER ¼ 1 þ ðm� 1Þ/2=3
N

1 þ ðm� 1Þð/2=3
N � /NÞ

ð4Þ

The predictability of this model is assessed by the
experimental modulus of reported samples above
and below the percolation onset. Also, the x value is
calculated by fitting the experimental data to the
model.

The relative density of a 3D network is given49 by:

q̂ ¼ qN

qCNT

¼ pNld2

4L1L2L3
¼ p

4
nld2 ¼ p

4
nad3 ð5Þ

where qN and qCNT show the density of network and
CNT, respectively. n is the total number of CNT in
the periodic unit cell, d and l are the diameter and
length of CNT, respectively, and L1L2L3 is taken for
simplicity. n is the CNT density and a is the aspect
ratio as a = l/d.

x in Eq. 3 can be correlated with q̂ (relative
density of 3D network) based on the mathematical
analyses and obtained results as:

x ¼ 100q̂ ð6Þ

which is logical, because both x and q̂ are related to
the network density in nanocomposites.

x is defined by net and filler properties as:

x ¼ 25pnad3 ð7Þ

Undoubtedly, if x has a positive value, this
demonstrates the formation of networks in
nanocomposites. However, x< 0 reveals the
absence of networks in the samples.

In addition, the percolation onset for stiffness of
CNT-reinforced nanocomposites was given49 by:

/p ¼ 2:2

a
ð8Þ

which correlates the percolation threshold with
filler aspect ratio. By applying the above equation
into Eq. 7, x in the developed Paul model is
expressed by percolation volume fraction as:

x ¼ 55pnd3

/p

ð9Þ
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The impacts of net and filler properties on the
modulus of nanocomposites are determined in the
next section.

When the experimental moduli of samples are
applied to the established model (Eq. 4), the value of
x is determined. Also, a and d values are easily
measured by morphological analysis. The level of n
can be determined using the values of x, a and d by
rearranging Eq. 7 as:

n ¼ x

25pad3
ð10Þ

Similarly, the level of /p can be calculated by the
values of x, n and d by rearrangement of Eq. 9 as:

/p ¼ 55pnd3

x
ð11Þ

which shows a simple methodology for characteri-
zation of network properties by the experimental
data of modulus and physical properties of
nanoparticles.

RESULTS AND DISCUSSION

The original and developed models are utilized to
forecast the modulus of several samples and com-
pare the calculations with the measurements. Also,
the roles of the parameters affecting the network
density and modulus are estimated.

Figure 1 shows the experimental results for phe-
nolic/single-walled carbon nanotubes (SWCNT),54

nylon 6/multi-walled carbon nanotubes
(MWCNT),55 high density polyethylene (HDPE)/
SWCNT,56 and polypropylene (PP)/MWCNT57 sam-
ples and the forecasts of modulus by original and
advanced models. The original model commonly
underestimates the modulus, due to disregarding
the filler network. However, the developed model
can forecast the modulus for networks above perco-
lation onset. Hence, the developed model success-
fully foretells the modulus by the density of filler
network. The best calculations are obtained by the x
values of 2.5, 2, 0.7, and 1.3 for phenolic/SWCNT,
nylon 6/MWCNT, HDPE/SWCNT, and PP/MWCNT
samples, respectively, which demonstrate the rela-
tive network densities of 0.025, 0.02, 0.007, and
0.013 for these samples. As a result, the highest
level of network density is shown in the phenolic/
SWCNT sample, while the lowest one is reported in
HDPE/SWCNT.

Obviously, a high level of network density at low
filler concentration suggests a significant modulus
in the polymer nanocomposite, as shown in Fig. 1a.
However, a low density of CNT network, even at
high volume fraction of nanofiller, makes a poor
modulus, as reported for HDPE/SWCNT and PP/
MWCNT samples. These outputs are due to the
higher bearing capacity of a denser network. Also, it
is possible to calculate the values of each parameter

by the levels of other parameters, as mentioned in
the previous section. For example, the value of n can
be calculated when the values of x, a, and d are
known. It should be noted that the developed model
only considers the increased modulus as CNT
concentration increases, due to the formation of
bigger networks at higher CNT concentrations. In
fact, the developed model cannot predict a decreased
modulus as CNT concentration increases. For exam-
ple, the phenolic/SWCNT sample shows a reduced
modulus at CNT > 0.75 wt.%; so there are no
calculated results for this sample at CNT >
0.75 wt.% (see Fig. 1a).

Figure 2 also clarifies the trial data and the
forecasts of modulus by original and advanced
models for the PP/CNT sample from Ref. 58 and
poly (trimethylene terephthalate)/MWCNT from
Ref. 59. The original Paul model overpredicts the
modulus in these samples, but the developed model
can calculate the modulus by x< 0, which results in
a negative value for network density (see Eq. 7).
The low experimental modulus shows the absence of
filler network in these samples, which causes the
overprediction of the Paul model. It means that the
filler network was not formed in these samples and
the developed model cannot predict the tensile
modulus and network density for them. In other
words, the developed model is capable of predicting
the formation or absence of filler network in poly-
mer CNT nanocomposites.

Generally, a high nanocomposite modulus is
obtained by the formation of a filler network above
the percolation threshold in the polymer matrix,
which can stand the load. However, the nanoparti-
cles below the percolation threshold do not create a
network structure, demonstrating a low improved
modulus. The experimental moduli fit the calcula-
tions of the advanced model at x< 1, showing the
absence of filler net in the polymer medium. In this
case, the original Paul model also overpredicts the
modulus of polymer nanocomposites.

Figure 3 displays the impact of x on the relative
modulus using the developed model at Em = 2 GPa,
/f = 0.02 and Ef = 1000 GPa as constant values.
The best and the worst levels of modulus are
observed by the highest and the lowest values of x,
indicating that a high network density causes a
high modulus, whereas a low density of filler
network results in a low stiffness. Moreover, a high
level of x causes a large modulus improvement upon
increasing the filler volume fraction, which demon-
strates that a high quantity of nanoparticles in the
net significantly reinforces the sample.

According to Fig. 3, an x value of 2 produces a
relative modulus of about 2 at /f = 0.02, whereas
x = 3 gives ER = 2.4. Also, the developed model
shows the smallest relative modulus of about 1.7
with x = 1 in this condition. Therefore, the network
density above percolation onset is very important,
and considerably affects the nanocomposite’s
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modulus. The influences of different factors on the
network density in polymer nanocomposites are
explained in the following.

Figure 4 reveals the 3D and contour patterns for
the a and n roles in the relative modulus by the
advanced model at Em = 2 GPa, /f = 0.02,

Fig. 1. The experimental results for (a) phenolic/SWCNT,54 (b) nylon 6/MWCNT,55 (c) HDPE/SWCNT,56 and (d) PP/MWCNT57 samples and the
calculations of modulus by original and developed Paul models.

Fig. 2. The experimental data of modulus and the calculations by original and advanced Paul models for (a) PP/CNT58 and (b) poly (trimethylene
terephthalate)/MWCNT59 samples.
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d = 20 nm, and Ef = 1000 GPa. A relative modulus
of 1.52 is found by a = 500 and n = 4, but the lowest
level of ER as 1.36 is reported by a = 100 and
n = 0.5. As a result, both a and n directly manage
the modulus of nanocomposites. a as the length per
diameter of CNT determines the surface area of
nanoparticles contacting the polymer matrix. A high
a shows a large interfacial area between polymer
medium and nanoparticles, which mainly grows the
physical involvement of polymer chains by nanopar-
ticles causing the high reinforcement.60 Further-
more, a high a is obtained by a small diameter of
nanotubes, which causes robust interfacial commu-
nications due to similar ranges of nanoparticles and
polymer sizes.61,62 Therefore, the direct correlation
between the modulus of nanocomposites and a is
justified according to the developed model. Previous
studies also confirmed the direct influence of a on
the modulus of polymer nanocomposites.63,64 Fur-
thermore, a high level of n as CNT density undoubt-
edly improves the modulus, since CNT with a high

modulus and strength acts to reinforce the material.
On the other hand, a low n causes a low network
density, which certainly decreases the stiffness of
nanocomposites. Finally, the direct impacts of both
a and n parameters on the nanocomposite’s modulus
are correct, confirming the advanced model.

Figure 5 also presents the relative modulus
depending on /p and d factors at Em = 2 GPa,
/f = 0.02, n = 1, and Ef = 1000 GPa. ER = 1.4 is
shown in d< 15 nm, while an ER level of 2.5 is
obtained by /p = 0.001 and d = 40 nm. Hence, a low
modulus is only observed at slight d values, but high
d and low /p produce good reinforcement. /p

inversely affects the modulus of polymer CNT
nanocomposites, because /p determines the mini-
mum filler concentration, which produces the filler
network. In the case of low /p, the network of
nanoparticles is obtained by a low filler content,
which considerably improves the modulus. How-
ever, a high /p shows the production of filler
network at high /f ; so the modulus of nanocompos-
ites shows a poor range at low filler loading below
the percolation onset, owing to the nonappearance
of nets. Also, a low /p results in a high density of
filler network, which results in a great modulus. As
a result, the effect of /p on the modulus of the
samples by the advanced model is as expected.

The diameter of CNT is a main parameter influ-
encing the relative modulus according to Fig. 5. As
mentioned, a low diameter of CNT is enough to see a
poor modulus in nanocomposites. A low CNT diam-
eter causes a low level of network density based on
Eq. 9, while thick CNT produces a dense network.
Since the stiffness of nanocomposites significantly
depends on the network density, the effect of CNT
diameter on the relative modulus is reasonable.
Therefore, the dependence of the relative modulus
on /p and d parameters is as expected, which proves
the advanced model for tensile modulus of
nanocomposites.

Fig. 3. The role of x level in the prediction of modulus by the
developed model at Em = 2 GPa, /f = 0.02, and Ef = 1000 GPa.

Fig. 4. The effects of a and n as network properties on the predicted relative modulus by developed model at Em = 2 GPa, /f = 0.02, d = 20 nm,
and Ef = 1000 GPa: (a) 3D and (b) contour plots.
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CONCLUSION

The Paul model was advanced to calculate the
tensile modulus of CNT-reinforced nanocomposites
by network density depending on filler aspect ratio,
percolation onset, CNT diameter, and CNT density.
The original and developed models were evaluated
by experimental measurements of many examples
and the roles of factors in the relative modulus. The
experimental results support the accuracy of the
advanced model for the samples containing filler
networks. However, an undesirable output was
reported for the samples with low experimental
modulus due to the nonappearance of filler net
(below percolation level). Therefore, the advanced
model can successfully predict the modulus and
network creation in nanocomposites. The highest
and the lowest moduli are obtained by the highest
and the lowest levels of x, demonstrating the main
role of network density in the modulus. This is
expected, because a dense network produces a stiff
sample that can tolerate a large amount of force.
Also, both a and n directly manipulate the relative
modulus above percolation onset. A high a shows
the high level of interfacial area, which increases
the physical involvement of polymer chains with
CNT. Likewise, the high quantity of CNT in the
network clearly reinforces the samples. A high
relative modulus is achieved by low /p, because /p

determines the minimum filler content creating the
network in the polymer medium. Furthermore, high
CNT diameter causes a dense network, increasing
the modulus of nanocomposites.
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mond, and F. Addiego, Mech. Mater. 52, 58 (2012).
31. D. Cai and M. Song, Compos. Sci. Technol. 103, 44 (2014).
32. Y. Zare and K.Y. Rhee, J. Phys. Chem. Solids 131, 15 (2019).
33. Y. Zare, K.Y. Rhee, and S.J. Park, J. Biomed. Mater. Res.

Part A 107, 2706 (2019).
34. Y. Zare, H. Garmabi, and K.Y. Rhee, Sens. Actuators A:

Phys. 295, 113 (2019).
35. A. Farahi, G.D. Najafpour, and A. Ghoreyshi, JOM 71, 285

(2019).
36. Y. Zare and K.Y. Rhee, Polym. Compos. 161, 601 (2019).
37. Y. Zare, H. Garmabi, and K.Y. Rhee, Mater. Chem. Phys.

206, 243 (2018).
38. Y. Zare and K.Y. Rhee, Polymers 12, 114 (2020).
39. S. Maiti, S. Suin, N.K. Shrivastava, and B. Khatua, J. Appl.

Polym. Sci. 130, 543 (2013).
40. E. Garboczi, K. Snyder, J. Douglas, and M. Thorpe, Phys.

Rev. E 52, 819 (1995).
41. R. Goyal, S. Samant, A. Thakar, and A. Kadam, J. Phys. D

Appl. Phys. 43, 365404 (2010).
42. Y. Zare and K.Y. Rhee, J. Mater. Res. Technol. 9, 22 (2019).
43. N. Jamalzadeh, S. Heidary, Y. Zare, and K.Y. Rhee, Polym.

Test. 69, 1 (2018).
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