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Computational modeling has emerged as a powerful tool in estimating many of
the exciting material properties of low-dimensional systems such as nanotubes.
There also exists a variation in the reported strength data of nanotubes using
different computational techniques. This issue is attributed to the uncertainty
in determining the correct thickness of the nanotubes, a fundamental param-
eter to estimate any mechanics-related properties. The present study estab-
lishes a consistent approach in determining the mechanical properties of
nanotubes using molecular dynamics (MD) simulation. It was found that the
nanotube wall thickness varies with the nanotube radius, which subsequently
affects the estimated elastic modulus of the nanotube. There exists a threshold
nanotube radius beyond which the elastic modulus remains fairly constant.
The results predicted by MD simulation are also consistent with findings from
first-principle methods. The findings from this study can be applied for a range

of nanomaterials to determine their effective mechanical properties.

INTRODUCTION

Advances in high-performance computing and
novel computational techniques have led to a surge
in the design and characterization of nanoscale and
low-dimensional material structures. Since their
discovery in the 1990s,' carbon nanotubes (CNTs)
have caught the attention of researchers specializing
in the field of nanomaterials. The CNT structure is
formed by rolling up a layer of graphene to form a one-
dimensional structure, and is a representative of a
low-dimensional homogenous material structure.
Similar to CNTs, research in nanomaterials has
focused on the characterization of its heterogeneous
counterpart, boron nitride nanotubes (BNNTS).
These classes of nanomaterials have today been
forayed into a wide range of emerging fields, such as
nanosensors, nanocomposites, new materials design,
and nanoelectromechanical systems. Computational
modeling of nanomaterials has since evolved as a
powerful tool in determining the mechanical
response of nanotubes in diverse operating
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conditions. However, the mechanical properties pre-
dicted by numerical analysis present ambiguous and
scattered strength data for the same nanomaterial.
This study focuses on some critical issues in accu-
rately predicting the mechanical properties of nan-
otubes using molecular dynamics analysis.

Several studies have been undertaken in the past
to investigate the mechanical characteristics of
carbon and BNNTs. The mechanical characteriza-
tion of nanotubes using a computational approach is
popular, owing to the complexity in determining the
strength of low-dimensional nanotubes using exper-
imentation techniques. These computational
approaches involve a range of techniques, such as
quantum computing, molecular dynamics (MD)
simulation, continuum modeling and finite element
analysis (FEA). The vast majority of computer-
based research is based on MD simulation, due to its
speed and cost-effective nature in solving large-
scale atomic systems. These studies have been used
to report the elastic modulus of nanotubes by
systematically considering variations in nanotube
diameter,®>” lattice defects,>'! temperature,*~*
etc. In addition to MD simulation, the quantum
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computing approach such as ab initio or density
functional theory have also been used to study the
mechanical properties of nanotubes from their
atomic and sub-atomic structure.’®'” These studies
mainly focus on investigating the elastic properties
of nanotubes by analyzing their electronic structure.
Some studies have also focused on the elastic
properties of nanotubes using continuum mechan-
ics-based FEA approach.’®?° A summary of the
mechanical properties of CNTs and BNNTs as
reported in past literature studies are tabulated in
Tables I and II, respectively.

From the summary of literature studies presented
above, it is evident that the elastic modulus of
nanotubes varies widely depending on the adopted
computational technique. Earlier studies by Voden-
itcharova and Zhang®”* and Wang and Zhang®’
attributed this variation to inconsistent wall thick-
nesses of the nanotubes being adopted in computa-
tional modeling. By devising a set of criteria, they
formulated a methodology and the necessary and
sufficient conditions®®*° for the rational determina-
tion of the effective wall thickness and elastic
modulus of carbon nanotubes. With research in
BNNTs also gaining traction in recent years, esti-
mating the fundamental mechanics quantities of
BNNTSs will be significant in the design of BN-based
nanomaterials.**~*? It is also important to adopt a
reliable computational scheme with regards to

strain rate, relaxation steps, etc. for predicting
mechanical characteristics of nanotubes using MD
studies. Accordingly, the main objective of the
present study involves the computation of the effec-
tive mechanical properties of different nanotubes
using a MD simulation approach by following the
well-established  Vodenitcharova-Zhang®®>  and
Wang-Zhang®’ criteria. The fundamental mechanics
quantities of different nanotubes with varying nan-
otube radii is computed by using a reliable compu-
tational scheme which has been established from the
corresponding author’s research group in Ref. 14 A
systematic study of the mechanics quantities of
nanotubes with varying nanotube radii presents a
clear analysis on the effect of nanotube geometry on
the computed mechanics quantities. It is anticipated
that the findings reported in this study could provide
useful guidelines and improve the reliability in
characterizing the mechanical properties of nan-
otubes using MD simulation.

DESCRIPTION OF COMPUTATIONAL
SCHEME

The present study deals with computational mod-
eling of carbon and BNNTs under tensile loading
conditions using MD simulation. The second-gener-
ation reactive empirical bond order (REBO)

Table I. Mechanical properties of CNTs reported using computational techniques

Technique Temperature
Ab initio method5 NA

Ab initio method6 NA

Ab initio method16 NA

Ab initio method17 NA

Ab initio method10 NA
Atomistic -continuum?21 NA
EAM potential22 300-900 K
FEA modeling23 NA
Molecular mechanics20 NA
Molecular mechanics24 NA
Morse potential25 0K, 300 K
Quasi-continuum26 NA
REBO potential4 NA
REBO potential7 50 K
REBO potential27 < 0.005 K
REBO potential28 0K
Continuum FEA18 NA
Structural mechanics12 100-2000 K
Tersoff potential29 300 K
Tight binding30 NA
Tight binding15 NA
Tight binding31 NA
Tersoff-Brenner14 300 K
Shell theory32 NA

Diameter (A) Elastic modulus (TPa)

6.8-15.67 1.29-1.35
6.0-14.0 0.56-0.82
6.9 0.83-0.92
8.0-20.0 0.8-1.22
6.80 0.83-3.02
6.8-7.8 1.7-6.9
4.0-34.0 0.97-1.20
0.4-2.7 0.912
5.0-40.0 0.17-1.44
12.526 2.56
16.0 NA
13.6-14.1 0.79-1.0
6.9-13.6 NA
9.48 NA
24.0-33.0 0.4-0.8
4.0-22.0 0.5
4.0-16.0 0.4-0.5
6.8-13.6 0.62-0.72
4.0-22.0 1.0
13.0 0.98
13.6 0.311
6.8-14.1 0.4
13.6 4.88
13.6 3.5

EAM Embedded-atom method, FEA finite element analysis, REBO reactive empirical bond order
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Table II. Mechanical properties of BNNTSs reported using computational techniques

Technique Temperature
Ab initio3 NA

DFT calculation2 NA

C-L model19 NA

T-B scheme33 NA
Modified T-B34 NA
Tersoff potential35 300 K
MM-DFT model36 NA

Diameter (A) Elastic modulus (TPa)

4.2-19.65 2.901
4.86-14.04 0.700-0.830
NA 0.900-1.000
8.42-21.06 0.837-0.912
14.04 0.982-1.113
4.86-8.42 0.730-0.890

7.02-24.31 0.83

DFT Density functional theory, C—L continuum-lattice, 7-B Tersoff-Brenner, MM molecular mechanical

potential®® is used to describe interactions between
carbon atoms in CNTs. The REBO potential is
computationally efficient for modeling covalent
bond breaking and forming in large carbon atom
systems, while also maintaining the accuracies of
the ab initio technique. In addition, the REBO
potential also includes a torsional term for describ-
ing dihedral angle preferences in a hydrocarbon
system, which makes it an ideal potential for
modeling CNTs. The interactions between boron
and nitrogen atoms in BNNTSs is described using a
modified Tersoff potential** with interaction
parameters defined in Ref. 45 The Tersoff potential
has been widely used for modeling boron nitride
nanostructures with accuracies comparable to
experimental observations and first-principle mod-
els. CNTs and BNNTs with radii ranging from
0.32 nm to 1.05 nm are considered in this study.
To standardize the geometry, a constant length-to-
diameter ratio of 7.37 has been adopted across all
the nanotubes considered in this study. In an
earlier study,'* the corresponding author presented
an extensive analysis on an appropriate computa-
tional scheme to be used for accurately and
efficiently determining the tensile loading proper-
ties of nanotubes using MD simulation. Accord-
ingly, the present study adopts the scheme from
Ref. 14 which is described as follows. The first two
layers of atoms at either end of the nanotube are
rigidly fixed and the remaining atoms are treated
as thermostat atoms. Before the application of
tensile loading, the nanotubes were thermally
relaxed at the required simulation temperature
for 2500 fs. The rigid ends of the nanotube were
then pulled along axial directions with a strain of
0.0005 to simulate tensile loading. After each fixed
displacement, the mnanotube structure is then
relaxed for 25 fs, following which the required
data are extracted. Periodic boundary conditions
are applied across axial directions of the nanotube.
The simulations are conducted at a temperature of
300 K. All MD simulations described in this work
were performed using the open source large-scale
atomic/molecular massively parallel simulator
package.*®

RESULTS AND DISCUSSION

Measurement of Nanotube Thickness from Its
Unwrapped Nanosheet Counterpart

The fundamental parameter necessary to deter-
mine the mechanical properties of nanotubes is
their wall thickness. If the wall thickness of the
nanotubes can be well defined, then the existing
continuum and numerical models can be readily
applied to determine their mechanical strength and
elastic modulus. While some past studies have
reported varying wall thickness data for CNTs
ranging from 0.62 A to 6.5 A, to the best of the
authors’ knowledge, no reliable data exist for the
case of BNNTSs. This inconsistency in wall thickness
has led to a scatter of elastic modulus data for
nanotubes.

The correct thickness and effective elastic modu-
lus of different nanotubes can be computed using
the well-established Vodenitcharova-Zhang®® and
Wang-Zhang®’ criteria. Based on this approach, the
axial stiffness (K) and bending stiffness (D) of a
nanotube is first obtained from the MD simulations
of an unwrapped nanosheet, independent of the
disputed elastic modulus (¥) and wall thickness (k)
values. Accordingly, a single-layer graphene sheet
and a boron nitride nanosheet (BNNS) are first
considered, representing an unwrapped structure of
the corresponding nanotube. The width of the
nanosheet should be equal to the circumference of
the desired nanotube, which is formed by wrapping
the nanosheet perpendicular to the direction of the
width. The formation of the nanotube by wrapping
up a nanosheet is described in the authors’ previous
work.*” As an example, graphene and BNNS of
widths 4.26 nm and 4.41 nm are first selected,
corresponding to the circumference of a (10,10)
CNT and BNNT, respectively. Axial and bending
loading are applied separately on the nanosheets to
obtain the variation of axial and bending strain
energies, as shown in Fig. 1a and b, respectively.
The K and D values are then computed from the
second derivative of the strain energy polynomial
function with respect to the axial and bending
strain, respectively. Once these values are
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Fig. 1. Strain energy curves of (10,10) nanotubes under (a) axial and (b) bending loading.
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The computed effectiv
modulus of the different

determined from the MD simulation, they can be
used to obtain the important mechanics quantities
of wall thickness and elastic modulus, as defined by
the following elastic theory equations:

shown in the inset in Fig.
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e thickness and elastic
nanotubes, as obtained

from the intersection of K and D curves, satisfy both
the necessary and the sufficient conditions and are

2. The computed effective

thickness of both nanotubes is found to be 0.106 nm,
which is lower than the elemental atomic diameter

of carbon (0.14 nm), boron (0.13 nm), and nitrogen

Eh
K = 127 Eh (1)
3 3 atoms (0.17 nm). It can
po B _m ®
12(1 —v2) 12

where v is the Poisson ratio of the nanosheet. chirality, BNNT and CNT

The unique values for E and A for the CNT and
BNNT are then determined from the intersection of
the K and D curves in the E-A coordinate plane, as
shown in Fig. 2a and b, respectively. These unique
values of E and A of the CNT and BNNT satisfy the
necessary condition of the Vodenitcharova-Zhang®?
condition. The sufficient criteria according to the
Wang-Zhang®"*? condition states that the computed
thickness of the nanotube must not exceed the
atomic diameter of the elements comprising the

variation in the thickness

hexagonal atomic lattice.

be validated.

also be noted that the

thickness of the CNT and BNNT are nearly equal to
each other. This is expected since, for a given

exhibit similar hexagonal

lattice structures, and there should not be much

of the cross-section. Also,

previous studies have consistently estimated the
elastic modulus of CNT to be higher than that of
BNNT, regardless of the wall thickness of the

As the current approach

predicts the elastic modulus of CNT to be higher
than the elastic modulus of BNNT, the findings can

nanotube.
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Effect of Nanotube Radius on Computed
Stiffness Parameters of Nanotube

This section will focus on analyzing the effect of
nanotube radius on the computed axial and bending
stiffness of different nanotubes. As explained in the
previous section, the stiffness parameters of differ-
ent nanotubes of varying nanotube radii can be
systematically calculated by using the methodology
and set of criteria as established in Refs. 32, 37
Nanosheets of the width equaling the circumference
of the nanotubes to be formed and the length
corresponding to an aspect ratio of 7.37 are consid-
ered. The calculated axial and bending stiffness
parameters of different nanotubes are then plotted
against varying nanotube radii, R, as shown in
Fig. 3a and b, respectively. Regardless of the nan-
otube type, it can be seen that there exists a
threshold radius, R; ~ 0.6 nm, after which no
appreciable variation of the nanotube stiffness
parameters is observed. These trends in the
observed variation of nanotube stiffness with the
radius of the nanotubes are also in agreement with

previous studies.'”*® The reduced axial stiffness of
nanotubes with radii smaller than R, is attributed to
the weaker resistance to tensile loading of the
corresponding unwrapped nanosheets with a small
width. In contrast, the higher bending stiffness of
nanotubes with radii smaller than R, is attributed to
the increase in curvature to which the nanosheets
need to be wrapped to form the nanotubes. It follows
from the previous section that the thickness and
elastic modulus of a nanotube is primarily depen-
dent on its stiffness parameters, which in turn vary
according to the radius of the nanotube. This
analysis provides an interesting insight into under-
standing the variations in mechanical properties of
nanotubes with different radii, which is described in
the next section.

Applicability of Continuum Principles
in Estimating Nanomechanical Properties

In estimating the mechanical properties of nan-
otubes using continuum principles, the thickness of
the nanotube in most cases is assumed to be

0.34 nm, which is the inter-layer separation
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Fig. 3. Plot of (a) axial and (b) bending stiffness of different nanotubes as a function of nanotube radius.
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Fig. 4. Measures of (a) elastic modulus and (b) wall thickness of different nanotubes.

distance between adjacent graphene sheets. As
highlighted in Refs. 32, 37, the atomic diameters
of carbon, boron, or nitrogen atoms are much lower
than 0.34 nm, which renders the assumption to be
invalid. This uncertainty in the assumption of the
exact wall thickness has led to a scatter in the
measured elastic moduli of nanotubes. It is also
commonly assumed that all nanotubes, regardless of
their radius, exhibit equal wall thicknesses. This
assumption is also not entirely valid, as it has been
shown in previous sections that the wall thickness
depends on the nanotube stiffness, which can again
vary depending on the nanotube radius. It would be
useful to determine the wall thickness and elastic
modulus of nanotubes for varying nanotube radii,
from which the wall thickness or elastic modulus for
nanotubes with any given radius can be readily
determined. Using the methodology as described in
“Measurement of nanotube thickness from its
unwrapped nanosheet counterpart” section, the
elastic moduli and wall thicknesses of different
nanotubes are computed and plotted as a function of

nanotube radius, as shown in Fig. 4a and b, respec-
tively. For smaller nanotubes, the wall thickness
tends to approach the diameter of the atomic
elements comprising the nanotube. This is expected,
since the cross-section of a nanotube with the least
possible radius should ideally consist of one or two
atoms,and the diameter of the individual atom can
be taken as the wall thickness of the nanotube. For
nanotubes whose radius exceeds R; (0.6 nm), the
wall thickness does not vary much with the varia-
tions in the nanotube radius, and is estimated to be
around 0.104 nm. This value of wall thickness can
be used in the continuum modeling approach to
determine the mechanical characteristics of nan-
otubes provided the nanotube radius exceeds R;.
Correspondingly, it is also observed that the elastic
modulus of nanotubes initially increases, and
approaches stable values for the nanotubes once
the nanotube radius reaches R;. This phenomenon
is also in agreement with some previous studies
which predicted that the elastic modulus of nan-
otubes with larger diameters approaches the value
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Fig. 5. Sensitivity of the elastic moduli of (a) CNT and (b) BNNT to stiffness parameters.

of a two-dimensional nanosheet due to the decrease
in curvature.*®®® For nanotubes with radii more
than R,, the elastic modulus of CNT and BNNT is
found to be around 3.75 TPa and 2.80 Tpa, respec-
tively. These values are found to be in good agree-
ment with the values of the elastic modulus
predicted using computationally expensive ab initio
techniques®'® or molecular mechanics models.?*3?
In concurrence with the conclusions made in
Refs. 14, 32, 37, these studies also reinforce the
importance of calculating the correct wall thickness
of nanotubes in achieving a reliable estimate of
their mechanical properties regardless of the com-
putational technique adopted.

Sensitivity Analysis of Axial and Bending
Stiffness on Elastic Modulus of Nanotube

It is also useful to predict the sensitivity of the
wall thickness and elastic modulus of nanotubes to
the calculated axial and bending stiffness values
obtained by wrapping up of the nanosheet to form a
nanotube. The measure of sensitivity of the elastic
modulus (Mgy) to the considered stiffness variables
(S;) is given as:

Range; = EMpax(S;) — EMpnin(S;) (3)

Range;

Mgy = —o88
EM > i—1 Range;

x 100 (4)

where EMy,in(S;) and EMyax(S;) are the minimum
and maximum values of the elastic modulus, respec-
tively, measured for the range of a particular
stiffness variable considered. The other stiffness
variable is maintained at its average value.

In the present study, the computed axial stiffness
was found to vary from 253.26 N/m to 372.3 N/m for
CNTs and from 178.75 N/m to 276.42 N/m for
BNNTSs. The bending stiffness was found to vary
from 2.2 eV to 3.05 eV for CNTs and from 1.66 eV to
2.51 eV for BNNTs. The elastic modulus of the
different nanotubes are then computed for the
lowest and highest values for either one of the axial
or bending stiffness value ranges, while maintain-
ing the other stiffness variable at the mean value.
The percentage influence of each of the stiffness
variables on the elastic moduli of CNT and BNNT is
depicted in Fig. 5a and b, respectively. It is clear
from this figure that the elastic moduli of both CNT
and BNNT are significantly influenced by the axial
stiffness of the nanotube. This means that the
measure of axial stiffness is a good indicator to
express the elastic modulus of nanotubes, without
the need to measure the wall thickness. This is also
evident by comparing Fig. 3 with Fig. 4, where an
identical trend is observed in which the axial
stiffness and elastic modulus vary for different
nanotube radii. Additionally, since the axial stiff-
ness can be measured directly from the atomistic
simulations, it can also be used as a metric to
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express the strength of nanotubes without the need
to compute the actual value of the wall thickness.

CONCLUSIONS

This paper has presented an investigation on the
determination of some mechanical properties of
nanotubes using MD simulation. The literature data
of computational characterization of CNTs and
BNNTs are first presented, and show a wide scatter
of the elastic moduli of nanotubes. To address this,
the effective wall thicknesses of different nanotubes
are first computed using the well-established Voden-
itcharova-Zhang®? and Wang-Zhang®’ criteria. The
elastic moduli of different nanotubes for a range of
varying nanotube radii are then computed. The study
shows that there exists a threshold nanotube radius,
beyond which nearly uniform wall thickness and
elastic modulus values are observed, regardless of
any variation in the nanotube radius. For nanotubes
with radii smaller than that of the threshold, the wall
thickness will vary and will lead to a variation in the
measured elastic modulus of the nanotubes. Sensi-
tivity analysis showed that the elastic moduli of
nanotubes are predominantly affected by the axial
stiffness. It is anticipated that the findings from the
present study are expected to further improve the
reliability of predicting the mechanical characteris-
tics of a wide range of nanostructures using compu-
tational modeling techniques.
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