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This research extends the existing classical lamination theory based finite
element (FE) models to predict elasto-plastic and bimodular behavior of 3D
printed composites with orthotropic material properties. Short carbon fiber
reinforced acrylonitrile butadiene styrene was selected as the 3D printing
material. Material characterization of a 3D printed unidirectional laminate
was carried out using mechanical tests. A bimodular material model was
implemented using explicit FE analysis to predict the tension and bending
behavior of a 3D printed laminate. The results of the FE model predictions
were experimentally validated. Hill’s yield function was effective at predicting
the elasto-plastic stress–strain behavior of the laminate in tension. In bend-
ing, bimodular material behavior along with Hill’s yield function worked
reasonably well in predicting the elasto-plastic bending of the laminate. The
material model proposed can be used to predict the mechanical behavior of 3D
printed parts with complex geometry under complex loading and boundary
conditions.

INTRODUCTION

The extrusion-based 3D printing process, also
called fused deposition modeling (FDM) and fused
filament fabrication (FFF), is currently the most
common 3D printing process used for additive
manufacturing of polymer composite parts.1 An
extrusion-based 3D printed part is produced by
depositing beads of molten thermoplastic layer by
layer which results in a part with orthotropic
material properties.

Figure 1 shows the three principal material
directions along with the three principal machine
axes. Axes 1, 2 and 3 are the three principal
material axes. Axes X, Y, and Z are the three
principal machine axes and define the machine
coordinate system described by ASTM/ISO 52900-
15.2 Material axis 1 is aligned with the direction of
deposition of the bead. Material axis 2 lies in the
same plane of deposition as material axis 1 and is

perpendicular to material axis 1. Material axis 3 is
normal to the plane of deposition. Angle h is the
angle between the global machine axis X and the
material axis 1. E1, E2, and E3 are the Young’s
moduli along the principal material axes. Similarly,
S1, S2, and S3 are the strengths along the 1, 2, and
3 axes respectively.

Researchers have used laminate analysis to
model the mechanical behavior of 3D printed parts.
Recent research works show that the linear elastic
behavior of 3D printed parts under tension loading
can be successfully modeled using CLT. Kulkarni
and Dutta3 developed an analytical model using
laminate analysis to determine the elastic moduli of
3D printed laminates with layers oriented at differ-
ent angles. Rodriguez et al.4 introduced a strategy
for optimizing the design of fused deposition mod-
eling (FDM)-based 3D printed materials using
laminate analysis. Li et al.5 analyzed FDM-based
3D printed materials using laminate analysis and
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proposed a set of equations to determine the elastic
constants of FDM prototypes based on the analysis.
Alaimo et al.6 modeled the elastic behavior of FDM-
based 3D printed material using classical lamina-
tion theory and used the Tsai-Hill yielding criterion
to predict yielding of the 3D printed material in
tension loading.

The difference in elastic response of some mate-
rials in compression compared to tension has been
known for a long time7,8. Jones9 discussed fiber
reinforced polymers that have a tension modulus up
to 40% higher than the compression modulus. Phan-
Thein10 discussed the bimodular behavior of short-
fiber reinforced polymers and its implications
regarding the use of high fiber aspect ratios for
bending applications. Similar bimodular behavior
has been observed in extrusion-based 3D printed
parts. Ziemen et al.11 reported a tensile modulus of
987 MPa and a compression modulus of 402 MPa
for 3D printed acrylonitrile butadiene styrene (ABS)
parts at 0� orientation. At 90� orientation, the
tensile modulus was found to be 738 MPa and the
compression modulus was found to be 382 MPa.11

Song et al.12 reported similar bimodular behavior in
3D printed PLA parts. An elastic modulus derived
from bending tests would be useful in approximat-
ing the linear-elastic bending behavior of such
bimodular materials at small deflections. However,
when geometry, boundary conditions, and loadings
are complex or yielding of materials is taken into
account, the results from models based on bending
elastic modulus deviate significantly from the
experimental results.10

Different numerical techniques have been pro-
posed to address the bimodular behavior of materi-
als. Sun et al. reviewed different approaches to
model the mechanical behavior of bimodular mate-
rials.13 The two basic approaches generally used to
model bimodular behavior are (1) Bert’s model,14

and (2) Ambartsumyan’s model.15 Bert’s model uses
either the tensile or compressive modulus based on

whether the strains in the fiber are positive or
negative. Ambartsumyan’s model uses tensile or
compressive modulus based on whether principal
stress is positive or negative. Although not specific
to 3D printed materials, Babesko et al.16 proposed a
numerical technique for analysis of the elasto-
plastic stress–strain state of transversely isotropic
shells with different moduli in compression and
tension. Zhang et al.17 discussed different numerical
techniques to create a stabilized complementarity
formulation for 3D bimodular materials. Li et al.18

discussed different analytical solutions for function-
ally graded beams. A suitable material model
should accurately predict the bending behavior of
the 3D printed laminate.

In addition to the linear elastic bimodular behav-
ior, the elasto-plastic behavior of the 3D printed
parts also should be determined to accurately model
the response of 3D printed material to different
loadings. Hill’s yield criterion and Tsai-Hill yield
criterion have been used to model the yielding
behavior of 3D printed materials.6,19 Destrade
et al.20 showed that a simple finite element model
cannot accurately predict the bending behavior of a
bimodular material like bimodular rubber.

Different mechanical finite element models have
been created for polymer extrusion-based 3D
printed materials. Bhandari and Lopez-Anido21,22

used space frame-based finite element models to
generate effective homogenized properties for 3D
printed cellular structures. Guessasma et al.23 used
finite element modeling to explain damage mecha-
nisms in 3D printed polymers subject to severe
compression. The finite element model used by
Nouri et al.24 predicted the transverse symmetry
3D printed ABS parts. Guessasma et al.25 used
finite element modeling to point out the combination
of local shearing and inhomogeneous stretching that
correlated to the filament arrangement in 3D
printed PETG (polyethylene terephthalate glycol)
parts within the plane of construction. Werken
et al.26 discussed different considerations for devel-
oping a suitable finite element model for 3D printed
parts. Xu et al.27 used finite element modeling to
predict the deformation of disordered lattice struc-
tures. Somireddy et al.19,28,29 developed a constitu-
tive material model and used classical lamination
theory (CLT) and nonlinear finite element analysis
with Hill’s yield criteria and first ply failure to
predict the bending response of 3D printed ABS
parts. While these models are quite successful in
predicting the tensile and compressive behavior of
the 3D printed material, a CLT based finite element
model that considers the bimodular linear elastic
behavior and yielding would be useful in predicting
yielding and bending responses of 3D printed short
carbon fiber reinforced polymer parts.

Fig. 1. Principal material axes and global axes for an extrusion-
based 3D printed part.
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This research work aims to extend the existing
CLT-based linear-elastic finite element analysis
used for modeling the mechanical response of 3D
printed composite parts by addressing the bimodu-
lar and elasto-plastic behavior of 3D printed com-
posite materials.

Progressive damage and ultimate strength pre-
diction are beyond the scope of this article. Past
research work has shown that post ultimate
strength behavior in short-fiber reinforced compos-
ite laminate needs to incorporate lamina strength
parameters in different directions,30 progressive
fiber/matrix debonding in short-fiber reinforced
composites,31 and progressive fracture
mechanisms.32

The objectives of this research work were: (1)
implement a bimodular elasto-plastic material finite
element model to describe the bending behavior of a
3D printed short carbon fiber reinforced ABS part,
and (2) validate the bimodular elasto-plastic mate-
rial finite element model experimentally.

MATERIALS AND METHODS

Modeling Approach for 3D Printed Material

The 3D printed parts were modeled as shells with
stacked layers of orthotropic laminae oriented at
different angles. The shell was homogenized using
laminate analysis. The material behavior was
divided into linear elastic and elasto-plastic regions.

Linear Elastic Behavior

Several material models have been discussed by
researchers to efficiently implement the linear elastic
bimodular behavior of the material in a finite element
model.33–36 This study uses a simple 2D orthotropic
material model for a lamina based on Ambart-
sumyan’s constitutive equations15 for bimodular
materials, where elastic constants are updated based
on whether the element is under tension or compres-
sion. This simple implementation was chosen because
it allows for easy incorporation of elasto-plastic
behavior into the finite element model through Hill’s
yielding function. This process might result in ele-
ment stiffness matrices that are not symmetric.

The user-defined material subroutine in Abaqus,
VUMAT, was used to define the material behavior.
Equation 1 shows the in-plane stress–strain rela-
tionship for the material.
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where e1 = strain in the 1-direction of the material.
e2 = strain in the 2-direction of the material.
c6 = engineering shear strain in the 1–2 plane of

the material. E1 = Young’s modulus in the 1-direc-
tion of the material. E2 = Young’s modulus in the 2-
direction of the material. m21 = Poisson’s ratio for
loading in the 2-direction of the material. m12 = Pois-
son’s ratio for loading in the 1-direction of the
material. G12 = shear modulus in the 1–2 plane of
the material.

Since the material shows a bimodular nature,
with different modulus in compression and tension,
the Young’s moduli and the corresponding Poisson’s
ratios are defined based on whether the normal
stresses along material axes are positive or nega-
tive. This scheme has been implemented using
Eqs. 2 through 5.
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where Et
1 = Young’s modulus in the 1-direction in

tension.Ec
1 = Young’s modulus in the 1-direction in

compression. Et
2 = Young’s modulus in the 2-direc-

tion in tension. Ec
2 = Young’s modulus in the 2-

direction in compression. mt12 = Poisson’s ratio for
loading in the 1-direction in tension. mc12 = Poisson’s
ratio for loading in the 1-direction in compression.
mt21 = Poisson’s ratio for loading in the 2-direction in
tension. mc21 = Poisson’s ratio for loading in the 2-
direction in compression. r1 = normal stress in the
1-direction. r2 = normal stress in the 2-direction. j j
is an absolute value operator. h i is a Macaulay
operator, defined as: ah i ¼ a if a is positive. ah i ¼ 0 if
a is negative.

Abaqus explicit solver is used to solve for the
stresses in material with each time increment.
Because the material exhibits bimodular behavior,
a sudden change in matrix stiffness occurs when the
stress direction is changed. The Jacobian matrix of
the system is necessary for implicit solvers and the
Jacobian matrix is not well defined in the region of
sudden stiffness change. Various implicit models
have been developed to overcome the limitation.37,38

However, for this research work, an explicit solver
is adequate as it can provide solutions in a reason-
able amount of time.

The stress vector at the kth time step using
indicial notation is

rki ¼ rk�1
i þQk

ijdee
k
j ð6Þ
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where rk�1
i = stress vector at (k�1)th time step.

Qk
ij = laminate stiffness matrix at the kth time step.

deekj = eekj � eek�1
j ¼ elastic strain increment at the

kth time step.

Yielding Behavior

Several suitable elasto-plastic models are dis-
cussed in the literature for composite materials.39–41

A simple elasto-plastic model for orthotropic mate-
rials was adopted. The incremental formulation
with isotropic work hardening was assumed. The
components of the total strain increment at the kth
time step are:

dekj ¼ deekj þ depk
j ð7Þ

where deekj = elastic component of the total strain
increment at the kth time step. depk

j = plastic

component of the total strain increment at the kth
time step

The total stress increment at the kth time step
caused by the elastic strain is

drki ¼ Qk
ijdee

k
j ð8Þ

Where Qk
ij = laminate stiffness matrix at the kth

time step. deekj = elastic portion of the total strain

increment at the kth time step.
The Hill’s quadratic yield function adopted is
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r1 = normal stress in the 1-direction. r2 = normal
stress in the 2-direction. r3 = normal stress in the 3-
direction. r23 = shear stress in the 2–3 plane. r31 =
shear stress in the 3–1 plane. r12 = shear stress in
the 1–2 plane. R11;R22;R33;R23;R31;R12 are the
orthotropic yield stress ratios

The Hill’s yield function for plane stress condi-
tions is reduced from Eq. 9, as follows:
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ry1 = yield stress determined from uniaxial tests in
the 1-direction. ry2 = yield stress determined from
uniaxial tests in the 2-direction. ry6 = yield stress
determined from shear tests in the 1–2 plane.

r1 = axial stress in the 1-direction. r2 = axial stress
in the 2-direction. r6 = shear stress in the 1–2
plane.

The yield ratios are calculated based on whether
the r1 for the element is positive or negative. The
plastic hardening curve (stress vs plastic strain) is
also used based on whether r1 is positive or
negative. If r1 is positive, the plastic hardening
curve from tension tests in 1-direction is used, else
the plastic hardening curve from compression test
in 1-direction is used. The equivalent plastic strain
is
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. deki is the total strain increment at

the kth time step. hk ¼ drk
i

depk
j

is the strain hardening

coefficient, the slope of the stress vs plastic strain
curve at a given stress at the kth time step

The total stress increment from Eq. 8 is re-
written as a function of the strain increment and
the plastic multiplier, as follows

drki ¼ Qk
ij dekj � dkk � nk

j

� �
ð12Þ

The algorithm proposed by Dunne and Petrinic41

is used to calculate the stress and strain increment
at each update. The algorithm evaluates the yield
function and determines if the material is actively

yielding. If the material is actively yielding, it
calculates the plastic multiplier, stress increment
and isotropic hardening increment. The algorithm
finally updates all the quantitates to the end of the
time increment using explicit integration.

Experimental Methods

Experiments were carried out for material char-
acterization to generate input material properties
for the finite element model. Seven elastic constants
E1t,E2t; m12t;G12,E1c,E2c; m12c along with five yield
stresses S1yt;S2yt;S1yc,S2yc;S12y, and two strain
hardening curves for tension in the 1-direction and
compression in the 1-direction were necessary for
the finite element modeling the elasto-plastic behav-
ior of the 3D-printed carbon-ABS parts.

Material Characterization Experiments

Material characterization tests were carried out
to determine the material properties required for

f rð Þ ¼
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finite element modeling. 3D printed unidirectional
test specimens were used to determine the material
properties. A Lulzbot Taz 6 printer was used for
printing the specimens. CarbonX CFR-ABS fila-
ment from 3Dxtech was used. Laminates with nine
layers were printed using the printing parameters
listed in Table I.

Mechanical characterization of the 3D printed
laminate in tension, compression, and shear was
conducted according to ASTM D638, ASTM D6641,
and ASTM D7078, respectively. All specimens were
prepared on a water jet and conditioned at 50%
relative humidity and a temperature of 23�C before
evaluation. The strain was measured during each
experiment using ARAMIS, a non-contact digital
image correlation (DIC) system.42,43

All mechanical tests were carried out on a servo-
hydraulic Instron testing frame. A 1-kN load cell
was used for tension, compression and shear tests. A
200-N load cell was used for bending tests. The

crosshead displacement rate for the tension tests
was 5 mm/min per ASTM D638. The crosshead
displacement rate for the compression tests was
1.3 mm/min. The crosshead displacement rate for
the shear tests was 2 mm/min.

Validation Experiments

Two validation experiments were carried out to
compare and verify the results from the finite
element modeling. An ASTM D638 test was carried
out on six specimens prepared from a laminate
printed with [0�/�45�/45�/90�/0�/90�/45�/�45�/0�]
orientation with each layer of thickness 0.36 mm.
An ASTM D790 test was carried out on six speci-
mens prepared from the laminate mentioned above.

Finite Element Model

Eight test cases were evaluated using linear,
linear bimodular, and bimodular yielding material
models. The test cases with different material
behaviors considered are listed in Table II.

The material properties obtained from tension,
compression and shear tests were used as input
properties for the model. The weakness in the
interlayer bonds is incorporated in the model by
the Young’s modulus (T2) in the 90� orientation
laminates, the shear modulus (G23) across beads as
shown in Table III. The interlayer weakness is also
incorporated in the model via the Hill’s yield
constants that govern the yielding behavior of the
material in the model.

An ASTM D638 tension test and an ASTM D790
bending test were simulated using finite element
modeling. Abaqus 6.13 was used for finite element
modeling. A user-defined material model was used
to define the stress–strain behavior of the unidirec-
tional material.

A 2D planar deformable shell part was created
with dimensions corresponding to ASTM D638 type

Table II. Finite element models used for the study and the input properties

Material behavior Test Input properties

Linear Elastic with tension modulus Tension E1t,E2t; m12t;G12

Hill’s yielding with tension modulus Tension E1t,E2t; m12t;G12, S1yt;S2yt;S12y, strain hardening curve
in T1 direction

Linear elastic with tension modulus Bending E1t,E2t; m12t;G12

Linear elastic with compression behavior Bending E1c,E2c; m12c;G12

Linear elastic with bimodular behavior Bending E1t,E2t; m12t;G12

E1c,E2c; m12c

Elasto-plastic with tension modulus and Hill’s yield
criterion

Bending E1t,E2t; m12t;G12, S1yt;S2yt;S12y; strain hardening curve
in T1 direction

Elasto-plastic with compression modulus and Hill’s
yield criterion

Bending E1c,E2c; m12c;G12, S1yc;S2yc;S12y; strain hardening curve
in C1 direction

Elasto-plastic with bimodular behavior and Hill’s
yield criterion

Bending E1t,E2t; m12t;G12, S1yt;S2yt;S12y; strain hardening curve
in T1 direction

E1c,E2c; m12c;S1yc;S2yc;S12y; strain hardening curve in
C1 direction

Table I. Printing parameters for the 3D printed
specimens

Parameter Value

Nozzle diameter 0.8 mm
Retraction distance 1.5 mm
Retraction speed 90 mm/s
Layer height 0.36 mm
Outline perimeters/shells 0
Top/bottom solid layers 0
Infill None
Extruder temperature 240�C
Bed temperature 110�C
Printing speed 60 mm/s
Printing speed for the first layer 12 mm/s
Movement speed 60 mm/s
Layer cooling fan Off

Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acry-
lonitrile Butadiene Styrene Composites

479



II specimen. Another 2D planar deformable shell
part was created with dimensions corresponding to
ASTM D790 bending specimen. A composite layup
was defined with [0/�45/45/90/0/90/45/�45/0] orien-
tation with each layer being 0.36 mm thick. Each
layer was assigned three integration points. An
explicit dynamic solving step was defined. The time
increment was defined automatically by Abaqus.

For the tension test finite element models, con-
stant displacement of 5 mm/minute was applied at
one gripping end and another gripping end was kept
fixed. Reference point 1 was used for measuring
reaction force and for applying the fixed boundary
condition. Reference point 2 was used to apply
displacement to the gripping end of the specimen.
Reference points 3 and 4 were used for measuring
the displacement of the gauge section. The reference
points and the boundary conditions for the model
are shown in Fig. 2. An S4R element, which defines
a 4-node doubly curved thin or thick shell, with
reduced integration, and hourglass control for finite
membrane strains was used for meshing. An S3R
element, which is a 3-node triangular thin or thick
shell, finite membrane strain element, was used if
the curved geometry of the specimen did not allow
for quadrilateral elements. A mesh with 2301 linear
quadrilateral elements and 14 linear triangular
elements was obtained. A total of 2513 nodes were
created for the analysis. Mesh convergence for the
tension test finite element model was verified by

plotting the maximum reaction force vs the number
of nodes in the model.

For the bending test finite element models, con-
stant displacement of 5 mm/min applied at the
center and simply a supported boundary condition
was applied at the support positions. Reference
point 1 was used for applying the displacement. The
reference points and the boundary conditions for the
model are shown in Fig. 3. An S4R element, which
defines a 4-node doubly curved thin or thick shell,
with reduced integration, and hourglass control for
finite membrane strains was used for meshing. A
mesh with 1378 linear quadrilaterals was obtained.
A total of 1498 nodes were created for the analysis.
Mesh convergence for the bending test finite ele-
ment model was verified by plotting the maximum
reaction force at reference point 1 versus the
degrees of freedom in the model.

RESULTS AND DISCUSSIONS

Material Characterization Tests

The results from the material characterization
experiments are listed in Table III.

It was observed that Young’s modulus in tension
in the 1-direction is 1.53 times the compression
modulus. However, the Young’s modulus in tension
in the 2-direction is 0.93 times the compression
modulus. For tension tests in the 2-direction, the
material failure was comparatively brittle and 0.2%

Table III. Mechanical properties from material characterization tests (COV values in parentheses)

T1 (0�) T2 (90�) C1 (0�) C2 (90�) G13 (between
beads)

G23 (across
beads)

Modulus (GPa) 5.70 (1.5%) 2.17 (6.5%) 3.58 (6.7%) 2.32 (5.4%) 0.851 (3.9%) 0.909 (5.0%)
Ultimate Strength
(MPa)

44.3 (0.43%) 13.74 (15%) 60.5 (1.6%) 49.3 (1.0%) 24.2 (5.7%) 25.1 (3.9%)

0.2% offset strength
(MPa)

41.7 (0.56%) 57.4 (3.1%) 41.2 (8.6%) 20.0 (10%) 19.6 (15%)

Poisson’s ratio 0.392 (6.6%) 0.161 (18.0%) 0.391 (7.0%) 0.137 (7.7%) – –
0.05% offset
strength (MPa)

21.5 (0.25%) 12.9 (8.3%) 23.5 (4.4%) 21.4 (3.3%) 14.4 (7.5%) 14.0 (8.2%)

Fig. 2. Finite element model of ASTM D638 type II specimen for tension.
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offset strength could not be calculated. The bimod-
ular behavior is more pronounced in the direction of
fiber alignment, and the observation is consistent
with the assumption made by Phan-Thein10 that the
cause of bimodularity is related to the short carbon
fiber and not the matrix. Researchers44 have
explained that the difference in Young’s modulus
in compression and tension is caused by a difference
in loading rate. However, in this research work,
cross-head displacement for compression was
1.3 mm/min for a gage length of 13 mm while that
for tension specimens was 5 mm/min for a gage
length of 50 mm. The strain rates measured by the
DIC system in the gage area were very close in
compression and tension for the linear-elastic por-
tion of the test.

Significant yielding occurs before the material
reaches 0.2% offset strength. While the 0.2% offset
strength serves well for predicting yielding failure

with Hill’s yield criteria, the initiation of yielding
occurs much earlier. A 0.05% offset strength was
assumed as the initiation point of yield. The Hill’s
yield constants were also calculated based on 0.05%
offset strength.

Finite Element Model and Results

Table IV summarizes the results from the eight
test cases used for the study.

Figure 4 shows the stress–strain behavior of the
tension specimens. The finite element model with
linear elastic behavior closely predicts the linear
elastic behavior of the laminate under tension. The
Young’s modulus of the laminate as predicted by the
finite element model is 3.27 GPa, whereas that
predicted by laminate analysis is 3.26 GPa. The
Young’s modulus calculated from validation exper-
iments is 3.46 GPa with a COV of 1.003%. Elasto-

Fig. 3. Finite element model of ASTM D790 specimen for bending.

Table IV. Summarized results from the finite element models

Material behavior Test Results

Linear elastic with tension modulus Tension Elastic modulus of the 3D printed laminate from the model (3.26 MPa)
matched closely with the experimental results (3.46 MPa)

Hill’s yielding with tension modulus Tension Elastic modulus and elasto-plastic yielding behavior matched closely
with experimental results as shown in Fig. 4

Linear elastic with tension modulus Bending Over-predicted bending stiffness (6.94 N/mm) by 17%
Linear elastic with compression
behavior

Bending Under-predicted bending stiffness (4.90 N/mm) by 17%

Linear elastic with bimodular behavior Bending Bending stiffness from the model (5.80 N/mm) matched closely with
the experimental results (5.90 N/mm)

Elasto-plastic with tension modulus
and Hill’s yield criterion

Bending Over-predicted tangent bending stiffness, under-predicted ultimate
load as shown in Fig. 7

Elasto-plastic with compression mod-
ulus and Hill’s yield criterion

Bending Under-predicted tangent bending stiffness, over-predicted ultimate
load as shown in Fig. 7

Elasto-plastic with bimodular behavior
and Hill’s yield criterion

Bending Slightly under-predicted tangent bending stiffness and ultimate load
as shown in Fig. 7
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plastic tensile behavior of the test laminate pre-
dicted by the finite element model that used Hill’s
yielding function closely matched the experimental
results. In the tension tests, all the layers experi-
ence equal tensile strain. The 0� layers reach the
yield stress earlier because they have higher mod-
ulus along the loading direction.

The mesh convergence plot for the tension test
finite element model is shown in Fig. 5.

Figure 6 shows the load vs deflection behavior of
the bending specimens. In bending, the top and the
bottom layers experience higher strains compared
to the middle layers. It was observed that the
bottom layer started yielding earlier than the top
layer.

Because a specimen under a bending load expe-
riences tension as well as compression forces,
assigning the tensile Young’s modulus for the entire

beam over-predicts the bending stiffness whereas
assigning the compression Young’s modulus for the
entire beam under-predicts the bending stiffness of
the beam. Considering the bilinear behavior with
tension modulus for regions in tension and com-
pression modulus for regions in compression results
in a load–displacement curve that tracks the exper-
imental data closely. The bending stiffness from the
model considering the tension modulus is 6.94 N/
mm and that from the laminate analysis is 6.88 N/
mm. The bending stiffness from the finite element
model considering the compression modulus is
4.90 N/mm and that from the laminate analysis is
4.73 N/mm. The bending stiffness from the finite
element model that accounts for the bimodular
nature of the material is 5.80 N/mm. The bending
stiffness calculated from experimental data is
5.90 N/mm.

Figure 7 shows the results from the finite element
analysis that accounts for Hill’s yielding. Mean
maximum load sustained by the beams in experi-
mental bending tests was 69.1 N. The model that
used the tension modulus, Hill’s yield constants,
and the plastic hardening curve derived from the
tension tests over-predicted the bending stiffness by
17% in the linear-elastic range. However, the beam
section withstood a maximum load of 52.8 N, which
was 24% lower than the loads observed during the
mechanical tests.

The model that used the compression modulus,
and yield parameters derived from compression
tests predicted the maximum load on the beam
section at a higher load of 79.4 N, which was 15%
higher than mean experimental maximum load.
However, the stiffness predicted by the model was
lower by 17% in the linear-elastic range compared to
the experimental results. The displacement at the
maximum load was higher by 12% compared to
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Fig. 5. Mesh convergence for the tension test finite element model
considering yielding.
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mean displacement at maximum loads obtained
from the experimental data.

The model that accounted for the bimodular
nature of the material and different yielding behav-
ior in tension and compression predicted maximum
load of the beam section at a load of 67.3 N. The
model also under-predicted the stiffness in the
linear-elastic range by 1.8% compared to the exper-
imental data. Among the three finite element
models used, the load–displacement curve obtained
from this model was closest to the experimental
data.

The early yielding and the lower maximum load
are predicted by the model with material properties
based on tension tests because the material input
properties based on the tension tests have lower

yield stresses compared to those based on the
compression tests. Similarly, the higher bending
stiffness at lower load is predicted by the model with
material properties based on the tension tests
because the tensile Young’s modulus is higher
compared to the compressive Young’s modulus.
Since the bottom fibers of the beam are in tension
and the top fibers are in compression, the results
predicted by the model considering the bimodular
nature of the material are closest to the experimen-
tal results.

The mesh convergence plot for the bending test
finite element model with bimodular elasticity and
Hill’s yielding is shown in Fig. 8.

CONCLUSION

This study extends the existing CLT-based linear-
elastic finite element models to 3D printed compos-
ites to address the bimodular and elasto-plastic
yielding behavior observed in these materials.

The following conclusions have been made:

1. A laminate analysis based finite element mod-
eling method only approximates the linear por-
tion of the stress–strain behavior of the 3D
printed composite under tensile loading.

2. An elasto-plastic finite element model with Hill’s
yield criterion was effective in predicting the
overall stress–strain response of the 3D printed
composite under tensile loading.

3. A linear elastic finite element analysis based on
bimodular behavior was effective in predicting
the load–displacement response under three-
point bending for the laminate.

4. The bimodular behavior of the material needs to
be considered to effectively predict the bending
behavior of a 3D printed part.

Future work should involve reducing analysis time.
The finite element analysis takes considerable time
(about 2 h) to complete. The main reasons for the
slow analysis speed are the use of an explicit solver
with time steps of about 10�6 s, and the unsymmet-
ric stiffness matrix that arises due to the bimodu-
larity of the material. The stress–strain
relationships are calculated up to 3 times for each
time step for each element. A model using an
implicit solver should be considered. The effect of
using a symmetric matrix on accuracy can be
studied.
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