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In this work, a viscoplastic fast Fourier transform (FFT)-based code is com-
bined with a continuum dislocation dynamics (CDD) framework to analyze the
mechanical behavior of polycrystalline MgAZ31 material under unidirectional
tensile test. A crystal plasticity formulation including the size effects through
a stress/strain gradient theory, dislocation density flux among neighboring
grains and grain boundary back stress field is implemented into the CDD and
coupled with VPFFT for this purpose. Then, an electron backscatter diffrac-
tion-based orientation image microscopy of a sample microstructure is applied
as an input to the code. The model predicts, among other things, distributions
of stress, strain, mobile dislocation density, geometrically necessary disloca-
tion and stress–strain behavior. The numerical findings are compared with
experimental results, and the micromechanical behavior of the polycrystal is
discussed regarding dislocation density evaluation in different stages of strain
hardening.

INTRODUCTION

The microstructure and its evolution are an
important physical property of any polycrystalline
metallic material. It is understood that the mechan-
ical behavior can be controlled by manipulating the
microstructure of the material.1 Thus, understand-
ing key parameters that may control the microstruc-
ture and thus micromechanical behavior of the
material may lead to better material design. This
knowledge may play a vital role in developing and
designing future materials with optimum proper-
ties, such as a material with low density but with
higher mechanical performance. For example, by
controlling the microstructure, it is possible to
develop new materials with higher mechanical
performance such as strength and ductility.1,2

There are many studies focusing on the effect of
microstructure on the mechanical behavior of poly-
crystalline materials. For example, FFT-based crys-
tal plasticity research was developed by Arul
Kumar et al.3 to analyze the deformation twinning
in polycrystalline MgAZ31. Also, in another study4 a
crystal plasticity model is presented for the defor-
mation twinning and de-twinning effect along with
slip deformation to account for plastic deformation
of polycrystalline Mg AZ31. One of the essential

parameters in microstructural studies is the geo-
metrically necessary dislocation (GND) distribution
of the texture. The computational calculation of
GND in a microstructure is analyzed and compared
with experimental data in a study by Das et al.5

Grain size is another parameter that has a signif-
icant effect on the mechanical performance of
metallic materials. The effect of this parameter is
analyzed in a VPSC-based work by Shehadeh and
Ayoub6 where a dislocation density-based crystal
plasticity is developed to analyze the grain refine-
ment of FCC polycrystals during severe plastic
deformation. Also, a numerical modeling work is
presented in Ref. 7 to analyze the effect of strain
rate sensitivity on the mechanical behavior of
polycrystalline Mg AZ31. In another study, the
effect of stress relaxation and creep on lattice strain
evaluation of stainless steel was analyzed experi-
mentally and verified by elastic viscoplastic self-
consistent (EVPSC) and elastic–plastic self-consis-
tent (EPSC) models.7 Also, Knezevic et al.8 devel-
oped a multiscale model for polycrystalline metals
where the elastic deformation, slip and twinning are
considered in the framework. The work analyzed
the tension, compression and torsion mechanical
behavior of the Mg AZ31 microstructure for a wide
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range of strain rates and temperatures by applying
T-CPFE (Taylor-type crystal plasticity finite
element).

The effect of dislocation density on twin propaga-
tion for Mg AZ31 was analyzed by Knezevic et al.9

by applying crystal plasticity finite element (CPFE).
One of the main findings is that the increase in
dislocation density content in the twinned region
can lead to slower twin propagation and increase
the immobile dislocation density content, which
leads to an increase in hardness for Mg AZ31. In
another study,10 the effect of double twin lamella on
void nucleation and failure of Mg AZ31 is analyzed
by using CPFE for simple tension and compression
tests where it is shown that these double twin
parent interfaces in the texture can lead to void
nucleation.

A coupled deformation and recrystallization
model is developed in Refs. 11 and 12 with GF-
VPSC (grain fragmentation), which shows that the
model is capable of investigating grain nucleation at
grain boundaries and transition bands. The current
study shows the effect of the grain boundaries and
stress/strain gradient in Mg AZ31 by applying
crystal plasticity equations in the VPFFT-CDD
environment where, unlike VPSC, it is capable of
analyzing the applied microstructure at the sub-
grain level. A detailed comparison of VPFFT-CDD
with the crystal plasticity-based finite element is
explained in this section.

All these recent studies show the importance of
microstructure evaluation, which can shed more
light on understanding the mechanical behavior of
polycrystalline metallic materials.

Currently, there are many modeling tools on the
market to analyze the mechanical performance of
samples made out of different materials. However,
most of these models are not designed for analyzing
polycrystalline materials based on microstructural
parameters such as the dislocation density, grain
boundary and size effects. Here, we develop a
dislocation-based crystal plasticity model and apply
it to investigate the mechanical behavior of an Mg
AZ31 microstructure with HCP crystallographic
structure under unidirectional tensile test. Electron
backscatter diffraction (EBSD)-based orientation
imaging (OIM) experimental data on the local
orientation and grain morphology of polycrystalline
Mg AZ31 are used as an input microstructure for
the VPFFT-CDD model.

The modeling framework consists of a viscoplastic
fast Fourier transform coupled with CDD (VPFFT-
CDD). VPFFT is a well-known crystal plasticity
model, developed by Lebensohn.13–16 The benefit of
FFT as a mesh-free method compared with other
FEM methods is that it avoids the problems caused
by meshing in the modeling. The VPFFT is also an
efficient alternative for FEM methods since the
calculation time in the former is on the order of
N 9 log N based on a fast Fourier transform (FFT)
algorithm, while in FEM it is on the scale of N2 with

N being the number of discrete points in the
model.14 In FFT, the stress equilibrium will be
analyzed by solving differential equations for dis-
cretized points of the microstructure on a grid.17

The details on VPFFT have been published and
discussed in several publications.15,18 In this work,
the focus is on explaining the continuum dislocation
density part of the work. The primary objective is to
develop further understanding of the effect of
microstructure-related properties such as the grain
boundary back stress effect, dislocation density flux
among neighboring grains and effect of stress and
strain gradients on the behavior of Mg AZ31
polycrystals. The CDD formulation, including the
stress/strain gradient theory, dislocation density
transmission and grain boundary back stress effect,
is explained in ‘‘VPFFT-CDD constitutive model’’
section.

This work is structured as the follows: in ‘‘VPFFT-
CDD constitutive model’’ section to ‘‘Grain boundary
back stress field’’ section the VPFFT-CDD constitu-
tive model is explained by introducing the CDD
methodology and combined stress/strain models,
grain boundary back stress effect and dislocation
density transfer among neighboring grains models.
In ‘‘Implementation of the stress/strain gradient
model’’ section, the results from VPFFT-CDD are
discussed; lastly, the outcomes of the study are
described in the ‘‘Conclusion’’ section.

VPFFT-CDD CONSTITUTIVE MODEL

The microstructure is discretized into grains and
subgrain points. In this work, OIM (orientation
image microscopy) is applied to discretize the EBSD
(electron backscatter diffraction) image of Mg AZ31
to points. Each point in the OIM has an orientation
and ID and x and y coordinate positions and a phase
ID as well. An EBSD image with a size of
81 9 74.48 lm with a step size of 0.5 lm is imported
into the OIM, and a section with the size of
63.5 9 63.5 lm with 16,384 points is cropped from
the original microstructure and applied into
VPFFT-CDD to model the mechanical behavior of
this sample under unidirectional plane strain ten-
sion test with a strain rate of 0.1 s�1. The FFT-
based modeling was initially developed by Suquet
and collaborators;17 later on, it was further devel-
oped by Lebensohn and coupled with the VPSC.19 In
this work, the CDD model, developed by Leben-
sohn,17 is combined with VPFFT, developed by
Lebensohn.17 The formulation in the CDD is
explained below in detail, and for the formulations
of VPFFT readers are referred to previous
publications.14,15,20,21

CONTINUUM DISLOCATION DYNAMICS
(CDD) METHODOLOGY

The plastic deformation mechanism for each
grain is calculated in a crystal plasticity-based
routine called CDD where evaluation of physical
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variables such as dislocation velocity, mobile, and
immobile dislocation densities is calculated by using
relations such as the Orowan and Bailey–Hirsch
equations.19,22 For instance, the Orowan relation
_ca ¼ qamb�v

a
g gives the relationship between the strain

rate ( _ca), mobile dislocation density (qam), Burger’s
vector magnitude (b) and average glide velocity (�vag)

on available slip planes like a, while the average
dislocation glide velocity along slip system a is
related to the resolved shear stress (sa) and a critical
resolved shear stress (sacrss) by a power law relation
given in Eq. 1.

�vag ¼ v0
sa�

sacr

���
���
1=m

sign sað Þ; sa ¼ r : Ma ð1Þ

where r is the Cauchy stress tensor, and M is the
Schmid orientation tensor for slip system a. The
constants v0 and m are the reference velocity and
strain rate sensitivity, respectively,21,23 and set as
10�5 and 0.05, respectively.

Also, Eq. 2 shows the relation for calculating the
critical shear stress sacr as follows.

sacr ¼ sa0 þ saH þ saS ð2Þ
where s0, saH and saS are the reference shear stress or
lattice friction stress, forest dislocation hardening
term and calculated by the Bailey–Hirsch rela-
tion.24 The last term in Eq. 2 is the size-dependent
term and is calculated by applying a stress gradient
theory.25 The Bailey–Hirsch hardening shear stress
saH is given below:

saH ¼ a�bl
XN

s¼1

Xas
ffiffiffiffiffiffiffiffi
qsTS

p
ð3Þ

with a� being the Bailey–Hirsch hardening coeffi-
cient shown in Table I

26

for different slip planes, b
the magnitude of the Burgers vector, l the elastic
shear modulus, qaTS the total statistically stored
dislocation density SSD and Xas the dislocation
interaction matrix accounting for dislocation inter-
actions among slip systems.27,28

Pile-up of dislocations against obstacles leads to
size-dependent strength. Refs. 24, 28 show that the
pile-up deformation mechanism and the intensity

and distribution and intensity of the pile-up are
critically dependent on the local stress gradients. To
address this problem,28 a stress gradient plasticity
theory for non-homogenous stress conditions was
developed in Refs. 28, 29. Here, a linear version of
this stress gradient theory is shown by Eq. 4, which
incorporates the effect of grain size.

saS ¼ K
ffiffiffiffi
L

p 1 þ L0

4�s
r�sj j

� �
ð4Þ

with K being the Hall–Petch parameter, L grain
size, L0 obstacle spacing and r�s the gradient of
effective shear stress.

The total dislocation density qaTS is the sum of
mobile (qaM) and immobile dislocation densities (qaI )
in slip system a:

qaTS ¼ qaM þ qaI ð5Þ

Constitutive relations for the mobile and immo-
bile dislocation are given by:30

_qaM ¼ �va � rqaM þ a1q
a
Mvag=

~lag � a22Rcq
a
MqaMvag

� a3q
a
Mvag=

~lag þ a4 saj j=sacr

� �r
qaIv

a
g=
~lag

þ a5

XN

b¼1

PbaqbMvag=
~lag � a6Rcq

a
MqaIv

a
g

ð6Þ

_qaI ¼ a3q
a
Mvag=

~lag � a4 saj j=sacr

� �r
qaIv

a
g=
~lag � a6Rcq

a
MqaIv

a
g

ð7Þ

Here a1, a2, a3, a4, a5 and a6 are defined in
Table S1. Rc is the minimum critical distance
between two dislocations for mutual interaction,
which is equal to 15b, the components of Pba are
obtained from Monte Carlo analysis based on the
probability of cross slip from b-plane to a-plane,25 r

is a numerical constant, and ~lag is the dislocation

mean free path:31,32

~lag ¼
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
a¼1 w

ja qaT þ qaGND

� �q ð8Þ

Table I. Applied parameters for Mg AZ31. a2 = a3 = a6 = 1.0 and Rc = 25b for all the slip systems with the
magnitude of Burgers vector set as 3.21 3 10210 m42

Basal Prismatic Pyramidal Twin

s0 (internal friction) (MPa) 4 11 40 20
a* (Bailey–Hirsh hardening coefficient) 0.8 1.0 1.0 0.8
a1 0.07 0.05 0.02 0.02
a4 0.02 0.02 0.01 0.01
X Xbasal = 0.2 Xbasal = 1.0 Xbasal = 1.0 Xbasal = 1.0

XPrismatic = 1.0 XPrismatic = 0.2 XPrismatic = 1.0 XPrismatic = 1.0
XPyramidal = 1.0 XPyramidal = 1.0 XPyramidal = 1.0 XPyramidal = 1.0

K (MPa mm�2)43 0.42 3.72 4.71 3.72
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where c� is a constant that is set as unity, wja is a
simplified weight matrix as identity matrix,1 and
qaGND is the geometrically necessary dislocation
density where its norm is given by,1

qaGND ¼ 1

b

ffiffiffiffiffiffiffiffiffiffi
aijaij

p ð9Þ

where aij is the Nye’s tensor whose rate is given by
the following relation:33

_a ¼ curl �Lpð Þ ð10Þ

with Lp being the plastic part of the velocity
gradient tensor.

In Eq. 6, rqaM is the dislocation flux accounting
for the transfer of dislocations across grain bound-
aries. Numerically, it is calculated using a central
deference scheme where the difference of dislocation
density across two neighboring grains is divided by

some incremental distance.29 For example, qa Að Þ
M and

qa Bð Þ
M are the dislocation density of grain A and B

along slip system a shown in Fig. 1. In this
schematic, dislocations transfer from grain B to A
along the black arrow at the intersection of the two
rectangular red slip plans from these two neighbor-
ing grains. It should be noted that in this work the
exterior discrete points along the grain boundaries
are responsible for this dislocation density transfer
phenomenon.

The dislocation density transfer among neighbor-
ing grains takes place only when the stress on a slip
system is more than saGB and when some geometrical
conditions are met.34,35 The saGB is defined for each
grain boundary by Eq. 11.

saGB ¼ 1 � kð Þsamax ð11Þ
where samax is calculated by Eq. 13 from the stress
field of dislocations in and near the grain boundary,
which is explained in ‘‘Grain boundary back stress
field’’ section. Notably, k /1;u;/2ð Þ is the slip trans-
missivity number, which is defined by Eq. 12.36

According to Ref. 35, the angle d is the angle
between slip planes and the grain boundary plane,
and j is the angle between the slip direction of slip
planes shown in Fig. 1. Since it is very difficult to
measure angle d experimentally, it is suggested to
apply angle e, which is the angle between the
vectors normal of the slip planes (na

A;n
a
B) instead of

d, i.e.,

kai ¼ cos 90
eai
eac

� �
cos 90

kai
kac

� �
ð12Þ

where /1;u;/2 are the Euler angle triplets, and eai
and kai are the angles among the normal of slip
planes and the angle between the direction of the
slip planes shown in Fig. 1 respectively. The critical
values of these two angles are defined by eac and kac ,
which are equal to 15� and 45�, respectively.37 The
basis for choosing these critical limits is the effi-
ciency of slip transfer across the grain boundaries
according to Ref. 29, where, for example, by increas-
ing d in Fig. 1 from 0�, which makes the most
favorable configuration for slip transfer more than
0, which requires simultaneous initiation of dislo-
cation loops in the neighboring grains in many
parallel slip planes and leads to a significant drop in
the amount of dislocation density flux. The values of
eai and kai should be less than their critical values in
order to meet the geometrical condition mentioned
previously.

GRAIN BOUNDARY BACK STRESS FIELD

The interaction among grain boundaries and
dislocations in this work is modeled by using Nye’s
tensor.28 Grain boundaries are considered as rect-
angular boxes filled with discrete dislocations. The
length of these boundaries depends on the size of
the grains. The extended stress field of each grain
boundary can be calculated by applying Nye’s tensor
and using Mura’s integral equation.28 Nye’s tensor
represents a net dislocation density at point X¢ for
any material that leads to long-range stress field
rrij ~xð Þ (Fig. 2). The stress field from each grain

boundary can affect the dislocations in neighboring
grains and can act as a barrier to dislocation motion.
Hence, for the dislocations to pass the boundary, the
resolved shear stress acting on the dislocation must
also overcome the extended stress field from the

Fig. 1. Schematic representation of slip planes in grains A and B.

Fig. 2. A simple schematic of the dislocation interactions in an
infinite homogeneous medium of the grain boundary with
neighboring grains.
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boundary. The stress field of a dislocation wall
representing a grain boundary is given by the
following integral equation.

rrij ~xð Þ ¼ Cijkl

Z

v0

�lnhCpqmnGkp;q ~x�~x0ð ÞahmdV 0 ð13Þ

where Cijkl is the fourth order elasticity tensor, �lnh
is the permutation tensor, Gkp;q is Green’s function,
q signifies the spatial derivative, and CpqmnGkp;q in
the above equation for assumed isotropic elasticity
in this part of the work is given by

CpqmnGkp;q x1 � x01;x2 � x02;x3 � x03
� �

¼ �1

8p 1� m1ð Þ

1� 2m1ð Þ
dni xm � x0m

� �
þ dim xn � x0n

� �
� dmn xi � x0i

� �

R3

	

þ3
xm � x0m
� �

xn � x0n
� �

xi � x0i
� �

R5



ð14Þ

in which R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x01
� �2þ x2 � x02

� �2þ x3 � x03
� �2

q
,

and dij is the Dirac delta function.
The Nye’s dislocation density tensor28 ahm repre-

sents the total Burgers vectors of the mth compo-
nent of all the dislocations intersecting the plane so
that its normal is in the h direction. For a given set
of discrete dislocations, the continuum dislocation
density tensor is given by

ahmdV 0 ¼ bmvhdl0 ð15Þ
where l0 and V 0 are the dislocation segment length
and the grain boundary volume over which the
dislocations are homogenized, respectively. For a set
of pure edge dislocation forming a tilt wall, it can be
easily shown that the only remaining component of
the Nye’s tensor is a31, i.e.,

a31 ¼ Nb=ad ð16Þ

withN being the total number of dislocations; a and d
are the length of wall and breadth of the homogeniz-
ing domain of the grain boundary, respectively.
Figure 2 explains the parameters in Eq. 16.

Normally, the grain boundary-dislocation inter-
actions in classical models are considered a disloca-
tion–obstacle interaction. However, the approach in
this research considers the grain boundaries as
rectangular boxes filled with discrete dislocations.
The length of these rectangular boxes of boundaries
depends on the grain size, while the thickness of
these boundaries are uniform and considered as
5b,28 which is shown schematically in Fig. 2. Then,
the long-range stress field of the dislocations in each
grain boundary is modeled by using Nye’s tensor
where Mura’s integral method is applied to inte-
grate the Nye’s tensor. The maximum stress from
the stress field of each boundary is assumed to be
the strength of the boundary, i.e., the strength the
barrier dislocations need to overcome to penetrate
through the boundary.

IMPLEMENTATION OF THE STRESS/
STRAIN GRADIENT MODEL

The spatial gradients are evaluated numerically
using a moving least square method strain.38,39

Here, the 2D microstructures are generated and
coupled with the VPFFT, where each grain and sub-
grain is assigned spatial coordinates. Then, the
‘moving least square method’ is used to evaluate the
stress and strain gradient of each grain and sub-
grain by using data from the nearest neighboring
grains. This included the stress and strain state in
each grain as calculated by VPFFT. The mathemat-
ical and numerical details about this formulation
are provided by the authors.1,40

RESULTS AND DISCUSSION

The model discussed above is applied to a
microstructure obtained from an electron backscat-
ter diffraction (EBSD)-based orientation image
microscopy (OIM) of an HCP polycrystalline Mg
AZ31. The initial dislocation density for this model
was considered 1010 m�2.41 Also, all the applied
parameters in the model are shown in Table I.
Figure 3a shows the undeformed EBSD-OIM Mg
AZ31 microstructure that is applied to the VPFFT-
CDD framework, and Fig. 3b is a grain boundary
map, generated by OIM. The red lines are low-angle
grain boundaries with angle ranges of 2� to 5�,
where green lines are the grain boundaries with 5�
to 15�, and the blue lines are high-angle grain
boundaries with a > 15� misorientation angle. A
plane strain unidirectional tensile test is conducted
on this microstructure up to 25% deformation.

It is understood that plastic deformation of poly-
crystalline Mg AZ31 is due to active slip systems in
basal planes {001} <110>, prismatic planes {100}
<110>, pyramidal<a> planes {112}<110>, pyra-
midal<c + a> planes {123}<113> and {102}<101>
tensile twinning planes. These slip systems along
with the parameters listed in Table I are applied to
the modeling framework to calculate the stress,
strain, mobile dislocation density and GND distribu-
tion in the applied microstructure of Mg AZ31.

Figure 4a shows the spatial stress distribution in
the microstructure. The role of grain boundaries as
a barrier to mobile dislocation density is examined.
The stress distribution around the grain boundaries
reveals the amount of stress each grain carries
during the uniaxial plain strain tensile test model-
ing. The red spots show high-stress concentration
regions in the microstructure. By comparing
Figs. 3b and 4a, the effects of misorientation of
grain boundaries and mobile dislocation density
transfer among grains become clearer by noting
that almost all the stress concentration red spots
are around the high-angle boundaries.

Figure 4b shows the strain distribution in the
microstructure. It is understood that the strain
localization occurs at high-angle grain boundaries

Hamid and Zbib4140



where the crack initiation can occur. The red spots
in Fig. 4b show the high strain localization spots of
the microstructure.

The interactions of dislocations and twins are
analyzed in Ref. 9. It is shown that this interac-
tion leads to the onset of strain localization, void
nucleation and crack propagation in Mg AZ31. In
Fig. 4, the stress and strain localization regions
are captured around high-angle grain boundaries.
It should be noted this finding is in close agree-
ment with previous studies.9,10

The mobile dislocation density distribution is
represented in Fig. 5. The range of mobile dislo-
cation density is from 1010 to 8 � 1014 m�2. The
effect of dislocation density flux is analyzed here
by using the VPFFT-CDD model. Comparing
Figs. 3b and 5 shows that mobile dislocation
density flux occurs in most of the green and red
color grain boundaries and high-angle grain
boundaries kept most of the mobile dislocation
densities inside the grains with blue (high-angle)
boundaries.

Fig. 3. (a) Grain structure used for simulations with VPFFT-CDD. (b) Grain boundary distribution in the microstructure from OIM (Color
figure online).

Fig. 4. (a) Stress distribution and (b) strain distribution in the microstructure (Color figure online).
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The GND distribution at 5% strain is shown in
Fig. 6. Interestingly, almost all the grain bound-
aries are detected by the model, and the larger
values of GNDs are distributed around the grain
boundaries.

Finally, the engineering stress–strain curve is
shown in Fig. 7, and the experimental data points
are added to this curve to compare the modeling
result with the experimental tension test for poly-
crystalline Mg AZ31.43 The numerical results cap-
ture the overall trend of the experimental data. At
the initial stage of deformation, the high rate of
strain hardening is due to dislocation multiplica-
tions and interaction with boundaries. Upon further
straining, the annihilation rate increases, which, in
turn, decreases the rate of strain hardening.

Finally, the dislocation density generation and
annihilation rates become balanced, and this is the
cause of the very slow growth of stress values in the
stress versus strain curve shown in Fig. 7.

CONCLUSION

A CDD model is coupled with VPFFT, and the
spatial distribution of stress, strain, mobile disloca-
tion density and geometrical dislocation density are
analyzed based on dislocation density evaluation
along known slip and twin systems for the HCP
polycrystalline Mg AZ31 microstructure. The com-
parison of experimental and modeling stress–strain
curves shows that the applied crystal plasticity
relations can predict the tensile test result of this
polycrystal. Also, the GND distribution map shows
that the model properly captures the grain bound-
aries since most of the high-density GND points are
around the boundaries.
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Fig. 5. Mobile dislocation density distribution of the microstructure
(Color figure online).

Fig. 6. GND distribution at 5% strain (Color figure online).

Fig. 7. Engineering stress versus strain modeling and experimental
results.43
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61, 1179 (2012).
8. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, and M.

Knezevic, Int. J. Plast 83, 90 (2016).
9. M. Ardeljan and M. Knezevic, Acta Mater. 157, 339 (2018).

10. M. Ardeljan, I.J. Beyerlein, and M. Knezevic, Int. J. Plast
99, 81 (2017).

11. M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic,
Int. J. Plast 109, 193 (2018).

12. M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic,
Acta Mater. 164, 530 (2019).

13. A. Eghtesad, M. Zecevic, R.A. Lebensohn, R.J. McCabe, and
M. Knezevic, Comput. Mech. 61, 89 (2018).

14. R.A. Lebensohn, R. Brenner, O. Castelnau, and A.D. Rollett,
Acta Mater. 56, 3914 (2008).

15. R.A. Lebensohn, E.M. Bringa, and A. Caro, Acta Mater. 55,
261 (2007).

16. R.A. Lebensohn and A. Needleman, J. Mech. Phys. Solids
97, 333 (2016).

17. R.A. Lebensohn, Acta Mater. 49, 2723 (2001).
18. J.C. Michel, H. Moulinec, and P. Suquet, Int. J. Numer.

Meth. Eng. 52, 159 (2001).
19. H. Askari, J. Young, D. Field, G. Kridli, D.S. Li, and H. Zbib,

Philos Mag 94, 381 (2014).
20. H. Moulinec and P. Suquet, Comput Method Appl M 157, 69

(1998).
21. J.E. Bailey and P.B. Hirsch, Philos Mag 5, 485 (1960).
22. E. Orowan, Proceedings of the Physical Society 52, 8 (1940).

23. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and
E. Ma, Acta Mater. 52, 1859 (2004).

24. N. Taheri-Nassaj and H.M. Zbib, Int. J. Plast 74, 1 (2015).
25. H. Lyu, A. Ruimi, and H.M. Zbib, Int. J. Plast 72, 44 (2015).
26. S. Queyreau, G. Monnet, and B. Devincre, Int. J. Plast 25,

361 (2009).
27. D. Terentyev, D. Bacon, and Y.N. Osetsky, J. Phys.: Con-

dens. Matter 20, 445007 (2008).
28. S. Akarapu and J.P. Hirth, Acta Mater. 61, 3621 (2013).
29. M. Hamid, H. Lyu, B.J. Schuessler, P.C. Wo, and H.M. Zbib,

Crystals 7, 152 (2017).
30. D.S. Li, H. Zbib, X. Sun, and M. Khaleel, Int. J. Plast 52, 3

(2014).
31. H.T. Zhu and H.M. Zbib, Acta Mech. 121, 165 (1997).
32. T. Ohashi, Int. J. Plast 21, 2071 (2005).
33. K. Shizawa and H.M. Zbib, Journal Of Engineering Mate-

rials And Technology-Transactions Of The Asme 121, 247
(1999).

34. Z. Shen, R.H. Wagoner, and W.A.T. Clark, Acta Metall. 36,
3231 (1988).

35. K.G. Davis, E. Teghtsoonian, and A. Lu, Acta Metall. 14,
1677 (1966).

36. E. Werner and W. Prantl, Acta Metall. Mater. 38, 533 (1990).
37. J.F. Nye, Acta Metall. 1, 153 (1953).
38. M.G. Armentano and R.G. Duran, Appl Numer Math 37, 397

(2001).
39. W.K. Liu, S.F. Li, and T. Belytschko, Comput Method Appl

M 143, 113 (1997).
40. H. Lyu, M. Hamid, A. Ruimi, and H.M. Zbib, Int. J. Plast 97,

46 (2017).
41. G.D. Sim, G. Kim, S. Lavenstein, M.H. Hamza, H.D. Fan,

and J.A. El-Awady, Acta Mater. 144, 11 (2018).
42. B. Raeisinia, S.R. Agnew, and A. Akhtar, Metallurgical and

materials transactions. 42, 1418–1430 (2011).
43. U. Ali, Numerical Modeling of Failure in Magnesium Alloys

under Axial Compression and Bending for Crashworthiness
Applications. Master Thesis, University of Waterloo (2012).

Publisher’s Note Springer Nature remains neutral with re-
gard to jurisdictional claims in published maps and institutional
affiliations.

Dislocation Density-Based Multiscale Modeling of Deformation and Subgrain Texture
in Polycrystals

4143


	Dislocation Density-Based Multiscale Modeling of Deformation and Subgrain Texture in Polycrystals
	Abstract
	Introduction
	VPFFT-CDD Constitutive Model
	Continuum Dislocation Dynamics (CDD) Methodology
	Grain Boundary Back Stress Field
	Implementation of the Stress/Strain Gradient Model
	Results and Discussion
	Conclusion
	Acknowledgments
	References




