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Recognized as a prominent material for engineering applications, carbon fiber-
reinforced laminated composites require significant effort to characterize due
to their anisotropic structure and viscoelastic nature. Dynamic mechanical
analysis has been used to accelerate the testing process by transforming the
measured viscoelastic properties to elastic modulus. To expand the transfor-
mation to anisotropic materials, artificial neural network approach is used to
build the master relationship of the storage modulus in three in-plane direc-
tions. Using rotation transformation, the stiffness tensor can be calculated to
extrapolate the frequency domain viscoelastic properties in any orientation
with respect to the fiber direction. The viscoelastic properties are transformed
to time domain relaxation function using the linear relationship of viscoelas-
ticity. Stress response with a certain strain history is predicted and the elastic
modulus is extracted. Compared to the experimental flexural test results, the
artificial neural network-based method achieved an error of less than 7.3%.
The results show that the transformation can predict the anisotropic material
behavior at a wide range of temperatures and strain rates.

INTRODUCTION

The ability to tailor the properties of composite
materials is their biggest asset. However, the
directional properties of fiber-reinforced composites
require investing significant effort in their charac-
terization.1 Carbon fiber-reinforced polymer (CFRP)
composites with laminated structures are now used
in a wide range of structural applications, including
aircraft, automobiles,2 and sports equipment. Due
to their anisotropic properties, laminated compos-
ites need to be characterized in several different
orientations. The complexity in their characteriza-
tion increases if the properties are also required
over a range of temperatures and strain rates.3,4

The elastic modulus is the most important design
parameter, which is often the focus of the charac-
terization efforts.5 However, conducting a large
number of tensile or bending tests with respect to
fiber direction, temperature, and strain rate to
determine the modulus can be a prohibitively
expensive or time consuming.6 The strong

viscoelasticity of polymers even within the quasi-
static strain rate range also presents a challenge
and requires developing a rigorous testing regime.7

Viscoelasticity is widely displayed by a large
variety of materials, including polymers,8 compos-
ites9 and biomaterials.10 Viscoelastic properties are
commonly characterized by tensile or flexural tests
and dynamic mechanical analysis (DMA).7,11,12

Tensile and flexural tests can provide Young’s
modulus, which can be used in mechanical design.
However, a large number of specimens need to be
tested if the mechanical properties need to be
characterized with respect to strain rates.3,13,14

The campaign will grow exponentially when testing
anisotropic materials. In contrast, the storage (E¢)
and loss (E¢¢) moduli obtained from DMA describe
the in-phase and out-of-phase relationships between
stress and strain when a sinusoidal load is
applied.15 However, applications of E¢ and E¢¢ are
limited because they are obtained in the frequency
domain and do not provide a direct correlation with
Young’s modulus.
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Theoretical models are now available to trans-
form the storage modulus into the elastic modu-
lus.16–18 These models require the DMA results to
satisfy the time–temperature superposition princi-
ple to develop a master curve. The shape of the
master curve is modeled by a mathematical function
with respect to frequency, which is then trans-
formed to the time domain. This procedure allows
the obtaining of the elastic modulus over a large
range of strain rates and eliminates the need to
conduct a large number of tensile tests at various
strain rates.19 This transformation procedure has
been verified on isotropic materials, such as neat
polymers,16,18,20 syntactic foams17 and nanocompos-
ites.21 However, these methods have not been
extended to anisotropic material systems, which
require setting up a generalized Hooke’s law-based
material model. The artificial neural network
(ANN) approach has been used recently in this field
to model the material behavior, and has promise to
be applied to materials with complex behaviors.22–24

The ANN approach has a strong physical founda-
tion25 and is good at handling complex thermal
behaviors.26,27 It is also the paradigm of parallel
computing and robustly enables massive computa-
tion tasks,28,29 which is a major advantage in
modeling complex material responses.30,31

In the current work, a unidirectional CFRP
laminate is used as the anisotropic material
system to implement the ANN approach and use
DMA data to extract the elastic modulus with
respect to strain rate in different orientations
with respect to the fiber direction. A feed-forward
neural network is applied to build the master
relationship of E¢ in different in-plane orienta-
tions. The viscoelastic properties can be used to
calculate the frequency domain stiffness tensor in
the testing direction using rotation transforma-
tion.32 Then, using rotation transformation again,
the viscoelastic properties in any orientation can
be predicted. The frequency domain viscoelastic
properties are transformed to a time domain
relaxation function using the linear relationship
of viscoelasticity and then the time domain elastic
modulus is predicted. Since the materials are
tested with the aim of finding a correlation
between the test methods, the quality of the
material is not a study parameter and the trans-
formation should yield accurate results for any
material regardless of composition and quality.

MATERIALS AND METHODS

ANN Methodology

The ANN framework is used to establish the
master relationship of the storage modulus with
respect to frequency and temperature. A feed-for-
ward neural network is used in this work and the
general loss function is defined as:33

~F E0;x;Tð Þ ¼ F E0;x;Tð Þ þ aX lð Þ ð1Þ
where E¢ is the storage modulus at a certain
temperature T and frequency x, l represents the
network weights, X is the regulation term, and a is
the corresponding regularization factor. The ratio of

the predicted storage modulus ( ~E0) to the experi-
mental E¢ measurement is used to define the
prediction error, and the L2 regularization, or so-
called ridge regression, is used as the regularization
term as in:34

F E0;x;Tð Þ ¼ 1

N

XN

i¼1

~E0 x;Tð Þ=E0 x;Tð Þ � 1
� �h i2

ð2:aÞ

X lð Þ ¼ 1

n

Xn

j¼1

l2
j ð2:bÞ

where N is the size of the dataset and n is the
number of parameters. Temperature and the loga-
rithmic form of frequency are used as the input
neurons. As three is the minimal number to imple-
ment the transformation and predict the perfor-
mance in other orientations for CFRP, the ANN has
three output neurons to describe the properties in
three orientations (h = 0�, 45� and 90�). The defini-
tion of the orientations are shown in Fig. 1a and the
flow chart of the process is shown in Fig. 1b.
Following previous work,22 the ANN has only one
hidden layer with two neurons and the regulation
factor is set to be 10�4. The number of neurons and
regulation factors are not considered as variables
for optimization in this work.

The datasets obtained from the DMA tests of the
laminates in three orientations (h = 0�, 45� and 90�)
are each randomly divided into training, validation
and test sets in the ratio of 65:15:20, respectively.
As a metaheuristic optimization method, particle
swarm optimization (PSO)35 has proved to be effi-
cient and robust in solving many nonlinear opti-
mization problems.36–38 Hence, PSO is used to train
the ANN in this work. Then, using the linear
viscoelastic theory, the E¢ (x, T) in each orientation
is transformed to the time domain relaxation func-
tion E(t, T). The stress response is found by
integrating E(t, T) with the strain history, and the
elastic modulus in the time domain is extracted.

The Materials and Experiment Procedure

The unidirectional CFRP laminates of 1.6 mm
thickness were procured from Allred and Associ-
ates, Elbridge, New York, NY, USA. Laminate
parameters such as the number of layers and fiber
content and defects are not characterized because
they are not of relevance to the present work, which
is focused on comparing the mechanical property
results obtained from two different characterization
methods.
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The laminates were machined into specimens of
dimensions 60.0 9 12.7 9 1.6 mm3 (length 9
width 9 height) in 0�, 45� and 90� orientations for

DMA testing. TA Instruments (New Castle, DE,
USA) Q800 DMA has been used to conduct the
experiments under strain control mode in dual
cantilever configuration with a maximum displace-
ment of 25 lm using a span length of 35 mm. The
tests were conducted in the temperature range of
30–200�C with a step of 5�C and a soaking time of
5 min. Isothermal frequency sweeps were conducted
at 20 discrete frequencies logarithmically spaced
between 1 and 100 Hz. The experiment was termi-
nated when the force magnitude dropped below
10�4 N. The response surface of the storage

modulus with respect to temperature and frequency
is presented in Fig. 2. It can be observed that E¢
decreases with temperature and increases with
frequency. The E¢ at 100 Hz is higher than that at
1 Hz for each temperature in each orientation,
which indicates the strain rate sensitivity of the
materials. It is also observed in this figure that the
storage modulus in 0� is at least 2 times higher than
that in 45� and 9 times higher than that in 90�. The
obvious directionality is due the anisotropic nature
of the material.

The experimental flexural properties are obtained
by flexural tests under three-point bending condi-
tions in h = 0�, 45� and 90� orientations at room
temperature (25�C). An Instron 4467 universal test
system was used for the tests at different deflection
rates from 1 9 10�3–1 mm Æ s�1 (nominal initial
strain rates of 3 9 10�6–3 9 10�3 s�1). The geome-
try of the specimens conforms to the ASTM D790
standard.39 A representative set of stress–strain
curves for a unidirectional CFRP laminate in 0�, 45�
and 90� orientation (deformation rate of 1 mm/s) is
shown in Fig. 3. Further, flexural tests on the
laminate were also conducted in h = 30� orientation.
The data obtained in this orientation have been
used for validation of the results obtained from the
ANN-based model which was developed using the
data in the 0�, 45� and 90� orientations. At least
three specimens were repeated for each strain rate
and orientation, and data for all three specimens
are included in the plots.

Transformation of Storage Modulus to Time
Domain

For anisotropic elastic materials, the stress and
strain are related to the stiffness tensor in both the
time and frequency domains and the relationship
can be written using Einstein summation notation
as:

rij ¼ Cijklekl ð3Þ
where r is the stress tensor, e is the strain tensor,
and C is the stiffness tensor. The stiffness tensor is
dependent on h. The CFRP laminate is commonly
regarded as a thin-shell structure and its stiffness
properties can be found by calculating only the in-
plane component of the stiffness tensor. The elas-
ticity term for axial properties under a rotation
transformation can be found using:40

Ch
1111 ¼ C0

1111 cos4 hþ 2 C0
1122 þ 2C0

1212

� �
cos2 h sin2 h

þ C0
2222 sin4 h

ð4Þ

C1111, C1122, C1212, and C2222 correspond to C11,
C12, C66, and C22, respectively, when using a 2-index
notation. Although the stiffness properties in cer-
tain orientations are related to four components of
the stiffness tensor, they are linearly dependent on
three terms in Eq. 4. Rather than calculating all the

Fig. 1. (a) Definition of 0�, 45� and 90� orientations with respect to
the fiber direction in the laminate and (b) the modeling framework
using artificial neural network approach.
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four components of the stiffness tensor, the three
terms can be calculated using the test data of three
orientations and used to predict the axial stiffness
in any orientation. The DMA results in three
orientations are used to train the ANN with the
PSO algorithm, and the training errors of the tests
set in all three orientations are found to be below
5.4%. The Pearson’s correlation coefficient R for the
training set and the test set are found to be 0.9897
and 0.9824 for 0�, 0.9897 and 0.9824 for 45� and

0.9897 and 0.9824 for 90�, as shown in Fig. 4. The
frequency domain viscoelastic properties in the
other orientations can be predicted by rotation
transformation.

With the master relationship at a certain tem-
perature, the integral relationships of viscoelastic-
ity can transform each term in the stiffness tensor
to a time domain relaxation modulus by numerically
integrating Eq. 5 from 0 to infinity:41

Fig. 2. (a) The trend of storage modulus with respect to temperature at 1 Hz frequency for three orientations of laminates shown in Fig. 1a.
Response surface of storage modulus measured with respect to temperature and frequency in (b) 0�, (c) 45� and (d) 90� orientation.
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Cijkl t;Tð Þ ¼ 2

p

Z1

0

C
0

ijkl x;Tð Þ
x

sin xtð Þdx ð5Þ

where t is time, x is the angular frequency, and T is
the temperature. The relaxation function C1111 (t, T) in
the 0�, 45� and 90� orientations are shown in Fig. 5.
For isothermal processes, Cijkl (t, T) can be used to
determine the stress response with a certain strain
history by:41

rij t;Tð Þ ¼ E � _e ¼
Zt

0

Cijkl t� s;Tð Þdekl sð Þ
ds

ds ð6Þ

where s and _e represent time variable and strain
rate, respectively. For the standard three-point
bending test, the strain rate is assumed to be
constant at small deformations, so that Eq. 6 can
be approximated as:41

rij t;Tð Þ ¼
Z t

0

Cijkl s;Tð Þ_eklds ð7Þ

Using Eq. 7, the stress–strain curve at various
temperatures and strain rates can be predicted and
the time domain elastic response of the materials
can be extracted. The elastic modulus is defined as
0.10% secant modulus. The predicted modulus
values with respect to temperature and strain rate
are shown in Fig. 6. The elastic modulus decreases
with temperature and increases with strain rate. It
can also be observed in this figure that the elastic
modulus in 0� is also at least 2 times higher than
that in 45� and at least 9 times higher than that in
90�, which conforms to the anisotropic nature of the
material. To verify the transformation from storage
modulus to elastic modulus, the elastic modulus
values predicted from the DMA experiment data are
extrapolated to room temperature and then com-
pared to those obtained from flexural tests in the 0�,
45� and 90� orientations. The comparisons of the
results is shown in Fig. 7. The average errors
between the predicted and experimentally mea-
sured modulus are found to be below 7.3% in any of
the three orientations. The observed variation of the
experimental elastic modulus data in 0� orientation
testing is attributed to possibilities such as a slight
misalignment of the fibers with respect to the
loading direction, as a result of cutting the speci-
mens from a large plate, and gripping procedures in
the test machine.

The accuracy of model prediction is also tested by
predicting the elastic modulus in the 30� orientation
using the DMA experiment results in the 0�, 45� and
90� orientations. The predictions are compared to
the results from flexural tests in Fig. 8. The average
error is found to be 3.4% for this case. The high
accuracy proves that the transformation can predict
the modulus in any in-plane orientation for a wide
range of temperatures and strain rates using a
minimum of three specimens. Since the elastic
modulus is a widely used material property in
mechanical design, the present scheme will signif-
icantly reduce the time and effort needed to char-
acterize an anisotropic material. In the present
work, the fiber volume fraction and ply stacking

Fig. 3. A representative set of flexural stress–strain curves for
unidirectional CFRP laminate tested in 0�, 45� and 90� orientations at
1 mm/s deflection rate. The tests were stopped after acquiring
sufficient data for calculating modulus and were not continued to
fracture.

Fig. 4. The Pearson’s correlation coefficient R of the experimental
and predicted storage modulus values for training and test set in 0�,
45� and 90� orientations.
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sequence are not taken as variables in order to keep
the experimental testing campaign manageable for
measuring the elastic modulus for validation of the
predictions. However, these, and many other
parameters, can be taken as variables in the ANN

scheme without any change in the basic framework.
The number of neurons in the hidden layer will
have to be adjusted based on the number of
parameters in a study.

Fig. 5. The relaxation function C1111 (t, T) in (a) 0�, (b) 45� and (c) 90� orientations.
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CONCLUSION

An ANN-based transformation has been built to
predict the elastic modulus of carbon fiber-rein-
forced polymer laminate over a wide range of
temperatures and strain rates. The DMA results
in the 0�, 45� and 90� orientations are used as input
to model the directionality. The ANN is trained
using a particle swarm optimization algorithm and

converted to a time domain relaxation function
using a linear relationship of viscoelasticity. The
viscoelastic response is predicted using the relax-
ation function, and the average error is found to be
below 7.3% in the 0�, 45� and 90� orientations.
Further validation of the method was conducted to
predict the modulus values in the 30� orientation
based on the learning of the ANN. The error in
prediction of the elastic modulus in the 30�

Fig. 6. The predicted elastic modulus of CFRP laminate with respect to temperature and strain rate in (a) 0�, (b) 45� and (c) 90� orientations.
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orientation of the laminate was found to be below
3.4%, which shows the effectiveness of the ANN
approach for such materials. The high accuracy
indicates that the transformation can be used to
model and predict the elastic properties of aniso-
tropic materials under a wide range of temperatures
and strain rates.
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