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The complicated metal-based additive manufacturing (AM) process involves
various sources of uncertainty, leading to variability in AM products. For
comprehensive uncertainty quantification (UQ) of AM processes, we present a
physics-informed data-driven modeling framework, in which multilevel data-
driven surrogate models are constructed based on extensive computational
data obtained by multiscale multiphysics AM models. It starts with compu-
tationally inexpensive surrogate models for which the uncertainty can be
readily quantified, followed by global sensitivity analysis for comprehensive
UQ study. Using AM-fabricated Ti-6Al-4V components as examples, this study
demonstrates the capability of the proposed data-driven UQ framework for
efficient investigation of uncertainty propagation from process parameters to
material microstructures, then to macrolevel mechanical properties through a
combination of advanced AM multiphysics simulations and data-driven sur-
rogate modeling. Model correction and parameter calibration for the con-
structed surrogate models using limited amounts of experimental data are
discussed.

INTRODUCTION

Additive manufacturing (AM) is a transformative
technology that offers great design freedom and
environmental/ecological advantages, especially in
fabricating components with intricate geometries,1,2

including components made from metals with high
melting points. However, since metallic AM is a
complicated process with various sources of uncer-
tainty, the quality of the resulting products often
shows significant variations,3 which becomes a
major issue for the general adoption of metallic
AM. A typical source of uncertainty during metallic
AM is the fluctuating power absorption. The effi-
ciency of the laser/electron beam power depends
strongly on the absorbing surface and is associated
with the powder packing4 and/or melt pool dynamics

or flow behavior.5,6 Both the powder packing and
melt flow inherently show random or unstable na-
ture.7 Thus, uncertainty arises in the power absorp-
tion and propagates to the quality of the final
product, together with other sources of uncertainty,
such as fluctuations of AM machine parameters
around their nominal settings, natural variability in
temperature boundaries, etc.; For instance, Ma
et al.8 clearly pointed out that the quality and
properties of AM deposits can vary greatly even
when the same materials, processing parameters,
and type of AM machine are used. This largely
prevents production of AM components with high
and guaranteed quality.

To achieve quality control of AM processes, a good
understanding of the sources of uncertainty and
their effects on product quality through uncertainty
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quantification (UQ) is needed.9 However, systematic
UQ based on extensive experiments to observe the
variation of quantities of interest (QoIs) is usually
prohibitively expensive. It becomes even more chal-
lenging when considering uncertainty management
(UM) through robust design,10 where UQ must be
repeated under numerous manufacturing condi-
tions.11 This imposes significant technical difficul-
ties on process optimization due to uncertainty. On
the other hand, computer simulations based on
sound physical principles can provide a cost-effec-
tive alternative, allowing UQ by performing virtual
experiments in a time- and cost-saving manner. In
fact, such model-based UQ has been widely adopted
in practical engineering.12,13 Nevertheless, current
UQ analysis for AM process is still at its infancy,
since most investigations to date have simply
focused on one part of the whole AM process, such
as the variability in the melt pool geometry caused
by uncertainty sources.14–16 In other words, the
quantity of primary interest is usually not the
quality of AM products. Therefore, detailed under-
standing of the propagation of uncertainty from the
process to the microstructure structure and, even-
tually, to the properties of the product is still
lacking.

In this paper, a generic UQ framework is pro-
posed, aiming to enable efficient investigation of
uncertainty propagation from process parameters to
material microstructure, then to macro-level
mechanical properties in the metallic AM process.
It takes advantage of extensive multiscale multi-
physics AM simulation data, limited experimental
data, and surrogate modeling techniques. One
specific example, viz. uncertainty quantification of
the mechanical behavior of Ti-6Al-4V alloy fabri-
cated by selective electron beam melting (SEBM), is
used to illustrate the proposed framework. Six
uncertainty sources arising from the melting and
solidification processes in AM are investigated.
Variance-based global sensitivity analysis is also
conducted for comprehensive UQ study.

A GENERIC COMPUTATIONAL
FRAMEWORK FOR UQ OF AM

Figure 1 shows the generic procedure of the
proposed computational framework for comprehen-
sive UQ study of AM. The whole UQ process
contains three steps:

� Step 1 A specific multiscale physics-based model
with experimental validation is selected depend-
ing on the involved sources of uncertainty and the
product quality of interest (e.g., geometrical accu-
racy, surface roughness, porosity, strength, etc.).
Based on the selected model, a large yet accept-
able number of multiscale physics-based simula-
tions are performed to generate training data for
the construction of computationally inexpensive
surrogate models. Note that the earlier trained
lower-level surrogate model can replace the corre-

sponding physical model, to accelerate multiscale
simulations and thus generation of data to train a
higher-level surrogate model.

� Step 2 The surrogate models at different levels
are trained, followed by cross-validations to test
their effectiveness in replacing corresponding
physical models. The multiple surrogate models
enable uncertainty quantification of correspond-
ing QoIs, thus providing clear insight into the
entire process of uncertainty propagation. After
construction of the surrogate model, experimen-
tal data are used to correct the model and
calibrate the unknown model parameters.

� Step 3 The corrected surrogate models with
calibrated unknown model parameters are used
to study uncertainty propagation for the entire
AM process. Finally, sensitivity analysis is per-
formed to reveal the contribution of each uncer-
tainty source to the variability in product quality.

Taking uncertainty quantification of SEBM-fabri-
cated Ti-6Al-4V components as an example, each
step and their substeps are further described in the
following sections.

MULTISCALE MULTIPHYSICS AM
SIMULATION MODEL

Multiscale multiphysics simulation models are
used to predict the product quality under specific
AM process parameters. The product quality of
interest in the example case is the mechanical
behavior of as-built components. Therefore, the
multiscale simulation model selected combines a
finite-element-based thermal model, grain growth
phase-field model, and fast Fourier transform-based
crystal elastoviscoplastic model (Fig. 2). Based on the
selected model, here we mainly present how to utilize
physical models, which usually come with rather
complex outputs, to train useful surrogate models for
UQ analysis. Regarding the selected multiscale
model itself, refer to Refs. 17–20 for more details.

Finite-Element-Based Thermal Model

In this multiscale model, a finite-element-based
heat transfer model incorporating a moving heat
source17 is utilized to predict the temperature field
development. In the metallic AM process, high-
power energy sources, such as a laser or electron
beam, are usually applied. This results in a highly
nonuniform temperature field within and around
the melt pool that governs the formation of the final
microstructure of the as-built component.

The current thermal simulation is performed to
provide data for only the steady temperature field
developed during AM, although it predicts the
instantaneous temperature field for the whole AM
process. This is primarily due to three reasons.
Firstly, incorporation of the full-process thermal
information into a grain growth model would be
computationally prohibitive. Secondly, the
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microstructure of interest in grain growth simula-
tion is the prior b-grain structure, which evolves
only as the high-temperature field (above the b-
transus temperature, Tb-transus) sweeps through.
During most of the process, the high-temperature
field remains in a relatively steady state, and even
shows a similar shape for different layers.21 As
such, the full thermal process can be seen approx-
imately as the steady high-temperature field mov-
ing back and forth with the heat source. Thirdly and
most importantly, in light of this, a surrogate
thermal model, which is able to predict the corre-
sponding steady temperature field, can be trained
for a fast approximation of the full thermal process,
thus technically facilitating the training of a useful
thermal surrogate model.

Grain Growth Phase-Field Model

The phase-field method has been widely adopted
for simulating microstructural evolution. In partic-
ular, it offers advantages for complicated
microstructures by avoiding explicit tracking of
the evolving interface/boundary.22,23 Multiple phys-
ical phenomena and AM process features are taken
into account in our custom phase-field model,
including the temperature effect on grain-boundary
mobility, undercooling-controlled grain nucleation
at the top of the melt pool, a layer-by-layer incre-
mental computational domain, etc.18,24

The grain growth phase-field model enables us to
obtain the specific microstructure developed for an
input temperature field. In this study, we select the
mean and variance of the grain aspect ratio A, viz.

Fig. 1. Schematic of proposed UQ framework for the metal-based AM process. Here, a specific three-level UQ is used as an example to illustrate
the proposed UQ framework.

Fig. 2. Schematic of selected multiscale AM simulation model that links process to structure and then properties.
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l(A) and r2(A), as microstructure descriptors for
training the surrogate model, rather than directly
recognizing the microstructure image. Specifically,
small l(A) and r2(A) correspond to uniform and
equiaxed grain structures, which are favorable. The
l(A) and r2(A) information is extracted from the
phase-field simulation results then used to train a
microstructure-prediction surrogate model that can
quickly predict the distribution of grain aspect
ratios and thus the approximate grain structure.

Fast Fourier Transform-Based Crystal
Plasticity Model

A fast Fourier transform (FFT)-based crystal
elastoviscoplasticity model is used to predict the
local mechanical behavior of polycrystals deforming
in the elastoviscoplastic regime. The effective
mechanical properties of the polycrystal system
can then be predicted by averaging the mechanical
fields. The microstructure obtained from the grain
growth phase-field simulations is the prior b-grain
structure, which would transform to lamellar a + b
structure at room temperature. In the current
model, material parameters, including hardening
and elastic parameters, adopt their volume-
weighted average values. A volume fraction of a-
phase of 88% is assumed based on experimental
observations.25 The model itself just follows the
original one for the single phase.19 Note that a more
rigorous treatment for mechanical property predic-
tions could use a two-phase model, after simulating
the b fi a phase transformation of as-received
prior b-grains using phase-field models,26 which
we leave for future work.

The mechanical behavior of each microstructure
is predicted by applying a total tensile strain of 0.06,
at a rate of 1.0 s�1, in the Z-direction perpendicular
to the building base (along the long columnar
grains). The output is the stress–strain curve of
the overall polycrystal. The data underlying the
stress–strain curve are essentially the effective
stress responses at different deformation stages or
strains. The current study trains a surrogate model
that predicts �r every De ¼ 0:001. This size of De is
small enough to render stress–strain curves with
full details.

DATA-DRIVEN SURROGATE MODELING
OF THE AM PROCESS

Principles of Surrogate Models

Surrogate models are constructed based on the
extensive simulation data obtained from AM simu-
lations. The surrogate model basically constructs
the response or QoI as a function of various process
variables, thus allowing fast prediction of responses
at any given prediction point. Note that the
response in practical engineering problems could
be high dimensional, e.g., the temperature field and

stepwise stress–strain relationship over time in the
current case.

Existing methods for constructing computation-
ally cheap surrogates include the classic response
surface method,27 polynomial chaos expansion,28

Gaussian process model,29 regression tree,14,30 as
well as the emerging artificial neural network.31 In
this illustrative case, the Kriging surrogate model-
ing method (i.e., Gaussian process model)32 is
employed to build the surrogate models, since
Kriging can effectively capture the nonlinearity of
the underlying models and can accommodate the
noise in the data. To tackle the high-dimensional
response issue, we adopt a singular value decompo-
sition (SVD)-based Kriging surrogate modeling
method.3 SVD provides a low-dimensional approx-
imation of the original high-dimensional response in
the latent space. This is done by representing the
original high-dimensional data using truncated
important features.33 In this regard, one actually
carries out the surrogate modeling with respect to
the low-rank approximations in the latent space.
Thus, upon prediction, the as-obtained results are
further reconstructed as high-dimensional data for
practical use. Note that the framework presented
herein is not limited to Kriging surrogate models
but is also applicable to other surrogate model
techniques.

Figure 3 shows the procedure for training each
surrogate model from the melt pool simulation to
the grain growth model, then to the elastoviscoplas-
tic model. Note that, here, the response is built as a
function of both control variables d (manufacturing
settings) and random variables x (uncertainty
sources), thus enabling UQ under different manu-
facturing conditions and future process optimiza-
tion under uncertainty. Taking the melt pool
surrogate model as an example, next, we explain
the training procedure with some mathematical
detail. The training of the other two surrogate
models (i.e., the microstructure and mechanical
property surrogate models) should follow a similar
or simpler procedure. After obtaining training data,
T (x(i), s), i = 1, 2, …, N, where s represents all the
spatial coordinates of the nodes, the original high-
dimensional data are first approximated using SVD
as follows:

T x ið Þ; s
� �

�
Xm

j¼1

cj ið Þgj sð Þ; 8i ¼ 1; 2; . . . ;N; ð1Þ

where cj(i), i = 1, 2, …, N; j = 1, 2, …, m are the
responses in the latent space, m is the number of
important features used in SVD, and gj(s), j = 1, 2,
…, m are the temperature features over space
obtained through singular value decomposition.34

Equation 1 is a reduced-order model of the original
temperature field response. We then build surrogate
models in the latent space using a Kriging surrogate
model or another type of surrogate model as3
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cj ¼ ĝjðxÞ; j ¼ 1; 2; . . . ; m:: ð2Þ

For any new prediction point x, we predict in the
latent space, cjðiÞ � ĝjðxðiÞÞ. Thus, the high-dimen-
sional response at the new prediction point is
reconstructed as3

T x; sð Þ �
Xm

j¼1

lĝjðxÞgjðsÞ; ð3Þ

where lĝjðxÞ is the mean prediction of the jth latent-
space surrogate model.

Replacing the Physics Models

The surrogate models at different levels are
trained, followed by cross-validations to test their
effectiveness in replacing corresponding physics
models. For the surrogate model to accurately
capture the relationship between the respective
response and multiple inputs, a total of 280 thermal
simulations, 150 grain growth simulations, and 150
EVP-FFT simulations are performed at specific
training points by the Latin hypercube sampling
method.35 The quality of the surrogate models can
be quantified using leave-one-out cross-validation or
other validation methods. Of all the simulation-
obtained data, 20 temperature profiles, 5
microstructures, and 5 stress–strain curves are set
aside for cross-validation, while the remainder are
used for training. The thermal surrogate model is
rather difficult to train compared with the other two
because of the extremely high-dimensional

responses, i.e., temperatures at 18,746 nodes based
on the current adaptive meshing. Figure 4a com-
pares the predicted temperature field (sectional
view) between the finite-element simulation and
surrogate model prediction. It clearly shows that
they predict almost the same steady temperature
field, developed by electron beam scanning in the
direction from the upper right to bottom left. To
present the difference between these predictions in
a more straightforward way, Fig. 4b quantitatively
compares the temperature predicted at each node of
the full field. The minor deviation of all points from
the y = x line further demonstrates the small dif-
ference between the finite element simulation and
surrogate model predictions. For strict validation,
the prediction difference is examined at a total of 20
arbitrary prediction points, four of which are shown
in Fig. 4b–e due to figure size limit. All of them
show similar distribution behaviors of simulation/
prediction data points closely attached to the y = x
line. More specifically, the average prediction error
in terms of all nodes is respectively 0.15%, 0.15%,
0.17%, and 0.18% as compared with finite-element
simulations. These comparisons confirm that the
constructed surrogate model can be generalized to
any prediction point within the practical range and
can thus fully replace the original physical model.

EXPERIMENTAL CALIBRATION

In the proposed UQ framework, the limited
experimental data are used to calibrate and validate
the prediction models and unknown parameters,

Fig. 3. Schematic illustration of the training of surrogate models.
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which are specifically reflected in two aspects: (1)
experimental validation of physics models and (2)
correction and parameter calibration of surrogate
models, as shown in Fig. 1. While the experimental
validation of simulation models is quite common, in
the following, we just provide details about the
experimental calibration.

It is known that the original physical models are
usually not perfect, due to either simplifications
made or imperfect understanding of the AM process.
Model discrepancy (i.e., difference between predic-
tion and reality) can be induced and inherited by
corresponding surrogate models. There are also
other contributing factors to model discrepancy,
such as the approximate solution methods in the
simulation model, or the surrogate model itself

being an approximation to the original model.9 In
addition to model discrepancy, there are some
unknown model parameters (due to lack of knowl-
edge) in the AM simulation model. To improve
confidence in our AM prediction model, the exper-
imental data can be employed to correct the predic-
tion model and calibrate the unknown model
parameters simultaneously. Following the frame-
work developed by Kennedy and O’Hagan (com-
monly referred to as the KOH framework),36 we
have the following surrogate model with experi-
mental calibration:

y ¼ G x; hð Þ þ d x; hð Þ þ eFEA x; hð Þ þ eobs; ð4Þ

Fig. 4. (a) Qualitative comparison of temperature fields developed under test condition 1 through the physical simulation and surrogate model
prediction; quantitative comparisons of nodal temperatures of temperature fields developed under (b) test condition 1, (c) test condition 2, (d) test
condition 3 and (e) test condition 4.

Wang, Liu, Ji, Mahadevan, Horstemeyer, Hu, L. Chen, and L.-Q. Chen2630



where y represents the experimental value, G(x,
h) is the prediction through as-obtained Kriging
surrogates for given inputs of x and h, d accounts for
model discrepancy due to model inadequacy, eFEA is
the numerical discretization error while solving the
simulation model, and eobs is the observation error. h
is a vector of parameters that need to be calibrated;
these parameters can have physical meanings, or
simply be some tunable parameters to improve the
accuracy of predictions.37 d and eFEA are modeled
using the as-mentioned SVD-based Kriging model
in the case of high-dimensional responses, while eobs

is often treated as a simple zero-mean Gaussian
random variable. The discretization error eFEA can
be directly quantified through simulations with
distinct mesh sizes using the Richardson extrapola-
tion method.33 The model discrepancy d and
unknown parameters h are calibrated simultane-
ously using Bayesian analysis, in which the poste-
rior density of the calibration parameters can be
explored via the Markov chain Monte Carlo
(MCMC) method.38 The final surrogate model with
experimental calibration, Eq. 4, can be utilized for
more practical predictions. Detailed investigations
on such experimental calibration are still underway
and will be reported in subsequent papers.

UNCERTAINTY QUANTIFICATION AND SEN-
SITIVITY ANALYSIS

Uncertainty Sources

Many sources of uncertainty are involved in the
complex AM process. AM process variables identi-
fied as uncertainty sources in previous AM UQ
studies can be found in Refs. 8,15,16,39–41. As shown
in Fig. 5, the uncertainty sources of interest in this
illustrative study mainly include thermally related
parameters (i.e., fluctuating power absorption effi-
ciency, g, thermal conductivity, k, specific heat
capacity, cp, and density, q) and grain growth-
related parameters (i.e., grain boundary energy, rgb,
and thermal activation energy of grain growth, Q).
The uncertainty sources selected can directly cause
uncertainty in either the temperature field devel-
opment during melting or the microstructure evo-
lution during solidification, ultimately leading to
variability in mechanical properties. The reasonable
distribution range of these random variables can be
determined by observing the different values for
them adopted in previous studies (summarized in

Ref. 11). All of the referred studies are based on the
same Ti-6Al-4V material and SEBM process. For
the sake of illustration, the type of distribution for
the random variables is assumed to be either
Gaussian or lognormal.

Uncertainty Quantification

Using the brute-force Monte Carlo (MC)
approach,42 uncertainty quantification of a property
of the product can be achieved through massive
predictions (here 1000 realizations) with the com-
putationally cheap surrogate model. The manufac-
turing condition is Tpre = 950 K, P = 400 W, and
v = 0.40 m/s, based on an Arcam� S12 AM machine
in practice. Figure 6a shows the uncertainty of the
mechanical properties characterized by the fluctu-
ating stress–strain curves induced by the multiple
uncertainty sources mentioned above. The fluctua-
tion is quite clear due to the great variability in
these uncertainty sources and their effective prop-
agation to the property; For example, the energy
absorption efficiency varies in a wide range of 0.6–
0.9 based on practical AM43,44 (both using Ti-6Al-4V
material and Arcam� S12 AM machine). These
uncertainties propagate first to the microstructure
of the material, causing high variability in the
microstructure within as-built AM components, as
examined and shown in Fig. 6b. The mean predic-
tion indicates that the most likely outcome is to
obtain columnar grain structures featuring some
equiaxed grains at the top [mean of grain aspect
ratio: l(A) � 2.25, variance of grain aspect ratio:
r2(A) � 2.60]. However, the potential microstruc-
ture could be fully columnar [l(A) � 6.63, r2(A)
3.13] or equiaxed [l(A) � 1.01, r2(A) � 0.07] in

extreme cases. Such large uncertainty in the
microstructure would ultimately lead to great vari-
ability in the mechanical properties, as reflected by,
for example, the significantly higher strength of the
equiaxed structure than the columnar structure. In
this regard, clear variability in the mechanical
properties of AM products has also been found
practically.45 Based on the UQ carried out here, as
well as previous experimental findings, future work
could involve uncertainty management through
robust design,10 i.e., intelligently manipulating con-
trollable operating parameters to minimize the
variability in product properties caused by uncer-
tainty sources.

Fig. 5. Schematic illustration of uncertainty sources introduced at different levels and uncertainty propagation.
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Global Sensitivity Analysis

Global sensitivity analysis46 is also carried out to
investigate the contribution of each source of uncer-
tainty to the variability in products. Here, we
analyze the individual contribution of the studied
uncertainty sources to the variability in the
microstructure within as-built products, character-
ized by the mean and variance of the grain aspect
ratio in this study. Figure 7 shows the different
effects of each source of uncertainty on these two
quantities, based on calculations of their corre-
sponding first-order Sobol index. It is found that the
mean aspect ratio of grains is most sensitive to the
density and grain boundary energy, while the
variance of the aspect ratios of the grains is greatly
influenced by the heat capacity and grain growth
activation energy. Reducing the uncertainty in
these influential uncertainty sources would be more

effective to obtain AM products with consistent
microstructure and properties.

CONCLUSION

This paper presents a generic UQ framework to
systematically study the propagation of uncertain-
ties from the process to the structure and on to the
properties in metal-based additive manufacturing,
through cooperation between advanced multiscale
multiphysics AM simulation and data-driven surro-
gate modeling. The framework is applied for com-
prehensive UQ study of SEBM of Ti-6Al-4V alloy.
Based on the proposed framework, uncertainty
quantification is carried out to reveal the clear
variability in the product properties induced by
various sources of uncertainty. Global sensitivity
analysis is also performed, revealing the high
sensitivity of the microstructure to uncertainty

Fig. 6. (a) Uncertainty quantification of the mechanical properties; (b) uncertainties in process variables first propagate to the microstructure
obtained, causing clear uncertainty in the microstructure of the material that ultimately leads to great variability in the mechanical properties of as-
built AM products. The probability density function [inset in (a)], clearly shows the likelihood of obtaining different microstructures characterized
by different mechanical responses.

Fig. 7. Sensitivity of microstructure to various uncertainty sources: (a) mean of grain aspect ratio and (b) variance of grain aspect ratio.
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sources including the material density, grain bound-
ary energy, heat capacity, and grain growth activa-
tion energy.

Following the overall UQ framework proposed,
future work will include model correction and
parameter calibration of the constructed surrogate
models with the availability of experimental data,
thus allowing for more reliable UQ analysis. After
that, robust design or reliability-based design opti-
mization could be performed to determine the
optimal manufacturing condition that enables pro-
duction of AM components with consistent proper-
ties. The proposed model-based UQ framework
should be generally applicable to comprehensive
UQ study of various product qualities, depending on
the physical model selected. Besides the physical
model adopted for illustration in this study, there
are also other kinds of AM simulation model, which
permit linking the process variables to various
quality metrics such as porosity,47 surface struc-
ture,7,48 residual stress,49,50 mechanical proper-
ties,51 and fatigue life.52 As the current model-
based UQ of the AM process is still at an early stage,
especially in terms of the uncertainty propagation
from the process to structure and then properties,
the presented UQ framework provides a promising
starting point for future research on systematic
uncertainty quantification and management of the
AM process.
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