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One foundational component of the integrated computational materials
engineering (ICME) and Materials Genome Initiative is the computational
thermodynamics based on the calculation of phase diagrams (CALPHAD)
method. The CALPHAD method pioneered by Kaufman has enabled the
development of thermodynamic, atomic mobility, and molar volume databases
of individual phases in the full space of temperature, composition, and
sometimes pressure for technologically important multicomponent engineer-
ing materials, along with sophisticated computational tools for using the da-
tabases. In this article, our recent efforts will be presented in terms of
developing new computational tools for high-throughput modeling and
uncertainty quantification based on high-throughput, first-principles calcu-
lations and the CALPHAD method along with their potential propagations to
downstream ICME modeling and simulations.

INTRODUCTION

Thermodynamics is at the core of every physical
description of nature. In recognition of this fact, and
coincident with the rise of modern computing, the
development of the calculation of phase diagrams
(CALPHAD) method was pioneered by Kaufman1,2

and institutionalized in 1973 to rationalize and
systematize alloy chemistry through the use of
computer calculations.3 In the decades since, there
has been a tremendous effort by the scientific
community to collect data to build thermodynamic
descriptions for both metallic and nonmetallic sys-
tems with increased sophistication and accuracy as
our understanding of the underlying physical phe-
nomena has improved.4–6 As pointed out in the
integrated computational materials engineering
(ICME) report7 and practiced in our research activ-
ities,8,9 ‘‘current CALPHAD development efforts
include establishment of linkages with physics-
based tools such as density functional theory for
calculating the energetics required to assess phase
stability and linkage with and development of
diffusion databases and models that are in turn
linked to microstructural evolution prediction
tools’’. The ICME report further emphasizes that

‘‘the enabling factors that led to the CALPHAD
capability of today will also be critical enablers for
the development of a widespread ICME capability’’.
Similarly, the Materials Genome Initiative10

focuses on integration of computational and exper-
imental toolsets in data creation, management, and
sharing along with data analysis tools with the
CALPHAD modeling as one key component.11–13

The CALPHAD modeling of thermodynamics is
based on mathematically formulated models
describing the thermodynamic properties of indi-
vidual phases. The model parameters are evaluated
from the thermochemical data of the individual
phases and phase equilibrium data between phases,
starting from pure elements, binary systems, and
ternary systems. The most commonly used thermo-
dynamic descriptions of pure elements in common
structures were compiled by Dinsdale14 as recom-
mended by the consortium Scientific Group Ther-
modata Europe (SGTE). The evaluations of binary
model parameters have been based on these pure
element model parameters, and the values of
ternary model parameters are thus related to both
pure element and binary model parameters. There-
fore, any modification of a constitutive subsystem
has a compounding effect on the description of a
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multicomponent system because it affects every
description of systems, making remodeling of higher
component subsystems necessary.15 This situation
is particularly pressing when more and more atomic
interacting energetics predicted from first-princi-
ples calculations based on density functional theory
(DFT) become available, which have the potential to
improve the modeling of subsystems in multicom-
ponent systems.8,16,17

In addressing this challenge, Shang et al.18 devel-
oped the extensible self-optimizing phase equilib-
rium infrastructure (ESPEI) for CALPHAD
modeling of thermodynamics. In ESPEI, a two-step
automated procedure determines the model param-
eters of individual phases, first exclusively using
thermochemical data from DFT-based first-princi-
ples calculations, and then using experimental
phase equilibrium data. In this article, the further
development of ESPEI is discussed along with its
new capability for uncertainty quantification of
computational thermodynamics. The quantification
of uncertainty reinforces the notion of CALPHAD as
the premier method for integrating heterogeneous
thermophysical data into self-consistent models as
part of an ICME design pipeline.

Recently, we have further proposed a robust
optimization approach to uncertainty quantification
of thermodynamic calculations from the uncertain-
ties of Gibbs energy model parameters,19,20 with the
latter discussed in this article being the starting
point of the ICME supply chain and playing a
central role in the development of ICME.7,21,22 It
may be mentioned that the robust optimization is a
different research field from sensitivity analysis.
Sensitivity analysis is the study of how the uncer-
tainty in the output of a mathematical model or
system can be apportioned to different sources of
uncertainty in its inputs. It can be considered to be
the postoptimization tool for quantifying the change
of final results with small perturbations in condition
or input. Nevertheless, the goal of robust optimiza-
tion is to find the optimal solution with prior ensured
feasibility when the problem parameters vary within
the prescribed uncertainty set. That means regard-
less of what the exact parameter values are, the
estimated phase boundary must be located in the
fluctuation area as long as the parameters come from
the uncertainty set. Together with the approaches
discussed in the current article, the robust optimiza-
tion can be a powerful tool in determining materials
and processing tolerance in ICME.

HIGH-THROUGHPUT CALPHAD MODELING

Mathematically speaking, CALPHAD modeling is
multivariate regression of the Gibbs energy func-
tions of individual phases. Because the semiempir-
ical nature of regression admits fitting against
heterogeneous data types from both experimental
and theoretical sources, the CALPHAD method is
an excellent approach for quantifying the state of

knowledge for the thermodynamic behavior of
known physical systems and for extrapolating to
predict the behavior of new systems. In the devel-
opment of a CALPHAD model for a phase, there are
three key decisions: first, the sublattice model23

including the number of sublattices, their site
ratios, and component occupancies; second, the
optimal set of parameters; and finally, the optimal
values of the optimal set. Because of the large
number of parameter degrees of freedom, the last
two are particularly challenging, and much of the
expert knowledge in CALPHAD modeling relates to
how one determines which model parameters to
evaluate and which model parameters to leave at
zero. Our high-throughput approach aims to docu-
ment and quantify subjective judgment rather than
seeking absolute objectivity in parameter selection.

With the development of pycalphad,24 our high-
throughput CALPHAD modeling is rebuilt following
the same two-step automation procedure as in the
previous version of ESPEI.18 In the CALPHAD
method, a crystalline phase is divided into sublat-
tices based on Wyckoff positions corresponding to
the phase’s symmetry with the maximum number of
sublattices for a crystalline phase equal to the
number of Wyckoff positions with the end-members
denoting stoichiometric compounds with one con-
stituent in each sublattice. The energy of a phase is
partitioned into a mixture of end-members and
constituent interactions in and across sublattices,
which is commonly referred to as the compound
energy formalism (CEF).23 In practice, usually
fewer sublattices are used because some Wyckoff
positions are energetically degenerate.

As mentioned in the Introduction, the Gibbs
energies of pure elements in several common struc-
tures were compiled14 and used for most CALPHAD
modeling in the literature, enabling the develop-
ment of multicomponent databases. Nonetheless,
generally the scientific community has not stan-
dardized on Gibbs energies for most structures,
particularly for the CEF’s end-members, and these
must be obtained from DFT-based first-principles
calculations.8,16 New and improved standards for
pure-element reference data are an active discus-
sion area within the community.25 Furthermore, the
atomic interaction energetics in individual sublat-
tices cannot be directly measured experimentally
and have been largely relied on expert knowledge in
the CALPHAD modeling. In the past decade, we
have exerted significant efforts to predict those
interaction energetics from DFT-based first-princi-
ples calculations through the special quasirandom
structures (SQS) that mimic the random mixing in
individual sublattices.26–29

In the first step of the two-step high-throughput
CALPHAD modeling, the model parameters of pure
elements, stoichiometric compounds, and end-mem-
bers in CEF models are evaluated in the order of
heat capacity and entropy because they represent
the second and first derivatives of Gibbs energy,
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respectively, and the model parameter for the
enthalpy is evaluated at last. The last question is
how to choose an appropriate number of parameters
for each model. A high-quality fit reproduces the
data without ‘‘overfitting’’. This selection problem is
discussed within the context of uncertainty quan-
tification in the next section.

The procedure for evaluating interaction param-
eters for mixing in each sublattice is similar but
with two key differences. The first difference is
that the reference state is now shifted from ‘‘of
formation’’ to ‘‘of mixing,’’ meaning all parameter
evaluations are performed relative to the ‘‘surface
of reference’’ defined by the end-members. The
second difference is that the system of equations
gets more complicated with the introduction of
mixing terms. In our approach, mixing parameters
are evaluated in the order of one-sublattice binary
interactions, two-sublattice binary interactions,
and so on followed by the same sequence for
ternary interactions. For each interaction, the
procedure analogous to the end-member case is
used.

This modeling procedure exclusively relies on the
thermochemical data from DFT-based first-princi-
ples calculations. As a result of the intrinsic uncer-
tainties of these theoretical data, the model
parameter thus obtained must be refined by consid-
ering correlations between model parameters of
different phases, represented by phase equilibrium
data such as phase stability, phase boundary, and
phase compositions. Although phase boundary data
allow for straightforward visual comparison, it is
significantly less useful than thermochemical data
for model parameter evaluations. There are several
reasons for this. First, even though the phase
diagram is, in principle, a function of all phases’
energies, in practice, only a small portion of a
phase’s temperature and composition domain is
relevant to depicting stability on the phase diagram;
phase boundaries provide no information about the
energy in regions where a phase is metastable.
Second, measured phase regions only provide infor-
mation about the stability of the present phases
relative to the others. At best this only provides
information on lower bounds of energy differences
between phases under certain conditions. Finally,
there is no closed-form expression for the residual of
a predicted phase boundary. In fact, many sets of
model parameters could yield equivalent phase
boundaries. All of these factors complicate the use
of phase boundary data in our automation
procedure.

In the present work, the following procedure is
developed, which is conceptually similar to the
‘‘Rough Search’’ approach in the literature:30

1. Perform an equilibrium calculation including all
phases in the system at each measured temper-
ature and phase compositions using the model
from the first step.

2. Define a mean chemical potential of each com-
ponent based on the arithmetic mean of the
corresponding chemical potentials as a mean
equilibrium hyperplane.

3. Perform another set of equilibrium calculations
with only the desired phase at each composition,
and calculate the residual driving force with
respect to the mean equilibrium hyperplane.

4. Choose new model parameters to approximately
reduce the residual driving force at each data
point to zero.

5. Repeat until stopping criteria are satisfied.

The refinement of model parameters based on the
residual thus defined will be discussed within the
context of uncertainty quantification in the next
section. It should be pointed out that the key
contribution of the high-throughput CALPHAD
modeling is to write down an algorithm describing
how to build a CALPHAD model so a computer can
follow the procedure many times efficiently in
parallel for different systems. Nevertheless, it is
not only the issue of efficiency, but also the massive
data from DFT-based first-principles calculations,
that make the CALPHAD modeling more robust
and more accurate.8

UNCERTAINTY QUANTIFICATION OF THE
CALPHAD METHOD

By quantified uncertainty, we are referring to
uncertainty in the free parameters, e.g., excess
mixing, in our models. Propagated uncertainty
refers to ‘‘flowing’’ the quantified parameter uncer-
tainty through our models to a predicted quantity of
interest, e.g., the heat capacity or a phase transition
temperature. Previous work in uncertainty analysis
for CALPHAD modeling is limited. The seminal
work by Jansson describing the PARROT software31

for thermodynamic model optimization mentioned
the model parameter uncertainty but was quick to
shift the discussion to considering the covariance in
the prediction error as more of an empirical weight-
ing matrix for different datasets. The first software
package to incorporate Bayesian methods into
CALPHAD modeling introduced the capability of
iteratively updating parameter probability distribu-
tions using estimates of the parameter covariance
matrix.32 An earlier paper by one author discussed a
conceptually similar sequential Bayes algorithm for
efficiently fitting excess parameters in thermody-
namic models.33 Stan and Reardon discussed imple-
menting Bayesian model optimization using a
genetic algorithm,34 although there does not appear
to be a public implementation of their approach.

The uncertainty quantification is closely related
to the models and model parameters. In determin-
ing the number of model parameters in modeling of
pure elements, stoichiometric compounds, and CEF
end-members, a scoring criterion similar to the
standard mean-squared error criterion with an
additional factor that penalizes overfitting is
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developed. Given the requirement that the scoring
method be fast to compute, penalize overfitting, and
be based in sound statistical theory, the well-known
Akaike Information Criterion (AIC) is selected in
the present work.35,36 The AIC is defined as
2mþ dlnRSS with RSS being the sum of the
squared values of the residuals, m the number of
parameters, and d the number of data points. For
interaction parameters in sublattices, there is a
large number of possible mixing terms to consider in
a general, multiphase case. A multivariate model
scoring criterion such as AIC cannot be reliably
applied due to the large number of parameter
combinations. A univariate parameter scoring tech-
nique is thus developed. One complication is that a
univariate scoring method necessarily relies on
statistics about the parameter values, but each
parameter has distinct units and scale. Here it is
necessary to appeal to our domain-specific knowl-
edge about what a typical range for these parame-
ters can be and to assign subjective variances to
rescale the model parameters. Once a scaling
approach is determined, a univariate scoring
method can be chosen such as the well-known F
test37, 38 to determine a suitable set of parameters to
evaluate.

The statistical distribution of values of the chosen
set of parameters is then investigated. In the
present work, a scheme for regularization is
applied, which is the process of modifying a regres-
sion strategy to increase its robustness to ill-posed
problems. In a Bayesian context, it means assump-
tions about the prior probability distribution of
model parameter values, and the prior probability
distribution is updated to the posterior probability
distribution through likelihood (information) and
evidence (normalizing quantity). In the present
work, the posterior probability distribution is deter-
mined by the Markov chain Monte Carlo (MCMC)
sampling method39 as detailed in Ref. 40.

In benchmarking the approach, a model case of a
binary solution is tested with 10 synthetic datasets
and Gaussian noise, i.e., five values for enthalpy
and entropy of mixing with one ‘‘bad’’ dataset of
systematic bias. All of them have equal values for
prior dataset variance with the true values of excess
enthalpy and excess entropy being 7000 J/mol and
5 J/mol/K, respectively. The excess Gibbs energy is
represented by the following equation:

EGmf ¼ xAxB Hex � TSex þ LexT
2

� �
ð1Þ

with the true value of Lex being zero. The MCMC
simulations results are shown in Fig. 1 with the
true values in solid blue and the dashed lines for
95% credible interval. It is worth noting that in
Bayesian analysis, parameters are random vari-
ables, whereas in frequentist analysis, data are
random variables. Therefore, the frequentist x%
confidence interval, when repeated on multiple
samples, would contain the true parameter value

x% of the time; while, the Bayesian x% credible
interval indicates that there is an x% probability
that the true parameter value is in this range, given
the data and the prior beliefs. More results on all
thermodynamic quantities as a function of temper-
ature and composition can be shown.

The approach thus programmed and bench-
marked is then used for UQ analysis in the Al-Ni
binary system with magnetic properties and heat
capacity of Ni3Al shown in Fig. 2.

APPLICATION TO THE Al-Ni BINARY
SYSTEM

The Al-Ni binary system is the most important
system in Ni-based superalloys. In this article, we
report the results on the modeling of FCC and BCC
phases in the binary system. A four-sublattice
model is used for the FCC lattice to enable the
description of the A1/L12/L10 ordering, and a two-
sublattice model is used for the BCC lattice to
describe the A2/B2 ordering as in the work by Dupin
et al.41 The model parameters for the end-members
are evaluated from the energetics from DFT-based
first-principles calculations and the SGTE pure
element database.14 The interaction parameters in
each sublattice are evaluated using the mixing
properties of SQS supercells from DFT-based first-
principles calculations.42–47 The detailed procedure
and results can be found online at the Jupyter
Notebook.48 For example, Fig. 3 shows the negative
enthalpy of mixing between Al and Ni in the second
sublattice of the two-sublattice model with the first
sublattice occupied by Ni for the BCC lattice with
the symbols denoting the results from DFT-based

Fig. 1. MCMC simulation results for a model case with true values in
solid blue and the dashed lines for 95% credible interval.
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first-principles calculations in the literature49 and
the curve from the current automation procedure.
Figure 4 depicts the positive enthalpy of mixing
between Al and Ni in the first sublattice of the four-
sublattice model with the other sublattices occupied
by Ni for the FCC lattice with the symbols denoting
the results from DFT-based first-principles calcula-
tions in the literature46 and the curve from the
current automation procedure. As an example, this
TDB file is used in Thermo-Calc50 to calculate the
FCC–BCC phase diagram fully based on the data
from first-principles calculations as shown in Fig. 5.

SUMMARY AND FUTURE DIRECTIONS

It is maximally beneficial for CALPHAD models
to communicate about the uncertainty of their
predictions. With good estimates of the uncertainty
of model predictions, one can begin to judge when
prediction errors are a result of insufficient data or
whether they are a result of systematic biases in our
model. This is valuable for realizing the ICME
vision of quantitative prediction of material behav-
ior: Through quantified uncertainty, models com-
municate confidence in their ability to be applied to
materials design.

Fig. 2. UQ analysis of (a) magnetic properties in terms magnetic moment (FCCBMAGNI) and interaction parameters (FCCTCALNI0 and
FCCTCALNI1), and (b) heat capacity of Ni3Al.

Fig. 3. Enthalpy of mixing between Al and Ni in the second sublattice
of the two-sublattice model for the BCC lattice with the symbols from
DFT-based first-principles calculations and the curve from current
CALPHAD modeling.

Fig. 4. Enthalpy of mixing between Al and Ni in the first sublattice of
the four-sublattice model for FCC lattice with the symbols from DFT-
based first-principles calculations and the curve from current CAL-
PHAD modeling.
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A new class of CALPHAD databases can be
rapidly constructed using the automated parameter
selection and uncertainty quantification procedure
described in this work. Because these new data-
bases will be semantically linked to the underlying
structured experimental and first-principles data by
an automated workflow, the inevitable future
requirement to update them will be significantly
easier to resolve. By improving the accuracy of these
types of predictions, high-throughput modeling,
powered by pycalphad, has the potential to expand
the CALPHAD modeling into more aspects of ICME.
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