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By applying computer vision and machine learning methods, we develop a
system to characterize powder feedstock materials for metal additive manu-
facturing (AM). Feature detection and description algorithms are applied to
create a microstructural scale image representation that can be used to
cluster, compare, and analyze powder micrographs. When applied to eight
commercial feedstock powders, the system classifies powder images into the
correct material systems with greater than 95% accuracy. The system also
identifies both representative and atypical powder images. These results
suggest the possibility of measuring variations in powders as a function of
processing history, relating microstructural features of powders to properties
relevant to their performance in AM processes, and defining objective material
standards based on visual images. A significant advantage of the computer
vision approach is that it is autonomous, objective, and repeatable.

INTRODUCTION

Computer vision is a branch of computer science
that develops computational methods to extract
information from visual images.1 Familiar applica-
tions of computer vision include facial recognition
on Facebook, Google image search, and autonomous
vehicle navigation. Computer vision and its related
field, machine vision, are also widely used in
manufacturing, particularly in robotics, process
control, and quality inspection.

Powder bed additive manufacturing (AM) is an
emerging technology for three-dimensional (3D)
metal printing.2,3 The process is conceptually sim-
ple. A layer of fine metal powder is spread on the
build plate. By using a laser or electron beam,
powder particles are melted and resolidified.
Another layer of powder is spread, and the process
repeats multiple times to build up the final part
layer by layer.

Among the many challenges in deploying this new
manufacturing system are numerous metal powder-
related issues centered on understanding how the
physical characteristics of the powder (size, shape,
and surface character) affect processing parameters
(flowability and spreadability) and build outcomes

(porosity and flaws). Fundamental to understanding
these relationships is effectively characterizing the
powders themselves.

To date, characterization of AM powder feed-
stocks has relied on direct measurements of powder
properties of interest. For example, Strondl et al.
used dynamic image analysis to capture photomi-
crographs of powders, segment them, and measure
particle size and aspect ratio distributions. These
quantities, along with powder rheology measure-
ments, were found to correlate with powder flow and
spreading characteristics.4 A group of case studies
by Clayton et al. concluded that particle size
distribution alone is insufficient to determine pow-
der properties. Instead, they characterized powders
by using rheological measurements, which they
found to correlate with powder properties such as
the degree of recycling, the manufacturing method,
or the presence of additives.5 In perhaps the most
comprehensive study of its kind, Slotwinski et al.
systematically characterized virgin and recycled
stainless steel and cobalt chrome powders in an
effort to develop standards for AM feedstock mate-
rials. They measured particle size and shape with
laser diffraction, x-ray computed tomography, and
optical and scanning electron microscopy. In addition,
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they determined atomic structure and composition
via energy-dispersive element x-ray analysis, x-ray
photoelectron spectroscopy, and x-ray diffraction.6

Finally, Nandwana et al.7 studied particle size,
flowability, and chemistry for two powders used in
electron beam AM. Recycling caused significant
changes to chemistry in one powder but minimal
changes in the other; particle size and flowability
were unaffected by recycling. Measurements such as
these provide valuable insight into the factors that
influence powder properties; nevertheless, data
science offers a complementary approach that can
extract information from a data stream directly,
without reductive measurement.

In this article, we explore applications of com-
puter vision for autonomously evaluating powder
raw materials for metal AM. Instead of explicitly
identifying and measuring individual particles, our
method implicitly characterizes powder micro-
graphs as a distribution of local image features.8,9

We demonstrate that the computer vision system is
capable of classifying powders with different distri-
butions of particle size, shape, and surface texture,
as well as of identifying both representative and
atypical powder images. AM applications include
powder batch qualification, quantifying the effects
of powder recycling, selecting build parameters
based on powder characteristics, identifying

features that might be associated with powder
spreading or build flaws, and defining objective
material standards based on visual images.

Finally, we note that a significant advantage of
the computer vision approach is that it is an
autonomous and objective system that does not
require a subjective human judgment about what to
measure or how to measure it. It is not limited to
powder micrographs and in fact can be extended to
new image data sets, including bulk microstructural
images, without customization.9,10

METHODS

Materials

We collected micrographs from eight different
gas-atomized powders, as listed in Table I. Five
powders were procured from EOS and are intended
for the EOS printer machine: AlSi10Mg (Al-EOS),
Inconel 718 (In-EOS), Maraging Steel (MS-EOS),
Stainless Steel 316 (SS-EOS), and Ti-6Al-4V (Ti64-
EOS). The remaining three Ti64 powders are
intended for the ARCAM machine and were pro-
cured from ARCAM and two additional suppliers.

We used a spatula to sample a small amount of
powder after shaking the container to prevent
sample biases from the settling of powder during
transportation and storage. A thin layer of powder

Table I. Metadata for the AM powder image dataset, including powder type, composition, source, sample
labels, and number of images per sample

Powder Material system Platform Sample Images

Al-EOS AlSi10Mg EOS 1 9
2 12

Test 11
In-EOS Inconel alloy 718 EOS 1 12

2 11
Test 12

MS-EOS Maraging steel EOS 1 12
2 12

Test 14
SS-EOS Type 316 stainless steel EOS 1 8

2 17
Test 17

Ti64-EOS Ti-6Al-4V EOS 1 12
2 11

Test 12
Ti64-#1 Ti-6Al-4V ARCAM 1 11

2 10
Test 9

Ti64-#2 Ti-6Al-4V ARCAM 1 8
2 9
3 9

Test 10
Ti64-#2 Ti-6Al-4V ARCAM 1 7

2 7
3 7
4 5

Test 8
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was blown over double-sided carbon tape on a stub
with an Air Duster. We cleaned the sample with
pressurized air to remove any loose particles before
performing scanning electron microscopy (SEM) on
samples. We took images in backscattered imaging
mode, adjusting the magnification for each powder
system in an attempt to maintain a similar number
density of powder particles across powder systems
with differing average particle sizes. The motivation
for this choice was to eliminate the influence of
average particle size in classification and focus on
particle morphology and the relative shape of the
particle size distribution.

We found it necessary to preprocess the powder
micrographs to mitigate differences in image contrast
and noise levels introduced during image acquisition.
We segment and suppress the background of each
powder micrograph by applying Li’s minimum cross-
entropy threshold selection method,11,12 which yields
good results for this dataset with no adjustable param-
eters. Following background suppression, we perform
local histogram equalization13 to ensure that powder
micrographs from different material systems and
imaging conditions have similar intensity distribu-
tions. The processed images have more consistent
contrast than do the raw images, which helps in better
extraction of texture features that are relevant to the
spatial and morphological characteristics of the pow-
der particles, as opposed to high-frequency features
related to SEM imaging conditions. Figure 1 shows
several processed micrographs for the Ti64-EOS
system to illustrate the typical variability in images
within a powder type, and Fig. 2 shows a represen-
tative powder micrograph for each of the eight

powder systems. As shown in Figs. 1 and 2, the
images used in the computer vision analysis do not
contain scale bars to ensure that only features of the
powder itself are used in the analysis; nevertheless,
the absolute and relative scales of the images can be
deduced from the powder size distributions in
Fig. 3.

As detailed in Table I, we prepared between three
and five independent powder samples for each
powder system, with more samples for powders
with larger-than-average particle sizes. From each
powder sample, we collected between 5 and 17
backscattered electron micrographs, avoiding col-
lecting images of intersecting regions on the sample.
We verify that no images included in our analysis
contain significant overlapping regions by applying
to each pair of micrographs originating from the
same physical sample a keypoint-matching algo-
rithm with RANSAC filtering to identify micro-
graphs related by a simple translation.14

Figure 3 shows cumulative particle size distribu-
tions obtained by applying threshold and watershed
segmentation15,16 to the SEM micrographs after
background suppression. For each powder system,
we sample a total of 10,000 watershed particles
from 20 powder micrographs. The five powders
intended for the EOS machine use are smaller in
size than those intended for ARCAM. Generally, the
EOS powders have similarly shaped, approximately
lognormal particle size distributions, albeit with
different mean particle sizes. The powders intended
for the ARCAM machine are much coarser and
display a severe lower tail as a result of apparent
sieving at 100 lm.

Fig. 1. Eight powder micrographs for the Ti64-EOS material system, selected at random from 35 SEM images to illustrate typical microstructural
variability for a given system. It is apparent that images vary in particle density as well as in individual particle particulars. Images have been
processed to normalize image contrast and noise levels as described in the text.
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Computer Vision

The goal of our computer vision system is to
produce a numerical representation that contains
the relevant information necessary to characterize a
visual image.9 In other words, we want to turn an
image into a vector that summarizes its visual
information content. This process has three steps:
First, the system finds interest points, or visual
features, in the image; that is, it decides what to
look at. Next, the system encodes each feature as a
vector descriptor; that is, it numerically character-
izes the features. Finally, the system groups the

feature descriptors together to create a representa-
tion of the image as a whole; that is, it determines
the microstructural fingerprint of the image. This
process is illustrated schematically in Fig. 4.

To find the visual features in a powder micro-
graph, we use two complementary interest point
localization methods common in computer vision:
the difference of Gaussians17 and the Harris-
LaPlace methods.18 Together, these methods yield
a set of distinctive blob- and corner-like image
features (respectively), each of which has a charac-
teristic scale and orientation determined by the
local contrast gradient in the image patch surround-
ing the interest point. A given micrograph may
contain several thousand interest points, and they
often correspond to the features that a materials
scientist might identify as significant, i.e., spots,
lines, corners, visual textures, etc. The yellow
circles in Fig. 4a show the locations, scales, and
orientations of 100 randomly selected interest
points.

To characterize these individual features, we
apply another widely used computer vision tech-
nique, scale-invariant feature transform (SIFT), to
compute feature descriptors for each interest point
patch.17,19 The SIFT descriptors describe the local
image structure by encoding the orientation and
magnitude of contrast gradients within 16 spatial
bins surrounding the interest point. Basically, SIFT
transforms each visual object into a characteristic
128-dimensional vector. The blue frame in Fig. 4b
shows a schematic of the 16-bin SIFT descriptor
corresponding to a large particle.

Fig. 2. Representative powder micrographs for each of the eight powder material systems: (a) Al-EOS, (b) In-EOS, (c) MS-EOS, (d) SS-EOS,
(e) Ti64-#1, (f) Ti64-#2, (g) Ti64-#3, and (h) Ti64-EOS. Images have been processed to normalize image contrast and noise levels as described
in the text.

Fig. 3. Cumulative particle size distributions for the eight powder
material systems, as measured by watershed segmentation for
10000 particles per system. Note that the systems differ in both
mean particle size and overall shape of the distribution.

Computer Vision and Machine Learning for Autonomous Characterization of AM Powder
Feedstocks

459



As materials scientists, we understand that
microstructures often contain numerous examples
of the ‘‘same’’ feature; thus, we group microstruc-
tural features into classes, such as precipitates,
grain boundaries, or powder particles. The com-
puter vision system performs a similar function by
clustering the SIFT descriptors into groups of like
features (termed ‘‘visual words’’). In our system, we
use k-means clustering20 to partition 15% of the
SIFT descriptors extracted from the training images
into 32 visual words, as schematically indicated in
Fig. 4c. The black markers in this 2D schematic
indicate SIFT descriptors for individual interest
points, and the colored cells indicate the clusters or
partitions that demarcate the visual words; thus,
each feature in the micrograph is associated with a
particular visual word. In our powder micrographs,
a visual word might represent a spherical particle, a
neck between particles, a cluster of particles, a
surface texture, or some other feature, as indicated
by the image patches in Fig. 4c. It is important to
note, however, that the visual words are determined
by the computer vision system; there is no subjec-
tive (human) judgment involved.

To obtain an overall image representation, local
feature methods often simply model an image as the
histogram of its visual words [termed a bag of words
(BoW) model.21 Nevertheless, this has the drawback
that all features are given the same weight, even

though some unambiguously belong to a particular
visual word, while others fall near the borders
between visual words. We therefore apply a vector
of locally aggregated descriptors (VLAD) encoding
to model more effectively the overall distribution of
local image features by summing up the difference
between each local feature descriptor and its corre-
sponding visual word.22 The white arrows in the
central green cell in Fig. 4c illustrate this residual
vector calculation for the visual word corresponding
to the SIFT descriptor shown in Fig. 4b. The result
is a 128 9 32 = 4096-dimensional vector that rep-
resents the image as a whole, as illustrated in
Fig. 4d: The image patches illustrate the visual
words, and the red bars show their corresponding
residual SIFT vectors.

VLAD descriptors are often reduced in dimen-
sionality by up to an order of magnitude without
significant degradation of the image representa-
tion quality;23 we apply principal component
analysis (PCA) to reduce the dimensionality of
the VLAD representations to 32. The first 32
principal components of the VLAD representa-
tions for the training images account for 76.4% of
the variance of the high-dimensional representa-
tions. These first 32 principal components are the
image representation or ‘‘microstructural finger-
print’’ we use to characterize each powder micro-
graph image.

Fig. 4. Schematic diagram illustrating the construction of SIFT-VLAD microstructure representations. (a) Select oriented interest points (yellow
markers) from a powder micrograph (100 randomly selected interest points shown). (b) Compute a SIFT descriptor (blue grid) for each interest
point. (c) Cluster SIFT descriptors (colored regions) such that SIFT descriptors (black dots) are associated with their most similar visual word
(image patches); compute a residual vector for each visual word (white arrows). (d) Concatenate the normalized residual vectors (red bars) of
each visual word (image patches) to construct the VLAD representation, which serves as a microstructure fingerprint.
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We note that there are numerous image repre-
sentation schemes in the computer vision litera-
ture.24-30 Our motivation for choosing the SIFT-
VLAD system (as opposed to, for example, convolu-
tional neural network-based texture representa-
tions31) is its strong rotation and scale invariance.
Unlike photographic scenes or portraits, which are
almost always oriented with gravity pointing down,
powder micrographs do not have a natural orienta-
tion. The SIFT-VLAD system also captures mid-
level features, such as particles, clusters, and
particle intersections, with good fidelity, as shown
in Fig. 4d.

RESULTS

Powder Classification

Recall that the computer vision system autono-
mously determines which features in a particular
micrograph are visually important. Thus, our first
question should be ‘‘Is the system looking at the
right features, from a materials science point-of-
view?’’ Moreover, the computer vision system does
not perform any ‘‘conventional’’ feature measure-
ments, such as particle size or surface area analysis.
So our second question must be ‘‘Does the system
capture the relevant microstructural quantities?’’

To answer these questions, we challenge the
system to sort powder micrographs according to
powder type. To classify images correctly, the
system will have to sense both the features that
differentiate powders and the quantitative differ-
ence in their particle size distributions.

For each powder system, we held out the micro-
graphs collected from one physical sample as an
independent testing set, and we used the micro-
graphs from the other samples as a training and
validation set for machine learning via a support
vector machine (SVM) classifier.32 The SVM classi-
fier takes in the image representations from the
SIFT-VLAD system and attempts to find a hyper-
plane that separates them into different classes. We
used 109 fivefold cross-validation to select the SVM
regularization parameter, C, which represents the
trade-off between the flexibility and generalizability
of the classifier. For each of 50 cross-validation
iterations, we randomly choose 1/5 of the training
images to evaluate the performance of a classifier
trained on the remaining 4/5 of the training images.
Both training and validation accuracies converge to
100% (i.e., all images are assigned to their correct
powder type) when C � 0.25, indicating that the
SIFT-VLAD representation can reliably classify
powder micrograph images without significant over-
fitting. Figure 5a shows the detailed validation
results for all 50 validation folds when C = 0.25:
The only misclassifications during cross-validation
are a result of the similarity between the Maraging
and Inconel powders, and especially between the

Ti64#1 and Ti63#2 powders. The overall cross-
validation accuracy with these parameters is
96.5 ± 2.5%.

Given a fully trained powder classifier, the next
challenge is to demonstrate that it can recognize
images taken from physical samples that were not
included in its training dataset. To that end, we
trained an SVM classifier by using the entire
training set with the parameters selected via
cross-validation, and we used it to classify the
images in the independent testing set. As shown
in Fig. 5b, the computer vision system classifies the
previously unseen images with an overall accuracy
of about 95%, which is comparable to the cross-
validation accuracy. Half of the powder types
achieved perfect classification, and no more than
two images were misclassified in any powder sys-
tem. Two Ti64-#1 images were misclassified as Ti64-
#2, which has both similar particle morphologies
(Fig. 2) and particle size distribution (Fig. 3); the
same applies to the misclassification of In-EOS as
MS-EOS. The other two misclassifications are a
result of outlier (highly atypical) test images and
emphasize the need for statistically representative
image sets.

Overall, the computer vision system successfully
identifies powder types from micrographs without
requiring subjective judgments about what features
to measure or how to measure them. This result
demonstrates the promise for computer vision sys-
tems to provide autonomous microstructural anal-
ysis not only for AM powders but also for
microstructural images in a more general sense.

Data Visualization

Although the confusion matrices in Fig. 5 indicate
the classification accuracy for the powder images,
they are not helpful in visualizing how the images
vary within and between the powder types. This is,
in fact, a significant challenge in data science
generally because the data points (in this case, the
image representations) occupy a high dimensional
space. Thus, a variety of dimensionality reduction
techniques have been developed to help humans
interpret high-dimensional distributions.

PCA is a linear dimensionality-reduction tech-
nique that determines a set of n orthogonal axes
(the principle components) along which an n-dimen-
sional dataset varies, from most to least.33 In
essence, PCA reorients the natural axes of the
dataset so as to maximize the spread in the data
along each principle component, in decreasing order
from the first to the nth. Along a given axis, PCA
preserves pairwise high-dimensional distances
between data points. Therefore, for a set of image
representations, the distance between data points
on a PCA plot should be related to the visual
difference between the respective images. Never-
theless, because PCA plots are typically of lower
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dimension than the data themselves, points may
appear to overlap in a PCA plot but be distinct in a
higher dimension.

Figure 6a shows a PCA plot for the first two
principal components of the powder image dataset;
the first two principal components account
for approximately 42% of the total variance of the
high-dimensional SIFT-VLAD representations.
Notably, the first principal component effectively
differentiates between the powders intended for the
EOS machine (at the left of the PCA map) and the
powders intended for the ARCAM machine (at the
right of the PCA map). The Ti64-#3 micrographs
have the most distinctive SIFT-VLAD representa-
tions in this dataset most likely because the Ti64-#3
powder was imaged at the highest magnification
relative to its average particle size. This could
potentially result in a different set of image texture
features dominating these micrographs (finer-
grained surface details or fewer higher-level groups
of particles).

Although the EOS powders cluster together on
the PCA map, we know that they are sufficiently
distinct for classification. To visualize their differ-
ences, we must examine additional principal com-
ponents or apply a different visualization method.
t-Distributed Stochastic Neighbor Embedding
(t-SNE) is a nonlinear technique that attempts to
preserve the local neighborhood structure of the
high-dimensional data in the low-dimensional map
at the expense of retaining meaningful long-range
correspondences.34,35 In other words, the pairwise
distance between nearby points in a t-SNE map is
meaningful, but the distance between clusters of
points is not.

Figure 6b shows a t-SNE map for the powder
image dataset. (Because t-SNE is a stochastic
optimization technique, we selected the best map
out of 10 independent t-SNE embeddings.) The
t-SNE map reveals the finer cluster structure of the
EOS powders, resolving them into five distinct
clusters. The three ARCAM powders are also more
differentiated in this mapping. It is apparent that
the independent testing set images (shown as
squares) are generally consistent with the training
set representations (shown as circles) within each
powder system and that the cluster overlap that
causes misclassification is evident as well.

As Fig. 6 demonstrates, data visualization can be
a helpful adjunct to computer vision outcomes,
assisting in both understanding and interpretation
of results. Nonetheless, no single, low-dimensional
visualization contains all of the information in the
high-dimensional dataset.

Representative Images

The microstructural fingerprint determined by the
computer vision system is a numerical representa-
tion of a microstructural image. As such, its uses are
not limited to classification tasks. For example,
because visually similar images have numerically
similar representations, the microstructural finger-
print can form the basis for a visual search, as we have
reported previously.8,9 Another application addresses
a classic problem in microstructural science: determi-
nation of a representative image.

Although individual micrographs are often pre-
sented in the literature as ‘‘representative’’ of the
microstructure as a whole (cf. Ref. 36), there has

Fig. 5. Confusion matrices for powder classification in the (a) cross-validation and (b) independent test sets. The rows designate the actual
powder system, and the columns indicate the powder system predicted by the computer vision. The numbers tally the fraction of images in each
actual powder system that were classified as a given predicted powder system. Thus, the diagonal entries represent the fraction of accurate
powder classifications for each powder system.
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been no rigorous test to confirm the validity of such
assertions. Is a given image the most representa-
tive, or simply the most attractive, convenient, or
well-prepared? By using the microstructural finger-
print, we can, for the first time, objectively and
quantitatively determine which image is the most
representative of a group of micrographs.

The procedure for selecting a representative
micrograph involves computing the average high-
dimensional SIFT-VLAD representation for each
material system and choosing the micrograph with
the minimum scalar distance between its represen-
tation and the corresponding material system aver-
age. The micrographs in Fig. 2 were selected with
this procedure, and thus, they are rigorously and
quantitatively representative of their material
class. Similarly, Fig. 7 shows the ‘‘least representa-
tive’’ (or ‘‘most atypical’’) processed micrograph for
each powder system, obtained by selecting the
image with the maximum distance between its
representation and the corresponding material sys-
tem average. Notably, the representative micro-
graphs for the EOS-manufactured powders all have
similar spatial and morphological characteristics
(likewise for the Ti64 powders intended for the
ARCAM machine). The atypical micrographs shown
in Fig. 7 differ from their representative counter-
parts in Fig. 2 primarily in overall image intensity
(panel a, Al-EOS) or in spatial distribution of
powder particles (more dense for In-EOS, SS-EOS,
Ti64-#1, Ti64-EOS, and Ti64-#1; less dense for Al-
EOS and Ti64-#2).

The ability to quantify how well or how poorly an
image represents a class of images enables a variety
of applications. For instance, to qualify an AM

powder, an engineer could measure how closely a
new batch of powder resembles previous batches or
how significantly a recycled powder differs from its
virgin condition. Similarly, one might compare a
new powder to a library of known powders to select
build parameters for the new system. Outlier
images may contain valuable information about
unusual microstructural features (e.g., atypical
particle shapes and sizes) that might be associated
with powder spreading or build flaws.

In a more general sense, the definition of a
representative microstructure can form the basis
of an objective standard for microstructural quali-
fication. This is particularly significant for AM,
where 3D printing makes it possible to build objects
with the same composition and geometry as a
conventionally manufactured part. Qualifying the
AM microstructure (as a proxy for properties) is an
important aspect of qualifying the part as a whole.

CONCLUSION

Computer vision and machine learning methods
offer new possibilities for evaluating powder raw
materials for metal AM. In place of identifying and
measuring individual particles, this method implic-
itly characterizes powder micrographs as a distri-
bution of local image features, termed the
‘‘microstructural fingerprint.’’ Operating on a set
of powder micrographs with different distributions
of particle size, shape, and surface texture, the
computer vision system achieves a classification
accuracy of more than 95% and a combination of
data visualization techniques add further insight
into powder characteristics. By representing a

Fig. 6. (a) Data visualization showing the first two principal components of the powder micrograph SIFT-VLAD representations. The five EOS
powders are clustered on the left side of the plot; the three ARCAM powders are on the right. (b) t-SNE visualization of the powder micrograph
SIFT-VLAD representations. The eight powders occupy more distinct clusters. Marker colors indicate the material system of the corresponding
map point; circular markers indicate training set micrographs; and square markers indicate the independent testing set.
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visual image with the microstructural fingerprint,
both representative and atypical powder images can
be identified and analyzed. As an autonomous and
objective system, this method enables AM applica-
tions including powder batch qualification, quanti-
fying the effects of powder recycling, selecting build
parameters based on powder characteristics, iden-
tifying features that might be associated with
powder spreading or build flaws, and defining
objective material standards based on visual
images. Finally, this approach is not limited to
powder micrographs and in fact can be extended to
new image data sets, including bulk microstructural
images.
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