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The high cost and time typically expended in the successful deployment of new
materials into high-performance commercial products is attributable to mul-
tiple factors. The most significant of these include the heavy reliance on
experiments, the persisting disconnect between multiscale experiments and
multiscale models, the lack of a broadly accessible data and knowledge
infrastructure that can support the implementation of a holistic systems ap-
proach, and the lack of a suitable framework for facilitating and enhancing the
critically needed cross-disciplinary collaborations. The emerging discipline of
materials data science and informatics (MDSI) promises to address these key
technology gaps. The potential benefits to the materials innovation enterprise
that could accrue from an aggressive adoption of the novel concepts and
toolsets offered by MDSI are examined. A specific vision is expounded for the
role of MDSI in bridging the large gap that exists between the multiscale
materials experiments and the multiscale materials models.

CHANGING PARADIGM IN MATERIALS
INNOVATION

It has become widely recognized in recent and
ongoing national and international initiatives such
as integrated computational materials engineering
(ICME)1,2 and the U.S. Materials Genome Initiative
(MGI)3–5 that the time to bring new and improved
materials to market is simply too long to support
competitive new manufactured product innovation.
The gap between product design cycle time and
materials development and certification is unten-
ably large—by as much as 10–15 years in some
high-value products in transportation, electronics,
and other sectors (see Fig. 1). Indeed, the deploy-
ment of high-performance materials in cost-effective
and scalable manufacturing processes is a key rate-
limiting step in the successful commercialization of
most advanced technologies. Success in these efforts
will enable improved performance at reduced cost
through the deployment of tailored and manufac-
turable material systems. This capability is central
to many twenty-first century grand challenges
identified in science and technology, including

light-weighting of transportation vehicles, low-cost
sustainable energy, and improved health/quality of
life, among others.

There are many reasons for the lag illustrated in
Fig. 1. Historically, materials discovery has been
largely serendipitous. Materials discovery and devel-
opment has been largely based on experiments that,
for the most part, can be characterized as relatively
low throughput and of high quality. Indeed,
ICME1,2,8,9 has raised the exciting prospect that the
availability of a large suite of physics-based multiscale
materials models would dramatically lessen the
dependency on time-intensive experimental effort.
However, the fact remains that the multiscale models
have really not connected seamlessly10,11 with multi-
scale measurements. Although the reasons for this
disconnect are many, one can point to the following
major hurdles. Firstly, the physics-based multiscale
models have a very large number of model parameters
and/or alternate model form choices that need to be
calibrated or somehow adjusted based on carefully
designed multiscale experiments. As a specific exam-
ple, plastic deformation in most structural materials
occurs by a multitude of microscale mechanisms.12–15
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Although there exist several promising models for
reliably capturing the salient details of any selected
individual microscale mechanism in a physics-based
model, there do not yet exist validated protocols that
can de-convolve the relative action of multiple poten-
tial mechanisms in a sample subjected to a prescribed
deformation condition. Secondly, one of the main
reasons for the hurdle described above is that the
data demands for systematically and rigorously
exploring such verification and validation exercises
is substantially large and complex. Often one needs
multimodal observations requiring the simultaneous
use of multiple sophisticated techniques, each requir-
ing specialized hardware and software. The only
practical way to address this overall task is through
a coordinated community-wide effort to bring all these
techniques to bear. Thirdly, a further complication
arises from the fact that there is considerable uncer-
tainty associated with the multiscale experimental
observations, in addition to models. This can arise
from unavoidable variations in processing of the

material and/or sample preparation for characteriza-
tion (both structural and mechanical), resolution
limits in the machines and techniques employed,
fundamental limitations in currently available tech-
niques (for example, most microscopy techniques are
only capable of characterizing the material structure
on the sample surface) and operator/machine error. In
other words, one faces substantial challenges in the
fusion and curation of the heterogeneous datasets.
Consequently, it becomes clear that one should pursue
model calibration and maturation only in a suit-
able statistical framework that accounts rigorously for
the uncertainty associated with the available multi-
modal experimental observations (including its prop-
agation through multiple scales wherever relevant).

Although frameworks for multilevel design and
objective decision support have been developed and
applied in multidisciplinary design optimization,16,17

the desired data in the materials space have not been
available or at least not openly accessible. Further-
more, cross-disciplinary collaborations are essential

Fig. 1. (a) Illustration of the lag from discovery to application of new materials. (b) Illustration of the multiple, sequential, and time-consuming
steps involved in the development and deployment of advanced materials into commercial products. Adapted with permission from J. Warren
(NIST);3,6 information from Eagar and King.7

Vision for Data and Informatics in the Future Materials Innovation Ecosystem 2127



to realize the goal described above of accelerated and
low-cost, scaled-up, materials innovation. Such col-
laborations have been very slow to set up and difficult
to establish. There are silos within the materials
community (for example, researchers working on
different materials classes do not currently collabo-
rate extensively). All of these factors have served to
limit the rate of innovation in linking advances in
materials to new and improved products. Given that
data are the basic ‘currency’ of cross-disciplinary
communication of knowledge, we envision materials
data science and informatics playing a central role in
the materials innovation ecosystem of the future.18,19

Organizing the future materials development work-
flows around platforms that enable seamless data
capture, storage, analysis, and digital collaboration
will enable teams of diverse stakeholders from indus-
try, academia, and national laboratories to leverage
materials data and expertise in order to accelerate
the materials development and deployment process.

EMERGENCE OF MATERIALS DATA
SCIENCE AND INFORMATICS

Recent advances in data science and informatics
have the potential to offer innovative solutions for
addressing several of the impediments listed earlier.
Indeed, the MGI white paper3 had already identified
‘digital data’ as an important foundational element for
the envisioned acceleration of materials development
and deployment (see the intersecting circles of exper-
imental tools, computational tools, and digital data in
Fig. 2). The initial discussion of the role of data science
in the MGI contextwas somewhatnarrowly focused on
the archival and sharing of the important materials
datasets and databases (treated largely as digital
data). Parallel discussion in the manufacturing com-
munity has brought forth innovative concepts such as
the digital thread of manufacturing,20,21 some of
which have been refined and adopted by the original
equipment manufacturers (OEMs).22,23 In spite of the
noteworthy advances already made, there still exists
an immense gap between advanced materials and
manufacturing.24,25 Several of the more recent road-
mapping reports5,8,9,26,27 have articulated this gap,
and have significantly broadened the anticipated role
of data science and informatics. This broader defini-
tion points to the critical need for a new interdisci-
plinary field of study called materials data science and
informatics (MDSI), whose focus will be on all techni-
cal and cultural aspects of the data- and cyber-
infrastructure needed to streamline the efficient
extraction of high-value materials knowledge (i.e.,
from all experiments and simulations conducted by
the broader materials community, including both
legacy and new efforts), and its seamless communica-
tion to the manufacturing industry. In this regard, the
disparate elements of the materials innovation ecosys-
tem in Fig. 2 convey the broad range of disciplines
involved.

In the opinion of the authors, the focus on
communicating materials knowledge to manufac-
turing and creating effective two-way couplings is
an important guiding tenet for the success of the
numerous national and international strategic ini-
tiatives mentioned earlier. Adopting this focus
helps sharpen the definition of materials knowledge
in terms of process–structure–property (PSP) link-
ages of high value to manufacturing. In other
words, in an effort to move towards the goals listed
earlier, we would strive to organize, formulate and
express all materials insights (both legacy as well
as new) into one of two forms: (1) process–structure
(PS) linkages and (2) structure–property (SP) link-
ages. PS linkages aim to capture the details of
material structure evolution as a function of the
process parameters (capturing the process history),
while SP linkages aim to express the properties
(characteristics of materials response) as a function
of the material structure. These linkages may take
the form of a wide variety of equations or algo-
rithms, but they must be quantitative, reproducible,
and digitally captured. It should be noted that
material structure plays an important role in both
sets of linkages. Indeed, herein lies the main
challenge for the task at hand. The mathematical
descriptions of both ‘‘process’’ and ‘‘property’’
require relatively low-dimensional representations
compared to the ‘‘material structure’’. Accordingly,
both PS and SP linkages are heavily biased towards
high dimensionality of structure representation in
terms of the numbers of input and output variables
involved in formulating the desired linkages. As a
result, it is tempting to bypass material structure
and seek direct correlation between process route
and properties;28 however, this approach is not
broadly applicable since it requires a complete
description of the processing history, which is often
unavailable or incomplete. The material structure
captures all relevant aspects of the process history,
and can be directly characterized, making it a
central feature of PSP linkages. The very large
number of variables involved in quantifying the
material structure poses significant challenges to
conventional approaches in formulating PSP link-
ages, and demands a new data-driven paradigm,
illustrated schematically in Fig. 3. In this figure,
the three main activities focused on synthesis and
process route, hierarchical structure, and proper-
ties/responses appear in three large boxes that
point to the current highly siloed disciplinary
practices in materials processing and manufactur-
ing sciences, materials sciences, and the mechanical
design sciences, respectively. The PSP linkages
described above aim to connect the high-value
knowledge accumulated in these disciplinary efforts
in a consistent manner that provides high value
and transparency to the overall effort and, more
importantly, facilitate use of systems-level inte-
grated design and optimization methods.16
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Probing a bit deeper into the desired PSP linkages
central to materials innovation, as mentioned ear-
lier, the high dimensionality of the hierarchical
material structure presents the central challenge.
Consequently, it should be of no surprise that
establishing the desired PSP linkages requires a
large amount of multiscale data (i.e., results from
experiments, models, or both). This requirement

naturally drives materials innovation efforts toward
high-throughput strategies (see examples in the
functional and biological materials29–33 for inspira-
tion). Such high-throughput strategies are still
under development in the field of structural mate-
rials.34–43 In fact, given the complexity involved, it
is argued that the development, curation, and
dissemination of the ‘‘best’’ high-throughput strate-
gies should be undertaken within a suitable sup-
porting data science and informatics infrastructure
(the yellow-colored background) that serves as the
‘‘glue’’ to connect all the overlaid components in
Fig. 3. Moreover, data transactions conducted in an
open (or open to selected collaborators on a specific
project) environment facilitate transparency and
promote long-term utility of the knowledge aggre-
gated in any team effort. An anticipated benefit is
that the materials innovation efforts will gain
significantly (both in reduction of cost and time)
from the adoption of the emerging data science and
informatics toolsets by eliminating or reducing the
unintended redundant effort, focusing the team
effort on high-value tasks, and ensuring the highest
levels of transferability of the knowledge gained to
new problems/challenges.

As a specific example of the potential benefits of
adopting data science toolsets, consider the chal-
lenges involved with rigorous quantification of the
hierarchical structure of a material. The primary
challenges in this task arise from (1) the need to
describe the hierarchical structure spanning a
multitude of length/structure scales (ranging from
atomistic to macroscale), (2) the need to adopt a

Fig. 2. Elements of the materials innovation ecosystem, as outlined by the Georgia Tech Institute for Materials, generalizing the central theme of
the U.S. Materials Genome Initiative of coupling computational tools, experimental tools and digital data with an emphasis on high throughput
methods and direct engagement of various stakeholder sub-disciplines that supplement the foundational materials sciences (characterization,
representation, discovery, synthesis and process) with systems design, databases and data science, multidisciplinary design optimization,
computational multiscale modeling, uncertainty quantification, verification and validation, automation, in situ measurements and scale-up
manufacturing processes, as well as support for entrepreneurship and rapid innovation. Reprinted with permission from D.L. McDowell and S.R.
Kalidindi.18

Fig. 3. Envisioned data-driven paradigm in curation of PSP linkages.
The study of materials processing, structure, and performance is
typically siloed within manufacturing, materials, and mechanical de-
sign sciences, respectively. Materials data science and informatics
seeks to connect these disciplines through high-throughput ap-
proaches and ‘‘reduced order’’ process–structure and structure–
property models.
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statistical description that allows quantification of
variance and natural insertion into established
composite theories (e.g., homogenization theories,
localization theories; see also Ref. 44), and (3) the
desired versatility to be applicable in a consistent
manner to a very broad range of material systems
encountered in advanced technology applications.
Historically, experts in materials science and engi-
neering have employed mostly intuitive, low-order,
microstructure measures such as the overall (aver-
aged) elemental compositions, elemental composi-
tions of constituent phases, phase volume fractions,
crystal structure descriptors, average chord lengths
(or grain sizes) for constituent phases, average
precipitate size/spacing, orientation distribution
function, and grain boundary character distribution
function, among several others. These explorations
have not yet identified clear ‘winners’ for a broad
and consistent adoption by the entire materials and
manufacturing communities. One approach that
has shown tremendous promise to lead to a system-
atic and comprehensive framework for microstruc-
ture measures is based on the formalism of n-point
spatial correlations (also simply referred as n-point
statistics).45–53 In this paradigm, one probes sys-
tematically the statistics of what one might find in
the neighborhood of every randomly selected point
in the material structure.

The most basic n-point statistic are the 1-point
spatial correlations (i.e., n = 1). These statistical
measures of microstructure capture the probability
of finding a specified local state of interest at any
spatial point selected randomly within the
microstructure. In other words, they only capture
the information on the volume fraction of various
local states (i.e., distinct microstructural con-
stituents) encountered in the material’s internal
structure, and capture absolutely no information
regarding the surrounding neighborhoods encoun-
tered. At the next higher level, the 2-point statistics
quantify the neighborhood by looking at one other
spatial location relative to the first randomly
selected spatial point. As a specific example, f npr
denotes the joint probability of finding local state n
at the first randomly selected spatial point in the
microstructure, while also finding the local state p
at a spatial point that is r away from the first spatial
point. It is important to treat r as a vector (that has
both a direction and a magnitude) in this definition.
Note that f npr denotes one statistical measure of the
microstructure for selected the combination of val-
ues of n, p, and r. In general, one utilizes a set of 2-
point statistics to quantify any given material
structure. The set of 2-point statistics can lead to a
very high dimensional representation of the
microstructure. Note also that the treatment above
can be extended easily, at least conceptually, to
higher-order spatial correlations (i.e., 3-point statis-
tics and higher), but with added cost and perhaps
diminishing return based on the value of informa-
tion conveyed.

Principal component analysis (PCA)54,55 provides
a linear transformation of high-dimensional data in
a new orthogonal frame in which the axes are
ordered according to the observed variance among
the elements of the dataset. Consequently, a trun-
cated PCA representation provides an objective
(data-driven) reduced-order representation of the
original data. Applying PCA on 2-point spatial
correlations of the microstructure has been shown
to be remarkably efficient in not only obtaining
objective low-dimensional measures of the
microstructures but also in establishing high-fi-
delity PSP linkages (as metamodels or surrogate
models to replace numerically expensive
models).54–57

The overall fidelity of PSP linkages indeed
depends on a number of factors, including (1) the
quality and quantity of experimental data utilized,
(2) the quality and quantity of physically-based
modeling/simulation data utilized, (3) the efficacy
and suitability of the analytics performed, and (4)
the degree of verification and validation conducted.
Consequently, it is quite natural that different PSP
linkages formulated for a given phenomenon of
interest might exhibit vastly different levels of
fidelity and robustness. In the terminology of data
science, it is very convenient to think of these data
transformations (the process of extracting high
value information from data) on a graded scale as
data fi information fi knowledge fi wisdom.
In the context of the communication of materials
knowledge to manufacturing processes, the differ-
ent levels of data transformations can be bench-
marked as shown in Fig. 4.11,53 Careful evaluation
of the currently available PSP linkages would
invariably lead to the realization that a predomi-
nant number of them could only be characterized as
information, with very few moving up to the knowl-
edge category. This is mainly because the data
demands for the validation and verification of
multiscale materials models can only be realistically
met with carefully organized large scale efforts.
Additionally, such an activity requires intimate
collaborations between a multitude of disciplines
(covering the relevant length and time scales of
interest) and approaches (i.e., computations, exper-
iments, analytics, statistics, applied mathematics).

The emerging field of MDSI addresses the critical
needs described above with three main interrelated
thrusts: (1) Data management, (2) Data Analytics,
and (3) e-Collaborations. Data management broadly
addresses all aspects of the datafication58 of mate-
rials data, which includes automated capture of
data and metadata, robust and reliable storage,
aggregation, archival, retrieval, and sharing proto-
cols. Obviously, this is a necessary first component
of any MDSI effort, as all other components criti-
cally hinge on this one. Some of the challenges in
this task arise from the use of different formats used
for the files generated by the different techniques
employed in multiscale materials characterization.
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A flexible schema is highly desirable. Furthermore,
some of the important metadata regarding some of
the experimental data are rarely digitally captured
and linked with the actual dataset; such data often
reside in laboratory notebooks of the experimental-
ists and are lost with time. A further limitation of
the existing modes of data curation is that they
seldom capture the complete history of the curation
efforts associated with the data—this is especially
important to ensure longevity and high utilization
of the data. Ideally, one would capture and perma-
nently associate the entire prior history of successes
and failures associated with the use of the specific
data. This contextual information is critical for the
user to develop sufficient confidence in the use of the
available databases. For standardizing the data
archiving format, XML schema provides an ideal
structure for capturing material science knowledge,
because it is scalable, modular, and transformable
for hierarchical data systems.59–62 Building on these
concepts, NIST’s Materials Data Curation System59

allows user-customized capture of a broad variety of
materials datasets, along with the relevant meta-
data. The incorporation of uncertainty quantifica-
tion with data and/or metadata is a highly desirable
advance in future curation approaches.

Once the data and metadata are captured and
organized to facilitate easy discoverability and
access, one might explore the application of a large
number of available data analytic tools. The earlier
discussion on the objective low-dimensional repre-
sentation of material structure and its usage in
mining high-fidelity, low-computational cost, PSP
linkages provides a good illustration of how one
might employ data analytics in materials innova-
tion efforts. In general, this component takes
advantage of high-performance computing toolsets
based on techniques such as noise filtering, data
fusion, uncertainty quantification, statistical analy-
ses, dimensionality reduction, pattern recognition,
regression analysis, machine learning, and statisti-
cal learning, among others. A large number of these
tools can be conveniently accessed through source

code repositories such as R,63 SciPy,64 NumPy,65

Scikit-learn,66 StatsModels,67 and Pandas,68 as well
as through commercial packages such as
MATLAB.69 The coupling of data analysis with
multiscale modeling and experiments at various
scales of structure offers important means of cali-
brating and validating data science methods. In this
regard, it is noteworthy that the framework
described earlier for establishing PSP linkages
based on spatial correlations and PCA can be
accessed from the open access, open source, repos-
itory, PyMKS.70 This repository also provides sev-
eral case studies illustrating the versatility and
utility of the high-level APIs (application program
interfaces) provided in PyMKS. These case studies
address a broad range of materials systems (metals,
polymer composites, etc.) and a broad range of
materials phenomena (mechanical loading, molecu-
lar dynamics, spinodal decomposition, etc.). A much
broader set of case studies demonstrating the
versatility and power of the MDSI concepts and
toolsets mentioned here can be seen in numerous
open access, open source, research blogs71,72 dis-
seminated as a part of coursework in the innovative
graduate program FLAMEL73 at Georgia Tech. All
of these examples provide a clear testament to the
transformative role of MDSI in the materials inno-
vation arena.

Recent advances in computer and information
technologies have elevated the prospect for dramat-
ically scaling up collaborations through the use of
online tools. Called e-collaboration tools, these new
tools have the potential to team-up diverse expertise
(Fig. 2) transcending generational, geographical
and organizational barriers, and to direct the com-
bined efforts of a team towards solving important
scientific and technological problems. Such e-collab-
oration platforms provide online access to team and/
or project management tools facilitating a wide
variety of communications between team mem-
bers,74,75 a suite of discussion and annotation tools,
and, perhaps most importantly, workflow capture
and management tools for PSP linkages and to
couple with manufacturing (e.g., KNIME76,77). Over
the past few years, there have been several ongoing
efforts at integrating all of the e-collaboration
toolsets in a single online platform that will provide
easy and convenient access to groups of domain
scientists (such as materials scientists). One such
effort, called MATIN,78 has been in development
over the past year at the Georgia Tech’s Institute for
Materials (GT-IMAT).79 MATIN utilizes the open
source HUBzero80 as an infrastructural foundation,
and has built various value-added components on
top of this foundation (see Fig. 5).

The rapidly changing landscape of materials
innovation driven by the emergence of MDSI pre-
sents a significant quandary to industry engaged in
materials innovation and deployment in high per-
formance products. If industry does not make the
necessary adjustments in their innovation

Wisdom
Inver�ble PSP linkages needed in design/op�miza�on, 

coupled to manufacturing processes

Knowledge
PSP linkages with quan�fied uncertainty

Informa�on
Trends in Process-Structure-Proper�es (PSP) linkages

Data
Experiments, Models, Simula�ons, Experience and 

Metadata

Fig. 4. A graded scale to benchmark the different stages in the data
transformations that occur in the process of extracting materials
knowledge and expressing it in the forms most useful to manufac-
turing processes.
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workflows to keep up with the fast pace of advances
in this emerging field, it risks being left behind by
competitors. However, if industry decides to invest
to stay ahead of the impending transformation
brought about by the data revolution, there may
be a shortage of in-house expertise to lead this
transformation. The explosion in the sheer numbers
of the new online resources and services (including
both open and for-free types) is a major challenge to
digesting information. This sudden explosion in the
MDSI resources, while exciting, also makes it very
difficult for any industry to stay abreast and retrain
their employees appropriately. Cybersecurity is
another challenge. This is a particularly significant
challenge for the small and medium-sized enter-
prises (SMEs) that make up a large fraction of the
very extensive supply chain in the advanced mate-
rials-manufacturing ecosystem. In the opinion of
the authors, this challenge presents a unique
opportunity to establish a new kind of university–
industry partnership where the university takes on
a proactive leadership role in workforce develop-
ment and training in the emerging MDSI fields,
while the industry provides targeted guidance to
direct the future development of MDSI. It is impor-
tant to establish such win–win partnerships to
ensure that the new capabilities generated by MDSI
are sharply focused on addressing the primary gaps
impeding practical accelerated materials
innovation.

MATERIALS INNOVATION IN THE FUTURE

The materials innovation ecosystem illustrated in
Fig. 2 offers a shared vision of coupling of experi-
ments, computation, and data science via high-

throughput methods to accelerate the discovery and
development of new and improved materials via
appropriate multi-disciplinary interactions. Such an
ecosystem will introduce and develop vital new
technologies for materials development and certifi-
cation. From a technical perspective, it is necessary
to develop frameworks and protocols for automated
data ingestion, structured data storage, high-
throughput exploration (both experiments and mod-
els), and integrated data analytics. Furthermore, it
will be essential to address the substantial cultural
barriers to data sharing by developing novel e-
collaboration tools that incentivize participation
through increased productivity for all team mem-
bers. Ultimately, it is envisioned that the confluence
of an efficient and robust technical infrastructure
with a diverse and committed set of stakeholders
will create a vibrant data-driven materials innova-
tion cyber-ecosystem capable of realizing the revo-
lutionary impact of big data on the materials and
manufacturing sectors.3,81,82 The main components
of this materials innovation cyber-ecosystem are
described below.

High-Throughput Characterization

Most modern techniques in materials character-
ization focus on obtaining a few measurements of
very high quality. Indeed, the majority of govern-
ment agency-funded user facilities lie in this cate-
gory; they are too expensive to replicate and
properly support and sustain in university or indus-
try laboratories. While valuable to basic science,
these high-end, high-fidelity methods often fail to
provide sufficiently rich datasets for maturation of
multiscale materials models. Furthermore, the

Fig. 5. Schematic of the MATIN e-collaboration platform being currently built and deployed to enhance collaborations among materials re-
searchers at Georgia Tech’s Institute for Materials. Reprinted with permission from S.R. Kalidindi et al.19
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small quantities of data captured in these protocols
may not adequately represent the inherent
microstructure variance that exists within the
hierarchical material system being studied. It is
imperative to develop and validate high-throughput
measurement strategies capable of undertaking
rapid but highly targeted explorations of PSP
linkages of high value to manufacturing processes
employed by the industry. Furthermore, it is neces-
sary to deploy these novel strategies in shared user
facilities to ensure broad access and accelerated
learning of best practices. As a specific example,
nanoindentation techniques have demonstrated the
potential for such high-throughput explorations in
scale-specific measurement of mechanical proper-
ties.83,84 The continued development of such
approaches will drive the need for the expansion
and the adoption of the data-driven materials
development by providing large, rich, datasets for
knowledge extraction.

Automated Ingestion

Currently, the multiscale characterization of a
typical material can easily lead to the generation of
terabytes of data from multimodal investigations
that might include x-ray, microscopy, and spec-
troscopy techniques (see Fig. 6). However, the vast
majority of this data are siloed on local storage disks
making them difficult to share with team members.
More importantly, the pertinent metadata neces-
sary to place the data into a meaningful context is
often not captured electronically or sometimes even
lost. In order to promote and facilitate a data-driven
materials innovation cyber-ecosystem, it will
become increasingly important to establish stan-
dards and systems for the automated ingestion of
data. Several projects have begun implementing
strategies to automate the capture of electronic
structure calculations (e.g., Materials Project,85

AFLOW86), yet the capture of most simulation
results and nearly all experimental data will
require the development of new approaches and
tools. The concept of the ‘‘internet of things’’87

presents a novel paradigm for retrofitting and
designing characterization facilities equipped with
embedded electronics and network connectivity in
order to facilitate the seamless ingestion of large
quantities of high fidelity materials characteriza-
tion data and meta-data. These techniques can be
pioneered at academic and government materials
characterization facilities, leading to open, high-
value, materials datasets and protocols and best
practices for implementation in industrial settings.

Storage and Curation

In order for automated data ingestion to be
successful, it is critical that the ingestion systems
are coupled with data storage structures capable of
handling the big data that will be created. The
inherently heterogeneous, diverse, and hierarchical

nature of materials characterization and simulation
has led to a ‘‘variety’’ challenge (see Fig. 6),88 where
information must be fused across a multitude of
length (angstroms to meters) and time (femtosec-
onds to years) scales. Furthermore, the available
theoretical and experimental approaches in materi-
als research are constantly evolving, creating the
need for storage systems capable of adapting to
fundamentally new data types while simultane-
ously supporting and curating legacy data. Design-
ing data storage and archival systems that balance
the flexibility needed to accommodate the variety of
materials data with the structure and schemas
needed for rapid retrieval and analysis of large
datasets presents a significant challenge. Although
in early stages, initiatives such as the NIST MDCS
project59 have demonstrated success in storing and
curating complex materials datasets, and the con-
tinued development and implementation of such
systems will be critical to the materials innovation
ecosystem of the future.

Reproducible and Data-driven Analytics

As rich datasets are automatically generated,
ingested, and stored, the need for advanced data
analysis frameworks will become progressively
more important. Tools for creating quantitative,
templatable, and potentially invertible PSP link-
ages will be a cornerstone of the future materials
data infrastructure. These tools must be able to fuse
information across various length and time scales,
as well as data from the diverse experimental and
simulation techniques commonly employed in mate-
rials research. The use of statistical representations
and frameworks present a promising route forward,
as indicated by novel approaches such as n-point
correlations,48 materials knowledge systems,70,89

and Bayesian parameter estimation.90 In addition
to developing new analysis tools, it will also be
necessary to capture and disseminate the workflows
in which these tools are applied for data analysis.
Workflow capture provides a transparent route to
communicating materials data analysis, simultane-
ously improving reproducibility and transferabil-
ity.91 Other fields have developed and adapted
numerous tools to address workflow capture such
as Galaxy (bioinformatics),92 Kepler (ecology/biol-
ogy)93 and KNIME (business/consulting);76,77 how-
ever, the materials community is currently lacking
tools which are sufficiently customized to capture
the diverse and evolving workflows associated with
materials data analysis. Initial work at Georgia
Tech has established ‘‘research blogs’’ as a platform
for capturing workflows based on heterogenous
software and visualization tools. These blogs have
been used to capture workflows for data-driven
approaches to a wide variety of case studies in
materials innovation.70–72 The use of well-defined
workflows will also facilitate the quantification and
propagation of uncertainty through complex models
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to provide decision support in materials design and
development. Such systems will include verification
and validation as part of a feedback loop, providing
a natural route to include more information in order
to improve the confidence of the decision support
system. This data-enabled coupling of diverse sim-
ulation and experimental results through statistical
models is expected to have a profound impact on
materials design and development processes, and
their coupling with manufacturing.

Industry Outreach and Consortia

The participation of industry will be critical to the
long-term success and sustainability of a data-
centric materials innovation ecosystem. From the
materials research perspective, industry buy-in
constitutes verification of the utility and economic
advantages of data-driven approaches to materials
research and development. Conversely, from the
materials data perspective, the emergence of com-
mercial ventures seeking to deliver materials data
services will establish self-sustaining components of
the materials data infrastructure. In order to facil-
itate these impacts of materials data on industry, it
will be necessary for academic leaders to promote
both adoption and commercialization of data science
tools, as well as acting as honest brokers in iden-
tifying mutually beneficial partnerships between
various stakeholders in the materials innovation

ecosystem shown in Fig. 2. Companies with prod-
ucts in computational materials simulation, data
science, and life cycle engineering are included in
this broader ecosystem. In 2016, Georgia Tech has
established a new center called IDEAS: Materials
Design, Development and Deployment
(IDEAS:MD3) specifically to promote such univer-
sity–industry–national laboratory partnerships.
Briefly, this new center aims to provide:

� Low entry cost opportunities to familiarize and
train current industry workforce in the emerging
concepts and toolsets of MDSI.

� Increased awareness in the industry of the
potential benefits and pitfalls in the adoption of
modern data science tools and e-collaboration
platforms for materials discovery and develop-
ment.

� Increased level of cross-disciplinary collabora-
tions between university and industry experts at
the nexus of materials science, manufacturing,
data science, and high-throughput methods.

Community building is an important cornerstone
for this activity. Consequently, IDEAS:MD3 aims to
execute a number of community-building activities
that include workshops and tutorials in the emerg-
ing field of MDSI. As a specific example, a materials
‘‘data challenge’’ was conducted as a two-day com-
petition94 employing ASM international’s SMDD
(structural materials data demonstration) project.95

Fig. 6. Illustration of the diversity of data collected to characterize internal structure of dual-phase steels. The techniques include electron
backscatter diffraction (EBSD), atomic force microscopy (AFM), electron channeling contrast imaging, backscattered electrons (BSE), trans-
mission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). This is only a representative sampling of the numerous
techniques used in current materials characterization protocols. Reprinted with permission of Ali Khosravani.
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E-Collaboration Platforms

In order to address both technical and cultural
barriers to data-centric materials design and dis-
covery, it will be important to develop e-collabora-
tion platforms to encourage the formation of
diverse, multi-disciplinary teams and facilitate the
sharing of data, intermediate results, and work-
flows amongst team members.96 Such platforms97

are fundamentally different from the many existing
data and code repositories in that they specifically
seek to address cultural challenges to adoption of
materials informatics approaches by creating com-
munities of like-minded materials researchers, data
scientists, and industry leaders who will act as early
adopters of materials data approaches. As such, the
success of these platforms will depend on effective
social networking strategies for recruiting and
retaining key stakeholders as well as organically
identifying win–win partnerships between mem-
bers. In addition, e-collaboration platforms will act
as a front-facing portal to the technical infrastruc-
ture of the data-centric materials innovation ecosys-
tem, facilitating easy access to computing
cyberinfrastructure and sharing of materials data-
sets and workflows (cf. Fig. 5). The previously
discussed MATIN effort at Georgia Tech78 is an
example of an e-collaboration platform in the mate-
rials data sciences sector.

Education and Training Programs

As data-driven methods begin to impact the
materials research and development sector, the
skills expected of a materials researcher will evolve.
In order to address this critical need, it will be
necessary to modify and design academic curricula
that address and incorporate relevant data science
approaches to produce a new cadre of materials
engineers with skills at the intersection of data and
materials sciences. Recently, innovative educational
programs such as the FLAMEL IGERT at Georgia
Tech,73 the D3EM traineeship at Texas A&M,98

ICME courses and Master’s programs/certificates at
Ruhr-University Bochum,99 Mississippi State100

and Northwestern University,101 and summer insti-
tutes for computational and data-driven materials
science at the Technical University of Denmark,102

University of Michigan,103 Texas A&M,104 Lawr-
ence Livermore National Laboratory,105 and
University of Florida106 have begun to address
these educational challenges at the graduate level.
However, it will be critical to explore strategies of
expanding these educational paradigms to various
levels of education (e.g., undergraduate, high
school) and to promote their adoption into more
diverse educational sectors (e.g., undergraduate and
minority-serving institutions). Furthermore, the
envisioned rapid and transformational effects of
big data on materials innovation will require re-
training of much of the current workforce. This too
will necessitate the development of novel

educational programs aimed at full-time employees,
such as distance learning and massive open online
courses (MOOCs) in materials data science tools
and techniques.107 The envisioned data-centric
materials innovation ecosystem will incorporate
these education and training approaches in order
to nurture, grow, and sustain the data-aware mate-
rials workforce of the future.

SUMMARY

In summary, the instantiation of a data-centric
materials innovation ecosystem presents a signifi-
cant challenge that will require a concerted effort
from numerous and diverse stakeholders. Signifi-
cant progress has already been made towards
achieving many of the necessary technical con-
stituents of this synergistic network of disciplines
and sub-fields. Hence, the most important, and
perhaps most challenging, step in the realization of
the materials data revolution will be the successful
integration of these pieces into a coherent frame-
work, and the proactive adoption of this framework
by the academic, industrial, and governmental
stakeholders of the materials innovation ecosystem.
The intention of this vision for the role of materials
data sciences in the future innovation framework is
to spur discussion within the community and foster
adoption of these or similar approaches among and
between various stakeholders.
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