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Dislocations—linear defects within the crystal lattice of, e.g., metals—have
been directly observed and analyzed for nearly a century. While experimental
characterization methods can nowadays reconstruct three-dimensional pic-
tures of complex dislocation networks, simulation methods are at the same
time more and more able to predict the evolution of such systems in great
detail. Concise methods for analyzing and comparing dislocation microstruc-
ture, however, are still lagging behind. We introduce a universal
microstructure ‘‘language’’ which could be used for direct comparisons and
detailed analysis of very different experimental and simulation methods.

INTRODUCTION

During most of the twentieth century, materials
science mostly relied on the interplay between
theory and experiment in a hypothesis-driven man-
ner. Although numerical tools already contributed
in some fields (e.g., atomistic simulations were used
from the 1960s on), simulations were not considered
as a separate discipline due to strongly limited
models and computational power. The last two
decades brought a dramatic paradigm shift to
materials science with the advent and easy acces-
sibility of powerful computational concepts and
refined simulation methods which built the basis
of today’s computational materials science. While
predictive computational models are more and more
able to approach time and length scales similar to
those observed in experiments, novel data-driven
approaches are able to guide experiments, to dis-
cover previously unknown mechanisms and to help
designing advanced materials.

To accelerate and direct these efforts of integrated
computational materials engineering (ICME), a
number of initiatives recently came to life, as, e.g.,
the European materials modeling council (EMMC)
and the U.S. Materials Genome Initiative (MGI),
whose goal is ‘‘to decrease the time and cost of the
materials discovery to deployment process’’.1 All
initiatives emphasize—in line with demands from
fundamental research—the following key aspects

for design and discovery of new materials: (1) the
requirement of dedicated simulation codes and
community-driven software; (2) novel integration
techniques of experimental and theoretical data
throughout research, development, design and man-
ufacturing; (3) the faithful bridging of models across
length and time scales, e.g., within a multi-scale
simulation framework; and (4) innovative data-
based bridging between different experimental,
theoretical and simulation models by a (one-way)
information transfer for, e.g., validation purposes or
for use as physical initial values from lower scale
methods.

Metal plasticity on the microscale is a typical case
where processes on multiple time and length scales
interact with each other, e.g., phenomena on small
scales may determine properties on the larger device
scale: dislocations—linear defects within the crystal
lattice—are the carrier of plastic deformation and
are responsible for a large variety of emergent
properties, as, e.g., self-organization of dislocations
into complex microstructures, size-dependent
mechanical behavior or hardening. Therefore, dur-
ing the last century, significant effort has been
dedicated to experimentally observing and charac-
terizing dislocations, as well as to understanding the
evolution of interacting systems of dislocations.
Today, experimental microscopy methods can recon-
struct three-dimensional images of complex disloca-
tion networks. Concise methods for further analysis
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and quantitative characterization of those networks,
however, are still lagging behind. This makes the
linkage to simulation methods difficult.

Nowadays, a number of well-established simula-
tion methods are able to take the dislocation
microstructure (directly or indirectly) into account.
As a standard method on the nano-scale, molecular
dynamics (MD) predicts the trajectory of atoms
which interact through forces due to a given poten-
tial function. Dislocation lines can be reconstructed
in a post-processing step, which allows MD to reveal
great details of dislocation microstructures (e.g.,
Ref. 2). The mesoscale, discrete dislocation dynamics
(DDD) method does not resolve separate atoms, but
represents dislocations as polygons or splines3–8 that
move and interact according to the elastic theory of
dislocations.9 Both methods, although very powerful
and physically detailed, are limited by the number of
interacting objects. Furthermore, direct comparison
between dislocation microstructures obtained by the
two methods, or by alternative methods, or with
experimental data cannot be done satisfyingly.

Continuum models of dislocations, on the other
hand, do not aim at resolving separate dislocations.
Thus, by representing an averaged picture of these
linear defects, they can operate on larger length
scales than MD or DDD. Conceptually, one may
roughly separate these models into two classes: local
models that are not able to represent fluxes of
dislocations, and non-local continuum methods
which govern the flow of dislocations through
transport equations.10–15

While the first class plays an important role in the
engineering community, its predictive power is lim-
ited since only strongly averaged details of systems of
dislocations can be represented, and dynamical
aspects due to dislocation motion cannot be captured
at all. Members of the second class of continuum
models are rather designed in a bottom–up approach
utilizing (statistical) averaging of discrete dislocations
and can, as a consequence, include much significant
information about the dynamics of systems of disloca-
tions, i.e., how dislocations move and interact. These
‘‘continuum dislocation dynamics’’ (CDD) models are
able to simulate arbitrary dislocation densities and
large time spans, and make good candidates for
complementing MD or DDD simulations.

Direct validation of continuum methods on the
level of dislocation microstructure could up to now
only be done for simplified two-dimensional DDD
simulations with point-like edge dislocations.16–18

Comparisons with experimental data have been
carried out based on EBSD measurements from
which ‘‘geometrically necessary dislocation’’ (GND)
densities can be inferred.19 Systematic comparisons
and validations of continuum methods with lower
scale methods or experiments that take all, possibly
curved, dislocations into account and consider spa-
tial details of the microstructure were not possible
until recently. One of the reasons is that no
appropriate continuum description of systems of

curved dislocations existed before. Using data from
lower-scale methods or experiments either as initial
values, for verification purposes, or, via data min-
ing, as parameters for other simulations is, how-
ever, a highly desirable goal. To achieve this two
prerequisites must be met:

(i) A methodology consistent with the underly-
ing physics for systematic data extraction
from lower-scale models and/or experiments
is required.

(ii) A data format is needed that is ‘‘rich’’ enough
to represent even complex microstructures
and that allows for detailed analysis and
direct comparisons.

In principle, one could use dislocation data from
DDD or possibly even from CDD models for deter-
mining positions of atoms (a dislocation is the
boundary of a slipped area within which atoms are
displaced by the size of the Burgers vector b).
Comparing dislocation microstructures on the level
of single atoms, though, is neither practical nor
reasonable since in general it is not clear how to
define when atomic structures are ‘‘similar’’ (e.g.,
what is a ‘‘large’’ deviation? Should it be measured
in numbers of atoms that are not in place or is it the
cumulative misplacement of single atoms?). The
main problem here is instead a conceptual problem:
although dislocations consist of regions of displaced
atoms, they are objects whose main characteristics
become visible on the ‘‘mesoscale’’, i.e., the scale
intermediate between the scale of single atoms and
the scale where concepts of continuum mechanics
are applicable. On this scale, dislocations need to be
treated as mathematical lines together with the
respective energy density fields as, e.g., in DDD
simulations. On this scale, the collective behavior is
responsible for many emergent properties as, e.g.,
size effects, hardening or dislocation pattern
formation.

Therefore, we propose a different approach
towards characterizing, validating, and data mining
of dislocation data based on one of the information-
richest CDD models that resulted from the theory
by Hochrainer.14,15,20,21 Although this CDD model is
able to describe the evolution of dislocations in great
detail,22 we will just use the underlying field
variables consisting of density and line curvature
data (and possibly higher-order moments thereof).
Together with converting data from lower scale
methods or experiments into these mesoscale field
variables we arrive at a description that is–unlike
discrete dislocation data–defined in each point of
the volume under consideration, which, e.g., allows
us to simply ‘‘take the difference’’ between two
datasets. The variables of this CDD model are
additionally well suited for statistical averaging and
representing ensemble averages, which is an impor-
tant prerequisite for systematic data mining. For
converting properties of discrete lines to continuous
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field data, we use the recently introduced discrete-
to-continuum (D2C) methodology.22 Among the
unique properties of CDD is the hierarchical struc-
ture of the theory, in which, based on the respective
requirements, different numbers of field variables
can be included. This allows for a tailored informa-
tion content which we view as a physically based
approach towards compressing dislocation data.

In the following, we first introduce the relevant
field variables of the CDD theory, followed by a brief
summary of the D2C methodology for converting
discrete dislocations into a continuous field descrip-
tion. Subsequently, the theoretical concepts are
applied to a number of numerical examples and
benchmark tests that show how dislocation config-
urations of different complexity can be represented
and analyzed. We conclude with a detailed discus-
sion and outlook.

METHODS

Field Variables of the CDD Theory

Hochrainer’s CDD theory was derived based on
statistical averaging of systems of discrete disloca-
tions. In the original, higher-dimensional theory
(hdCDD), the resulting continuous field quantities
were two density-like field variables23–25: the total
density qðr;uÞ and curvature density qðr;uÞ (or
alternatively: mean dislocation curvature kðr;uÞ),
defined in a higher-dimensional space, which,
besides the spatial points r, also contains the line
orientation u as extra-dimension. This makes the
important information about an average line direc-
tion lðuÞ :¼ ½cosuðrÞ; sinuðrÞ� available. Due to the
high computational cost of this detailed formula-
tion, most numerical computations were only possi-
ble in ‘‘2.5D’’ configurations.24–26 To overcome this
limitation, a number of so-called simplified CDD
formulations were derived, in which a reduced
amount of information is contained in additional
field variables.14,15,20,27

Every CDD theory variant also contains the
corresponding evolution equations for the field
variables. However, in this work, the goal is to use
only the field variables for representing dislocation
microstructures as static configurations in time.
Therefore, the evolution equations will not be
introduced here. A convenient property of CDD is
that formulations with different degrees of infor-
mation content can be derived within a hierarchical
framework of equations, either based on Fourier
series of qðr;uÞ and qðr;uÞ15 or based on alignment
tensors.21,28 In the following, we introduce the first

order CDDð1Þ in more detail and note how higher
order theories may be constructed.

The first order theory CDDð1Þ contains three
variables:15,21 the total density qt � qð0Þ, the first
order dislocation density alignment tensor qð1Þ and
the curvature density qt � qð0Þ. Without loss of
generality, we assume that the (local) coordinate

system is aligned with the edge and screw direc-
tions. Then, the alignment tensor consists of the
signed edge and screw excess (geometrically neces-
sary) dislocation densities, qð1Þ ¼ ½qe; qs�. The vari-
ables can be obtained from hdCDD as

qð0ÞðrÞ ¼
Z 2p

0

qðr;uÞdu ð1Þ

qð1ÞðrÞ ¼
Z 2p

0

qðr;uÞlðuÞdu ð2Þ

qð0ÞðrÞ ¼
Z 2p

0

qðr;uÞdu ð3Þ

From (2), the classical Kröner-Nye dislocation den-
sity tensor can be obtained as a ¼ qð1Þ � b (where �
is the tensor product), the total GND density is
qG ¼ jqð1Þj. The line curvature can be obtained from
k ¼ qð0Þ=qð0Þ.

Higher order theories CDDðnÞ include fields with
additional information, e.g., about orientations of
dipole and anisotropic dislocation configurations.
They can be obtained in a systematic manner using

qðnÞðrÞ ¼
Z 2p

0

qðr;uÞlðuÞ�n du; ð4Þ

qðnÞðrÞ ¼
Z 2p

0

qðr;uÞ½e � lðuÞ � lðuÞ�n�1�s du; ð5Þ

where ð�Þ�m denotes the m-times tensor product of
ð�Þ, the superscript s denotes the symmetric part of a
tensor, ‘‘�’’ is the contraction of two tensors, e is the
second order Levi-Civita tensor in the slip plane
coordinate system, with components eij ¼ eijknk, and
thenk are the components of the slip system normal n,
where the Einstein summation convention applies.
For further details, please refer to Refs. 21, 28.

The Discrete-to-Continuum (D2C) Method

For obtaining the above introduced field variables
from discrete simulation methods or experiments,
one may assume that dislocations have already been
identified and their data are available in the form of
parameterized lines. Following the strategy intro-
duced by one of the authors in Ref. 22, CDD fields
can be obtained by

(i) discretizing the domain into voxels of vol-
ume DV

(ii) computing the line length Li, the average
line orientation ni and the average curva-
ture ki for each line segment i within each
voxel

(iii) computing CDD quantities for each segment
i, e.g., qð0Þi ¼ Li=DV, ðqð1ÞÞi ¼ qð0Þi ni and
q
ð0Þ
i ¼ qð0Þi ki

(iv) integrating or averaging over all N line seg-
ments within a voxel, e.g., qð1Þ ¼

PN
i¼1ðqð1ÞÞi.
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If the data are intended for use in simulations, this
may be followed by a convolution of the whole
domain with, e.g., a Gaussian function for numer-
ically smoothing the voxel data such that numerical
derivatives can be easily obtained.

RESULTS

To explain the information content of the CDDð1Þ

fields, we will now set up three quasi-2D test config-
urations, which represent thin slices of a volume.
This is then followed by a realistic 3D example where
the benefit of ensemble averaging is explained.

Basic Test Configurations

We apply the D2C framework to three dislocation
configurations, exhibiting a number of key features:
a distribution of statistically stored dislocation
(SSD) loops, wall and channel dislocations within
an idealized persistent slip band (PSB) and an
idealization of dislocations in a c=c0 superalloy. All
systems exhibit periodic boundary conditions and
the continuum fields are regularized using a Gaus-
sian function with a standard deviation of 5% of the
system size. The dislocation configuration of these
systems as well as the resulting fields used by the

CDDð1Þ theory are shown in Fig. 1. In the following,
the generation of the structures are outlined and
relevant features of the CDD fields are discussed.

The SSD configuration consists of a random
distribution of 20 circular dislocation loops with
radii ranging from 1/50 to 4/5 of the system size
within the same glide system. Varying radii were
chosen to demonstrate the resulting fluctuations of
the curvature density and the curvature in other-
wise relatively homogeneous systems. The system
exhibits spatial fluctuations in the total density as
well as in the GND density. There, the distinction
between SSDs and GNDs depends on the chosen
resolution: if the size of the averaging voxels
equals the size of the whole system, the GND
density will be zero because opposite loop segments
cancel each other out perfectly. A smaller averag-
ing size, on the other hand, reveals more local
features, which shows in fluctuation of the density
fields. Here, the actual resolution is given by the
width of the regularization function (for an exam-
ple of how the regularization width influences the
details of the microstructure, see Ref. 29). Curva-
ture density and mean curvature show a distinct
maximum as well as fluctuations. The maximum is
due to the combination of a high curvature with a
higher than average dislocation density. Curvature
fluctuations are due to the fact that loops have
different radii, and the curvature density is addi-
tionally weighted with the respective total density
inside each averaging volume. Therefore, it may
not be inferred that a high curvature density
generally also results in a high mean curvature
at the exact same site.

An idealized PSB structure was constructed by
randomly placing 30 straight edge dislocations with
positive and 30 with negative line direction into a
wall-like structure. The mean x positions for the two
dislocation characters inside one wall was shifted to
result in a mean distance of 3% of the system size to
capture the dipolar character of the dislocation wall
within PSBs. ‘‘Pill’’-shaped dislocations were placed
between the walls to represent threading screw
dislocations.

The system has a large total dislocation density,
which is mainly located inside the dislocation wall
structure, while, by comparison, the contribution of
threading screw dislocations is relatively small. The

edge component of the GND density qð1Þ1 reveals the
polarized character of the dislocation walls with a
‘‘neutral’’ axis in the middle of the dislocation wall.

The screw component of the GND density qð1Þ2
between the dislocation walls is smaller than the
edge component by two orders of magnitude and
outlines the position of the quasi-discrete threading
screw dislocations. Both the structure of the total
and the GND density are within the expectation of
physical intuition. As the threading screw disloca-
tions are the only non-straight segments, their
shape is reflected in the curvature density of the
system. Contrary to the SSD system, mean curva-
ture and curvature density look quite different. The
curvature exhibits a lens-like shape in the middle of
the channels with a symmetry axis parallel to the
wall structure. This can be explained based on the
influence of the straight segments with zero curva-
ture that form the dislocation walls: due to the
regularization width used during the D2C proce-
dure, they also contribute to the mean curvature
outside of the dislocation wall and decrease the
mean curvature in the channels close to the dislo-
cation walls. As this influence decreases, the high
curvature of the threading dislocations becomes the
sole contributing factor to the mean curvature and a
maximum is reached. This effect is caused by the
specific choice of parameters. Moreover, the PSB
structure may also be used to outline one of the

shortcomings of the CDDð1Þ theory: Within CDDð1Þ

fields, the exact composition of SSD densities is
unknown, i.e., the theory cannot differentiate
whether the SSDs of the dislocation walls consists
of a statistically stored edge or of statistically stored
screw dislocations. The next higher order theory,

CDDð2Þ, is able to capture this due to the second
order alignment tensor28

qð2ÞðrÞ ¼
Z 2p

0

qðr;uÞlðuÞ � lðuÞdu; ð6Þ

whose components qð2Þ11 and qð2Þ22 correspond to total
edge and screw dislocation density, respectively. For
the PSB system, these density measures are shown
in Fig. 2. Comparing them to qð0Þ and qð1Þ, it can be
inferred that the complete dislocation wall
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comprises edge dislocations, which in the inside of
the wall form dipole configurations and further
away form polarized edge GND configurations.

An idealization of dislocation structure within a
c=c0 superalloy is represented by a square precipi-
tate which is impenetrable for dislocations,

Fig. 1. Field variables of the first level of the CDD theory, CDDð1Þ, for different periodic dislocation structures. Density measures are scaled with
the mean of the total density, the curvature density is scaled with the mean of the total density and the mean curvature of the system, and the
curvature is scaled with the mean curvature of the system. The gray area in the right column represents the precipitate.
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surrounded by c channels in which dislocations are
located. The width of the channels amounts to 20%
of the system size, and four dislocations of the same
line character are placed in the channels around the
precipitate. It can be seen that the total dislocation
density is concentrated at the interface between
matrix and precipitate. The edge component of the
GND density is high at the vertical interface (i.e.,
perpendicular to the Burgers vector), and the
density of the screw GND component is concen-
trated at the horizontal interface. The curvature
density exhibits extrema at the corners of the
precipitate and is zero at the straight edges further
away from the corners. It may, however, be counter-
intuitive that the mean curvature exhibits a max-
imum in the center of the crossing of the channels,
while the curvature density is largest close to the
corners of the precipitate. The reason for this is the
same as the one given for the PSB system. Due to
the regularization width, straight segments still
contribute to the mean curvature at the precipitate
corners. Their contribution, however, is negligible
in the center of the crossing—the point furthest
away from the straight dislocation sections, which is
still fairly close to the corners.

Three-Dimensional Configurations

The test cases introduced before are useful for
elucidating which geometrical properties of systems
of dislocations can be described by CDD. We now

turn to a more realistic, three-dimensional system,
where dislocations evolve and interact, and we show
how D2C can be used together with ensemble
averaging to differentiate between emergent and
random dislocation structures.

The system is a periodic 3D simulation box with a
size of 17717 � 19550 � 23445 Burgers vector
lengths. It contains an impenetrable, pillar-like
precipitate along the z-axis. As initial values for
each simulation, we place two dipolar loops (con-
sisting of only dislocation segments with edge
character) on different slip systems at random
positions. The simulation was evolved with a con-
stant shear strain rate of 20 s�1 using the microMe-
gas DDD code.30 Material parameters were taken
from copper. After a simulated time of 10 ls the
simulation was stopped and the final configuration
converted into continuum fields on a 38 � 42 � 50
mesh. The dislocation structure and the correspond-
ing dislocation density of an example system, and
the density of an averaged system of 133 simula-
tions are shown in Fig. 3.

It can be seen that dislocations are deposited at
the interface of the precipitate and also form
somewhat regular structures in the matrix. Along
the precipitate interface, pair-like dislocation
arrangements, single dislocations and a disloca-
tion-free zone can be observed. The continuum
representation of this system exhibits very similar
features. From just this one system, it might be
assumed that the characteristics of this ensemble
are dislocations, which form structures across the
matrix and dislocations, being irregularly arranged
close to the precipitate. To investigate this, 133
simulations were conducted and ensemble averages
of the respective CDD fields were computed. Due to
periodic boundary conditions, special care has to be
taken when averaging the systems. If the ensemble
average is computed without taking into account
the fact that the system is translationally invariant
in the direction of the pillar due to periodic bound-
ary conditions, the result is a rather homogeneous
density, as can be seen in the left part of Fig. 4.

Fig. 2. Total (a) edge density qð2Þ11 and (b) screw density qð2Þ22 for the
PSB system.

Fig. 3. The D2C-based ensemble averaging of statistically equivalent DDD simulations reveals intrinsic structure. The precipitate is shown in red.
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Using an artifical ‘‘pinning point’’ by periodically
shifting the dislocation densities along the precip-
itate until the maxima align, a regular dislocation
arrangement at the matrix-precipitate interface can
be revealed. In the near vicinity of this ‘‘pinning
point’’, a clear maximum can be seen followed by a
regular sequence of low and high density with
decreasing amplitude. This can be nicely seen in the
right part of Fig. 4. This non-uniform dislocation
density distribution at the matrix-precipitate inter-
face is hence characteristic for the strain rate and
for a total simulation time of 10 ls we considered
(for larger simulation times a regular distribution of
dislocations at the interface is expected, but with
shorter wavelength and smaller amplitude). In the
matrix itself, the density is low compared to the
region in the vicinity of the precipitate. Thus, it
follows that the irregular arrangements of the
dislocations around the precipitate seen in Fig. 3
are not characteristic for this ensemble; dislocations
crossing the channel do not form regular structures
but are arranged randomly.

DISCUSSION AND CONCLUSION

With simulations becoming more realistic and
getting closer to experiments, the complexity of
required initial conditions increases. If these are
constructed in a wrong manner (e.g., not consistent
with the underlying theory), simulation results
might be completely wrong or even the numerical
scheme might fail. The D2C framework is a way for
converting discrete dislocation structures obtained
from experiments or DDD simulations, which guar-
antees physically correct initial values. We antici-
pate that this and similar strategies will become
indispensable for simulations in the future.

In the previous section, we showed that the infor-

mation contained in CDDð1Þ is already high enough to
properly characterize many relevant physical prop-
erties of given, idealized microstructures, such that
they can, e.g, be used as initial values. But we also
found that there may be situations where the infor-

mation content of CDDð1Þ is not sufficient and we
included extra information only contained in the next

higher order theory, CDDð2Þ. Including more and

more information, say from CDDðnÞ, we are able to

approximate the real, discrete microstructure in all
details—which is nice but of course computationally
undesirable. Reversing this direction, i.e., starting

from a (virtual) CDDðnÞ and decreasingn, one can also
think of this as a type of data compression. Of course,
one loses information, but for each order reduction
n 7!n� 1 , the amount of data that needs to be stored

is reduced, e.g., while CDDð2Þ requires 7 scalar fields

to be stored in the computer (qð0Þ, qð1Þ1 , qð1Þ2 , qð2Þ11 , qð2Þ12 ,

qð2Þ22 and qð0Þ), the amount of data required for CDDð1Þ

is reduced by	 40% (qð0Þ, qð1Þ1 , qð1Þ2 , and qð0Þ). Since one
has complete control over which details are lost, we
call this order reduction a ‘‘physical’’ compression of
dislocation microstructure data. Note that so far only
qð0Þ (and no higher order terms of q) was used as
independent field variable within the evolution

equations of CDDð1Þ and CDDð2Þ. Since D2C only uses
the field variables and not the evolution equations of
CDD, it might be interesting to study which
microstructural details can be included by addition-
ally considering, e.g., qð1Þ.

Sandfeld and Po showed in Ref. 22 how the D2C
strategy can be used to directly validate CDD
evolution equations: running a DDD simulation
alongside with a CDD simulation (with initial
values from D2C), the former can be taken as a
reference solution, where converting multiple time
steps of the discrete system to the corresponding
continuum fields via D2C allows a quantitative
comparison with the system evolved by the CDD
framework. This is particularly useful in situations
where no analytical solution is available or where
complex behavior might lead to counter-intuitive
results. D2C is a useful tool for the validation of a
CDD model and its implementation.

Dislocation-based plasticity in the micrometer
regime is strongly interconnected with size-depen-
dent and intermittent behavior together with scat-
ter of, e.g., the flow curves during plastic
deformation for which the heterogeneous disloca-
tion microstructure is responsible. In general, the
spatial or temporal fluctuations cannot be seen in
continuum simulations, since a density-based con-
tinuum model can be envisaged as representing an
ensemble average of statistically equivalent simu-
lations. Our 3D configuration nicely shows that D2C

Fig. 4. Line profiles of total dislocation density (red) as well as their ensemble average (black) for 60 realizations. The normalized direction �z runs
along the precipitate axis close to the matrix-precipitate interface. The left and right plots are without and with shift of the maxima. Values are
normalized with the mean total dislocation density of the respective 3D system, hqð0ÞiV .
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is also useful for computing and analyzing ensemble
averaging, when one tries to decide whether a
specific realization shows behavior that is or is not
characteristic or typical for the ensemble. Further-
more, in many situations, an ensemble average
might already be sufficient such that one does not
need to store all data from all separate simulations,
which might not be admissible due to limited
storage memory. For example, the file holding all
snapshots in time of the single system shown in
Fig. 3, which is a system with very few dislocations,
requires 11 MB of hard disk space. More complex
systems result in files of several GB in size. A

CDDð1Þ file is roughly around 10 MB, but does not
increase regardless how many dislocations are
contained. Additionally, averages over many simu-
lations can be done successively: instead of storing
discrete data of all systems and time steps before
averaging them, only the average of each time step
is stored and ‘‘improved’’ with each additional
discrete simulation.

Our vision is to extend the interfaces of the D2C
framework such that it can easily read and process
data from most common open source DDD and MD
codes—possibly even 3D TEM dislocation data.
Furthermore, we plan to extend the capabilities of
D2C towards computation of dislocation stress fields
within arbitrarily shaped, finite domains, which will
add another level of detail to our characterization
and analysis toolbox. Following the progress is
possible through the ‘‘D2C’’ website.31
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