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Two fundamental approximations in macroscale solid-mechanics modeling are
(1) the assumption of scale separation in homogenization theory and (2) the
use of a macroscopic plasticity material model that represents, in a mean
sense, the multitude of inelastic processes occurring at the microscale. With
the goal of quantifying the errors induced by these approximations on engi-
neering quantities of interest, we perform a set of direct numerical simula-
tions (DNS) in which polycrystalline microstructures are embedded
throughout a macroscale structure. The largest simulations model over 50,000
grains. The microstructure is idealized using a randomly close-packed Voronoi
tessellation in which each polyhedral Voronoi cell represents a grain. An face
centered cubic crystal-plasticity model is used to model the mechanical re-
sponse of each grain. The overall grain structure is equiaxed, and each grain is
randomly oriented with no overall texture. The detailed results from the DNS
simulations are compared to results obtained from conventional macroscale
simulations that use homogeneous isotropic plasticity models. The macroscale
plasticity models are calibrated using a representative volume element of the
idealized microstructure. Ultimately, we envision that DNS modeling will be
used to gain new insights into the mechanics of material deformation and
failure.

INTRODUCTION

A key challenge for predictive modeling in solid
mechanics is upscaling the multitude of inelastic
processes occurring at the microscale without filter-
ing emergent phenomena such as strain localization
and fracture. Furthermore, any macroscale engi-
neering quantity of interest, used in formulating an
engineering decision, should have quantified error/
uncertainty due to intrinsic material variability and
various sources of modeling error such as homoge-
nization, discretization error in finite-element anal-
ysis, and model-form error in constitutive modeling.
Engineered structures composed of metallic mate-
rials typically contain complex spatially varying
polycrystalline microstructures resulting from the

manufacturing process. The manufacturing process
not only alters the microstructure but also creates a
complex spatially varying texture (non-uniformly
random crystal orientations).1,2 This is particularly
true for laser-based metal additive manufacturing
in which new material is deposited in a melt pool on
the preceding layers.3 The rapidly varying temper-
ature field within the additive process produces an
extremely complex microstructure and internal
state. For these structures, the quantification of
macroscale uncertainty is particularly challenging.

Homogenization theory provides a mathematical
basis for upscaling the microstructural response to
the macroscale. The fundamental approximation in
homogenization theory is that there exists a ‘‘scale
separation’’ between the microscale and the
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macroscale. The actual scales used in this approx-
imation are problem-dependent. One heuristic def-
inition is that the length scale of the macroscopic
geometric feature should be much larger than the
average grain size. The scale-separation approxi-
mation is crucial to macroscale solid-mechanics
modeling since it provides a clear separation
between the material, with well-defined objective
macroscale properties, and the response of the
macroscale structure modeled using continuum
mechanics. In cases where the assumption of scale
separation is inapplicable, predicting the macro-
scale response becomes much more difficult as one
then needs to embed the material microstructure
directly within the macroscale structure.4–6

In macroscale constitutive modeling, there are
typically several models available that can each be
precisely calibrated to available test data, but can
differ in their predictions away from the calibration
points. For example, for simplicity, many engineer-
ing materials are approximated as isotropic, even
though they exhibit some degree of anisotropy. To
actually distinguish between the two models
requires additional tests beyond those required to
minimally identify the isotropic parameters. In the
plastic regime, even for an isotropic material, there
are several types of yield criteria, e.g., Tresca, von
Mises,7 and the Hosford class of yield surfaces.8 A
single tensile test cannot distinguish between the
different yield criteria. These types of modeling
errors are referred to as ‘‘model-form errors.’’

In an era of petascale computing, and the promise
of future exascale computing9, it is now possible to
perform direct numerical simulations (DNS) in solid
mechanics, where the microstructure is modeled
directly in a macroscale structure.10 With the dual
goals of understanding material variability and
quantifying the effect of model-form errors on
engineering quantities of interest, we perform a
set of direct numerical simulations in which poly-
crystalline microstructures are embedded through-
out a macroscale structure. Ideally, these
microstructures and internal state variables would
be generated through material process modeling11

or reconstructed from experimental observations.12

Here, the microstructure is idealized using a
Voronoi tessellation seeded with a maximal Pois-
son-sampling process.13 This type of Voronoi con-
struction results in an equiaxed microstructure.10

Other physically motivated Voronoi constructions
are possible.14 Each Voronoi cell is taken to be a
grain with no preferred crystal orientation (no
texture). An face centered cubic (FCC) crystal-
plasticity model is then used to model the mechan-
ical response of each grain.15,16

A voxelation approach is used to embed the
microstructure into the macroscale structure.10

The macroscale structure is discretized with a
highly refined finite-element mesh with element
sizes several times smaller than the grain size. Each
finite element is assigned the properties of the grain

containing the centroid of the hexahedral element.
This approach to microstructural embedding is
simple and robust, unlike an explicit microstruc-
tural meshing approach in which degenerate ele-
ments are invariably created making it difficult
to simulate numerous realizations of the
microstructure.12,17–19

The largest simulations model over 50,000 grains
within a small macroscale structure, a tube with
two side-holes loaded in tension. Results from the
DNS simulations are compared to those obtained
from conventional macroscale simulations that use
isotropic rate-independent plasticity. The macro-
scale plasticity models are calibrated using a
representative volume element of the idealized
microstructure using homogenization techniques.

This paper is organized as follows. The DNS
method for solid mechanics is reviewed in ‘‘Direct
Numerical Simulation’’ section. The material and
microstructural model are presented in ‘‘Material
and Microscale Model’’ section. The process for
obtaining the homogenized properties, both in the
elastic and plastic regime, is detailed in ‘‘Macroscale
Material Model’’ section. The DNS results from the
macroscale structure are presented in ‘‘Simulation
of a Tube with Side-Holes Loaded in Tension:
Comparison of DNS and Macroscale Material Mod-
els’’ section, including a comparison of the response
of the macroscale structure using both DNS and
homogenization. Conclusions and future work are
given in ‘‘Conclusions’’ section.

DIRECT NUMERICAL SIMULATION

An approach for directly simulating microstruc-
ture within a macroscale structure has been
recently proposed by Bishop et al.10 This methodol-
ogy is adopted here, and is briefly reviewed in this
section. Other methods for microstructural embed-
ding and DNS modeling have been used by other
researchers.6,20,21

The explicit meshing of polycrystalline grains of
general morphology, using a mesh that conforms to
the grain boundaries, is challenging and typically
requires a certain amount of user intervention. The
likelihood of requiring user intervention increases
as the number of grains increases. This meshing
problem is currently an active area of
research.12,17–19,22,23 Constructing a mesh that is
conformal both with the geometry of the
macrostructure and microstructure is even more
challenging. One goal of this work is to perform
direct numerical simulations on a large number of
microstructural realizations (an ensemble). Each
realization contains many thousands of grains.
Thus, a robust discretization approach is needed.
For this reason, we adopt an approach in which the
macroscale structure is meshed explicitly with
hexahedral finite elements, but the microstructure
is only pixelated/voxelated (using the same mesh).
This is a common technique in the modeling of
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composite and polycrystalline microstructures
within a representative volume element.24,25 Pyle
et al. have compared the use of a voxelation
representation of the grain structure to the use of
a conformal tetrahedral mesh in polycrystal simu-
lations.26 One of their conclusions was that the
texture evolution and statistical distribution of
stress were similar for both representations, in
addition to the mean (macroscopic) behavior. In this
work, we are not attempting to resolve the detailed
stress and strain fields near the grain boundaries.
Instead, we are interested in the mean response
within a grain and stress and strain fluctuations
above the grain scale induced by the grain struc-
ture. With this goal in mind, a voxel representation
of the grain structure is deemed sufficient.

To model the microstructure directly within a
macroscale structure, we leverage high-perfor-
mance computing resources and use a finite-ele-
ment mesh that is fine enough to resolve the
microstructural detail. A volume of 1 cm3 containing
125-lm-sized grains contains approximately
512,000 grains. The direct numerical simulation of
the microstructure within this volume requires
many millions of finite elements to sufficiently
resolve the grain structure. The use of such a highly
refined mesh requires massively parallel finite-
element software and for an implicit solution, an
equation solver that can scale to thousands of
processors. In this work, we use the implicit solid
mechanics module within the Sierra multiphysics
finite-element software suite27 and the FETI-DP
solver. FETI-DP is a domain-decomposition itera-
tive solver that uses Lagrange multipliers to enforce
compatibility at the subdomain interfaces.28

For an example of the DNS modeling approach,
consider the round-bar tension specimen shown in
Fig. 1a. First, a coarse conformal hexahedral mesh
of the macroscale structure is created as shown in
Fig. 1b. This base mesh is referred to as the r0-mesh
refinement. Subsequent hexahedral mesh refine-
ments, r1, r2, r3,… are obtained through uniform
hierarchical refinement in which each hexahedron
is divided into eight hexahedra. New surface nodes
created during each refinement are located on the
exact macroscale geometry. Figure 1c shows the r1-
mesh refinement. The hierarchical refinement is
continued until the element size is sufficiently small
to resolve each grain to the desired level of accuracy.
In this work, the meshing tool CUBIT29 was used to
create both the geometry and hexahedral meshes.

Next, a bounding box of the macroscale structure is
created. The model microstructure is then created
within this bounding box. This is demonstrated in
Fig. 2 using only the gauge section of the round-bar
tension specimen. The model microstructure is the
idealized equiaxed Voronoi microstructure devel-
oped in ‘‘Material and Microscale Model’’ sec-
tion. Each finite element is assigned to a specific
grain based on the location of the centroid of the
hexahedral element. The resulting grain imprinting

is shown in Fig. 3 for several levels of mesh refine-
ment. For this example, there are approximately six
grains through the diameter of the gauge section. The
base r0 hexahedral mesh barely resolves the grain
structure with one element per grain, approxi-
mately. Mesh refinements r1 through r4 resolve the
grain structure with approximately 23, 43, 83, and
163 hexahedral elements per grain, respectively. The
grain structure begins to emerge at the r2 level of
mesh refinement, and is clearly discernible at higher
levels of mesh refinement, r3 and r4.

There is a trade-off between modeling as many
grains as possible within the macroscale structure
(resulting in a smaller number of hexahedral ele-
ments per grain) and minimizing the finite-element
discretization error (resulting in a larger number of
hexahedral elements per grain). As shown in
‘‘Macroscale Material Model’’ section, a mesh refine-
ment level in which there are approximately 83

hexahedral elements per grain (three levels of mesh
refinement beyond the first mesh that resolves the
grain structure) sufficiently minimizes the finite-
element discretization error for present purposes.
This will be referred to as a ‘‘+3’’ level of mesh
refinement with respect to the grain structure. The
example in Fig. 3d corresponds to a +3 mesh refine-
ment. This level of relative mesh refinement will be
used in the example presented in ‘‘Simulation of a
Tube with Side-Holes Loaded in Tension: Comparison
of DNS and Macroscale Material Models’’ section.

MATERIAL AND MICROSCALE MODEL

The material modeled in this study is AISI 304L
stainless steel. This material possesses an austeni-
tic (c-Fe) microstructure and an FCC crystal system.
A micrograph is shown in Fig. 4a. The microstruc-
tural model is presented in ‘‘Microstructural Model’’
section. The crystal plasticity model is reviewed in
‘‘Crystal-Plasticity Model’’ section.

Microstructural Model

Ideally, the full three-dimensional grain struc-
ture, texture, and internal hardening state of the
material would be obtained through a combination
of direct measurement and process modeling that
included the full manufacturing history. This level
of capability in both modeling and experimental
characterization is the vision of Integrated Compu-
tational and Materials Engineering (ICME).30 Here,
we do not perform any type of process modeling, but
rather assume an initial textureless equiaxed
microstructure. A thermodynamically consistent
microstructure could be derived using phase-field
modeling14,31 or kinetic Monte Carlo,11,32,33 for
example, or other thermodynamically motivated
techniques.34 For efficiency and robustness, here
we use an idealized microstructure derived from a
classical Voronoi tessellation. The particular Vor-
onoi construction used in this work is detailed in the
work of Bishop et al.,10 and is briefly reviewed here,
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although other physically motivated Voronoi con-
structions are possible.14 While a Voronoi tessella-
tion can be formed from any finite set of points or
seeds, a special structure arises from the close
packing of equisized hard spheres, called random
close-packing (RCP). The RCP structure is realized
by a spatial sampling process known as maximal
Poisson disk sampling (MPS). This seeding process
and subsequent Voronoi construction are demon-
strated in Fig. 4b–d. For the RCP structure, the
average aspect ratio of each Voronoi cell is approx-
imately one. Thus, the RCP Voronoi structure
provides an equiaxed grain structure. Note that
the faces of each Voronoi cell are planar, while for a
physical grain they are generally non-planar.

Each Voronoi cell is taken to represent a single grain.
The initial crystal orientation within a grain is taken to
be uniform. The orientation of each grain is taken to be
an independent, identically distributed, random vari-
able with no preferred orientation (no texture). Care is

needed in randomly assigning the grain orientations to
actually realize a no-texture state (see, for example,
Refs. 35 and 36). In the absence of a crystal texture, the
initial homogenized mechanical response of the mate-
rial is isotropic. The effective mechanical properties of
this material structure will be discussed in detail in
‘‘Macroscale Material Model’’ section.

Crystal-Plasticity Model

The mechanical response of each FCC grain is
modeled using an elasto-viscoplastic crystal-plastic-
ity model developed by Maniatty et al.2,15,16 This
model is partially reviewed here with relevant
material parameters defined.

For the elastic response, the austenite FCC
crystal structure possesses cubic symmetry with
elastic constants C11 ¼ 204:6GPa, C12 ¼ 137:7GPa,
and C44 ¼ 126:2GPa.37 The anisotropy ratio A for
this crystal is A ¼ 2C44=ðC11 � C12Þ ¼ 3:77, which is
relatively large. For an isotropic material, A ¼ 1.

The plastic velocity gradient Lp is given by

Lp ¼
X12

a¼1

_ca Pa ; ð1Þ

where _ca is the rate of plastic shear on the a slip
system, and Pa is the Schmid tensor defined as

Pa ¼ ma � na ; ð2Þ

where na and ma are the slip plane normal and slip
direction of the a slip system, respectively. The sum-
mation in Eq. 1 is over each of the 12 FCC slip systems.

The plastic shear rate _ca on slip system a is
modeled as

_ca ¼ _c0

sa

ga

����

����
1=m

signðsaÞ ; ð3Þ

where sa is the resolved shear stress on slip system
a, ga is the slip system hardness, _c0 is the reference
plastic shear rate, and m is the material rate
sensitivity. Smaller values of m result in a less
rate-sensitive material response.

Within the Voce–Kocks model of work hardening,
all slip systems harden at the same rate and start
with the same hardness. Under this assumption,
the superscript a can be dropped from ga. The
hardness evolution is modeled as

Fig. 1. (a) Example structure, a round-bar tension specimen. (b) Base hexahedral mesh denoted as r0. (c) Subsequent hexahedral meshes,
r1; r2; r3; . . . are obtained from uniform hierarchical refinement in which each hexahedron is divided into eight. New surface nodes created during
each refinement are located on the exact geometry. Here, r1 is shown. (Reproduced with permission from Ref. 10).

Fig. 2. Imprinting of a microstructure onto a macroscopic structure,
here the gauge section of the round-bar tension specimen shown in
Fig. 1. The bounding box enclosing the gauge section is first tes-
sellated using the Voronoi structure shown in Fig. 4. The
microstructural imprinting is done implicitly by identifying the Voronoi
cell that contains a given hexahedral centroid. The results are shown
in Fig. 3. (Reproduced with permission from Ref. 10).
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_g ¼ G0
gs � g

gs � g0

� �
_c ; ð4Þ

where G0 is the hardening rate, g0 is the initial
resolved shear strength, and _c is the total plastic
shear rate on all slip systems defined as

_c ¼
X12

a¼1

j _caj : ð5Þ

The saturation value of the hardness gs is given by

gs ¼ gs0

_c
_cs

����

����
x

; ð6Þ

where gs0
, _cs, and x are material parameters. In this

work, we take x ¼ 0 so that gs ¼ gs0
. The values of

the remaining material parameters are given in
Table I. These parameter values result in a plastic
response that is representative of 304L in the small
strain regime. More sophisticated hardening mod-
els, both self and latent, are available in the
literature but are not explored here.38–40

MACROSCALE MATERIAL MODEL

Our goal in this section is to develop a homogenized,
macroscale, material model, in both the elastic and
plastic regimes, for the polycrystalline material pre-
sented in ‘‘Material and Microscale Model’’ section. By
construction, the model microstructure defined in
‘‘Microstructural Model’’ section is homogeneous and
isotropic (at least initially) at the macroscale. The
homogenized elastic properties of the model
microstructure were previously obtained by Bishop
et al. using a limiting process based on representative
volume elements.10 The effective Young’s modulus
and Poisson’s ratio are 197.6 GPa and 0.294, respec-
tively. For the homogenized plastic response, a con-
current computational homogenization approach has
been proposed by Kouznetsova et al.41,42 Here, we
approximate the homogenized plastic behavior using
two macroscale, rate-independent, isotropic, plastic-
ity models: (1) one that uses the von Mises yield
surface,7 and (2) another that uses the more general
Hosford yield surface.8 Each plasticity model assumes
isotropic hardening in stress space.

Fig. 3. A succession of refined hexahedral meshes illustrating the resolution of the grain structure. There are approximately six grains through
the diameter of the gauge section of the round-bar specimen. (a) Base r0 hexahedral mesh with approximately 1 hexahedral element per grain.
(b)–(e) Mesh refinements r1 through r4 with approximately 23, 43, 83, and 163 hexahedral elements per grain, respectively. The relative mesh
refinement shown in case (d) is used for all results presented in this paper (Reproduced with permission from Ref. 10).

Fig. 4. (a) Grain structure of wrought 304L stainless steel identified through electron backscatter diffraction (EBSD). (b) Random close-packing
of a 2D region also known as maximal Poisson disk sampling (MPS). Two exclusion disks are identified. (c) Voronoi diagram of a set of points in
the plane. (d) Voronoi tessellation of a 3D region after MPS sampling. (Reproduced with permission from Ref. 10).
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Representative Volume Element

In order to identify the parameters in the
macroscale plasticity models, we use a representa-
tive volume element (RVE) approach. First, we need
to identify a sufficiently large volume of grains so
that the macroscale properties are independent of
both the size of the volume and the boundary
conditions applied to the volume (uniform tractions
or displacements). If the microstructure were peri-
odic, periodic boundary conditions could be applied
to a unit cell to calculate the homogenized material
properties following the standard asymptotic
homogenization procedure.43–46 For the present
random polycrystalline microstructure, in which a
periodic unit cell does not exist, the homogenized
material properties must be obtained from a limit-
ing process in which increasingly larger sample
sizes are considered.10 This limiting process is
necessary to obtain unique material properties that
are not dependent upon the boundary conditions
applied to the sample of material. Second, we need
to identify a level of mesh refinement for each grain
so that the macroscale properties are insensitive to
further mesh refinement.

To understand the importance of choosing a
representative volume size, consider a sequence of
increasingly larger material volumes (samples), and
thus an increasing number of grains, each with
geometric similitude. Each sample volume and
microstructural realization is called a stochastic
volume element (SVE),47 since the apparent mate-
rial properties are inherently stochastic. Only in the
limit of an infinitely large SVE do these apparent
material properties become independent of the
boundary conditions applied to the SVE (e.g., stat-
ically uniform tractions, kinematically uniform dis-
placements, or periodic displacements). The
resulting unique material properties are called
effective material properties. These properties are
deterministic. Any SVE of finite size, but suffi-
ciently large with apparent material properties
approximately equal to the effective material prop-
erties, is called a representative volume element
(RVE). The appropriate RVE size and the conver-
gence behavior of the apparent material properties
to the effective material properties have been stud-
ied extensively in the literature,24,48–52 although

mostly in the elastic regime. The terms apparent
and effective material properties were defined by
Huet in his proof of the Partition Theorem.53

In order to choose an appropriate RVE size and
finite-element mesh refinement, a hierarchy of three
SVE volumes is considered. The smallest volume
contains approximately 43 grains. Subsequent vol-
umes are obtained by doubling the dimensions
resulting in 8 times the volume and approximately
8 times as many grains as the previous SVE size.
Thus, the second SVE size contains approximately 83

grains, and the third SVE size approximately 163

grains. (Note that the crystal-plasticity model
described in ‘‘Crystal-Plasticity Model’’ section has
no inherent length scale. Thus, the physical size of
the grains is not significant, but only the number of
grains per unit of volume.)

For the finite-element discretization of each SVE,
the voxelation paradigm described in ‘‘Direct Numer-
ical Simulation’’ section is used. The smallest volume
(containing approximately 43 grains) is meshed
uniformly with 163 hexahedral elements resulting
in approximately 43 elements per grain. This level of
mesh refinement will be referred to as the ‘‘+2 mesh’’,
since the level of mesh refinement is two hierarchical
levels above the mesh resolution that just resolves a
grain (with 13=1 element). There are 8 times as many
finite elements for each subsequent refinement in
the sequence, and therefore 8 times as many hexa-
hedral elements per grain. Thus, there are approx-
imately 83 elements per grain in the +3 mesh and
approximately 163 elements per grain in the +4
mesh. This hierarchy of SVE sizes and finite-element
mesh resolutions is shown in Fig. 5.

For the following SVE/RVE simulations, either
statically uniform normal tractions or kinematically
uniform displacement boundary conditions are
applied to the faces of an SVE in order to reproduce
the desired mean stress state or strain state. In the
absence of body forces or imperfect interfaces, the
volume-averaged Cauchy stress hri in the deformed
configuration is related to the surface tractions by
the relationship54

hri¼: 1

v

Z

v

r dv ¼ 1

v

Z

Cv

x� t dCv ; ð7Þ

where v is the volume of the SVE in the deformed
configuration, x is the position vector in the
deformed configuration, t is the surface traction
vector, and Cv represents the surface of the RVE in
the deformed configuration. In the absence of inter-
nal surface discontinuities or voids, the volume-
averaged deformation gradient hFi in the unde-
formed configuration is given by54

hFi¼: 1

V

Z

V

F dV ¼ 1

V

Z

CV

x�N dCV ð8Þ

where V is the volume of the SVE in the undeformed
configuration, and N is the surface normal in the
undeformed configuration.

Table I. Material parameters used in the crystal-
plasticity model, Eqs. 3–6

Parameter Value Units

m 0.01 –
_c0 0.01 1 / s
G0 465 MPa
g0 130 MPa
gs0

230 MPa
x 0 �
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Given the volume-averaged deformation gradient,
any strain measure can be calculated. Here, we use
the logarithmic or true strain E defined as

E ¼ lnU ; ð9Þ
where U is the material stretch tensor given by

U ¼
X3

i¼1

ki Ki � Ki ; ð10Þ

and fk2
i ;Ki; i ¼ 1; 2; 3g are the eigenvalues and

eigenvectors of the right Cauchy–Green tensor C
given by

C ¼ U2 ¼ hFiThFi : ð11Þ
For reporting simulation strain results, including
both SVE and DNS results (shown in ‘‘Simulation of
a Tube with Side-Holes Loaded in Tension: Com-
parison of DNS and Macroscale Material Models’’
section), we define an equivalent logarithmic strain
�e as

�e¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dev E : dev E

r
; ð12Þ

where dev E ¼ E� 1
3 trðEÞ
� �

I is the deviatoric part
of the strain tensor, trð�Þ is the trace operator, and I
is the identity tensor. The 2/3 factor gives consis-
tency with the case of uniaxial loading in the plastic
regime where Poisson’s ratio is 1/2. For reporting
simulation stress results, we use the von Mises
equivalent stress rVM given by

rVM¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
dev hri : dev hri

r
: ð13Þ

The equivalent logarithmic strain fields for three
SVE microstructural realizations, loaded in uniaxial
stress, are shown in Fig. 6. Each SVE contains
approximately 163 grains. The þ3 mesh resolution
was used in the simulations. The stress rate was 1
MPa/s with results shown corresponding to a vol-
ume-averaged stress of 400 MPa. Statically uniform

Fig. 5. Three stochastic volume elements (SVEs) of increasing size, and thus with increasing numbers of grains, and increasing levels of mesh
refinement: (a–c) approximately 43 grains, (d–f) approximately 83 grains, and (g–i) approximately 163 grains. Three levels of mesh refinement are
shown for each SVE size: (a, d, g) approximately 43 elements per grain (+2 mesh), (b, e, h) approximately 83 elements per grain (+3 mesh), and
(c, f, i) approximately 163 elements per grain (+4 mesh). These SVEs are used to determine an appropriate RVE size and level of mesh
refinement. (The color of each grain is arbitrary, and does not indicate crystal orientation).
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tractions were applied to the SVE in order to obtain
a volume-averaged uniaxial stress state as
described below.

A series of SVE simulations was conducted to
choose an appropriate RVE size (number of grains)
and mesh refinement level (þ2, þ3, or þ4). Stati-
cally uniform tractions were applied at 1 MPa/s to
the þx face in the x direction of the SVE in order to
obtain a volume-averaged uniaxial stress state. In
order to increase the effective size of the SVE,
symmetry boundary conditions were applied on the
�x, �y, and �z faces. The effect of SVE size on the
stress–strain response is shown in Fig. 7 using the
þ3 mesh refinement. Results from three microstruc-
tural realizations are shown for each case. There is
some variation in the results between the different
realizations for the 43 grain case, but very little
scatter in the results for 83 grains. The case of 163

has no discernible scatter and is effectively deter-
ministic. Thus, we assign a minimum RVE size as a
volume containing approximately 163 grains.

The effect of mesh refinement (þ2, þ3, and þ4) on
the stress–strain response of an SVE is shown in
Fig. 8 for three SVE sizes: (a) 43 grains, (b) 83

grains, and (c) 163 grains. Each SVE is loaded in
uniaxial tension. Results from one microstructural
realization are shown for each case. There is some
sensitivity to mesh refinement for each SVE size.
The largest change is seen between the þ2 and þ3
mesh refinements. As a compromise between the
competing goals of mesh-independent results and
maximizing the number of grains modeled with a
given mesh, the þ3 mesh refinement will be used in
all remaining RVE and DNS analyses.

Strain-Rate Sensitivity

In order to understand the strain-rate sensitivity
of the polycrystalline material, several RVE simu-
lations were performed in strain control at three
engineering strain rates, 5 � 10�5/s, 5 � 10�4/s, and
5 � 10�3/s. The stress–strain results are shown in
Fig. 9. Results from three microstructural realiza-
tions are shown for each strain rate, with no
observable scatter in the results. There is minor
strain-rate dependence evident in the results. For
the macroscale plasticity model, we could use a

strain-rate dependent hardening model such as the
Johnson–Cook model55 or we could use a viscoplas-
tic constitutive model.56 Since the observed strain-
rate dependence is small, we instead use a rate-
independent macroscale plasticity model. This
approximation is another type of model-form error.

As noted previously, all stress-controlled SVE/
RVE simulations in this work have been performed
at a stress rate of 1 MPa/s. For the hardening
behavior exhibited by the polycrystalline material,
this stress rate is approximately equal to a strain
rate of 5 � 10�4/s.

Calibration of Macroscale Plasticity Models

The Hosford family of isotropic yield surfaces is
defined by the implicit surface

f ðr;�epÞ ¼ /ðrÞ � ryð�epÞ ¼ 0 ð14Þ
where ryð�epÞ is the hardening function, �ep is the
equivalent plastic strain defined in Eq. 23, and /ðrÞ
is the Hosford effective stress given by57

/ðrÞ ¼ 1

2
jr1 � r2ja þ jr1 � r3ja þ jr2 � r3jað Þ

� 	1=a

;

ð15Þ

where r1, r2, and r3 are the principal stresses, and
a 2 ½1;1Þ is a material parameter. For a given yield
surface, the value of a is not unique. Multiple values
of a can correspond to the same yield surface. The
cases a ¼ 2 and a ¼ 4 correspond to the von Mises
yield surface. The cases a ¼ 1 and a ¼ 1 correspond
to the Tresca yield surface. For a 2 ð1; 4Þ and
a 2 ð4;1Þ, the yield surface is between the Tresca
and von Mises surfaces as illustrated by a ¼ 8 in
Fig. 10.

A numerical implementation of the Hosford plas-
ticity algorithm provided by Scherzinger57 is used
here. The algorithm assumes associated flow so that
the plastic flow direction is given by the normal to
the yield surface. We also assume isotropic harden-
ing in stress space so that the yield surface hardens
proportionally along all possible stress paths.

In order to define the hardening response ryð�epÞ of
an RVE, we first need to recover the plastic strain.
To this end, we additively partition the strain E into

Fig. 6. Equivalent logarithmic strain fields for the three microstructural realizations (a)–(c) loaded uniaxially in stress control to a volume-
averaged stress of 400 MPa. The stress rate was 1 MPa/s.
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elastic Ee and plastic Ep components. In elastoplas-
ticity, it is customary to assume that the total
deformation gradient F can be decomposed into
elastic Fe and plastic components Fp so that,

hFi ¼ Fe Fp : ð16Þ

Then,

U2 ¼ hFiThFi ¼ ðFpÞTðFeÞT Fe Fp ¼ ðFpÞTðUeÞ2 Fp

¼ ðUpÞTðUeÞ2 Up :

ð17Þ
In the RVE simulations used in this work, the loading
is applied in principal stress directions (no shear
loading). Also, the strain derived from the volume-
averaged deformation gradient (Eq. 9) is less than
5%, so that minimal texture is developed during
deformation. We approximate the homogenized elas-
ticity tensor as being constant during deformation.
We also assume that the effective macroscale plastic
response remains isotropic. It follows that Ue and Up

are diagonal, and thus commute, so that

U2 ¼ ðUeÞ2ðUpÞ2 : ð18Þ
Taking the matrix logarithm of both sides gives

lnU ¼ lnUe þ lnUp ; ð19Þ
so that

E ¼ Ee þ Ep : ð20Þ
We obtain the RVE-level elastic strain tensor Ee

directly from the RVE-averaged Cauchy stress
tensor,

0 0.01 0.02 0.03 0.04 0.05
true strain

0

100

200

300

400

500

0 0.01 0.02 0.03 0.04 0.05
true strain

0

100

200

300

400

500

0 0.01 0.02 0.03 0.04 0.05
true strain

0

100

200

300

400

500

tr
ue

 s
tr

es
s 

 (
M

P
a)

(a) (b) (c)

43 grains 83 grains 163 grains

Fig. 7. Stress versus strain of an SVE loaded in uniaxial tension showing the effect of SVE size (number of grains): (a) 43 grains, (b) 83 grains,
and (c) 163 grains. Results from three microstructural realizations are shown for each case. The þ3 mesh refinement is used. The SVEs are
loaded at a stress rate of 1 MPa/s. (The symbol denotes the end of the simulation resulting from either completion of the loading or numerical
difficulties in the crystal-plasticity algorithm due to locally high deformation near the surface of the SVE).
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Fig. 8. Effect of mesh refinement (þ2, þ3, and þ4) on the stress–strain response of SVEs loaded in uniaxial tension for three SVE sizes: (a) 43

grains, (b) 83 grains, and (c) 163 grains. Results from one microstructural realization are shown for each case. The SVEs are loaded in stress
control at a stress rate of 1 MPa/s.
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Fig. 9. Stress versus strain for an RVE loaded in strain control at
three engineering strain rates, 5� 10�3/s, 5� 10�4/s, and 5� 10�5/
s. Results from three microstructural realizations are shown for each
strain rate. (Each RVE contains approximately 163 grains, þ3 mesh
refinement. The symbol denotes the end of the simulation).
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Ee ¼ Sisohri ; ð21Þ
where Siso is the isotropic compliance tensor
obtained in.10 Then,

Ep ¼ E� Sisohri : ð22Þ
Finally, an equivalent plastic strain �ep is defined as
usual,7

�ep¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
Ep : Ep

r
: ð23Þ

Figure 11 shows the stress versus plastic strain for
an RVE loaded in uniaxial tension. A stress value of
250 MPa was assigned as the proportional limit
(onset of plastic strain) for the RVE. This hardening
response ryð�epÞ is used for both the von Mises and
Hosford macroscale plasticity models.

The yield surface, in plane stress, of the polycrys-
talline material (RVE) is shown in Fig. 12 for
equivalent plastic strain values of 0:2% and 2:0%.
Results from three RVE microstructural realiza-
tions are shown at discrete values of the stress ratio
r2=r1. The biaxiality angle h ¼ tan�1 r2=r1 is varied
by increments of 7:5� starting at h ¼ �45� and
stopping at h ¼ 45�. Symmetry conditions were used
to construct the remainder of the yield surfaces. The
von Mises yield surface is also shown. Note that the
difference in the yield surface of the RVE and the
von Mises yield surface in the biaxial loading
conditions r2 ¼ �r1 and r2=r1 ¼ tan 30�.

To calibrate the Hosford yield surface, we use two
of the flow stress values reported in Fig. 12 at an
equivalent plastic strain of �ep ¼ 0:2%. For r2 ¼ 0,
r1 ¼ 326MPa. For r2=r1 ¼ tan 30�, r2 ¼ 208MPa.
Using these values in Eq. 15 gives the following
equation for the parameter a,

ð
ffiffiffi
3

p
� 1Þa þ ð

ffiffiffi
3

p
Þa � 2ð1:565Þa þ 1 ¼ 0 : ð24Þ

Using the secant method of root finding with
a 2 ½1; 2� we obtain a ¼ 1:49. This value of a is not
unique. For the range a 2 ½4;1Þ, we obtain equiv-
alently a ¼ 6:53. The identified Hosford yield sur-
face is shown in Fig. 12. This yield surface fits the
RVE biaxial response very well for both ep ¼ 0:2%
and ep ¼ 2:0%.

Figure 13 compares the stress–strain response of
an RVE and the calibrated von Mises and Hosford
macroscale plasticity models for three biaxial stress
states: (a) uniaxial tension, (b) r2=r1 ¼ tan 30�, and
(c) r2=r1 ¼ �1. For the RVE, three microstructural
realizations are shown. The equivalent stress is the
Mises equivalent stress rVM, and the equivalent
strain �e was defined in Eq. 12. There is some error
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Fig. 10. Comparison of yield surfaces in plane stress: von Mises,
Tresca, and Hosford (a ¼ 8).
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tension. Results from three microstructural realizations are shown.
This hardening response is used in both the von Mises and Hosford
macroscale plasticity models. (stress rate = 1 MPa/s, approximately
163 grains, þ3 mesh refinement).
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Von Mises yield surface (a ¼ 2 or a ¼ 4) and Hosford yield surface
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von Mises equivalent stress rate = 1 MPa/s, approximately 163

grains, þ3 mesh refinement).
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evident in the von Mises plasticity model, whereas
the calibrated Hosford model shows little error in
the stress–strain response.

SIMULATION OF A TUBE WITH SIDE-HOLES
LOADED IN TENSION: COMPARISON

OF DNS AND MACROSCALE MATERIAL
MODELS

The example macroscale structure is a tube with
side-holes as shown in Fig. 14. The tube is loaded
quasi-statically in tension into the plastic regime.
Additional analysis of the tube loaded non-propor-
tionally in tension–torsion will be the subject of a
future communication. The dimensions of the tube
and definition of the loading are given in ‘‘Tube

Geometry and Loading’’ section. Details of the
hexahedral meshing are given in ‘‘Tube Meshing’’
section. The embedded microstructure is shown in
‘‘Embedded Microstructure’’ section. DNS stress
and strain results are given in ‘‘Stress and Strain
Results’’ section for three microstructure realiza-
tions. These results are then compared to results
obtained using the macroscale elastic-plastic mate-
rial models calibrated in ‘‘Macroscale Material
Model’’ section.

Tube Geometry and Loading

The dimensions of the tube are given in Fig. 15 in
nondimensional units. For specificity, we take the
units to be millimeters, but only the size of the tube
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Fig. 13. Comparison of the stress–strain response of an RVE and the calibrated macroscale plasticity models (von Mises and Hosford ) for three
stress conditions: (a) uniaxial tension, (b) biaxial loading with r2=r1 ¼ tan 30�, and (c) biaxial loading with r2=r1 ¼ �1. The von Mises equivalent
stress rVM and equivalent logarithmic strain �e are used. (For the RVE, three microstructural realizations are shown, Mises equivalent stress rate =
1 MPa/s, approximately 163 grains, þ3 mesh refinement).

Fig. 14. (a) Example macroscale structure, a tube with side-holes. (b) Decomposition of the tube into subregions for hexahedral meshing.
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Fig. 15. Dimensions of the example macroscale structure, a tube with side-holes. A rectilinear coordinate system (x y z) is identified.
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relative to the size of the grain structure is signif-
icant. (Recall that the crystal-plasticity model
described in ‘‘Crystal-Plasticity Model’’ section has
no inherent length scale.) This ratio will be denoted
throughout as the ‘‘thickness-to-grain ratio.’’ The
tube is 30 mm long and the thickness is 1 mm. The
volume of the tube is approximately 807 mm3.

To apply tension loading, equal and opposite
surface tractions are applied at both end-surfaces
of the tube (z ¼ �15 and z ¼ 15). The traction
vectors are given by

Tx ¼ 0

Ty ¼ 0

Tz ¼ �T0 ðt=t0Þ

9
>=

>;
at z ¼ �15 ; and

Tx ¼ 0

Ty ¼ 0

Tz ¼ T0 ðt=t0Þ

9
>=

>;
at z ¼ 15 ;

ð25Þ

where T0¼
:
200 is a traction scale factor, t 2 ½0; 200�

is a time variable, and t0¼: 200 is a time constant.
Thus, the stress rate (uniaxial) in the tube (away
from the hole) is 1 MPa/s. Based on the macroscale
plasticity models identified in ‘‘Macroscale Material
Model’’ section, the resulting strain rates are on the
order of 10�4/s.

Tube Meshing

The meshing software CUBIT29 was used to
create both the geometry and mesh of the tube. In
order to mesh the tube with hexahedra, it was first
partitioned as shown in Fig. 14b. The multiple
symmetry plains of the tube were exploited so that
only two subregions needed to be meshed. The
remaining regions were meshed through simple
reflections. The base hexahedral mesh of the tube is
shown in Fig. 16a. This base mesh, denoted by r0,
contains 7232 hexahedra with 2 hexahedra through
the wall thickness of the tube. Subsequent hexahe-
dral meshes, r1, r2, r3, r4, and r5 were obtained
from uniform hierarchical refinement in which each
hexahedron was divided into eight. New surface
nodes created during each refinement were located

on the exact geometry. The r1 mesh refinement is
shown in Fig. 16b and contains 57,856 hexahedra.
The mesh refinements r2, r3, r4, and r5 contain
approximately 463,000, 3.70 million, 29.6 million,
and 237 million hexahedra, respectively. The r4
mesh refinement is used in the actual simulations of
the tube under applied loading.

Embedded Microstructure

The model microstructure defined in ‘‘Microstruc-
tural Model’’ section is embedded into the macro-
scale tube structure using the DNS methodology
described in ‘‘Direct Numerical Simulation’’ sec-
tion. We use a grain size resulting in approximately
four grains through the tube thickness and the r4
hexahedral mesh refinement. For a tube thickness
of 1 mm, this implies that the grain size is approx-
imately 250 lm. (This is admittedly a rather large
grain size. The grain size in wrought AISI 304L
stainless steel is typically<100 lm, depending upon
the processing history of the material (see Fig. 4a).
This level of mesh refinement in the tube results in
a þ3 mesh resolution of each grain, or about 83

hexahedral elements per grain. This resolution is
consistent with the RVE homogenization procedure
discussed in ‘‘Macroscale Material Model’’ section. A
realization of the microstructure with this grain size
is shown in Fig. 17a, b. The total number of grains
for this realization is approximately 51,000. An end
view of the tube is also shown.

A microstructural realization with approximately
eight grains through the web-section thickness using
the r5 mesh refinement is shown in Fig. 17c and d.
For a web-section thickness of 1 mm, this implies that
the grain size is approximately 125 lm. The total
number of grains for this realization is approximately
358,000. The analysis of this smaller grain structure
is the subject of an ongoing investigation.

Stress and Strain Results

As described in ‘‘Direct Numerical Simulation’’
section, the tube boundary-value problem is solved
using the solid mechanics module within the Sierra
multiphysics finite-element software suite27 and the

Fig. 16. (a) The base hexahedral mesh of the tube, denoted as r0, contains 7232 hexahedra. Subsequent hexahedral meshes, r1, r2, r3, r4, and
r5 are obtained from uniform hierarchical refinement in which each hexahedral element is divided into eight elements. New surface nodes created
during each refinement are located on the exact geometry. (b) The refinement r1 contains approximately 57,900 hexahedra. Subsequent
refinements r2, r3, r4, and r5 (not shown) contain approximately 463,000, 3.70 million, 29.6 million, and 237 million hexahedra, respectively.
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FETI-DP domain-decomposition iterative solver.28

The hexahedral finite-element formulation used
selectively deviatoric integration for the DNS sim-
ulations. For each microstructural realization using
the r4 mesh refinement (containing 29.6 million
elements), 2400 processors were used with typical
runtimes of approximately 4 days.

The von Mises stress and equivalent logarithmic
strain fields resulting from the direct numerical
simulation of the tube are shown in Fig. 18a and b,
respectively. The microstructure is shown in
Fig. 17a. The element stress and strain values
resulting from the finite-element analysis are
shown with no smoothing or other post-processing.
Top views of the tube (y-direction) are shown in
Figs. 19 and 20 along with results from two addi-
tional microstructural realizations. The results for
each microstructural simulation are qualitatively
similar in their overall distribution but distinctly
different at the fine scale.

The von Mises stress field and equivalent loga-
rithmic strain field in the tube resulting from the
tension loading using the homogeneous macroscale
von Mises plasticity model are shown in Fig. 18c
and d, respectively. The element-stress values
resulting from the finite-element analysis are
shown with no smoothing or other post-processing.

The stress and strain fields resulting from the use of
the Hosford plasticity model (not shown) are qual-
itatively similar. The DNS fields display large
fluctuations on small spatial scales, but are quali-
tatively similar to the smooth fields obtained by
using the macroscale plasticity models. The fine-
scale fluctuations are effectively filtered out in the
homogeneous macroscale solution. The top views of
these results are shown in Figs 19d and 20d.

In order to investigate the differences between
the DNS and macroscale plasticity models, the
stress and strain magnitudes along two curves/lines
within the tube are extracted and graphed. These
extraction curves are identified in Fig. 21. Extrac-
tion line 1 is discretized with 20,000 points, and
extraction curve 2 is discretized with 10,000 points.
For each point, the enclosing finite element is found,
and a mean element stress (strain) tensor is
assigned as the stress (strain) tensor at the given
point. Figure 22 shows the equivalent strain �e and
the von Mises stress rVM along the surface of the
tube (line 1 identified in Fig. 21) extracted from the
results shown in Figs. 19 and 20, respectively.
Results obtained using the von Mises macroscale
plasticity model are also shown. No smoothing
operations are performed on the extracted stress
and strain values. The smooth variation of the

Fig. 17. (a) Tube with embedded microstructure with approximately four grains through the tube thickness, i.e., thickness-to-grain ratio = 4. The
total number of grains for this realization of the microstructure is approximately 51,000. (The r4 hexahedral mesh refinement containing 29.6
million elements is used.) (b) An end view of the tube. (c) Tube with embedded microstructure with approximately 8 grains through the tube
thickness, i.e., thickness-to-grain ratio = 8. The total number of grains for this realization of the microstructure is approximately 358,000. (The r5
hexahedral mesh refinement containing 237 million elements is used.) (d) An end view of the tube. (The color of each grain is arbitrary, and does
not indicate crystal orientation).

Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of
Microstructure and Material Model-Form Error

1439



Fig. 18. (a) von Mises stress field and (b) equivalent logarithmic strain field resulting from the direct numerical simulation of the tube containing
the microstructure shown in Fig. 17a loaded in uniaxial tension. (c) von Mises stress field and (d) equivalent logarithmic strain field resulting from
using the homogeneous macroscale von Mises plasticity model. (Stress units are MPa).

Fig. 19. von Mises stress field resulting from the direct numerical simulation of the tube containing the microstructure shown in Fig. 17a loaded in
uniaxial tension. (a) Microstructural realization 1, (b) microstructural realization 2, (c) microstructural realization 3, (d) response using the
homogeneous macroscale von Mises plasticity model. (Stress units are MPa).
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homogeneous finite-element results is due to the
extremely fine mesh refinement used in these
simulations. Note that the homogeneous macroscale
model gives perfectly symmetric results about the
mid-section of the tube, whereas the DNS solutions
are clearly unsymmetric. Also, the DNS results are
clearly stochastic, whereas the homogeneous macro-
scale models are deterministic. The von Mises
macroscale plasticity model reasonably approxi-
mates the mean-field DNS stress results, but
underpredicts the mean-field DNS equivalent-
strain results by approximately 20%. Further anal-
ysis of the DNS results using spatial filtering
techniques, such as a moving volume-average,10

can be used to obtain the low spatial frequency
component of the DNS results.

The difference between strain results from the
DNS simulations and the von Mises macroscale
plasticity simulations possibly results from several
factors. First, and foremost, the grain size in the
DNS simulations is relatively large, only four grains
through the tube cross-section. First-order homog-
enization theory assumes that the grain size is
much smaller than the characteristic length scale in
the macroscale structure. Second, homogenization
theory predicts the existence of a surface effect due
to the difference in confinement in the bulk material
versus the surface.58,59 The extraction lines are on
the surface of the tube. Third, the von Mises

plasticity model provides only an approximation to
the macroscale response, as evidenced by Figs. 12
and 13.

In general, the error in stress or strain at a point
in a body is due to both the material model error at
that point (local error) in addition to pollution error
propagating from the rest of the domain. In order to
investigate the local error, Fig. 23a shows the two
non-zero stress components, rxx and rzz, along the
extraction line 1. Due to symmetry, and the fact
that extraction line 1 is on the surface of the tube,
these two stress components are principal stresses.
The other principal stress is zero. It is interesting
that the stress state is significantly biaxial away
from the stress concentrations caused by the two
holes. The stress biaxiality angle, h ¼ tan�1 rxx=rzz,
is shown in Fig. 23b. Even though the tube is loaded
uniaxially, significant biaxiality occurs throughout
the tube. Thus, we expect the Hosford macroscale
plasticity model to give more accurate results (see
Fig. 12). Figure 24 compares the von Mises macro-
scale plasticity model results to those from the
Hosford macroscale plasticity model. Surprisingly,
the results differ by less than 3%, for both equiva-
lent strain and von Mises stress. Greater differ-
ences in the macroscale results provided by the von
Mises and Hosford plasticity models are expected if
the tube were loaded in torsion or combined ten-
sion–torsion, and to larger strains.

Fig. 20. Strain field (equivalent logarithmic) resulting from the direct numerical simulation of the tube containing the microstructure shown in
Fig. 17a loaded in uniaxial tension. (a) Microstructural realization 1, (b) microstructural realization 2, (c) microstructural realization 3, (d) response
using the homogeneous macroscale von Mises plasticity model.
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Analogous results to those shown in Fig. 22, but
around the edge of the hole (curve 2 identified in
Fig. 21), are shown in Fig. 25. Again, results from
the homogeneous macroscale von Mises model are
perfectly symmetric, whereas the DNS solutions
are clearly unsymmetric and stochastic. The
von Mises macroscale plasticity model reasonably
approximates the mean-field DNS stress results,
but underpredicts the mean-field DNS equivalent-
strain results by approximately 30%. Figure 26
compares the von Mises macroscale plasticity
model results to those from the Hosford macroscale
plasticity model. The stress results differ by less
than 3%, and the equivalent strain results differ by
less than 12%. Note that the extraction curve 1 lies
on the edge of the hole, and thus experiences an
approximately uniaxial stress state, since two of
the principal stresses are nearly zero. Thus, the

stress state along the edge of the curve is very near
the uniaxial calibration point of the two plasticity
models, and any observed differences in results
from the two models must be due to pollution
error.

The total load applied to the tube versus the
resulting stretch of the tube is shown in Fig. 27 for
the three DNS realizations. There is no observable
scatter in the results. The results are essentially
deterministic. Results obtained using the von Mises
and Hosford macroscale plasticity models are also
shown. There is some difference observed between
the DNS results and the macroscale plasticity
models, less than 5%. There is no observable
difference between the von Mises and Hosford
model results. Larger differences are expected in
torsional or combined tensior–torsion loading and
for larger macroscopic strains.
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Fig. 21. Stress and strain results in the tube are extracted along two lines/curves: (1) Line 1 is along the outside length of the tube with start and
endpoints ð0;5;�15Þ and (0, 5, 15), respectively. (2) Curve 2 is along the outer edge of the side hole on the �x side. A circumferential
coordinate, s, is also defined.
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Fig. 22. (a) Equivalent strain �e and (b) von Mises stress rVM along
the surface of the tube (line 1 identified in Fig. 21) extracted from the
DNS results shown in Figs. 19 and 20, respectively. Results ob-
tained using the von Mises macroscale plasticity model are also
shown.
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macroscale plasticity model results shown in Figs. 19d. (b) Stress
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CONCLUSION

Two fundamental approximations in macroscale
solid-mechanics modeling are (1) the assumption of
scale separation in homogenization theory and (2)
the use of a macroscopic plasticity material model
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Fig. 24. Comparison of simulation results from the von Mises and
Hosford macroscale plasticity models. (a) Equivalent strain �e and (b)
von Mises stress rVM along the surface of the tube (line 1 identified in
Fig. 21).
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Fig. 25. (a) Equivalent strain �e and (b) von Mises stress rVM along
the surface of the tube (curve 2 identified in Fig. 21) extracted from
the DNS results shown in Figs. 19 and 20, respectively. Results
obtained using the von Mises macroscale plasticity model are also
shown.
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Fig. 26. Comparison of simulation results from the von Mises and
Hosford macroscale plasticity models. (a) Equivalent strain �e and (b)
von Mises stress rVM along the surface of the tube (curve 2 identified
in Fig. 21).
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Fig. 27. Total load applied versus stretch of the tube for three DNS
realizations. Results obtained using the macroscale von Mises and
Hosford plasticity models are also shown. (The symbols denote the
end of the DNS simulation results, due to compute time limitations).
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that represents, in a mean sense, the inelastic
processes occurring at the microscale. With the goal
of quantifying the macroscale errors induced by
these approximations, we performed a set of direct
numerical simulations (DNS) in which polycrys-
talline microstructures were embedded throughout
a macroscale structure.

The stochastic results from the DNS simulations
were compared to the deterministic results obtained
from conventional macroscale simulations. The
homogeneous macroscale simulations used the von
Mises and Hosford isotropic plasticity models cali-
brated using a representative volume element (RVE).
The Hosford plasticity model matched the RVE
response in the multiaxial regime significantly better
than the von Mises plasticity model, even though
both plasticity models used the same hardening
curve. Both macroscale plasticity models provided a
good approximation to the spatial mean of the DNS
stress field. However, both models underpredicted
the spatial mean of the DNS strain field. The Hosford
plasticity model was slightly more accurate than the
von Mises plasticity model. Greater differences in the
macroscale results provided by the von Mises and
Hosford plasticity models are expected if the tube
were loaded in torsion or combined tension–torsion,
and to larger strains.

The observed large fluctuations in the microscale
stress and strain fields reinforce the importance of
microstructural effects in predicting fatigue and
fracture initiation. Furthermore, the detailed DNS
simulation results, unlike homogeneous macroscale
simulations, can now be studied using modern data-
science techniques, such as pattern recognition, for
identifying emergent phenomena such as precursors
to material failure. Ultimately, we envision that DNS
modeling will be used to gain new insights into the
mechanics of material deformation and failure.
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