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A confidence interval on the yield strength prediction for wrought titanium
alloy Ti-6Al-4V is presented, statistically estimated from a recently developed
phenomenological model relating the material parameters to material prop-
erties. In this study, the material composition and microstructure parameters
were statistically characterized using multimodal, three-parameter Weibull,
Normal and Uniform distributions to capture their naturally occurring vari-
ability. These estimations were used to predict mean square error and confi-
dence intervals on the material strength of the alloy, comparing model results
with experimentally obtained data. Model estimation is in good agreement
with the experimental data, deviating by no more than 6%. The work pre-
sented here provides a probabilistic relationship between titanium alloy pro-
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cessing, resulting microstructure, and its performance.

INTRODUCTION

The titanium (Ti) alloy Ti-6Al-4V is most com-
monly used in the aerospace industry and for med-
ical prostheses, where weight and material strength
considerations are critical."? The material strength
of these alloys has been shown to be heavily reliant
upon elemental content as well as microstructural
arrangement.3’4 Oxygen and nitrogen content, in
particular, greatly influence material strength of
the alloy. As their content in alloys decreases, ma-
terial ductility, fracture toughness, resistance to
corrosion and crack initiation all improve, however
at the expense of material strength.

Conventionally produced Ti-6Al-4V alloys have
yield strengths between 720 MPa and 950 MPa, a
wide range which is dependent upon the complex
interdependence of heat treatment, processing, and
chemical composition; all of which impact mi-
crostructure and residual stresses within the ma-
terial.’ The morphology of the microsctructure in
the alloy, dependent on processing conditions, yields
either lamellar, equiaxed, or bimodal structures, in
a combination of alpha and beta phases.

The mechanical properties of o/ff alloys depend
heavily on the characteristics of their microstruc-
ture. In particular, the size and volume fraction of
the equiaxed alpha particles, the volume fraction of
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total alpha and the thickness of the Widmanstétten
alpha laths have been shown to yield the greatest
influence on the mechanical properties of the alloy.®
Given the complex interdependency between each of
these microstructural variables, no simple predic-
tive constitutive equation for these materials based
on governing physical laws exists. Recently, how-
ever, Collins et al.’ developed a phenomenological
equation predicting the mechanical strength of
these multi-phase materials. Their method used
Bayesian neural networks in conjunction with ge-
netic algorithms to solve for the optimized best fit
between stereological and compositional measure-
ments on o/f Ti-6Al-4V alloys, and empirical obser-
vations of their mechanical strength.” These
mechanism-based equations suggest ways to im-
prove control over the material strength of these
alloys by controlling the relative hexagonal close-
packed (hcp) alpha and body-centered cubic (bcc)
beta phases by solid solution strengthening.
Phenomenological relationships provided this way,
however, are deterministic, and do not account for
the large variability which is known to occur
naturally for each material variable.®

For this reason, an additional analysis was per-
formed here on the model generated by Collins
et al.,® to introduce a probabilistic prediction of the
titanium alloy yield strength. For this approach, the
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variability in the phenomenological equation was
described using the following cumulative distribu-
tion functions (cdfs): Weibull, Normal, and Uniform.
These cdfs statistically characterize the composition
and microstructure variables. This approach yields
a mean square error (MSE) confidence interval
prediction on the yield stress calculation obtained
from the phenomenological equation and is de-
scribed in more detail below. To the best knowledge
of the authors, such a confidence interval prediction
on the material strength of o/f processed Ti-6Al-4V
alloys has never been reported.

PHENOMENOLOGICAL MODEL FOR YIELD
STRESS IN TITANIUM ALLOY

A brief overview of the phenomenological process
model (Eq. 1) is described below. Equation 1 was
developed from wrought structures as a prototypical
tool to better understand and predict the effect of
the novel 3D printing process on material perfor-
mance, and ultimately to ensure the performance of
the material during service.” This is the first at-
tempt to develop such an equation for titanium al-
loys with the ultimate objective of providing a
process-structure-property-performance  relation-
ship. The explicit equation is given below:
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and
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It should be noted that Eq. 1 is identical to the
equation for gy in® except for B, which is explicitly
expressed here in terms of LW, F¥al-* and
Fequlaxed_o(.

The volume fractions of total hcp «, beec f and
equiaxed o particles found in Ti-6Al-4V are repre-
sented in Eq. 1 by Fitals Rl anq peuiaxeds
respectively. The weight percent elemental compo-
sition of aluminum, oxygen, vanadium and iron are
represented by Cyaj, Co, Cy and Cpy,, respectively.
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Fig. 1. Experimental yield stress data (red circle) shown, as com-
pared to the phenomenological model prediction (black square),
which shows excellent agreement between the model and data.

Equiaxedsize represents the size average of the
equiaxed o particles, while LW is the average o-lath
width. The colony variable is the percentage of
parallel o-lath order within the crystalline struc-
ture. Colonies are adjacent laths which are both
geometrically parallel and of the same crystallo-
graphic variant. There are 12 possible alpha vari-
ants that may precipitate from the parent beta
phase, each obeying the Burgers orientation rela-
tionship, but which are distinct with respect to
which <110> and <111> beta are parallel to the
(0001) and (11-20). A colony only contains one
variant, which is necessarily geometrically parallel
and immediately adjacent to laths of the same ori-
entation.

Standardized stereological protocols were used to
quantify the microstructural composition of «/f Ti-
6Al-4V alloy samples within a parametric array of
variables, such as microstructural volume fractions
and particle geometries.® These variables were then
used within the neural networks to train and test an
equation which predicts the material properties of
the material within the range of data used to gen-
erate them.

There are two shortcomings of this method: (1)
models generated this way will not reflect funda-
mental physical laws underlying the mechanisms,
and (2) the equation is valid within the range of data
used to generate it, but not outside of it. A solution
for the first shortcoming was to provide genetic al-
gorithms to deconstruct the neural network func-
tions generated and include microstructure
relationships and properties based on legacy un-
derstanding (for further details on the genetic al-
gorithms, see Ref. 9). Phenomenological equations
generated this way enable the prediction of material
properties when no exact solution exists, as is the
case for the complex interdependency of the multi-
scale microstructural features and composition of
titanium alloys (Fig. 1). The validity of the predic-
tive model remains bound within the limits of the
data span used to generate it, however.
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PROBABILISTIC PARAMETER ESTIMATION

Having established a phenomenological relation-
ship between material parameters such as compo-
sition, volume fraction, microstructural features
and the strength of the titanium alloy, it is of value
to now consider the naturally occurring variability
in these material properties to obtain a realistic
estimation for the yield strength and subsequent
confidence intervals. This modeling process involves
statistically characterizing each variable in the
phenomenological equation with an appropriate cdf,
in order to describe its inherent variability.

The natural variability in the volume fraction of
alpha and beta particles, for example, was ap-
proximated by a Normal cdf (see Fig. 2). The vari-
ability in material composition of elemental
aluminum (Al), vanadium (V), iron (Fe) and oxygen
(0), on the other hand, was modeled using Uniform
cdfs. A two-parameter Weibull cdf was used to
characterize the Equiaxedsize. The colony variable
was characterized with a two-parameter Weibull cdf
for the lower tail of the data, but the majority of the
data were constant. Consequently, a bimodal cdf
was used. Further comments for these assumptions
are given below.

Determination of the appropriate cdfs to describe
these material properties initially involved graphi-
cal estimation techniques. Once an acceptable cdf
was determined, parametric estimation for the cdfs
was completed using the data. Table I lists the
variables, the assumed form of the cdf, and the
mean pu, variance ¢2, and the coefficient of variation
cv. Notice that the variables with the largest scatter
are C g, and C ¢, respectively. There is very little
variability in F¥'l-*  Since these estimated cdfs
were used in subsequent Monte Carlo simulations of
the phenomenological equation (Eq. 1), the scatter
in each variable is critical. The simulated results
provide a predictive range on the yield strength for
these alloys because the model development and
analysis were based on data from the alloy. Details
of this approach are provided below for each of the
material variables involved.

Elemental Composition (C )

Data for the composition of Al, V, Fe and O (C ) in
the titanium alloy were considered to be character-
ized by a Uniform cdf. The primary reason for this
assumption is that all compositions within the ma-
terial have an equal likelihood of appearing. The
Uniform cdf has the following general form:

0 for x<a
Fi(x) =452 fora<x<b, 4)
1 forx>b

where a and b represent the limits on C , estimated
from the data of these variables. In Eq. 4, x stands
for the composition (in mass %) of either Al, V, Fe or
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Fig. 2. Graphical estimation (line) and experimental data (red circles)
for variable F {’,q“'a"e“*“. Plotted on normal probability paper.

0O, and F ,(x) their associated probability. Since the
compositions are assumed to be well represented by
Uniform cdfs, then simulation of these variables is
straightforward.

Volume Fractions (F7,)

Graphical estimation for both Fita-* and
F{’,qulaxed’“ indicates that a Normal cdf is acceptable
for their characterization. An example of this tech-
nique for the equiaxed « data is shown in Fig. 2,
where the data are plotted on Normal probability
paper (for further details on Normal paper, see
Ref. 10). Notice that the linear fit is quite good. In
fact, the correlation coefficient for the fit is 0.982.
The parameters ¢ and ¢ (representing the mean and
standard deviation, respectively) are shown in the
Normal cdf (Eq. 5):

F(x) = / el (5)

—x V2na2

The parameters were graphically estimated and
found to be it = 0.56% and ¢ = 0.12%. Furthermore,
the maximum likelihood estimates (MLE) are
identical. Similarly, this was repeated for total vol-
ume fractions of alpha. The correlation coefficient
for this case is 0.95, which is not quite as good, but
still very acceptable. The estimated parameters for
this case, using graphical and MLE estimation, are
it =90.2% and 6 = 1.69%. In addition, these two cdfs
were also checked with the Kolomogorov—Smirnov
(KS) and Anderson—Darling (AD) goodness of fit
tests. Both cdfs are acceptable according to the KS
test for any level of significance less than 20%. The
AD test, however, indicated that they are acceptable
for any significance less than 10%. This is due to the
fact that the data in the tails exhibit more scatter
(see Fig. 2). There are several algorithms for
simulating Normal variables; however, the Box—
Miiller method!! is quite easy to use, and was im-
plemented for the subsequent simulation of these
volume fractions.



1360

Equiaxedsize and Colony

The data for equiaxed o particle size (variable
Equiaxedsize) were plotted on Weibull probability
paper (for futher details on Weibull paper, see
Ref. 12), as shown in Fig. 3. The correlation coeffi-
cient for the data is 0.969. Thus, the apparent lin-
earity indicates that a two-parameter Weibull cdf is
suitable for these data. The two-parameter Weibull
cdf is shown in Eq. 6:

Fox)=1—e ®Ph (6)

where o is the shape parameter and f is the scale
parameter. The MLE values for these are a = 9.79
and f = 7.27 um. The KS statistic indicates that the
cdf is acceptable for any significance less than 20%;
however, the AD test implies that the cdf is ac-
ceptable for any significance less than 15%. Again,
this is due to the deviation in the lower tail shown
on Fig. 3. Simulation of Eq. 6 is straightforward.

The colony data are considerably different from
all others in this work because they are distinctly
bimodal. The first mode is the lower third of the
data, which are characterized well by a two-pa-
rameter Weibull cdf. The second mode is the re-
maining data, which are constant at 100%. The
estimated parameters for the first mode are & = 3.97
and 8 = 66.1%. These parameters were confirmed
using graphical estimation, and the goodness of fit
was corroborated using the KS and AD tests, which
indicate that for any significance less than 20% this
cdf is acceptable. This simulation of the colony is not
quite as standard as the other variables. In fact, the
following describes the bimodal equation which si-
mulates the colony variable:

100, 66% of the time
colony = 1 .
B(—log(1 —uy))?, 33% of the time
(7)

where u,, = a uniform random number. The Weilbull
portion of the simulation is truncated at 100% and
represents the lower third of the distribution. Two
thirds of the simulated values are identically 100%.

ANALYSIS AND RESULTS

Figure 4 summarizes the major portion of the ef-
fort herein. The solid dots are the experimental
yield stresses for which the model in Eq. 1 was de-
veloped. The open squares are the values computed
using this phenomenological model. The comparison
is quite good. The only significant deviation is in the
lower tail where there is at most a difference of 2.5%
in yield strength. The main purpose of this paper is
to incorporate the inherent variablility in the un-
derlying variables. These critical variables are list-
ed in Table I.

The solid line on Fig. 4 is the simulated cdf for the
model, that is, the variables in Table I were
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Fig. 3. Equiaxedsize alpha particle size data (red circles) and gra-
phical estimation (black line). Plotted on Weibull probability paper.

simulated and inserted into Eq. 1 in order to simu-
late the yield stress. The experimental data corre-
spond extremely well to the simulated values in the
upper range, above approximately 780 MPa. A bi-
furcation in the data less than 780 MPa is the result
of the wide range of elemental compositions observed
in these materials, and suggests that multiple modes
of material behavior exist as a function of composi-
tion variability. These data indicate that a bimodal
cdf may be more appropriate. Clearly, the simulated
cdf deviates from the data in this lower tail portion
by as much as 6%. While that does not seem to be
overly significant, the simulated estimate is greater
than the actual data which means that the simula-
tion is not a conservative estimate. Using the
simulated values and the data, a mean square error
(MSE) estimate can be computed. Also, a standard
deviation of the MSE, oysg, can be used to estimate a
confidence interval about the simulated cdf. The thin
dashed lines correspond to the simulated cdf + oygg
and the bold dashed lines are the simulated cdf
+20ymsg. Obviously, all the data are contained within
the lines using +20\sg. However, in order to capture
the experimental data in the lower tail, the interval
is condiserably wider. Positively, the +20ysg interval
captures the bimodal behavior even though the
model did not contain that characteristic. For design
allowables for structurally significant components,
the lower 4+-20p\se line should be used because all
data are bounded by it. In other words, it is the most
conservative estimate for the entire collection of ex-
perimental data.

Even though the model and the simulation are
reasonably representative of the data, further re-
finement of the probabilistic model to include the
bimodal nature of the data is warranted. This will be
possible given additional understanding of the ma-
terial behavior and expanded data. However, this
first approximation on the yield strength of Ti-6Al-
4V alloys is valuable in beginning to grasp the com-
plex relationship between probabilistically based
materials modeling and experimental observations.
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Table I. List of all variables found in Eq. 1 (except for Ff, =1 — Fital-"), with their respective cdfs used to
model their uncertainty, including (when appropriate) the range on which these data were generated as well
as the mean, variance and coefficient of variation for their distributions.

Variable name cdf Range U o2 cv (%)
Co Uniform (0.0639, 0.2178) 0.1353 0.0033 0.4218
Cyu Uniform (4.284, 7.205) 5.66 0.6830 0.1461
Cy Uniform (2.967, 4.895) 3.84 0.2350 0.1262
Cre Uniform (0.0963, 0.4477) 0.2522 0.0185 0.5399
Fi})t?l*“ Normal - 90.24% 2.8527 0.0187
Fquaxed‘“ Normal - 55.52% 152.0289 0.2221
Equiaxedsize Weibull - 6.9064 0.7189 0.1228
Colony Bimodal - - - -
0.999r 3D printing, require an equally rapid informed un-
0.990F . . . .
09001 derstanding of the resulting material properties. As
0.750} such, the current model developed on wrought tita-
0.500f nium alloys also provides the first step towards an
B 02500 eventual new tool in the parametric design and op-
% o100l timization of 3D printed titanium alloys.
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Fig. 4. Probability of experimental yield stress data (red circles;
proprietary) shown, as compared to the phenomenological model
prediction (black square) and Monte Carlo simulations (black line). A
MSE confidence interval of one and two standard deviations is also
shown (blue dashed lines).

CONCLUSION

The primary purpose of this paper is to begin the
development of a probabilistically based mechanistic
model for the yield strength of Ti-6Al-4V wrought
materials. A novel phenomenological equation has
been developed, as a first attempt, using neural
network analyses coupled with a genetic algorithm.
The underlying variables that cause variability in
experimentally determined yield strength have been
statistically characterized, and their cdfs have been
subsequently used in simulation to predict the yield
strength, and more importantly a confidence interval
based on MSE. The work shown here provides a tool
which bridges the gap between material processing
and performance, which will be useful in material
design and optimization strategies. While significant
progress has been made, further refinements on the
model, characterization of the material properties,
and confidence estimation are needed. As new
manufacturing procedures are known to alter mate-
rial microstructures and performance, the rapid de-
velopment of these new technologies, such as metal

Program Manager. The views, opinions, and/or
findings contained in this article are those of the
author(s) and should not be interpreted as repre-
senting the official views or policies of the Depart-
ment of Defense or the U.S. Government. Approved
for public release; distribution unlimited.

REFERENCES

1. M. Balazic, J. Kopac, M.J. Jackson, and W. Ahmed, Int. J.
Nano Biomater. 1 (1), 3 (2007).

2. R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform. 14 (6),
681 (2005).

3. G. Lutjering, J.C. Williams, A. Gysler, in Microstructure and
Properties of Materials, vol. 2, ed. J.C.M. Li (River Edge:
World Scientific Publishing Co., 2000).

4. P.C. Collins, S. Koduri, V. Dixit, and H.L. Fraser, Metall.
Mater. Trans. A 44, 1441 (2013).

5. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties
Handbook: Titanium Alloys, 4th ed. (Materials Park: ASM
International, 2007).

6. P.C. Collins, B. Welk, T. Searles, J. Tiley, and H.L. Fraser,
Mater. Sci. Eng. A 508 (1-2), 174 (2009).

7. I Ghamarian, P. Samimi, V. Dixit, and P.C. Collins, Metall.
Mater. Trans. A (submitted for publication).

8. S. Kar, T. Searles, E. Lee, G.B. Viswanathan, J. Tiley, R.
Banerjee, and H.L. Fraser, Metall. Mater. Trans. A 37, 559
(2006).

9. P.C. Collins, C.V. Haden, I. Ghamarian, B. Hayes, T. Ales,
G. Penso, V. Dixit, and G. Harlow, JJ. Miner. Met. Mater. Soc.
66, 1299 (2014).

10. H. Chernoff and G.J. Lieberman, J. Am. Stat. Assoc. 49, 778
(1954).

11. E.R. Golder and Settle J.G., Appl. Stat. 12 (1976).

12. W. Weibull, ASME J. Appl. Mech. 18, 293 (1951).



	Yield Strength Prediction of Titanium Alloys
	Abstract
	Introduction
	Phenomenological Model for Yield Stress in Titanium Alloy
	Probabilistic Parameter Estimation
	Elemental Composition (C _{\rm x})
	Volume Fractions (F_\mathrm{V}^{x})
	Equiaxedsize and Colony

	Analysis and Results
	Conclusion
	Acknowledgements
	References




