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Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials
growth processes such as thin film formation. The classical theory explaining
late-stage phase coarsening phenomena was developed by Lifshitz and Sly-
ozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing
volume fraction of the second phase in three dimensions. However, phase
coarsening in two-dimensional systems is qualitatively different from that in
three dimensions. In this paper, the many-body concept of screening length is
reviewed, from which we derive the growth law for a ‘screened’ phase island,
and develop diffusion screening theory for phase coarsening in thin films. The
coarsening rate constant, maximum size of phase islands in films, and their
size distribution function will be derived from diffusion screening theory. A
critical comparison will be provided of prior coarsening concepts and
improvements derived from screening approaches.

INTRODUCTION

Phase coarsening, or Ostwald ripening, occurs
throughout a range of processing and aging-in-
service of many material types.1 Specifically, phase
coarsening is a many-body relaxation phenomenon
in aging microstructures driven by the decrease of
total interfacial free energy stored within interfaces.
Larger phase particles in a microstructure grow
during phase coarsening by preferential absorption
of atoms or molecules released at the expense of
smaller particles, which are further diminished in
mass by losing them. Phase coarsening is humor-
ously referred to as ‘thermodynamic capitalism’,
where big entities get bigger and small entities are
forced to vanish from the population. The impor-
tance of all this from a materials engineering
viewpoint is that the physical, chemical, and me-
chanical properties of multiphase materials reflect
their average particle size and particle size distri-
bution (PSD). These microstructural features, in
turn, depend sensitively upon the kinetics of phase
coarsening.2

The earliest quantitative description of late-stage,
or steady-state, phase coarsening kinetics in three-
dimensional (3D) systems was published in the early
1960s by Lifshitz and Slyozov3 and by Wagner.4

Their theoretical treatments of Ostwald ripening,
often referred to as ‘LSW theory’, retain full validity

only in the limit of a vanishingly small volume frac-
tion. In fact, strictly speaking, LSW theory describes
the behavior of just a single particle ‘alone’ but in-
teracting with a mean potential field established by
the rest of the microstructure. No particle–particle
interactions, whatsoever, are considered. LSW the-
ory, nonetheless, correctly predicts a widely observed
behavior measured during phase coarsening in nu-
merous 3D two-phase systems, namely, that the
time-dependent average particle radius, hRðtÞi, fol-
lows the kinetic scaling law,

hRðtÞi3 � hRð0Þi3 ¼ KLSW t; (1)

where t and KLSW , respectively, are the phase
coarsening time and the coarsening rate constant.
The growth rate in LSW theory of a spherical par-
ticle of radius R placed in the mean chemical po-
tential field established by the microstructure is
given by the kinetic equation,

dR

dt

� �
LSW

¼ 1

R

1

Rc
� 1

R

� �
; (2)

where Rc denotes the ‘critical’ radius of an isolated
particle that is conditionally stable at a time t.
Conditional stability implies that neither growth
nor shrinkage of the particles that have critical size
occurs, because their surface potential momentarily
exactly matches the mean chemical potential. The
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match in potential precludes mass transfer to or
from the particle, at least until the critical particle
itself increases in size, and lowers its potential.
Growth causes the previously stable particle to be in
an undersaturated environment, and start to
shrink. Once shrinkage occurs, the particle’s surface
potential rises farther, increasing its rate of loss of
mass. That sequence eventually causes the particle
to shrink ever faster and faster toward extinction. A
steady state is reached when all particle sizes, re-
lative to the growing critical particle, form a self-
similar distribution that remains time invariant
relative to the critical particle. That distribution
looks identical at all future times, save for a single
scale factor that increases the size of all particles.

In addition, in the derivation of Eq. 2, all length
scales are non-dimensionalized through the appro-

priate capillary length, lc ¼ 2rVm

RgT
, where r, Vm, Rg

and T represent the surface energy, molar volume,
universal gas constant, and absolute temperature,
respectively. Physical coarsening time is non-di-
mensionalized through the characteristic diffusion

time, sd ¼ l2c
DC0Vm

, to yield the dimensionless time, t.

Here D and C0 are, respectively, the matrix inter-
diffusion coefficient and the equilibrium solute
concentration in the matrix at a planar interface
with the precipitate phase.5 Equation 2 indicates
that particles larger in radius than the critical size
grow, whereas those particles with radii smaller
than the critical size shrink. The subtle complica-
tion in this analysis is that the critical particle size
is itself growing larger as a function of coarsening
time, causing each particle eventually to stop
growing and start shrinking. Note that this formu-
lation predicts a deterministically-based kinetic
equation, devoid of any local attributes of the mi-
crostructure.5 LSW theory importantly also predicts
that sparse coarsening systems approach a scale-
independent steady-state, and exhibit self-similar,
i.e., affine, behavior, in which the PSD—normalized
by the average particle size—becomes time invari-
ant and independent of the initial particle size dis-
tribution and materials parameters.

The source of disagreement between LSW pre-
dictions for the PSD and the observed coarsening
rate constant found in real material microstructures
arises from the non-zero volume fraction that real
systems always entail. A non-zero second phase
volume fraction produces local interactions among
the particles, an important effect not included in
LSW theory. In order to take into account some of
the influences of the omnipresent non-zero volume
fraction, numerous variants of mean-field coarsen-
ing theory have been developed over the past
50 years.6–12 The present authors recently reviewed
the status of theoretical, computational, and ex-
perimental studies of phase coarsening,1,13 follow-
ing two prior reviews of this field.14,15 All of these
mean-field variants, however, are again valid only
at extremely low volume fractions (VV � 0:1).16

Wang et al.17,18 developed a diffusion screening
theory for phase coarsening that remains valid over
the range of volume fractions 0 � VV � 0:3 in 3D
systems. Marsh and Glicksman19 introduced an
earlier concept of a statistical ‘field cell’ that acts
around each size class of the spherical precipitates
undergoing coarsening. They obtained normalized
coarsening rates that are in good agreement with
data derived from various liquid-phase sintering
experiments, particularly in the range
0:3 � VV � 0:6, where the PSDs appear markedly
different from experimental ones. Recently, Streit-
enberger also developed analytical description of
phase coarsening at high volume fractions.20

Coarsening theories also exist for phase islands
developing in 2D systems. Marqusee21 considered
the average influence of a non-zero area fraction
surrounding patches, or phase islands, resident on a
planar substrate. The microstructure acts as an
‘effective medium’. Marqusee introduced the con-
cept of a so-called ‘screening length’ in 2D systems.
Family and his coworkers developed both analytical
and numerical approaches for predicting the kinet-
ics of 2D Ostwald ripening.22,24 Bales and Zangwill
carried out kinetic Monte Carlo simulations on the
evolution of 2D phase islands.25 Bartelt et al. used
low-energy electron diffraction (LEED) to study
Ostwald ripening of 2D phase islands distributed on
substrates,26 and Müller et al. studied coarsening of
nanocrystals on thin SiO2 films.27 Additional refer-
ences on phase island coarsening are included in the
two review papers.28,29 Although significant pro-
gress has been made in this direction, several issues
still remain open. For example, the precise quanti-
tative form of the screening length in two dimen-
sions is lacking, and the development of a theory of
phase coarsening from first principles that has
general applicability to 2D systems is also missing.
In this paper, we will address these open issues.

The organization of this paper is as follows: In
‘‘Diffusion Screening Theory in 3D Microstruc-
tures’’, we briefly describe diffusion screening the-
ory in 3D systems. In ‘‘Diffusion Screening Theory
in 2D Microstructures’’, a diffusion screening theory
in 2D systems is developed. In ‘‘Results’’, the results
are given from the pertinent theoretical predictions
of diffusion screening theory in 2D systems. Finally,
in the ‘‘Conclusions’’, a short summary and status
are provided of our findings based on this research.

DIFFUSION SCREENING THEORY
IN 3D MICROSTRUCTURES

LSW theory is purely mean-field in character, and
plays the role of a limit law in phase coarsening
kinetics. That is, in a two-phase alloy taken to the
abstract limit of VV ! 0, one recovers LSW theory
that ignores all particle–particle interactions. In
real systems, however, the non-zero volume fraction
of particles, VV 6¼ 0, has substantial effects on the
properties of materials. Recently, the authors fur-
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thered the development and applied many-body
screening theory to diffusion-controlled coarsening
in two-phase microstructures, for which a ‘diffusion
screening’ length, RD, is introduced via the Debye–
Hückel theory.30 This interesting analogy arises
solely because electrostatic fields obey the same
mathematical field equations as does diffusion. This
holds true despite the fact that phase particles are
immobile and of continuous size, whereas ions are
mobile and quantized!

The screening length captures the many-body dif-
fusive interactions that set the maximum distance
over which particles interact, and beyond which their
interactions cease. Debye originally introduced an
electrostatic screening distance into his theory of
dilute ionic solutions and gas plasmas to ascertain
the effect of surrounding ions. The screening dis-
tance defines the distance beyond which an ion no
longer is affected by the Coulombic potential field of
its neighboring ions. The diffusion screening length
in phase coarsening is perfectly analogous, but is
related to the volume fraction of particles and the
moments of the microstructure’s PSD, rather than to
the ionic concentration. Specifically, the diffusion
screening length, RD, is defined here as,

RD ¼ 1ffiffiffi
3

p hR3i
hRi

� �1=2

V
�1=2
V : (3)

Equation 3 shows that the diffusion distance, which
sets the collective limit for multiparticle interac-
tions in a microstructure, decreases in inverse pro-
portion to the square-root of the volume fraction.

Moreover, interactions occurring among particles
that are located within the diffusion screening dis-
tance increase a particle’s growth rates as follows,

dR

dt
¼ dR

dt

� �
LSW

1

1 � R
RD

" #
: (4)

Diffusion screening theory also predicts the follow-
ing important behaviors for a two-phase coarsened
microstructure:

1. The relationship between the dynamically stable
maximum-size particle’s normalized radius,
qmax ¼ R

Rc
, and the system’s volume fraction is

predicted as,

qmax ¼ 1 � 1ffiffiffiffiffiffiffiffiffi
3VV

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3VV
þ 1ffiffiffiffiffiffiffiffiffi

3VV

p þ 1

s
: (5)

2. The scaling law governing the growth of the
average particle is similar to Eq. 1, except that
KLSW is replaced by the volume-fraction depen-
dent function KðVVÞ, and the relative coarsening
rate, KðVVÞ=KLSW , now depends explicitly on the
volume fraction,

KðVVÞ
KLSW

¼27

4

�
2�ð1�

ffiffiffiffiffiffiffiffiffi
3VV

p
Þ 1� 1ffiffiffiffiffiffiffi

3VV

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3VV

þ 1ffiffiffiffiffiffiffi
3VV

p þ1
r !

1� 1ffiffiffiffiffiffiffi
3VV

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3VV
þ 1ffiffiffiffiffiffiffi

3VV

p þ1
r" #3

2
666664

3
777775
hqi3:

(6)

Equation 6 serves to show the direct dependence of
the coarsening rate constant at non-zero volume
fractions to the square-root of the volume fraction.
This square-root dependence provides a key kinetic
marker of diffusion screening, and one that has
been verified experimentally.31 The average value of
the normalized particle radius, hqi, is weakly
dependent on the volume fraction. For an infinitely
dilute system, where hqi¼1, which is a well-known
result confirmed by calculating the first moment of
the PSD derived from LSW theory. Therefore, as
hqi3 ¼ 1, Eq. 6 may be accurately approximated as

KðVVÞ
KLSW

�27

4

�
2�ð1 �

ffiffiffiffiffiffiffiffiffi
3VV

p
Þ 1� 1ffiffiffiffiffiffiffi

3VV

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3VV

þ 1ffiffiffiffiffiffi
3VV

p þ 1
r !

1 � 1ffiffiffiffiffiffiffi
3VV

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3VV
þ 1ffiffiffiffiffiffiffi

3VV

p þ1
r" #3

2
666664

3
777775
:

(7)

3. The scaled PSD, f ðqÞ, predicted using diffusion
screening theory, may be calculated as

f ðqÞ ¼ A

dq=ds
exp

Z q

0

dq
dq=ds

� �
; (8)

where A is the normalization constant. The scaled
growth rate, or so-called kinetic growth equation of
a particle, dq=ds, can be derived from Eq. 4 in terms
of its normalized radius, q, through the relationship,

dq
ds

¼ 1

Kc

q� 1

q2ð1 � q=qDÞ

� �
� q; (9)

where q ¼ R=Rc; Kc ¼ dR3
c=3dt; s ¼ lnRc

3=3, and
qD ¼ RD=Rc .13 The PSDs were predicted from dif-
fusion screening theory by numerical solution of
Eq. 8 for different volume fractions.In summary,
the predictions from 3D diffusion screening theory
were tested recently using simulations17 and ex-
periments in Al-Li alloys.31,32 These theoretical
predictions are in satisfactory agreement with both
careful computational and experimental work. In
the present article, we develop diffusion screening
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theory for 2D systems, including phase coarsening
and precipitate aging in thin films and on surfaces.

DIFFUSION SCREENING THEORY IN 2D
MICROSTRUCTURES

We analyze a two phase system consisting of
polydisperse circular phase islands in a 2D film. The
sizes of 2D phase islands are described by the dis-
tribution f ðR; tÞ, defined here as the total number of
phase islands per unit area at time t, having radii
between R and Rþ dR. The normalization of f ðR; tÞ
is based on the total number of phase islands per
unit area, that is,Z 1

0

f ðR; tÞdR ¼ NS; (10)

where NS is the number density of phase islands.
With this normalization, the area fraction /S is
defined as

/S � p
Z 1

0

R2f ðR; tÞdR; (11)

hence

/S ¼ pNShR2i; (12)

where hR2i is the average of the square of the island
radii.

Marqusee was the first to model the effects of non-
zero volume fraction on phase coarsening kinetics in
2D systems.21 The emission of solute from dissolv-
ing phase islands, or its absorption by growing ones
was modeled mathematically using a balanced dis-
tribution of point sources and sinks of solute in the
two-phase medium. Marqusee proposed that the
steady-state concentration filed, CðrÞ, satisfies21

½r2 � R�2
S �dCðrÞ ¼ 0; (13)

where dCðrÞ ¼ CðrÞ � �C. The quantity RS plays the
role of screening length as does RD in 3D coarsen-
ing. See again Eq. 3. Now RS is treated as a pa-
rameter, which is constant when /S is specified. We
derive an expression for RS in a manner different
from that used by Marqusee. CðrÞ is subject to the
following boundary conditions:

(1) the concentration at infinity has the bulk value

CðrÞ
��
r¼1 ¼ �C; (14)

(2) at the surface,

CðrÞ
��
r¼R

¼ CeqðRÞ; (15)

where CeqðRÞ is the local equilibrium concentration
associated with a circular phase island of radius R.
The solution to Eq. 13 is

CðrÞ ¼ �Cþ ½CeqðRÞ � �C� K0ðr=RSÞ
K0ðR=RSÞ

� �
; (16)

where K0 is the zeroth-order modified Bessel func-
tion of the second kind. The local flux into the dro-
plet at the origin is

J ¼ 2pRDrcjR ¼ 2pD
R

RS

K1ðR=RSÞ
K0ðR=RSÞ

� �
½ �C� CeqðRÞ�;

(17)

where K1 is the first-order modified Bessel function
of the second kind. Using mass balance one can
obtain the growth law for 2D diffusion-limited
growth

dR

dt
¼ DXS

RS

K1ðR=RSÞ
K0ðR=RSÞ

� �
½ �C� CeqðRÞ�; (18)

where XS is the molar area of the phase (a material
constant proportional to V

2
3
m). Dynamic equilibrium

with the bulk continuous phase that forms the thin
film requires local equilibrium concentration at the
interface of an island of radius R as determined
from the Gibbs–Thomson effect,

CeqðRÞ ¼ C0 1 þ lS
R

� �
; (19)

where, lS ¼ 2rXS

RgT
is the characteristic capillary

length in 2D systems as lc is in 3D systems.The
droplet with a critical radius, Rc, has zero growth
rate, i.e., dR=dt ¼ 0 in accord with Eq. 18, when
CeqðRcÞ ¼ �C. A droplet with the critical radius in-
stantaneously neither grows nor shrinks. Substi-
tuting Eq. 19 into Eq. 18, and then applying the
definition of the critical radius, yields the kinetic
law in 2D. After some algebraic manipulation one
finds

dR

dt
¼ DC0lSXS

RS

K1ðR=RSÞ
K0ðR=RSÞ

� �
1

Rc
� 1

R

� �
: (20)

Equation 20 may be non-dimensionalized as follows:
(1) All length scales including R, Rc, and RS in
Eq. 20 are non-dimensionalized through the
appropriate capillary length, lS. (2) Physical time t
in Eq. 20 is non-dimensionalized through the
characteristic diffusion time, sS ¼ l2

S

DC0XS
, to yield the

dimensionless time, t. Finally, the non-dimension-
alized kinetic equation, Eq. 20, becomes

dR

dt
¼ 1

RS

K1ðR=RSÞ
K0ðR=RSÞ

1

Rc
� 1

R

� �
: (21)

In order to compare with the kinetic equation, Eq. 2,
derived from LSW theory, Eq. 21 is re-organized as

dR

dt
¼ P

dR

dt

� �
LSW

; (22)
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indicating that P is a function only of the ratio of the
island radius to the diffusion screening distance,
R=RS.

P ¼ R

RS

K1ðR=RSÞ
K0ðR=RSÞ

� �
: (23)

Equation 22 shows that the growth rate of 2D is-
lands equals the factor P times the growth rate of
3D particles in LSW theory. However, the prefactor
P is the more complicated function of R=RS shown in
Eq. 23.

RESULTS

Growth Law in Thin Films at Small Area
Fractions

When /s is extremely small, but not zero, RS is
large, and R=RS is much smaller than unity. Stan-
dard rational approximations for the modified Bes-
sel functions with small arguments are well
known,33 namely

K0ðxÞ � � lnðxÞ; and K1ðxÞ �
1

x
: (24)

The kinetic equation for coarsening in thin films,
Eq. 22, may be found for small island coverage (i.e.,
large screening distances, RS, using Eq. 24 as ap-
proximations for the Bessel functions. This proce-
dure yields

dR

dt
¼ 1

lnðRS=RÞj j
dR

dt

� �
LSW

: (25)

Hayakawa and Family22 also considered many-body
effects during 2D Ostwald ripening by using Green’s
function responses for solutions to the diffusion
equation.23 Their kinetic law is identical to Eq. 25,
which is derived by a different field theoretic
method. This check also reveals that the result,
Eq. 21, is consistent and more accurate, and may be
applied to a broader range of island area fractions in

thin films. However, the growth law found by
Hayakawa and Family has validity only at low area
fractions. Figure 1 shows little difference between
our prefactor, P, in Eq. 22 and that for Hayakawa
and Family at low area fractions, where /S < 0:01.
Figure 1 also shows that when the island area
fraction of precipitates is larger, viz., /S > 0:01, the
growth laws derived from both formulas remain si-
milar. The kinetic equation, Eq. 22, however, is
more accurate than that of Hayakawa and Family,
Eq. 25, and remains useful in the important range
of phase island area fractions, /S >0:1.

Maximum Normalized Radius, Coarsening
Rate, and PSD

The dimensionless growth rate of a phase island
can be expressed using Eq. 21, by inserting the
normalized island radius, q ¼ R=Rc.

dq
ds

¼ 1

K?

ðq� 1Þ
qqS

K1ðq=qSÞ
K0ðq=qSÞ

� �
� q; (26)

where the constant K? is defined as,

K? ¼ 1

3

dðRcÞ3

dt
: (27)

Here, the normalized time scale, s, and dimension-
less screening length, qS, are defined, respectively,
as

s ¼ 1

3
lnðRcÞ3; (28)

and

qS ¼ RS

Rc
: (29)

Lifshitz and Slyozov3 showed many years ago that
steady-state solutions to the continuity equation
governing the PSDs for coarsening in 3D are pos-
sible if and only if K? is constant. The value of K?

can be determined by applying a stability condition,
based on mass conservation in q space, which
guarantees a self-similar distribution. Specifically,
Lifshitz and Slyozov showed that to maintain a self-
similar (affine) distribution of particle sizes in-
definitely, two conditions must be satisfied simul-
taneously at the largest normalized particle size,
qmax. To insure mass conservation in q-space, the
following must hold:

ð1Þ dq
ds

� �
q¼qmax

¼0; and ð2Þ d

dq
dq
ds

� �� 	
q¼qmax

¼0:

(30)

Application of these stability conditions lead to the
following two equations,

K? ¼ ðqmax � 1Þ
q2
max

1

qS

K1ðqmax=qSÞ
K0ðqmax=qSÞ

� �
; (31)
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Fig. 1. Comparison of growth laws from our work, Eq. 22 (solid line),
and the Hayakawa and Family result, Eq. 25 (dashed line).
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and

1

qS

K2
1 ðfÞ

K2
0 ðfÞ

� 1

� �
q2
max �

1

qS

K2
1 ðfÞ

K2
0 ðfÞ

þ 2
K1ðfÞ
K0ðfÞ

� 1

qS

� �
qmax

þ 3
K1ðfÞ
K0ðfÞ

¼ 0; ð32Þ

where f ¼ qmax=qS.
Following the LSW steady-state stability argu-

ment,3 the normalized PSD, f ðq; sÞ, satisfies the
following continuity equation,

@f ðq; sÞ
@s

þ @

@q
dq
ds

f ðq; sÞ
� �

¼ 0: (33)

In the late stages of thin film phase coarsening, the
hypothesis of statistical self-similarity can be used.
The PSD achieves an affine form in that f ðq; sÞ may
be recast in the product form

f ðq; sÞ ¼ F0ðqÞ 	HðsÞ: (34)

Here F0ðqÞ is the time-independent, normalized,
probability density, or PSD. HðsÞ is the explicit,
time-dependence of the PSD that specifies the mi-
crostructure’s temporal behavior.

Substituting Eq. 34 into Eq. 33, and separating
the variables q and s in Eq. 33, yields a pair of
separable ordinary differential equations in time
and space, namely:

H0ðsÞ
HðsÞ ¼ �k; (35)

and

d

dq
dq
ds

� �
þ 1

F0ðqÞ
dq
ds

dF0ðqÞ
dq

� �
¼ k: (36)

Here k is the separation constant, or eigenvalue.
The general solution to Eq. 36 is

F0ðqÞ ¼
AS

dq=ds
exp

Z q

0

1

dq=ds
dq

� �
; (37)

where AS is the norm, which is determined by the
condition of unit probability for the total phase is-
land population,

Z 1

0

F0ðqÞdq ¼ 1: (38)

As shown in Eqs. 37, and 38, the normalized PSD
can be obtained from Eq. 37, provided that the
growth rate of the normalized radius, dq=ds, is
known.

The rate constant K? appearing in the growth
rate equation, Eq. 26 must be found before one at-
tempts to calculate the PSD from Eq. 37. The stea-
dy-state kinetic coarsening equation may be
expressed using the definition of K? in terms of the
critical radius, as shown in Eq. 27,

R3
c ðtÞ � R3

c ð0Þ ¼ 3K?t (39)

Here Rcð0Þ defined the critical phase island radius
for some arbitrary initial time, t ¼ 0 in the steady
state. It is, however, easier both experimentally and
computationally to determine the average radius,
hRi, and thus implement the kinetic coarsening
equation in terms of average radius rather than
critical radius. From the definition of the normal-
ized radius, q, there exists a relationship between
average and critical radius, specifically,

hqi ¼ hRi


R
 ¼

Z qmax

0

qF0ðqÞdq: (40)

Substituting the the relationship between average
and critical radius, Eq. 40, into Eq. 39, yields the
kinetic coarsening equation in terms of the average
radius,

hRðtÞi3 � hRð0Þi3 ¼ 3Kð/SÞt; (41)

where

Kð/SÞ ¼ 3K?hqi3: (42)

hRð0Þi is the average radius at t ¼ 0, and Kð/SÞ is
the coarsening rate constant for a thin film with
area fraction /S.

In addition, one also needs the PSD scaled by
average radius GSðR=hRiÞ. The PSD in Eq. 37 is
scaled by the critical radius. However, most PSDs
derived from experiments are scaled by the average
radius. According to the definitions of the average
radius and critical radius, one easily obtains the
PSD scaled by average radius,

GSðR=hRiÞ ¼ hqiF0ðhqiR=hRiÞ: (43)

Comparison of Diffusion Screening Lengths

Diffusion screening lengths were first introduced
arbitrarily to remove the divergence of the field so-
lution for the diffusion equation at steady state. We
have already derived the diffusion screening length
for 3D phase coarsening, shown in Eq. 3, using the
analogy of the electrostatic Debye length for a dilute
ionic solution.

Marqusee21 produced a numerical plot for the
ratio hRi=RS versus /S for the diffusion screening
lengths in 2D phase coarsening. Carlow et al.34 used
a two-parameter function in the form hRi=RS ¼ b/a

S,
attempting to fit Marquesee’s numerical result, and
obtain an approximation relationship for the diffu-
sion screening length

RS � hRi
2/3=4

S

: (44)

We approximate the average first-nearest neighbor
distance as the screening length, which is written as
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RS ¼
ffiffiffi
p

p
hRiffiffiffiffiffiffi
/S

p : (45)

Figure 2 shows the comparison of screening lengths
proposed by the authors and Carlow et al. When the
area fractions, /S � 0:01, screening lengths derived
from both formulas, Eqs. 44 and 45 are similar.
When the area fractions, /S > 0:01, screening
lengths derived from both formulas start to deviate
from each other.

CONCLUSION

We approximate phase coarsening among phase
islands dispersed in thin films as a mesoscopic dis-
tribution of diffusion sources and sinks. Poisson’s
equation in 2D (Eq. 13) describes the concentration
field and provides a framework for the screened
diffusion field, in analogy with screening that occurs
in 3D. The effective screening interaction in thin
film microstructures among a population of circular
phase islands provides a kinetic equation for the
coarsening of precipitates. Screening interactions
increase the coarsening rate and alter the shape of
the PSD for a specified area coverage. The standard
continuity equation in 2D size space is used to
describe the PSD, which completes a consistent
diffusion screening theory phase coarsening in films.

Several additional conclusions can be drawn on
the basis of this study:

(1) The diffusion screening length among phase
islands is proportional to /�1=2

S , a result which
may now be tested by experiments. By contrast,
Carlow et al.34 approximated this interaction as
/�3=4
S . Direct experimental tests are suggested to

adjudicate these alternative scaling laws.
(2) Equation 32 permits calculation of how interac-

tions among phase islands influence the width of

the PSD. Stronger interactions reduce the
height and broaden the PSD. Equation 32 also
predicts how the maximum allowed island
radius depends on the normalized screening
length, qS. Because the normalized screening
length depends on the area fraction (c.f. Eq. 45),
the maximum allowed radius should also vary
with the area fraction. Again, this effect should
be subject to direct experimental checks.

(3) Growth rates derived from the present mi-
crostructure theory at low area fraction correct-
ly recover the earlier results by Hayakawa and
Family. This suggests that the current screen-
ing approach captures essential features of the
many-body interactions during diffusion-limited
2D coarsening. In addition, Eq. 31 shows that
the coarsening rate constant changes with the
maximum allowed island radius and the nor-
malized screening length, both of which change
with area coverage of the second phase.

(4) The PSD for 2D phase coarsening can be
obtained by numerical solution to Eq. 37 with
substitution of growth rate, Eq. 26. The con-
stant K? in the growth rate, Eq. 26, can be
determined from Eq. 31. In summary, diffusion
screening theory as developed here may be
applied to explain the growth kinetics and phase
coarsening of dispersed droplets in thin films.
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