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Materials with low stacking fault energies have been long sought for their
many desirable mechanical attributes. Although there have been many suc-
cessful reports of low stacking fault alloys (for example Cu-based and Mg-
based), many have lacked sufficient strength to be relevant for structural
applications. The recent discovery and development of multicomponent equi-
atomic alloys (or high-entropy alloys) that form as simple solid solutions on
ideal lattices has opened the door to investigate changes in stacking fault
energy in materials that naturally exhibit high mechanical strength. We re-
port in this article our efforts to determine the stacking fault energies of two-
to five-component alloys. A range of methods that include ball milling, arc
melting, and casting, is used to synthesize the alloys. The resulting structure
of the alloys is determined from x-ray diffraction measurements. First-prin-
ciples electronic structure calculations are employed to determine elastic
constants, lattice parameters, and Poisson’s ratios for the same alloys. These
values are then used in conjunction with x-ray diffraction measurements to
quantify stacking fault energies as a function of the number of components in
the equiatomic alloys. We show that the stacking fault energies decrease with
the number of components. Nonequiatomic alloys are also explored as a means
to further reduce stacking fault energy. We show that this strategy leads to a
means to further reduce the stacking fault energy in this class of alloys.

INTRODUCTION

In many conventional structural materials,
strength and ductility are mutually exclusive. When
the strength is increased, such as by refining the
grain size, there often is a corresponding decrease in
ductility, which limits the use of the strengthened
material for structural applications.1 In ultrafine
grain (UFG) and nanocrystalline (NC) materials,
this is attributed to their poor capacity for accu-
mulating dislocations in the small grains, resulting
in a lack of work hardening.1,2 Recently, significant
advances have been made in developing UFG/NC
materials with improved ductility by selecting al-
loys with low stacking fault energy (SFE).1–7 High
SFE materials deform by dislocation glide and dis-
sociation into partial dislocations is difficult. In low
SFE materials, dissociation into partial dislocations
is more energetically favorable and the spacing be-
tween the partial dislocations (the width of the
stacking fault) is larger. As the spacing increases,

cross-slip and climb becomes more difficult,
increasing strength. Low SFE materials are also
more likely to deform by twinning, increasing dis-
location storage capacity, strain hardening rate, and
ductility.2–5,8 High-density ‘‘bundles’’ of nanoscale
twins have been observed after deformation in low
SFE copper alloys.9 Regions containing high densi-
ties of nanoscale-spaced stacking faults that provide
a similar strengthening effect have been observed in
low SFE magnesium alloys.10

To date, much of the research on improving
strength and ductility by reducing SFE has focused
on binary and ternary Cu-based alloys and multi-
component Mg-based alloys. The main reason for this
attention is the well-established ability of some
alloying elements to form solid solutions in Cu and
Mg and to significantly lower the SFE. While some
impressive results have been obtained, the strength
of most of the alloys is still relatively low. Cu-10 wt.%
Zn with a grain size of 110 nm retains elongation to
failure of greater than 6%, but the yield strength is
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improved to only �600 MPa.1 An alternative, and a
possibly more desirable system, would be one that,
like the Cu-based alloys, can form a face-centered
cubic (fcc) solid solution over a wide range of compo-
sitions and has low SFE but also retains high
intrinsic strength.

Recently, a new class of multicomponent alloy
systems has been developed in which the design is
based not on adding solutes to a single ‘‘base’’ ele-
ment but rather on choosing elements that will form
solid solutions when mixed at near-equiatomic
concentrations. These high-entropy alloys (HEAs)
meet these criteria and are found to form solid
solutions. This behavior has been attributed to the
large configurational entropy when five or more
elements at near-equiatomic ratios are mixed to-
gether.11 The elements likely to form as an HEA
solid solution and which lattice is likely to form will
now be briefly reviewed.

A fundamental understanding of the mechanisms
of phase stability of HEAs is still a topic of active
research. Guo and Liu12 demonstrated that ele-
ments likely to form HEAs have near-zero enthal-
pies of mixing and have very small differences in
atomic radius. The small enthalpy of mixing allows
the configurational entropy to dominate the free
energy, and it has been proposed that the system
behaves, in this case, more like an ideal solution.
Otto et al.13 recently published a systematic inves-
tigation on the effect of entropy on phase stability of
HEAs. The authors demonstrated that high config-
urational entropy is not the only sufficient criterion
to predict whether an equiatomic multicomponent
alloy will form as a single-phase solid solution. In
their study, they found only NiFeCrCoMn alloys to
be a single-phase fcc solid solution and an HEA.
These findings are consistent with the work of Guo
et al. as all the enthalpies of mixing in the respec-
tive binary alloys are relatively small and the atoms
are similar in size. The authors then replaced indi-
vidual elements in an equiatomic NiFeCrCoMn al-
loy one at a time with elements that have the same
room temperature crystal structure, similar atomic
size, and similar electronegativity as compared to
the elements being replaced. All other substitutions
to the NiFeCrCoMn alloy led to a multiphase alloy.
Although the replacement elements were ‘‘similar’’
according to Hume–Rothery rules, the authors
found that the substituted elements had a stronger
propensity to form secondary phases or intermetal-
lics in their respective binary alloys. This led the
system to act less as an ideal solution and resulted
in the formation of multiphase alloy with a reduced
overall entropy.13

There has also been interest in finding descriptors
to predict the likely lattice that the solid solution
will form on. One descriptor that has been reason-
ably successful in predicting the lattice structure is
the average valence electron concentration (VEC).14

FCC phases were determined to be more stable at
higher VEC (‡8), while body-centered cubic (bcc)

phases were determined to be more stable at lower
VEC (<6.87). On the boundary between fcc and bcc
(VEC = 8), the systems were found to be predomi-
nantly fcc, but in some situations bcc has been seen
in minute amounts.

To explore the physical properties of an HEA, we
have implemented an integrated approach that
combines results from experiment and first-princi-
ples electronic structure methods. Ni, Fe, Cr, Co,
and Mn were chosen as the components of the HEA
studied herein. The small size difference, small
enthalpies of mixing, VEC, and previous findings
suggest that this forms as a solid solution on the fcc
lattice. Additionally, binary (NiFe), ternary
(NiFeCr), and quaternary (NiFeCrCo) alloys form
fcc solid-solution phases. This allows us to explore
the evolution of a variety of properties, such as
elastic constants, lattice parameters, and stacking
fault energies, as a function of the number of com-
ponents. We show the atomic radii of these elements
from the literature in Table I.

The VEC of NiFeCrCoMn is 8 and is found to be
solely fcc in both previous studies and our current
work.13,16

In addition to the equiatomic alloys, we also pro-
duced some off stoichiometry five-component alloys
to determine how the SFE and other properties
change with composition. The alloys produced for
this study are listed in Table II along with their
average VEC and the entropy of mixing for the ideal
solid solution, given by DS ¼ �R

P
xi ln xi, where R

is the ideal gas constant and xi is the concentration
of component i.

In this article, we have adopted the following
naming convention: Alloy names without subscripts
are equiatomic; in alloy names with subscripts, the
subscript value is the concentration in atomic per-
cent.

METHODS

Experimental

Alloy powders were prepared by mechanical
alloying of elemental powders in a high-energy ball
mill. Powders of better than 99% purity were loaded
into a stainless steel vial with stainless steel balls in
a high-purity argon atmosphere. A 10:1 ball-to-
powder weight ratio was used. Approximately
0.7 wt.% dodecane (two drops) was added to four-
and five-component alloys as a process control agent
to minimize cold welding. Binary (NiFe) alloys were
milled in a modified SPEX 8000 mixer mill (SPEX
SamplePrep, Metuchen, NJ, USA) cooled by liquid
nitrogen for 4 h. Ternary (NiFeCr) alloys were mil-
led at liquid nitrogen temperatures for 8 h, followed
by 17 h of milling at room temperature with forced-
air cooling. Quaternary (NiFeCrCo) and quinary
(NiFeCrCoMn) samples were milled with forced-air
cooling for 24–29 h. Before any analysis, the dode-
cane was removed by evaporation in a vacuum
chamber for at least 18 h.

Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy 1781



Bulk samples were prepared by arc melting. Pure
(better than 99%), bulk elements were melted on a
water-cooled copper hearth in a Ti-gettered argon
atmosphere. Ingots were flipped and remelted at
least three times to ensure the elements were well
mixed. Samples were drop cast into a water-cooled
7-mm-diameter cylindrical copper mold.

X-ray diffraction (XRD) analysis was conducted
using a Rigaku Smartlab diffractometer (Rigaku
Corporation, Tokyo, Japan) with Cu Ka radiation.
The PM2K software was used to analyze the dif-
fraction patterns using the whole powder pattern
modeling algorithm.17 With this method, multiple
models relating the microstructure and crystallog-
raphy of the sample are convoluted and simulta-
neously refined to fit the measured pattern using a
nonlinear least-squares algorithm. The software
accounts for instrumental broadening and can cor-
rect for sample position errors. PM2K was used to
measure the lattice parameter, dislocation density,
grain size, twin fault probability, and stacking fault
probability.17 A Lorentzian peak function was fit to
each peak in the diffraction profile and the widths
used to determine the microstrain using the Wil-
liamson–Hall method.18 The microstrain was con-
verted to mean-square strain as described by Klug
and Alexander.19 The elastic constants were calcu-
lated using density functional theory (DFT) as de-
scribed in the next section. The SFE is then
calculated as:

c ¼
K111x0G 111ð Þa0A�0:37

p
ffiffiffi
3
p � e

2

a
(1)

where K111x0 is assumed to be a constant 6.6 for all
fcc materials, G 111ð Þ is the shear modulus in the
(111) plane, a0 is the lattice parameter, A is the
Zener elastic anisotropy 2C44= C� C12ð Þ; e2 is the
mean square microstrain, and a in the stacking
fault probability.20 XRD measurements for lattice

parameters of the cast alloys were performed after
cold rolling to increase the surface area of the
sample.

Microhardness tests were conducted on powder
samples that were fixed to a glass slide using epoxy
then polished. The cast samples were annealed at
1000�C for 24 h, cut using a low-speed diamond saw,
mounted in epoxy, and polished. Testing was done
with a 50-g load. At least 10 measurements were
taken on each sample.

Young’s modulus of the as-milled powders was
estimated from the reduced Young’s modulus
determined by nanoindentation using a Hysitron
Triboindenter and a load of 5 mN. The samples
were prepared as described for microhardness tests.
The Young’s modulus of the sample is calculated
from the reduced modulus using:

1

Er
¼ 1� m2

E

� �

sample

þ 1� m2

E

� �

indenter

(2)

The modulus and Poisson’s ratio of the indenter
were 1140 GPa and 0.07 GPa, respectively. A range
of values of the Poisson’s ratio for the alloys was
obtained computationally.

The grain size of the cast alloys was determined
by optical microscopy and the line-intercept method
after polishing and etching by immersion in solu-
tions of (I) CuCl2, HCl, and methanol, and (II)
FeCl3, CuCl2, HCl, HNO3, and ethanol for the
NiFeCrCo and NiFeCrCoMn alloys, respectively.

Computational

Two methods were used to investigate the physi-
cal properties of these solid-solution alloys. Both are
based on DFT. The first method was the exact

Table I. Atomic radii and valence electron concentration of pure metals15

Element Ni Fe Cr Co Mn Average

Atomic radius (pm) 124.6 127.4 128.2 125.2 126.4 126.4
VEC 10 8 6 9 7 8

Table II. Composition, average VEC, and ideal entropy of mixing of alloys produced

Alloy VEC DSmix (J K21 mol21)

NiFe 9 5.76
NiFeCr 8 9.13
NiFeCrCo 8.25 11.53
NiFeCrCoMn 8 13.38
Ni26Fe20-Cr14Co20Mn20 8.24 13.23
Ni23Fe20-Cr17Co20Mn20 8.12 13.34
Ni14Fe20-Cr26Co20Mn20 7.76 13.23
Ni14Fe21.5Cr21.5Co21.5Mn21.5 7.85 13.28
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muffin-tin orbital (EMTO)21,22 method combined
with the coherent potential approximation
(CPA).23,24 The second method was a plane wave-
pseudopotential approach as implemented in the
Vienna ab initio simulation packages (VASP) ver-
sion 5.2.12.25–28 VASP uses periodic boundary con-
ditions. To best approximate the random solid
solution, special quasi-random structures (SQSs)29

were generated using the tool in the alloy theoretic
automated toolkit (ATAT).30

The EMTO method is an improved screened
Korringa–Kohn–Rostoker (KKR) method that uses
optimized overlapping muffin-tin potentials to de-
scribe the actual crystal potential and calculates
system energies with higher accuracy than the
conventional muffin-tin orbital (MTO) method.31

This method is combined with the CPA technique to
treat systems with substitutional disorder. The
EMTO-CPA method proved a powerful tool in the
ab initio study of solid solutions, e.g., mechanical
properties32 and stacking fault energies33 of stain-
less steels. In the current EMTO-CPA calculation of
HEAs, the one-electron equations were solved using
the frozen-core approximation. The Green’s function
was calculated for 16 complex energy points. The
basis set included s, p, d, and f orbitals. The Perdew,
Burke, and Ernzerhof (PBE) version of generalized
gradient approximation (GGA), exchange–correla-
tion functional was applied.34,35 The magnetic dis-
order in HEAs was treated by the disordered local
moments (DLM) method.36

To consider the influence of the lattice displace-
ment on DFT calculations, we also performed simi-
lar calculations using VASP + SQS. Projector
augmented-wave (PAW) pseudopotentials37,38 and
the PBE version of generalized gradient approxi-
mation (GGA-PBE) were used in VASP calculations.
There are 10, 8, 6, 9, and 7 valence electrons for
elements Ni, Fe, Cr, Co, and Mn, respectively. In
addition to these valence electrons, the 3p electrons
of Fe, Cr, and Mn are also treated explicitly in the
PAW pseudopotentials used in this work. Noncol-
linear spin and spin–orbit coupling was included in
the VASP calculations. Both spin-aligned and ran-
dom moments are assigned to atoms within the
SQS. The lowest energy is found to be ferromagnetic
at 0 K, which differs from the experimentally mea-
sured paramagnetic state. The impact of the ferro-
magnetism in the predicted properties of VASP will
be discussed. The cut-off energy for plane waves was
set to 350 eV for all calculations. The k-point mesh
was selected based on what converged the total
energy to �1 meV/atom. This resulted in a
7 9 4 9 4 and 4 9 7 9 7 C-centered mesh for the
24 atom and 20 atom SQSs, respectively. The SQSs
were generated by mcsqs algorithm included in the
ATAT package. The generation of a SQS was based
on lattice geometry, specifically the pair correlation
function between lattice sites. Different atomic
configurations were created and the sum of pair
correlation functions on each site was calculated. A

structure in which the sum of pair correlation
functions on each site is closer to zero was consid-
ered a better SQS. The SQSs of the quaternary and
quinary alloys contained 24 atoms and 20 atoms,
respectively. Table III contains the atomic positions
and site populations for the four- and five-compo-
nent fcc SQSs used in this work.

There are 46- and 90-pair (out to third nearest
neighbor) and triplet (out to second nearest neigh-
bor) correlation functions to report for the four- and
five-component systems presented in Table III. We
note that none of the absolute magnitudes of the
pair correlation function exceed 0.05 and 0.03 for
the four- and five-component SQSs, respectively,
and none of the triplet correlation functions exceed
an absolute magnitude of 0.04 and 0.06 for the four-
and five-component SQSs, respectively. The weigh-
ted average of the pair and triplet correlation
functions were at least one order of magnitude less
than these reported maximum values. Although the
SQSs contain a small number of atoms, these
structures have proven to provide a means to
accurately predict physical and elastic properties of
alloys.39,40

Both methods were used to determine the lattice
constant, elastic constants, and Poisson’s ratio for
the alloys studied herein. The lattice constants for
each alloy from DFT calculations are compared to
experimental results from our research and the lit-
erature. The elastic constants were used to deter-
mine the first-principles polycrystalline elastic
properties, e.g., Young’s modulus and Poisson’s ra-
tio. Together with the experimental results, the
Poisson’s ratio was applied for the measurement of
the Young’s modulus with Eq. 2. As many of the
SFEs are small, the relative energies between
important phases used in the axial interaction
method to predict SFEs41,42 [fcc, hexagonal close
packed (hcp), and double hexagonal close packed
(dhcp)] are also expected to lead to small differences
in energy. When this is the case, factors such as zero
point energy differences may play a more significant
role in the prediction of the SFE. To avoid the added
computational expense of these vibrational calcula-
tions, we calculate the SFEs by combining experi-
mental measurements from XRD with the predicted
elastic properties through Eq. 1. Explicit calculation
of the SFEs will be fully explored in a separate
publication.

RESULTS AND DISCUSSION

X-Ray Diffraction

Figure 1 shows the XRD patterns of the as-milled
equiatomic alloys and the Ni14Fe20Cr26Co20Mn20

alloy. All of the alloys are single-phase and fcc.
Despite the average VEC of the Ni14Fe20

Cr26Co20Mn20 alloy being less than 8, it still forms a
single-phase fcc solid solution by mechanical alloy-
ing.
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The lattice parameters of the four and five com-
ponents were determined directly from the XRD
measurements and first-principles calculations. For
NiFeCrCo, the lattice parameters measured by XRD
were 3.613 Å and 3.575 Å for the as-milled and cast

samples, respectively. First-principles calculations
predict lattice parameters of 3.58 Å and 3.54 Å from
EMTO-CPA and VASP + SQS methods, respec-
tively. Both results are within 1% of the cast results
and are consistent with the measured lattice

Fig. 1. XRD patterns of as-milled equiatomic NiFe, NiFeCr, NiFeCrCo, and NiFeCrCoMn.

Table III. SQS For NiFeCrCo and NiFeCrCoMn alloys containing 24 atoms and 20 atoms, respectively

NiFeCrCo (N = 24) NiFeCrCoMn (N = 20)

Lattice vectors (0.5, �0.5, �1.0) (0.5, 2.0, �0.5)
(�1.5, �1.5, 0.0) (0.5, �0.5, 2.0)
(�1.5, 1.5, �1.0) (1.0, �0.5, �0.5)

Atomic positions (�1.5, �1.0, �1.5) Ni (0.5, 0.0, 0.5) Ni
(�2.0, 0.5, �1.5) Ni (1.0, 0.5, 1.5) Ni
(�1.5, 0.5, �2.0) Ni (1.0, 0.5, �0.5) Ni
(�1.5, 0.5, �1.0) Ni (1.5, 0.0, 0.5) Ni
(�0.5, �0.5, �1.0) Ni (1.0, �0.5, 0.5) Fe
(�0.5, 0.0, �0.5) Ni (1.0, 1.5, 0.5) Fe
(�2.5, 0.0, �1.5) Fe (1.5, �0.5, 1.0) Fe
(�1.0, �1.0, �1.0) Fe (1.5, 0.5, 0.0) Fe
(�1.0, 0.0, �1.0) Fe (1.0, 1.5, �0.5) Cr
(�1.5, 1.0, �1.5) Fe (1.5, 0.5, 1.0) Cr
(�2.5, �0.5, �2.0) Fe (1.5, 1.0, �0.5) Cr
(�1.0, 0.5, �1.5) Fe (1.5, 1.0, 0.5) Cr
(�2.0, 0.0, �2.0) Cr (0.5, 0.5, 0.0) Co
(�2.0, 0.0, �1.0) Cr (1.0, 0.5, 0.5) Co
(�1.5, �0.5, �1.0) Cr (1.0, 1.0, 1.0) Co
(�1.0, �0.5, �1.5) Cr (1.0, 1.0, 0.0) Co
(�1.0, �0.5, �0.5) Cr (1.0, �0.5, 1.5) Mn
(�2.5, �0.5, �1.0) Cr (1.0, 0.0, 1.0) Mn
(�1.5, �1.0, �0.5) Co (1.0, 0.0, 0.0) Mn
(�2.0, �0.5, �1.5) Co (2.0, 1.0, 1.0) Mn
(�1.5, 0.0, �1.5) Co
(�0.5, 0.0, �1.5) Co
(�2.0, �1.0, �1.0) Co
(�1.5, �1.5, �1.0) Co

Lattice vectors and atomic positions are given in Cartesian coordinates, in units of a, the fcc lattice parameter. Atomic positions are given
for the ideal, unrelaxed fcc sites
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parameters presented in Ref. 43. For the NiFeCr-
CoMn alloy, the lattice parameters from XRD were
measured to be 3.624 Å and 3.597 Å for the as-mil-
led and cast samples, respectively. The trends in
both first principles agree with the experimental
trend of increasing lattice parameter with increas-
ing the number of components. The lattice param-
eter predictions for NiFeCrCoMn from first-
principles calculations were 3.60 Å and 3.54 Å for
EMTO-CPA and VASP + SQS methods, respec-
tively, with the error on the order of 1.6% relative to
the cast lattice parameter. The lattice parameter for
the off stoichiometry Ni14Fe20Cr26Co20Mn20 alloy is
found to be 3.627 Å and 3.60 Å from XRD of the as-
milled alloy and EMTO-CPA, respectively, which is
an error of 0.7%. The lattice parameters of the as-
milled alloys are expected to be higher as a result of
the nonequilibrium processing conditions and high
defect density.44

Single-Crystal Elastic Constants

The elastic properties of a crystal can be ex-
pressed by the elasticity tensor. For cubic struc-
tures, there are three in dependent elastic constants
C11; C12, and C44:C11, and C12 can be derived from
the bulk modulus B and the tetragonal shear mod-
ulus C0, given that B ¼ C11 þ 2C12ð Þ=3 and
C0 ¼ C11 � C12ð Þ=2. The bulk modulus was obtained
by fitting the energy-volume data to the Birch-
Murnaghan equation of state. For the tetragonal
shear modulus C0 and C44, we applied a volume-
conserving orthorhombic deformation e0 and a vol-
ume-conserving monoclinic deformation em on the
fcc lattice,38 respectively. These relationships are:

e0 ¼
1þ d 0 0

0 1� d 0

0 0 1� d2
� ��1

0

B
@

1

C
A;

em ¼
1 d 0

d 1 0

0 0 1� d2
� ��1

0

B
@

1

C
A

(3)

where d was between 0.00 and 0.05 in increments of
0.01. The values of C0 and C44 were determined by
fitting the calculated energies to E ¼ E0 þ 2VC0d2

and E ¼ E0 þ 2VC44d
2.45 In these expressions, E is

the total energy of the strained system from first
principles, E0 is the energy at the equilibrium vol-
ume, and V is the volume of the cell. The elastic
constants were determined using EMTO-CPA and
VASP for NiFeCrCo and NiFeCrCoMn, while the
elastic constants for off stoichiometry alloys were
determined from EMTO-CPA alone. A strain range
no greater than 5% was used in the EMTO-CPA and
the VASP calculations to determine the bulk
modulus through fitting of results to the Birch-
Murnaghan equations of state. As shown in Fig. 2,
the calculated elastic constants and bulk moduli

depend on the first-principles method implemented.
The deviation between the results of the two
methods increases for NiFeCrCoMn. We also com-
pare our results of the four-component systems to
Tian et al.46 who calculated the elastic constants of
NiFeCrCo using the EMTO-CPA code. The differ-
ences between our results and those published are
small and attributed to the setup of the calculations.
Tian et al. used soft core, 240 k-points, and a
screening parameter of 0.6. In our calculations we
implemented frozen core, 419 k-points, and a
screening parameter of 0.9.

Deviations in the elastic constants between VASP
and EMTO-CPA for the four- and five-component
alloys were explored and are believed to be partially
due to the magnetic configuration in the calculation.
VASP predicts ferromagnetic, while EMTO-CPA is
run with DLM approximating the paramagnetic
state. To the validity of this assertion, EMTO-CPA
was run with a ferromagnetic configuration. This
ferromagnetic EMTO-CPA calculation predicts a
lower total energy at 0 K and elastic coefficients in
closer agreement to the VASP calculations. The

Fig. 2. Elastic constants of equiatomic NiFeCrCo (a) and NiFeCr-
CoMn (b).46

Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy 1785



elastic constants from our EMTO-CPA and VASP
calculations will be used to determine polycrystal-
line constants, which will then be used with Eq. 1 to
determine the SFEs of the alloys. Although there
are differences in the predicted elastic constants, it
will be shown that these have a smaller impact on
the SFEs determined by this process.

Polycrystalline Elastic Constants

We derived the polycrystalline elastic properties
using the elastic constants and the Voigt–Reuss (V–
R) averaging method.47 According to the V–R
method, the polycrystalline bulk modulus is the
same as the single crystalline bulk modulus from
DFT calculation, while the shear modulus G can be
given by the upper (GV) and lower (GR) bounds:

GV ¼
C11 � C12 þ 3C44ð Þ

5
;

GR ¼
5 C11 � C12ð ÞC44

4C44 þ 3 C11 � C12ð Þ

(4)

The shear modulus G can be estimated as
GV þGRð Þ=2, according to the Hill averaging

method.43 Poisson’s ratio and Young’s modulus E for
an isotropic material can be derived from the bulk
modulus B and shear modulus G:

m ¼ 3B� 2G

2 3BþGð Þ ; E ¼ 9BG

3BþG
(5)

Table IV shows the calculated values of Poisson’s
ratio assuming a Hill average.

The values of Poisson’s ratio of NiFeCrCo from
the two first-principles methods are very close. As
noted previously, the elastic constants of NiFeCrCo
from the two methods differ, which is not surprising
as there are differences in the bulk modulus
(208 GPa vs. 171 GPa from EMTO and VASP,
respectively). This implies that the deviations of the
elastic constants are cancelled during the calcula-
tion of Poisson’s ratio in Eqs. 4 and 5. The Hill
average of Poisson’s ratio of NiFeCrCoMn differs as
much as �42% between the two methods, which
arises from the deviation of elastic constants. As
noted previously, this may be partially related to
the differences in the magnetic state.

Table V shows the values of Young’s modulus
from our calculations and experiments.

The range of values from the nanoindentation
experiments was determined by converting the re-
duced modulus using the Hill average of Poisson’s
ratio from the DFT calculations. VASP and EMTO
results are presented for the four-component alloy,
but only EMTO-CPA results are included for the
five-component alloy. While there is closer agree-
ment between theory and experiment for the NiF-
eCrCo alloy, the measured Young’s modulus of the

NiFeCrCoMn alloy is substantially lower than the
predicted result. It should be noted that the bulk
moduli calculated using VASP for the four- and five-
component alloys presented previously in Fig. 2
show a decrease in the bulk modulus from 172 GPa
to 131 GPa. With a more physical Poisson’s ratio for
the five-component alloy (i.e., closer to the 0.311
predicated for the four-component alloy) and the
following relationship between Bulk modulus and
Young’s modulus for an isotropic solid: E ¼
3B 1� 2mð Þ, we would find these results closer to
experiment with Young’s moduli of 195 GPa and
149 GPa for the four- and five-component alloys,
respectively. Due to the scatter in the measurement
of the reduced modulus, we consider these in good
agreement with experimental measurements from
nanoindentation.

Stacking Fault Energy

Figure 3 shows the ratio of the mean square mi-
crostrain to the stacking fault probability in the as-
milled alloys as measured using XRD. From Eq. 1,
this value is related to the SFE by the elastic con-
stants and the lattice parameter. From these re-
sults, we can predict that the SFE of the four- and
five-component alloys will be nearly an order of
magnitude lower than that of NiFe.

Table VI shows the SFE of the four- and five-
component alloys measured using the x-ray stack-
ing fault probability and elastic constants deter-
mined by VASP and EMTO-CPA.

No reliable error values can be determined for the
measurements. The PM2K software calculates an
estimated standard deviation for the stacking fault
probability and lattice parameter. Nevertheless,

Table V. Young’s modulus of NiFeCrCo and
NiFeCrCoMn from DFT calculations and
experiment

EHill (GPa)

NiFeCrCo (EMTO-CPA) 225
NiFeCrCo (VASP) 195
NiFeCrCo (nanoindentation + EMTO) 171
NiFeCrCo (nanoindentation + VASP) 172
NiFeCrCoMn (EMTO-CPA) 207
NiFeCrCoMn (nanoindentation + EMTO) 137

Table IV. Poisson’s ratio of NiFeCrCo and
NiFeCrCoMn from DFT calculations

Hill average

NiFeCrCo (EMTO-CPA) 0.319
NiFeCrCo (VASP) 0.311
NiFeCrCoMn (EMTO-CPA) 0.313
NiFeCrCoMn (VASP) 0.204
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there is likely significant error associated with the
microstrain calculation, but the Williamson–Hall
method does not provide a way to quantify it. De-
spite significant differences in the elastic constants
of the four-component alloy as determined by VASP
and EMTO-CPA, the SFE measurements agree to
within 0.005 mJ/m2, which is within the measure-
ment limits. As with the Poisson’s ratio calculation,
there is cancelation of error in these measurements.

Figure 4 compares the averages of the measured
SFE of the NiFe, NiFeCr, NiFeCrCo, and NiFeCr-
CoMn alloys produced in this study to literature
values of pure Ni and NiFe. The elastic constants
used for the XRD measurements of NiFe are from
Ref. 48. From these measurements, we can conclude
that the multicomponent alloys have relatively low
stacking fault energies valued at less than a quarter
of the SFE of pure nickel. Nevertheless, these values
are still on the same order as or slightly higher than
some conventional austenitic stainless steel alloys
such as AISI 304L (c = 18 mJ/m2) and AISI 305
(c = 34 mJ/m2).50 Additionally, the decrease in SFE
is smaller with each additional alloying element,
suggesting that simply adding more elements may
not lead to a substantial reduction of the SFE. These
results show that while equiatomic NiFeCrCoMn
alloys do have reduced SFE, obtaining SFEs on the
order of those seen in common copper alloys
(<15 mJ/m2) will require finding an optimum com-
position or compositions. This is a difficult problem

considering the number of elements and the wide
range of compositions that are still considered HEAs.

As Ni is known to have a high SFE, we explored
varying its composition while increasing composi-
tion of other components in the HEA. We mainly
increase the composition of Cr as Ni content is re-
duced, but we also explored raising the composition
of all components for a reduced Ni concentration.
Figure 5 shows the ratio of the mean square mi-
crostrain to the stacking fault probability in the as-

Table VI. SFEs of NiFeCrCo and NiFeCrCoMn calculated from experimental data of stacking fault
probability and DFT calculations of elastic constants

Alloy SFE (mJ/m2) (VASP) SFE (mJ/m2) (EMTO-CPA)

NiFeCrCo-1 17.4 17.4
NiFeCrCo-2 34.3 34.3
NiFeCrCo-3 31.7 31.7
NiFeCrCoMn-1 27.3 19.6
NiFeCrCoMn-2 25.5 18.3

Fig. 4. SFEs of equiatomic fcc metals from pure Ni to NiFeCr-
CoMn.20,49

Fig. 5. Ratio of mean-square microstrain to stacking fault probability
for five-component alloys. Error bars represent error from the
stacking fault probability measurement. Circles represent the alloys
in which Cr balances the difference in Ni content. The triangle is the
alloy in which the concentrations of all other elements are increased
equally to balance the Ni.

Fig. 3. Ratio of mean-square microstrain to stacking fault probability
for NiFe, NiFeCr, NiFeCrCo, and NiFeCrCoMn. Error bars represent
error from the stacking fault probability measurement.
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milled five-component alloys as a function of Ni
concentration. From this data, it is expected that
the low-Ni alloys will have a much lower SFE than
the equiatomic alloy. The SFEs of the nonequi-
atomic alloys, using elastic constants calculated by
EMTO-CPA, are listed in Table VII.

From these results, we can see that there is a
dependence on both the Ni and Cr concentrations.
While lowering the Ni concentration independently
of the Cr does significantly reduce the SFE, it does
not do so to the same extent as reducing Ni and
increasing Cr. The Ni14Fe20Cr26Co20Mn20 alloy has
an extremely low SFE, apparently even lower than
Cu-Al-Zn51 and Cu-Ge2 alloys. The SFE of various
conventional alloys known to have a low SFE are
compared to the HEAs from this study in Fig. 6.

Mechanical Properties

Gali and George52 conducted a detailed study of
the tensile properties of hot-rolled and annealed
NiFeCrCo and NiFeCrCoMn. They measured room
temperature yield strengths of �200 MPa in the
four-component alloy and �300 MPa in the five-
component alloy with grain sizes of 14 lm and
35 lm, respectively. They also measured uniform
elongation of �40% at room temperature and found
that as the test temperature decreased to �196�C,
both the strength and ductility increased. Anneal-
ing twins were observed and a high work hardening
rate was attributed to the formation of nanoscale
deformation twins.52

Hardness and grain size measurements from the
as-milled powders and cast alloys of this study are
shown in Table VIII.

Measurement of the grain size of the five-compo-
nent alloy was difficult due to the large numbers of
annealing twins. Additionally, the twin fault prob-
ability as measured by XRD in the as-milled four-
and five-component samples was found to be very
high, on the order of 0.1. The hardness results show
that the NC alloys have extremely high strength.
Using the common empirical HV ¼ 3ry relation, the
yield strength is likely in the range of 2–2.5 GPa.
These results, and those from earlier studies, are
consistent with our measurements of low SFE.

SUMMARY

The elastic properties and stacking fault energies
of multicomponent alloys containing Ni, Fe, Cr, Co,
and Mn were determined using a combination of
DFT calculations and experiments. Reasonable
agreement between experiments and calculation
was found for the lattice parameter and elastic
properties, although further experimental work is
required to measure values that are completely
independent of the calculations. The SFE of the
equiatomic NiFeCrCo and NiFeCrCoMn alloys
measured by XRD is approximately 20 mJ/m2 to
25 mJ/m2, which is substantially lower than that of
pure Ni and NiFe. These measurements are in
agreement with the results of mechanical testing
and microstructure characterization by XRD. By
altering the composition, the SFE can be tailored to
a wide range of values, including low values com-
parable to or better than conventional low SFE al-
loys. The results indicate that fcc HEAs such as
NiFeCrCoMn can be engineered to have both high

Table VII. SFE of nonequiatomic HEAs

Alloy SFE (mJ/m2)

Ni26Fe20-Cr14Co20Mn20 57.7
Ni23Fe20-Cr17Co20Mn20 19.7
Ni14Fe20-Cr26Co20Mn20 3.5
Ni14Fe21.5Cr21.5Co21.5Mn21.5 7.7

Fig. 6. SFEs of equiatomic NiFeCrCoMn and Ni14Fe20Cr26Co20Mn20

(best HEA) compared to other low SFE alloys.2,50,51

Table VIII. Hardness and grain size measurements from the as-milled powders and cast alloys

Material Hardness (GPa) Grain size Std. Dev. of grain size

As-milled NiFeCrCo 6.3 ± 0.1 22 nm 9 nm
As-milled NiFeCrCoMn 7.8 ± 0.2 9.4 nm 5 nm
Cast NiFeCrCo 1.66 ± 0.07 20 lm –
Cast NiFeCrCoMn 1.42 ± 0.03 49 lm –
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strength and ductility, making them promising
candidates for future use as structural materials.
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