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‘‘Solidification’’ is a branch of pattern formation in theoretical physics. ‘‘Phase-
field’’ is an applied tool in engineering. This strange combination of basic and
applied research is reviewed against its historical background: a story of
failure and success. The main achievements in both fields are highlighted, and
future perspectives are briefly discussed.

INTRODUCTION

If we read the word ‘‘solidification,’’ we might
think of the compaction of the soil in geophysics. Or
the coagulation in an emulsion. Metallurgists think
of the crystallization of a melt. Theoretical physi-
cists think of a self-similar transport solution and
its variation, which determines the scale of the
solidifying object. Of course they mean a ‘‘dendrite’’
(see, e.g., Ref. 1), which has a theoretical solution
similar to viscous fingering in oil drilling.2 A den-
drite is the growth structure of the solid crystal
during solidification, which has a morphologically
unstable interface with its melt under typical
solidification conditions of an alloy (as discussed in
Ref. 19). The crystal forms a ‘‘tree-like’’ structure,
from which we get the name. (See Fig. 1).

Why solidification? From the practical point of
view, the understanding of dendritic growth is cru-
cial for understanding the technical process of metal
casting. ‘‘Worldwide, as many as 10 billion metallic
dendrites are produced in industry every second’’
starts the ‘‘News and Views’’ article in Nature by
Rappaz and Kurz in 1995.3 Today, the rate will even
be higher. The theoretical problem of ‘‘solidification’’
is settled in its principles, I will report. Good theo-
retical models and numerical tools are available to
cope with the solidification of technical materials.
These tools have found their way into practical
engineering solutions that are applied on a routine
basis in foundries every day around the world.

Why phase-field? The answer is simply because
there is no other numerical tool for coping quanti-
tatively with the problem of a dendrite in three
dimensions. There are several other numerical
techniques that have been investigated in the past,
and there may be new techniques emerging in
the future. It is from its numerical efficiency that

phase-field won the race. In this review, I’ll sum-
marize the historical development partly from the
literature, and from my own experience and from
narrations—for those who are younger than me and
did not have the chance to meet the pioneers—and
for the pioneers to smile at the past.

PEARLITE AND THE PROBLEM OF SCALE

Pearlite is the mother of pattern formation (for a
recent revisit, see Refs. 4 and 5; for the classic pic-
ture, see Refs. 6–8). In the early days of modern
metallurgical research, it was found that perlitic
steel becomes tougher if it is cooled more quickly
from austenite. This behavior had been a mystery
for a long time since pearlite was believed to be a
‘‘phase’’ because the fine laminate structure be-
tween the crystallographic phases ferrite and
cementite, below 1 micrometer, could not be re-
solved by light microscopes. In a light microscope,
one only observes a shiny appearance, from which
we get the name ‘‘shining like a pearl.’’9 Only after
the invention of the electron microscope in 193210

were physicists able to reveal the lamellar structure
of pearlite. A first explanation of the transformation
process from austenite to ferrite and cementite, the
so-called cooperative growth mode, was published
by Clarence Zener in 1947.6 Mats Hillert found the
analytical solution in 1957.7 The Zener–Hillert
model of cooperative growth states that the super-
saturation in austenite, due to the rejection of car-
bon from the growing ferrite, slows down growth. To
remove this supersaturation, a fine lamellar width
is needed, so that the carbon will have a short dif-
fusion path to the cementite tip where it is needed to
grow the cementite. A fine lamellar spacing favors
growth. The second ingredient is the interface en-
ergy. For fine spacing, a large part of the driving
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force for the transformation is consumed by the
creation of interfaces. This slows down the growth.
There is an ‘‘optimum’’ spacing, according to Hill-
ert’s solution.

There remain basically two open questions: does
this correspond to reality? If so, how does a pearlitic
structure find the optimum spacing? Let me first
answer the second question: it does not (in general).
There was a long-lasting debate about a principle of
‘‘maximum growth’’ or ‘‘minimum undercooling,’’
which would guide nature to a unique state. It is
today established without doubt that such a prin-
ciple does not exist, although it may be a working
solution for engineering-type models. There is a full
band of stable spacings around the optimal spacing,
none of them being preferred over the others. This
has been intensively studied for eutectic systems.
Why not for the eutectoid system pearlite? This
answers question one: the model is not able to make
quantitative predictions for pearlite. The reason for
this was already discussed by Hillert: because there
is a large lattice misfit among austenite, ferrite, and
cementite, which causes strong mechanical loads.
To include these loads in the analytical solution of
Ref. 7 was impossible and had to wait for an
appropriate numerical tool. Imagine which? Let us
continue first with the historical picture. Tiller in
1957 applied Zener’s model to directional eutectic
solidification. He formulated the picture of cooper-
ative growth due to lateral redistribution of the
solute—for eutectic solidification.11 He got a stand-
ing ovation in October 1957 at the ASM weekend
seminar held in Chicago, IL.12 Jackson and Hunt
showed in 196613 that the Hillert solution, origi-
nally developed for pearlite, perfectly matches their
well-controlled experiments of the directional
growth of a eutectic alloy. It is from that time on
that Hillert’s solution has been known as the

‘‘Jackson-Hunt’’ solution, although these authors
clearly reference the original work of Zener and
Hillert. Their finding caused an ‘‘earthquake’’ in
metallurgy. Many researchers who had been work-
ing on steel and pearlite started investigating eu-
tectic growth, among those Wilfried Kurz and Rohit
Trivedi. This was the birth of a new discipline:
‘‘solidification.’’

DENDRITIC SOLIDIFICATION
AND THE PROBLEM OF ANISOTROPY

Solidification became the toy problem of materials
scientists interested in basic physics, and of physi-
cists interested in materials. Well-controlled
experiments started to serve as benchmarks for
mathematical models, which soon turned into
numerical tools. In solidification, one deals with
diffusion mainly in liquid: the diffusion in solid is
lower than the diffusion in liquid for all substitu-
tional elements by a factor of a 1000 and can safely
be neglected. The temperatures are high, and the
interface can be treated in local equilibrium for
moderate solidification speeds. The interface energy
anisotropy between the solid and the liquid is low
for most metals. Therefore, crystallography can be
neglected to first order. The only remaining problem
is convection in liquid melts, but there are technical
measures for coping with this problem (see below).
Solidification problems can be posed in such a way
that they can be correlated to theory, while in solid
state not even the order of magnitude matches: the
famous ‘‘factor of ten’’ in Hillert’s pearlite solution.

Since eutectic solidification works so well, what
about dendritic solidification? Here we have the
‘‘Ivantsov solution’’14 of a dendrite approximated by
a paraboloid of revolution. This solution describes
the growth problem in a moving coordinate system
as a scale invariant, or self-similar, solution of the
Peclet number Pe ¼ Rv

D with the growth speed of the
dendrite tip v, the tip radius R, and the liquid dif-
fusivity D. What does this mean? A slow dendrite
may grow with a large radius, as well as a fast
dendrite with a small radius. The transport solution
does not select the scale. It was only natural to
introduce the interface energy, or curvature, to fix
the scale, as had been done very effectively in eu-
tectic solidification, as described earlier. One had to
subtract the energy dissipated by creating inter-
faces from the dissipation caused by diffusion. This
idea had been introduced in 1960 by Temkin15 and
further developed by Trivedi.16 And it failed! The
isothermal dendritic growth experiments (IDGEs)
by Martin Glicksman and co-workers17,18 showed
that dendrites grow with a much larger tip radius
(and lower velocity) than predicted by the maximum
growth hypothesis and a curvature corrected Ivant-
sov solution. A more than 20-year struggle to explain
this phenomenon started. Steps in this struggle, all
of them representing seminal scientific achievements,
include the Mullins-Sekerka stability analysis of

Fig. 1. Typical equiaxed dendrites of a metallic alloy at about 20%
solidification. The picture is taken from a pore where the interden-
dritic melt had been sucked out to preserve the dendrite. The inter-
face branches out to form six arms for a cubic crystal, which again
form secondary arms with a quite regular structure depending on the
alloy and the solidification conditions.
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transformation fronts,19 the marginal stability
hypothesis by Müller-Krumbhaar and Langer,20–22

as well as space experiments under microgravity to
suppress melt convection and g-jitter.*23

Today’s accepted theory is the so-called micro-
scopic solvability theory.24 Briefly put, it states that
the interface energy anisotropy (which is small for
metals and therefore is neglected in most applica-
tions) becomes crucial for the close to self-similar
problem of dendrite growth before the first-order
perturbation (curvature) becomes active. The den-
drite tip has a small protrusion compared with a
perfect parabolic shape. This protrusion triggers the
growth direction according to the crystallographi-
cally weakest interface orientation. The protrusion
has to match in shape the microscopic fluxes of heat
or solute parallel to the interface. This determines
the scale. Has this become clear? The original paper
of Ben Amar and Brener24 presents sophisticated
mathematical derivations and gives only an
asymptotic solution. We would like to have a full
solution. Therefore we need numerical solutions!

PHASE-FIELD AND THE PROBLEM OF
ACCURACY

Numerical simulation in solidification is one of
the success stories of the (relatively) new computer
age. It started out with one-dimensional simulations
of the heat transfer in a casting, including the latent
heat. Latent heat makes the problem inherently
nonlinear, and latent heat is almost 50% of the total
heat content of a metallic melt poured into a mold.
Nonequilibrium models of early solidification treat-
ing nucleation and kinetic control soon followed.25

Academic software applications grew into commer-
cially successful products. There had been many
attempts to simulate dendrites in 3D by different
techniques. The first promising one was by Ryo
Kobayashi.26 The simulated dendrite morphology
was strikingly close to real dendrites at a time when
supercomputers had less power than today’s
smartphones. Comparing the simulated dendrites
with images from experiments, we note what is
missing: the scale bar! In fact the early phase-field
models for dendritic growth showed a clear depen-
dence of scale on the choice of the interface width,
which has to be taken large compared with its
atomic scale.

There have been good alternative approaches, in
particular in 2D: front tracking,27 boundary integral
methods,28 and even cellular automata.29 There is no
reason in principle why these methods should not
work quantitatively in 3D. Adaptive finite elements
have also been applied to a good level of accuracy.30

Most of these attempts have passed away in the last
few years for practical reasons. Phase-field models
with a thin interface asymptotic31,32 won the race.

Figure 2 shows a convergence study using the Karma
model with a double-obstacle potential for directional
solidification of an Al-Cu alloy under the conditions
given in Ref. 33. The code and the conditions for this
convergence study are available in Ref. 35. It clearly
shows the range of appropriate numerical discreti-
zation by the independence of the predicted tip radius
from numerical parameters.**

Similar studies have been performed by others.
They must be good scientific standard in the future.
Only then conclusive studies related to materials
problems are possible. I’d like to highlight the work
of Jon Dantzig and co-workers who have used
additionally an adaptive mesh refinement to im-
prove the numerical efficiency (see Fig. 3).

To conclude this section, phase-field simulations
today are able to cope with the problem of scale in
dendritic solidification in a quantitative manner.
There is a ‘‘universal’’ shape of equiaxed dendrites,
as shown by Karma in Ref. 31. There is a band of
possible spacings in directional solidification with
a critical limit of the lower spacing, as shown in
Ref. 33. Needless to say, eutectic solidification can
be well tackled by phase-field (e.g. Ref. 37). What is
left?

BEYOND DIFFUSION CONTROL

The remaining questions concern real materials
and processes. The previous examples are generic,
which means they demonstrate a fundamental
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Fig. 2. Dendite tip radius in directional solidification under the con-
ditions given in Ref. 33 versus the interface width, for different
interface discretizations. Convergence is found if the interface width
is smaller than the physical radius AND the numerical discretization
of the interface is higher than five cells (set I). With a discretization of
the interface width with fewer than five numerical cells, the evaluated
radius decreases monotonically with increasing discretization (set II).
For all calculations with an interface width comparable with or larger
than the physical radius, the simulation results depend strongly on
the width of the interface (set III). (Calculations by Mingming Zheng
using OpenPhase,35 unpublished).

*This is the convection caused by the movement of the astronaut
and other perturbations.

**The present study does not include interface preconditioning,36

which might allow a lower discretization of the interface.
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principle. The ‘‘proof of principle,’’ in a theoretical
physicist’s view, is the only task. According to a
materials scientist, however, it is a crucial step in
model development. Having understood the uni-
versal nature of the principle, we want to apply our
knowledge to material and process design problems.
We want to use the numerical tools to cope with the
questions of real materials and processes. There is
an overwhelming body of new developments in
phase-field methods (and other materials-science-
related numerical methods) to be reported. A large

number, probably incomplete, are quoted in recent
reviews.38–43 Please accept my apology for reporting
only three examples that are related to my own re-
search and go beyond diffusion control in phase
transformations.

Rapid Solidification

Solidification is usually considered a diffusion-
controlled transformation. This is due to the fast
redistribution of the solute at the solidification front

Fig. 3. Simulated microstructure development in directional solidification of Al-Zn alloys. The surface energy anisotropy as a function of the
interface normal vector n is represented as cs‘ðnÞ ¼ c0

s‘ 1þ a1 Q � 3
5

� �
þ a2 3Q þ 66S � 17

7

� �� �
; where Q ¼ n4

x þ n4
y þ n4

z and S ¼ n2
x n2

y n2
z are the

first two cubic harmonics. The figure shows the microstructure of the most favorably oriented dendrite with respect to the (vertical) pulling
direction, for each pair of anisotropy parameters at the points indicated. The preferred growth direction begins as [100] for a2 � 0, and then
gradually rotates toward [110] as the parameters vary from left to right. The orientation aligns with [110] at the point where the minimum surface
stiffness crosses over from [100] to [110]. Dantzig, private communication 2013. For details, see Ref. 34.
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at the elevated melting temperatures of metals.
Then the solidification front can well be taken to be
in a local thermodynamic equilibrium between the
solid and the melt, corrected by the curvature und-
ercooling. Kinetic undercooling can be neglected.
Already in the early days of solidification, this pic-
ture was extended to include kinetic effects under
the so-called ‘‘rapid solidification’’ condition.44 Rapid
solidification is either observed in strongly under-
cooled melts, where a solidification speed of up to
100 ms�1 is reached45 or in thin films prepared by
melt spinning or splat cooling or solidification in a
weld spot. No local equilibrium condition is estab-
lished at the interface. Interface attachment kinet-
ics become important46 and solute trapping is
observed: the partitioning of the solute between
solid and melt decreases with increasing solidifica-
tion speed. This effect is inherent in any phase-field
model. A detailed study was given already by
Wheeler, Boettinger, and McFaddeen in 1993.47

Since then, it has become clear that the extent of the
solute trapping depends strongly on the interface
width used in the simulation. This means that a
quantitative prediction of the solute trapping in a
standard phase-field model is only possible if the
interface width is discretized on the physical scale of
the interface, which is for solidification of metals on
the order of one nanometer.�

In one-dimensional simulations, Galenko and co-
workers48 have recently shown that a so-called
hyperbolic phase-field model, which considers iner-
tial effects within the interface, is able to predict a
sharp transition to complete trapping in agreement
with experiment. Here, the interface has been dis-
cretized on its physical nano-meter scale. Again,
three dimensions are the challenge. Adaptive

methods (e.g., Ref. 49) may be applicable. An alter-
native approach is the newly developed phase-field
model with finite interface dissipation by the author
and co-workers.50,51 This model is derived by coarse
graining the interface region and introducing a
redistribution flux between the phases that is con-
trolled by the interface permeability introduced as
an adjustable parameter dependent on the resolu-
tion on the mesoscopic scale. Adjusting this perme-
ability in one dimension by comparison with the
microscopic model48 allows for quantitative simu-
lation with a much reduced resolution. The details
of this approach are published in Ref. 52.

Solidification and Melt Convection

Solidification has one serious problem that does
not exist in solid state: melt convection. Some
experiments may be well in the regime of diffusion
control, but most are not. We might introduce the
wording ‘‘transport-control,’’ which means that
transport in the bulk phases controls the solidifica-
tion and the attachment kinetics (as described in
the previous section) will be negligible. Then it is
only a technical issue to consider advection in
addition to diffusion. Models that have been elabo-
rated for buoyancy driven convection, or advection
driven by stirring, are available from the respective
communities. The condition of ‘‘no slip’’ at a diffuse
phase-field interface was worked out in 1999.53 It
has been shown how melt convection changes the
scaling of a ripening mush54 and how dendrites
grow in forced convection in three dimen-
sions.39,49,55,56 It has been shown that the primary
spacing of the columnar dendrites can vary by a
factor of two depending on the orientation of growth
relative to the direction of gravity.57 Sedimenting
dendrites have been a challenge for a long time.
With today’s computer facilities, this becomes a do-
able task. Figure 4 shows several stages of a Mg-Al
dendrite in a shear flow. It turns around all its axes
during growth, and it will adjust its position and

Fig. 4. Mg-Al dendrites in a shear flow imposed as a boundary condition. Due to the asymmetric forces acting on the dendrite, it rotates around
all its axes in three dimensions, as indicated by the axis of abscissas (calculations by Oleg Shchyglo using OpenPhase,35 unpublished).

�Physical solute trapping in rapid solidification and its treatment
by the phase-field method should not be confused with the tech-
nique of anti-trapping for slow solidification,32 although it is re-
lated from a technical viewpoint.
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orientation depending on the vicinity of other den-
drites: a nucleated equiaxed grain in a melt will
neither keep its position nor its orientation. This
poses a challenge for the future.

Pearlite: Back to the Roots

In 2006, I met Rohit Trivedi, one of the pioneers in
eutectic solidification, during the Euromat confer-
ence in Prague. I informed him about recent finding
by phase-field simulations of pearlite formation.58

These simulations investigate diffusion in the ferritic
phase (which had been omitted in the analytical
Hillert solution). The simulation showed that this
contribution increases the transformation kinetics of
pearlite by a factor of four (which had already been
predicted by Fisher in 1950 in an analytic study59),
but still leaving a significant gap with experiment.
Rohit answered that he himself had started his career
as a metallurgist working on pearlite transformation.
He gave me the hint to look for strain effects in the
solid state transformation. And he invited me to a
symposium held in Ames in the same year, on the
occasion of his 75th birthday. So I followed his advice
to investigate strain effects in order to have a good
story to tell. The result is striking: there is a stress
dipole between the ferrite (which contracts during
the transformation from austenite) and the cement-
ite (which expands). This stress dipole produces an
enormous gradient of hydrostatic stress in the aus-
tenite, which drives a strong flux of carbon against
the chemical gradient. The model, as published in
Ref. 4, has many shortcomings, namely, the two-
dimensional approximation, the oversimplified
anisotropy model for the interface between the
cementite and the austenite, and the neglect of
interface diffusion. Also the calculation domain is
very small and no variation of spacing has been con-
sidered. Furthermore, a sound numerical study of the
resolution is missing. These shortcomings led to the
statement of Asta et al.,60 who summarized the 2006

Trivedi symposium, that the model predictions
should be consolidated by further experimental and
theoretical investigations. Those are actually in
progress. Although the full quantitative correspon-
dence may be under debate, the principal mechanism
is certain: the gradient of hydrostatic stress in the
austenite, caused by the expansion–contraction di-
pole of the ferrite and cementite, drives carbon away
from the supersaturated zone ahead of the ferrite
(which is under compression) into the zone ahead of
the cementite (which is under tension). There it is
needed to form the carbide phase and cementite
grows from a highly supersaturated and expanded
austenite. This mechanism is explained in Fig. 5
(compare with a recent reconsideration of the prob-
lem in Ref. 5). The active mechanisms have been
hypothesized for a long time. Phase-field is able to
bring them together and herewith closes the cycle of
this story.

CONCLUSION

Solidification and phase-field are tied together.
Pearlite posed the challenge. Relaxing the complex-
ity of the problem to eutectic solidification allowed
quantitative verification of early transformation
models by experiment. Phase-field emerged as the
numerical technique for solving solidification mod-
els, whether eutectic, dendritic, or others, in three
dimensions. It combines numerical efficiency with
rigorous theoretical derivation by coarse graining a
microscopic thermodynamically consistent princi-
ple.43 Today we are able to attack new challenges:
solid state transformations and transformations in
general with more than one single dissipation
mechanism. Modern phase-field models are com-
bined with advanced models for transport in bulk:
multicomponent diffusion with cross-effects, trans-
port by advection, strain-driven diffusion, and plas-
tic activity.61,62 Such advanced models will be able to
cope with the challenges of real materials and will be

Fig. 5. Concentration (left) and stress distribution (right) at the pearlitic transformation front. Carbon forms a halo around the tip of the cementite
needle. Compressive and tensile stress forms a stress dipole that drives diffusion uphill against the concentration gradient. Due to the redis-
tribution of carbon between the compressed and expanded regions, the stress level remains below ±100 MPa, so that no plastic activity is
expected (calculations by Adam Giessmann using OpenPhase,35 unpublished).
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used as predictive tools for material and process
optimization.
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