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Table I. Data for Copper Specimens Deformed by SPD or Cold Rolling

Specimen ρ (1015m–2) m (nm) σ d(arithmetic) (nm) d(volume) (nm)

1x ECA 1.7 20 0.81 28 103
2x ECA 1.7 57 0.30 60 78
2x ECA + Compression 2.2 43 0.36 46 68
12x ECA 1.7 27 0.51 31 68
12x ECA + Compression 1.8 29 0.50 33 70
Cold Rolling

ε = 0.797,15 1.2 60 0.65 75 175
ε = 2.457,15 1.8 33 0.32 35 45

ρ—average dislocation density; m—median deviation and σ—standard deviation of the log-normal size distribution; d(arithmetic)
and d(volume)—average grain size values over the number or volume of the grains, respectively.

Overview
Nanoscale Materials

The microstructures of ultrafine-grained
nanostructured materials developed by se-
vere plastic deformation are widely varied in
their grain size and grain-size distribution;
grain boundaries and their structures; lat-
tice defects, especially dislocations; point
defects; and impurities. All of these features
can be influenced by the way severe plastic
deformation is applied, and thereby have
decisive effects on the physical and mechani-
cal properties of the material. Probably, the
most important factors determining micro-
structure are the imposed stress tensor, the
degree and rate of strain, the temperature of
deformation, the chemical composition of the
deformed material, and the type of crystal
lattice, showing that in order to develop
specific properties, it is crucial to under-
stand and optimize the microstructure.

INTRODUCTION

Severe plastic deformation (SPD) can
be successfully applied to obtain ultra-
fine-grained nanostructured materials
in bulk form.1 Recent investigations by
transmission electron microscopy (TEM)
and high-resolution electron microscopy
(HREM) have shown that SPD-processed
microstructures have not only very small
grains, but also highly distorted grain
boundaries2,3 and strongly distorted crys-
tal lattices.4 Since one of the main sources
of these distortions are dislocations, the
determination of the density and distri-
bution of dislocations is an important
task in the investigation of the micro-
structures of SPD-processed materials.

Bragg reflections in x-ray diffraction
broaden if grain or crystallite size be-
comes small or the material contains
lattice defects, especially dislocations. In
an x-ray diffraction experiment, the illu-
minated volume is by at least ten orders
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of magnitude larger than in a TEM or
HREM experiment. Therefore, the sta-
tistical averages about grain size and
lattice defects are far better in the x-ray
experiments than in the TEM investiga-
tions. On the other hand, TEM or HREM
provide specific and detailed informa-
tion about the individual properties and
nature, while x-ray diffraction peak pro-
files yield average values about densi-
ties, strains, and character of the same
lattice defects. In that sense, the two
methods are complementary, and the
best strategy for microstructure charac-
terization is to apply them both. The x-
ray diffraction method has recently been
developed to a large extent, enabling its
application with more confidence.5,6 The
method has been applied successfully to
characterize the microstructure in mate-
rials subjected to large deformations.7,8

MICROSTRUCTURES IN
PLASTICALLY DEFORMED

METALS

Severe plastic deformation produces
fine or ultrafine grains in which the aver-
age grain dimensions approach the
nanocrystalline size regime.1 The mecha-
nisms controlling fragmentation can be
followed by studying large plastic de-
formations. Plastic deformation can be
categorized into five different stages,
where each stage corresponds to a spe-
cific behavior of the strain-hardening
coefficient Θ = dτ/dγ, where τ and γ are
the resolved shear stress and the resolved
shear strain, respectively.9 The first three
stages end at a value ~1–2 for the re-
solved shear strain γ.10 At the end of stage
III, work hardening has a relatively low
value. In stage IV, the work hardening
stops decreasing and, depending on

strain rate and temperature, remains
constant or increases slightly with strain.
Finally, in stage V, work hardening de-
creases and can reach zero.

After the pioneering works of Stüwe11

and Kovács,12 stage IV has been studied
comprehensively both experimental-
ly9,10,13–16 and theoretically.17–21 The ex-
periments have shown that stage IV can
be observed in most of the metals and
alloys, whether hardening by disloca-
tion accumulation and cell forma-
tion9,10,13–16 or by planar glide without
dislocation bundling and/or precipita-
tion hardening.16 In the case of cell-form-
ing materials, there is general agreement
that proceeding from stage III into stage
IV and in stage IV the dislocation cell
walls gradually become narrow, and
misorientations between adjacent dislo-
cation cells increase with deformation.
There is also evidence from electrical
resistivity and x-ray line broadening that
the dislocation density increases steadily
well into stage IV and beyond.10,15 De-
tailed thermal activation analyses yield-
ing the strain-rate sensitivity and den-
sity of thermally activated obstacles as a
function of deformation suggested that
hardening in stage IV is governed by the
athermal storage of dislocations, while
hardening in stage V is characterized by
thermally driven annihilation of dislo-
cations.10

Based on a special technique of high-
resolution x-ray diffraction profile analy-
sis, it has been established that in stage
III, the cell-wall and cell-interior regions
are put under forward and backward
long-range internal stresses.22,23 Accord-
ing to a simple composite model of the
dislocation structure, dislocations of
<100> effective Burgers vectors are lined
up along the interfaces between the cell-
wall and cell-interior materials in which
the Burgers vectors are lying within the
interface.24 This type of dislocation struc-
ture is called polarized dipolar wall
(PDW) structure7 (a schematic model
can be seen in Figure 6 in Reference 24).

In stage IV, the nature of polarization
changes fundamentally.7 The disloca-
tions in the cell-wall material are polar-
ized like in a small-angle grain bound-
ary, producing an alternating tilt or twist
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Figure 2. The average dislocation densities,
ρ, as a function of the grain size averaged
over the number of grains. See also Table I.

Figure 1. A typical modified Williamson-Hall
plot, according to Equation 1, of the FWHMs
and the integral breadths of the first six Bragg
reflection profiles of a copper specimen de-
formed by SPD in two ECA passes.

in the orientation of neighboring cells.
This type of dislocation structure is called
a polarized tilt (or twist) wall (PTW)
structure7 (a schematic model can be
seen in Figure 2 in Reference 7). That
kind of polarization transformation ex-
plains why and how the misorientation
between adjacent dislocation cells in-
creases so dramatically when proceed-
ing from stage III to stage IV and is in
good agreement with TEM observa-
tions.25

In fragmentation, this mechanism
plays an important role, especially when
the misoriented dislocation cells trans-
form into ultrafine grains separated by
large-angle grain boundaries. Most large-
strain hardening models consider the
heterogeneous dislocation cell structure
as a composite of hard and soft regions
where the dislocations do not interact
with each other.17–19,21 It has been shown,
however, that for a successful fit of the
experimental data, the deformation-in-
duced vacancies, produced by disloca-
tion-dislocation interaction, have to be
accounted for in explaining work hard-
ening quantitatively.20 The fragmenta-
tion process has not yet been considered
for macroscopic strengthening by most
models, although first attempts were al-
ready made. The model of Argon and
Haasen19 calculates strengthening from
internal stresses arising from increasing
misorientation, and a new concept by
Zehetbauer and Les26 derives the macro-
scopic work hardening from the stresses
needed to form dislocation pile-ups in
front of PTW walls and/or to store addi-
tional dislocations in these walls.

X-RAY DIFFRACTION
PROFILE ANALYSIS

X-ray diffraction profile analysis is one
of the most powerful tools for character-
izing of microstructures in plastically
deformed metals and alloys. Diffraction
profiles broaden when crystalline mate-
rial contains lattice defects.27 In the kine-
matical theory of x-ray (or neutron) scat-
tering, it is shown that when scaling the
diffraction profiles in reciprocal space
coordinates, 2sinθ/λ, instead of diffrac-
tion angles 2θ, crystallite size smallness,

often called coherently scattering do-
mains, is diffraction-order independent,
whereas lattice distortions are diffrac-
tion-order dependent. The two effects
can be separated, providing crystallite
size and lattice distortions. The coher-
ently scattering domains can be disloca-
tion cells or subgrains tilted or twisted
by more then a few degrees or small
grains with large-angle grain boundaries.
Dislocation cell-blocks can consist of sev-
eral tens or hundreds of dislocation cells
in which the cells have the same crystal-
lographic orientation within one or two
degrees.9,25 In such a case, the coherently
scattering domain can be several mi-
crometers, causing no measurable size
broadening, although the subgrain size
can be as small as a few ten or hundred
nanometers.

The physical interpretation of the size
obtained from line broadening requires
a deep insight into the state of the mate-
rial. In that context, the extension of
investigations by TEM is mandatory. In
a diffraction experiment, lattice distor-
tion is given by the mean square strain
<εL,g

2>, where L and g are the Fourier
length and the diffraction vector. The
subscript g indicates that diffraction pro-
files sample longitudinal strains parallel
to the diffraction vector. A vast amount
of experimental work has shown that
<εL,g

2> is almost never a constant, neither
as a function of L nor as one of g. The g
dependence is further complicated by
the so-called strain anisotropy.28 This
means that neither the breadth nor the
Fourier coefficients of the diffraction
profiles are monotonous functions of the
diffraction angle or g. Strain anisotropy
can be well accounted for by the aniso-
tropic contrast effect of dislocations.5,27,29

There are two classical procedures for
the separation and evaluation of size
and strain broadening—the Williamson-
Hall plot30 and the Warren-Averbach
method,31 which, however, do not take
care of strain anisotropy. Modification
of the two procedures has recently been
suggested on the basis of the dislocation
model of strain.5 In the modified
Williamson-Hall plot and the modified
Warren-Averbach method, the modu-
lus of the diffraction vector or its square,
g or g2, are replaced by g  C 1/2 or g2  C ,
respectively, where   C  are the average
dislocation contrast factors.5,32,33 The
modified Williamson-Hall plot can be
written as5,34

∆K ≅ 0.9/D + (πM2b2/2) ρ1/2 K2  C  +
O(K4  C 2)                      (1)

where D, ρ, and b are the average par-
ticle size, the average dislocation den-
sity, and the modulus of the Burgers
vector of dislocations, respectively. M is
a constant depending on the effective
outer cut-off radius of dislocations; for
more details, see Reference 5.

A typical modified Williamson-Hall

plot of the full width at half maxima
(FWHM) and the integral breadths of
the first six Bragg reflection profiles for
one of the copper specimens investi-
gated here (deformed by two ECA
passes) is shown in Figure 1. The data
follow smooth curves, which give well-
defined intercepts at K = 0. Here, note
that the same ∆K values reveal a strong-
ly irregular behavior in the classical
Williamson-Hall plot in a similar way as
shown in Reference 5. The values of   C
were calculated numerically for cubic6,32,33

and hexagonal crystal systems.29 The   C
values for cubic crystals have been com-
piled according to a parameter q, which
depends on the screw or edge character
of dislocations and the elastic constants
of the crystal.6 By comparing the experi-
mental and calculated values of the q
parameter, the character of dislocations
can be determined. The FWHM, the in-
tegral breadths, and the Fourier coeffi-
cients of the diffraction profiles yield
three size parameters (D, d, and L0) from
which the size distribution of subgrains
or small grains can be evaluated.35 The
dislocation densities are obtained from
the Fourier coefficients.5

This procedure has been applied to a
series of copper specimens deformed
either by SPD or by cold rolling. The
average dislocation densities, ρ; the me-
dian and the standard deviation, m and
σ, of the log-normal crystallite size dis-
tribution; and two different averages of
the grain size, one averaged over the
volume and one over the number of the
grains, d(volume) and d(arithmetic), are
shown in Table I. Three specimens were
deformed by SPD through one, two, and
12 ECA passes. Two specimens were
additionally compressed by 20 percent
and, for the sake of comparison, the re-
sults of two cold-rolled copper speci-
mens are also shown in the table. The
dislocation densities are plotted in Fig-
ure 2 as a function of the arithmetic
average grain size. The figure suggests a
lower barrier for the grain size, which
cannot be overcome by SPD carried out
under the present circumstances. At the
same time, the dislocation density seems
to reach a maximum value and even
decreases when the grain size approaches
the lower barrier.
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TEMPERATURE-DEPENDENT
X-RAY DIFFRACTION

EXPERIMENTS

Static atomic displacements <µS
2>1/2

caused by lattice defects, especially dis-
locations, are one of the major contribu-
tions to the mean square strain <µ2>. The
other major contributions are dynamic
atomic displacements caused by the ther-
mal motion of atoms.36–38 The decrease of
x-ray intensity due to the averaged
atomic displacements <µ2>1/2 taking into
account both static and dynamic atomic
displacements is characterized by the
Debye-Waller factor exp(–2M).38 The
parameter M is directly proportional to
<µ2> and depends on temperature T.
The Debye-Waller parameter is propor-
tional to M and is given by

B = M/(sinθ/λ)2 = 8π2<µ2>      (2)

Since the nanostructured metals pro-
cessed by SPD are textured,39 a special
approach was used to determine the
Debye-Waller parameter.4,40 According
to this, peaks of only one family of planes,
but with different orders of reflections
were used (i.e., the influence of a crystal-
lographic texture was excluded). The x-
ray results for nanostructured and
coarse-grained nickel showed that in
both samples, the values of the Debye-
Waller parameter B and the root-mean
square atomic displacements <µ2>1/2 de-
creased linearly with decreasing tem-
perature.

In the case of nanostructured nickel,
the slope of the temperature dependence
of the Debye-Waller parameter taken at
the temperature interval from 295 K to
77 K was larger than in the coarse-grained
sample. At each temperature, the Debye-
Waller parameter of the nanostructured
sample was higher than that of the coarse-
grained one (e.g., at 295 K by more than
a factor of two). The temperature-de-
pendent, thermal BT, and temperature-
independent, static BS, components of
the Debye-Waller parameter were sepa-
rated by the well known method that is
described in Reference 41. In the case of
nanostructured nickel, both values of
the components of the Debye-Waller
parameter significantly exceeded the
values corresponding to coarse-grained
nickel. This means that the defect den-
sity is increased and the character of
thermal vibrations of atoms is changed
due to SPD.

The Debye temperature has been de-
termined on the basis of the Debye-
Waller parameter dependence on tem-
perature.4 The results of calculations
showed that for nanostructured nickel,
the Debye temperature was 293 K, sig-
nificantly smaller than the usual value
for nickel equal to 375 K. One can explain
the observed results taking into account
the nonequilibrium character of the grain
boundaries, creating long-range stress

fields resulting in the increased static
and dynamic atomic displacements in
SPD nanostructured materials, which are
especially high near grain boundaries.
Here, the main reason for the observed
decrease in the Debye temperature is
assumed to be its reduced value in the
elastically distorted near-boundary re-
gions; whereas, inside the grain interiors
it remains unchanged compared to
coarse-grained samples. Such a two-
phase model calculated 127 K for the
Debye temperature in the near-bound-
ary regions for nanostructured nickel,
which is significantly lower, almost by
250 K, than the value for coarse-grained
nickel. Analogous results were observed
in the case of copper.

THE ROLE OF TEXTURE
IN SPD MATERIALS

The study of crystallographic texture
in nanostructured materials processed
by SPD methods deserves special inter-
est as well. The conducted investiga-
tions showed that crystallographic tex-
ture is a typical feature of SPD nano-
structured materials. Axial texture was
observed in pure copper processed by
the SPD method of high pressure and
torsion. ECA pressing resulted in the
formation of a complex texture reflect-
ing a shear character of this type of de-
formation.39,42

COMPUTER SIMULATIONS
OF X-RAY DIFFRACTION

PATTERNS

The x-ray diffraction patterns of SPD
materials are characterized by changed
integral intensities, significant broaden-
ing, long-range tails, shifted centroids of
the diffraction peaks, and increased in-
tegrated diffuse background intensi-
ties.43–47 There are a number of structural
parameters that can lead to the develop-
ment of such features; it is worth men-
tioning the small grain or crystallite size,
high density and specific distribution of
lattice defects, change in lattice param-
eter, and development of crystallo-
graphic texture. When all of these struc-
tural parameters are present at the same
time it becomes difficult to interpret the
patterns. There is evidence that com-
puter simulations can be a very useful
tool in solving this problem.

The x-ray diffraction patterns of
nanostructured copper were simulated
with a number of variable structural
parameters (i.e., grain size, thickness and
structure of grain boundaries, crystal
lattice distortions due to long-range
stress fields of extrinsic grain-boundary
dislocations, and crystallographic tex-
ture).47 Features of the experimental pat-
terns characteristic for nanostructured
materials from SPD can not be explained
without considering the role of non-
equilibrium grain boundaries contain-
ing a high density of the defects, creating

long-range stress fields leading to large
atomic displacements.
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