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Abstract
Fuzzy Systems have shown their ability for solving a wide range of problems in different application domains. Genetic 
Algorithms are applied to provide the learning and adaptation capabilities for designing fuzzy systems, and this composi-
tion is called genetic fuzzy systems (GFSs). This paper reviews the field of GFSs consisting of the pioneer articles, the most 
cited papers, GFS milestones, recent research trends and, future outlooks. Additionally, there is paid attention to a short 
discussion on some critical considerations of recent developments and suggestions for potential future research directions.

1  Introduction

Genetic algorithms play a significant role as search tech-
niques for handling complex spaces in many fields such as 
artificial intelligence, engineering, and robotics. Genetic 
algorithms are based on the underlying genetic processes 
in biological organisms and the natural evolution principles 
of populations.

Evolutionary Computation (EC) uses computational mod-
els of evolutionary processes as key elements in the design 
and implementation of computer-based problem-solving sys-
tems. Various evolutionary computational models, referred 
to as Evolutionary Algorithms (EAs), have been proposed 
and studied. In short, this paradigm covers several varia-
tions, such as Evolutionary Strategies, addressing continu-
ous function optimization [1], Evolutionary Programming, 
generating finite-state automata that describe strategies or 
behavior [2], Genetic Algorithms, providing continuous 
and discrete function optimization and search [3, 4], and 
Genetic Programming, which evolve computer programs to 
solve problems [5].

Computational Intelligence techniques are concerned 
with complex engineering problems that are unsolvable, 
time-consuming, or difficult to solve using classical methods 
[6]. Therefore, methods such as Artificial Neural Networks 
(ANNs) [7], Fuzzy Logic [8], Genetic Algorithms (GAs) [3, 

4], and Particle Swarm Optimization (PSO) have become 
popular research topics in recent years.

Fuzzy systems as a model structure in the form of Fuzzy 
Rule-Based Systems (FRBSs) are one of the most impor-
tant applications of Fuzzy Set Theory. FRBSs that deal with 
‘‘IF–THEN’’ rules with fuzzy antecedents and consequents, 
instead of classical ones, are considered extensions of clas-
sical rule-based systems. Their ability for control problems 
[9], modelling [10], classification or data mining [11–13] in 
many applications has been demonstrated in recent years. 
The key to success has been the ability of fuzzy systems to 
incorporate human expert knowledge or experience. In the 
1990s, the lack of learning capabilities characterized most 
of the works in the field focused on fuzzy systems with 
added learning capabilities. Hybridization attempts in the 
Computational Intelligence community have been the most 
successful approaches, which include different techniques, 
such as neural and evolutionary, and provide fuzzy systems 
with learning and adaptation capabilities, as shown in Fig. 1.

Among these approaches, hybridization between Fuzzy 
Logic and GAs, known as Genetic Fuzzy Systems (GFSs) 
[14], has been very popular. Briefly, a GFS is a fuzzy sys-
tem optimized by a learning process based on evolutionary 
computation using genetic algorithms and genetic program-
ming [15].

The GA is a well-known and widely used global search 
technique with the ability to explore large and complex 
search spaces for suitable solutions that only require a 
performance measure. Defining an FRBS automatically 
can be regarded as an optimization or search problem. 
To incorporate a priori knowledge, GAs are very useful 
because of their generic code structures and independent 

 *	 Mohammad Jahani Moghaddam 
	 Dr.jahani@iau.ac.ir; Jahani.iaul@yahoo.com

1	 Department of Electrical Engineering, Langarud Branch, 
Islamic Azad University, Langarud, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-024-10157-9&domain=pdf
http://orcid.org/0000-0001-8854-0236


	 M. Jahani Moghaddam 

performance features. In FRBSs, a priori knowledge may 
be in the form of linguistic variables, fuzzy membership 
function parameters, fuzzy rules, number of rules, etc. 
These advantages have extended the use of GAs to the 
development of a wide range of approaches for designing 
FRBSs. Figure 2 illustrates this idea, where the genetic 
process learns or tunes the different components of an 
FRBS.

Because GAs provide a means to encode and evolve rule 
antecedent aggregation operators, different rule semantics, 
rule-based aggregation operators, and defuzzification meth-
ods, contrary to neural networks, clustering, rule induction, 
and many other machine learning approaches, they remain 
today as one of the fewest knowledge acquisition schemes 
available to design and optimize FRBSs with respect to 
design decisions, allowing decision makers to decide what 
components are fixed and which ones evolve according to 
the performance measures.

Genetic learning processes cover different levels of com-
plexity according to the structural changes produced by the 
algorithm [16], from the simplest case of parameter opti-
mization to the highest level of complexity in learning the 
rule set of a rule-based system. An analysis of the literature 
shows that the most prominent types of GFSs are Genetic 
Fuzzy Rule-Based Systems (GFRBSs) [14], whose genetic 
processes learn or tune different components of a FRBS. 
Figure 3 shows the concept of a system in which genetic 
design and fuzzy processing are two fundamental constitu-
ents. Inside GFRBSs, it is possible to distinguish between 
either parameter optimization or rule generation processes, 
that is, adaptation and learning. However, other types of 
GFSs have also been developed with successful results. 
These include genetic fuzzy neural networks and genetic 
fuzzy clustering algorithms [14, Chap. 10], which were not 
analyzed in this study.

This paper briefly introduces GFSs, proposes a taxonomy 
focused on the FRBS components, and sketches a vision of 
some hot current trends and prospects of GFSs.

The paper is organized into eight sections as follows: 
Sect. 2 briefly augments GAs, Sect. 3 briefly introduces the 
GFS, and Sect. 4 presents categorizations of GFSs according 
to the FRBS components involved in the genetic learning 
process, taking into account which of them are encoded. An 
introduction to GFSs, paying attention to the pioneer GFS 
contributions, the GFSs visibility at ScienceDirect web-
site, the most cited GFS papers at ISI Web of Science, and 
pointing out the milestones covered by existing books and 
special issues are presented in Sect. 5. Some current trends 
and critical considerations on recent developments and some 
suggestions for potential future research directions are pre-
sented in Sect. 7, respectively. Finally, concluding remarks 
are presented in Sect. 8.

2 � Genetic Algorithms

Genetic algorithms (GAs) have achieved great success in 
solving search and optimization problems. The reason for a 
great part of this success is their ability to exploit the infor-
mation accumulated about an initially unknown search space 
to bias subsequent searches into useful subspaces, that is, 
their adaptation. This is their key feature, particularly in 
large, complex, and poorly understood search spaces where 
classical search tools (enumerative, heuristic, …) are inap-
propriate, offering a valid approach to problems that require 
efficient and effective search techniques.

GAs are general purpose search algorithms which use 
principles inspired by natural genetic populations to evolve 
solutions to problems [17, 18]. The basic idea is to main-
tain a population of chromosomes, which represent candi-
date solutions to a concrete problem that evolves over time 

Fig. 1   Soft computing and learning in fuzzy systems

Fig. 2   Genetic fuzzy system
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through a process of competition and controlled variation. 
Each chromosome in the population has an associated fit-
ness to determine which chromosomes are used to form 
new chromosomes in the competition process, which is 
called selection. The new ones are created using genetic 
operators such as crossover and mutation.

A GA starts with a population of randomly generated 
chromosomes and advances toward better chromosomes 
by applying genetic operators modelled on the genetic 
processes occurring in nature. The population evolves in 
the form of natural selection. During successive iterations, 
called generations, chromosomes in the population are 
rated for their adaptation as solutions, and based on these 
evaluations, a new population of chromosomes is formed 
using a selection mechanism and specific genetic opera-
tors, such as crossover and mutation. An evaluation or 
fitness function (f) must be devised to solve each problem. 
Given a particular chromosome as a possible solution, the 
fitness function returns a single numerical fitness, which 
is supposed to be proportional to the utility or adaptation 
of the solution represented by that chromosome.

Although there are many possible variants of the basic 
GA, the fundamental underlying mechanism consists of 
three operations:

1.	 Evaluation of individual fitness,
2.	 Formation of a gene pool (intermediate population) 

through selection mechanism, and
3.	 Recombination through crossover and mutation opera-

tors.

The basic principles of GAs were first rigorously laid 
down by Holland [79] and have been well described in many 
books, such as [17, 19]. It is generally accepted that the 
application of a GA to solve a problem must consider the 
following five components.

1.	 A genetic representation of solutions to the problem,
2.	 A way to create an initial population of solutions,
3.	 An evaluation function which gives the fitness of each 

chromosome,
4.	 Genetic operators that alter the genetic composition of 

offspring during reproduction, and
5.	 Values for the parameters used by the GA (population 

size, probabilities of applying genetic operators, etc.

2.1 � Applications of GAs

GAs may successfully deal with a wide range of problem 
areas. The main reasons for this success are as follows:

(1)	 GAs can solve hard problems quickly and reliably
(2)	 GAs are easy to interface to existing simulations and 

models
(3)	 GAs are extensible and
(4)	 GAs are easy to hybridize.

All these reasons may be summarized as only one rea-
son: GAs are robust. GAs are more powerful in difficult 
environments where space is usually large, discontinuous, 
complex, and poorly understood. They are not guaranteed 

Fig. 3   Genetic design and fuzzy 
processing
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to find the global optimum solution to a problem, but they 
are generally good at finding acceptable solutions to prob-
lems quickly. Therefore, during the last few years, GA 
applications have grown enormously in many fields.

3 � Genetic Fuzzy Systems

The search capabilities and ability to incorporate a priori 
knowledge have extended the use of genetic algorithms in 
the development of a wide range of methods for design-
ing fuzzy systems over the last few years. In a very broad 
sense, a Fuzzy System (FS) is a Fuzzy Logic-Based Sys-
tem, where Fuzzy Logic can be used either as the basis for 
the representation of different forms of system knowledge 
or to model the interactions and relationships among the 
system variables. FSs have proven to be an important tool 
for modelling complex systems, in which, due to the com-
plexity or imprecision, classical tools are unsuccessful.

Many studies have explored the use of GAs in the 
design of fuzzy systems. These approaches called the gen-
eral name of Genetic Fuzzy Systems (GFSs).

4 � Categorization of Genetic Fuzzy Systems

Analyzing the design process of FRBSs as a search prob-
lem in the space of models, such as the space of rule sets, 
is a popular use of GAs for automatic learning of FRBSs, 
which can be done by means of the coding of the model 
in a chromosome.

To find an appropriate fuzzy model, it can be coded as 
a parameter structure and then the parameter values that 
optimize a specified fitness function can be found. There-
fore, specifying the parts of the fuzzy system that should 
be optimized by GA is the first step in designing a GFS.

Thus, categorization of GFSs according to the differ-
ent parts of the fuzzy systems coded by the genetic model 
can be presented first. Then, the different genetic learn-
ing coding approaches that can be found in the literature, 
according to the method of coding a Rule Base (RB) and 
the cooperation versus competition among chromosomes, 
connecting them with the mentioned taxonomy, are used.

GFS approaches can be divided into two sub-
approaches: tuning and learning. Making a clear distinc-
tion between the tuning and learning sub-approaches is 
as difficult as defining the concept of learning itself. The 
first question is that if a previous Knowledge Base (KB), 
including Data Base (DB) and RB exists or not?

4.1 � Genetic Tuning

In the case of the KB, a genetic tuning process for amelio-
rating the FRBS performance by adjusting its parameters 
without altering the existing RB is applied.

One method to make an efficient FRBS when the RB has 
been derived is to improve the initial DB definition or the 
inference engine parameters. Figure 4 shows a representa-
tion of this type of tuning. According to the subtree under 
‘‘genetic tuning’’ in Fig. 5, three tuning possibilities can be 
considered:

4.1.1 � Genetic Tuning of KB Parameters

In this tuning process, a posteriori is used to adjust the mem-
bership function parameters by considering the preliminary 
and derived RB. Nonetheless, the tuning process adjusts 
only the shapes of the membership functions, and not the 
number of linguistic terms in each fuzzy partition. The first 
classic proposal for tuning can be found in [20]. In [21], 
proposals were made by introducing linguistic modifiers for 
tuning the membership functions that are close to the infer-
ence engine adaptation. In this paper the use of linguistic 
hedges to perform slight modifications while maintaining 
good interpretability to adjust the components of the knowl-
edge base without completely redefining it is proposed. This 
contribution introduces a genetic tuning process for jointly 
fitting the fuzzy rule symbolic representations and meaning 
of the involved membership functions. To alter the latter 
component, two different approaches that change the basic 
parameters and use nonlinear scaling factors have been pro-
posed. As the experimental study shows, the good perfor-
mance of our proposal mainly lies in the consideration of 
this tuning approach performed at two different levels of 
significance. The paper also analyzed the interaction of the 
proposed tuning method with a fuzzy rule-set reduction pro-
cess. A good interpretability-accuracy trade-off was obtained 
by combining both processes with a sequential scheme: first, 
reducing the rule set and subsequently tuning the model.

4.1.2 � Genetic Adaptive Inference Systems

In this process, parameterized expressions in the Inference 
System, sometimes called Adaptive Inference Systems, are 
used to achieve higher cooperation among fuzzy rules that 
yield more accurate fuzzy models while maintaining linguis-
tic rule interpretability. Some proposals focusing on regres-
sion and classification can be found in [17, 22, 23].

In [22] a study on the use of parameterized operators in 
the Inference System of linguistic fuzzy systems adapted by 
evolutionary algorithms to achieve better cooperation among 
fuzzy rules was presented. This approach produces a type of 
rule cooperation by means of an inference system, thereby 
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increasing the accuracy of the fuzzy system without los-
ing its interpretability. Different alternatives for introducing 
parameters in the Inference System are studied, as well as 
their interpretation and how they affect the rest of the com-
ponents of the fuzzy system.

In [23], a novel genetic algorithm framework for opti-
mizing the strength of fuzzy inference operators concur-
rently with the tuning of membership functions for a given 
fuzzy classifier system was proposed. Each fuzzy system 

was generated using two well-established decision tree 
algorithms: C4.5 and CHAID. (C4.5 is a classic deci-
sion tree algorithm developed by Ross Quinlan. It is used 
for decision tree induction, a popular machine learning 
technique for classification and regression tasks. C4.5 is 
known for its ability to handle both categorical and con-
tinuous attributes in the data set. It constructs a tree by 
recursively partitioning the data based on attributes to cre-
ate a set of rules for decision making. C4.5 is widely used 
in data mining and machine learning applications due to 
its simplicity and effectiveness in generating interpretable 
models. CHAID stands for Chi-squared Automatic Inter-
action Detection. It is a decision tree algorithm used for 
data mining and predictive modelling. CHAID is a method 
that detects relationships between variables by analysing 
the significance of the association using chi-squared tests 
at each step of the tree building process. It is commonly 
used in market research, social science, and related fields 
to explore and uncover patterns in categorical data). This 
enables both classification and regression problems to be 
addressed within the framework. Each solution gener-
ated by the genetic algorithm will produce a set of fuzzy 
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membership functions and determines how strongly the 
inference is applied within each fuzzy rule. Several theo-
retically proven fuzzy inference techniques (T-norms) 
have been investigated in the context of both classifica-
tion and regression problems. The proposed methodology 
is applied to several real-world datasets to determine the 
effects of the simultaneous tuning of membership func-
tions and inference parameters on the accuracy and robust-
ness of fuzzy classifiers.

In [17], a comparative study was presented that exam-
ined a number of T-norm and T-conorms and their applica-
tion within Fuzzy Decision Trees. The methodology uses a 
Genetic Algorithm to tune the weights of T-norm operators 
and simultaneously optimize fuzzy membership functions 
in fuzzy trees. This study applied the methodology to two 
Fuzzy Decision Tree algorithms: Fuzzy Inference Algorithm 
(FIA) and Fuzzy CHAIDS [17]. FIA is a proven algorithm 
which generates optimized fuzzy decision trees from pre-
generated crisp C4.5 trees. CHAID is an offshoot of Auto-
matic Interaction Detection (AID) designed for a categorized 
dependent variable and is unique in its branching strategy 
and ability to classify numeric outcomes. Six T-norm mod-
els were investigated using five real-world datasets.

4.1.3 � Genetic Adaptive Defuzzification Methods

Owing to its good performance, efficiency, and straightfor-
ward implementation, applying the defuzzification function 
to every inferred rule fuzzy set (obtaining a characteristic 
value) and computing them using a weighted average opera-
tor has become the most practical technique. This approach 
proposes the possibility of using parameter-based average 
functions and adapts the defuzzification methods by using 
GAs that in [24]; a proposal of this method can be found. 
This paper proposes a design technique for an optimal 
Center Of Gravity (COG) defuzzifier using Lamarckian 
coadaptation of learning and evolution. The proposed COG 
defuzzifier is specified by various design parameters such as 
the centers, widths, and modifiers of the Membership Func-
tions (MFs). The design parameters are adjusted with the 
Lamarckian co-adaptation of learning and evolution, where 
the learning performs a local search of the design parameters 
in an individual COG defuzzifier, but the evolution performs 
a global search of the design parameters among a popula-
tion of various COG defuzzifiers. This co-adaptation scheme 
allows much faster evolution than the non-learning case and 
provides a higher possibility of finding an optimal solution 
owing to its wider searching capability. The approximation 
ability and control performance are compared with those 
of the conventional simplified COG defuzzifier in terms of 
the fuzzy logic controller approximation error and average 
tracing distance, respectively.

4.2 � Genetic Learning

Learning the KB components (even by an adaptive inference 
engine) is the second case. It means involving the learning of 
KB components among other FRBS components.

The proposals according to these sub-approaches and the 
FRBS components involved in the genetic learning process 
were classified according to the categorization shown in 
Fig. 5.

In the following, the three main areas in the categoriza-
tion i.e. genetic tuning, genetic KB learning, and genetic 
learning of KB components and inference engine parameters 
are analyzed. Also, some references for every approach are 
proposed.

4.2.1 � Genetic KB Learning

The following four approaches can be found within the 
genetic learning of a KB, as shown in the second tree under 
‘‘genetic KB learning.”

4.2.1.1  Genetic Rule Learning  In this approach, a pre-
defined DB is considered automatically by focusing on 
RB learning, and KB automatic learning from numerical 
information is performed. The usual way to define this DB 
involves choosing a number of linguistic terms for each lin-
guistic variable (an odd number between three and nine, 
which is usually the same for all variables) and setting the 
values of the system parameters by a uniform distribution of 
the linguistic terms into the variable universe of discourse. 
This type of RB learning is illustrated graphically in Fig. 6. 
The pioneer proposal for this approach can be found in [25]. 
This study considered the application of a genetics-based 
learning algorithm to systems based on fuzzy logic. Fuzzy 
controllers are an attractive area for the application of fuzzy 
logic. A Fuzzy Logic Controller (FLC) is based on linguistic 
control strategies (or rules) that interface with real sensor 

Fig. 6   Genetic rule learning process
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and activator signals by using fuzzification and defuzzifi-
cation algorithms. The discrete nature of fuzzy strategies 
makes them prime candidates for discovery using GAs. This 
approach is explored in this study.

On the other hand, we also find approaches that are 
focused on the extraction of some descriptive rules for data 
mining problems (association rules, subgroup discovery, …) 
[26, 27].

In [26], a genetic fuzzy system for the data mining task of 
subgroup discovery was presented, the Subgroup Discovery 
Iterative Genetic Algorithm (SDIGA), which obtains fuzzy 
rules for subgroup discovery in a disjunctive normal form. 
This type of fuzzy rule allows us to represent knowledge 
about patterns of interest in an explanatory and understand-
able form that can be used by the expert.

In [27] first optimized fuzzy association rule mining was 
first optimized in terms of three important criteria: strength, 
interestingness, and comprehensibility. Subsequently, multi-
objective Genetic Algorithm (GA)-based approaches for 
discovering these optimized rules are proposed. The opti-
mization technique according to a given criterion may be 
one of two different forms. The first attempts to determine 
the appropriate fuzzy sets of quantitative attributes in a pre-
specified rule, which is also called a certain rule. The sec-
ond deals with determining both uncertain rules and their 
appropriate fuzzy sets.

4.2.1.2  Genetic Rule Selection  In the case of having a large 
number of rules deducted via a data mining method with 
a large number of rules, we will have a large RB, and an 
excessive number of rules that understand the FRBS behav-
ior makes it difficult. In such a fuzzy rule, different types of 
rules exist: irrelevant, redundant, erroneous, and conflicting 
rules, in which their coexistence with others perturbs the 
FRBS performance.

A genetic rule selection process can optimize the exist-
ing fuzzy rule set, as graphically shown in Fig. 7. The most 
classic and first contribution of this approach can be found 
in [28] and the first journal paper on multi-objective genetic 
rule selection in [29], in which various methods for con-
structing a compact fuzzy classification system consisting 
of a small number of linguistic classification rules were 
proposed. First, a rule selection problem of linguistic clas-
sification rules with two objectives–to maximize the number 
of correctly classified training patterns and to minimize the 
number of selected rules–is formulated. Next, three methods 
for finding a set of non-dominated solutions of the rule selec-
tion problem are proposed. These three methods are based 
on a single-objective genetic algorithm and also a method 
based on a multi-objective genetic algorithm for finding a set 
of non-dominated solutions is presented. Finally, a hybrid 
algorithm that combines a learning method for linguistic 

classification rules with a multi-objective genetic algorithm 
is proposed.

In [21, 30], two recent proposals combined genetic tuning 
with rule selection to obtain a good rule set together with 
a tuned set of parameters. In [30], the application of Multi-
Objective Genetic Algorithms to obtain Fuzzy Rule-Based 
Systems with a better trade-off between interpretability and 
accuracy in linguistic fuzzy modelling problems was pro-
posed. To achieve this, a new post-processing method is pre-
sented that considers the selection of rules together with the 
tuning of membership functions to obtain solutions only in 
the Pareto zone with the highest accuracy, that is, containing 
solutions with the least number of possible rules, but still 
presenting high accuracy. This method is based on the well-
known Strength Pareto Evolutionary Algorithm (SPEA2) 
algorithm [31], applying appropriate genetic operators and 
including some modifications to concentrate the search in 
the desired Pareto zone. SPEA is a multi-objective optimi-
zation algorithm that is used to solve optimization prob-
lems involving multiple conflicting objectives. SPEA uses 
the concept of Pareto dominance to evaluate the quality of 
solutions in the search space. The algorithm maintains a 
repository of non-dominated solutions known as the exter-
nal archive, which represents the best trade-off solutions 
found so far. SPEA combines the concepts of evolution and 
strength calculation to guide the search towards the Pareto 
optimal front, where no solution can be improved in any 
objective without degrading another. SPEA is widely used 
in evolutionary multi-objective optimization and considered 
a robust algorithm for finding diverse and well-distributed 
Pareto optimal solutions. A schematic of the hybrid model 
proposed in [30] is shown in Fig. 8.

4.2.1.3  Genetic DB Learning  This approach includes two 
different processes to derive both components, DB and RB. 
A DB generation process in order to learn the shape of the 
membership functions and other DB components such as 
the scaling functions, the granularity of the fuzzy partitions, 

Fig. 7   Genetic rule selection process
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etc. That can be used as a measure for evaluating the quality 
of the DB, named as ‘‘A priori genetic DB learning’’.

In the second method, each time a DB has been 
obtained by the DB definition process, the RB generation 
method is used to derive the rules, and some type of error 
measure is used to validate the whole KB obtained. Of 
course, this operation mode involves partitioning the KB 
learning problem. These two kinds of learning models are 
represented in Fig. 9, and in [32], a proposal following 
the embedded genetic DB learning can be found. In this 
paper, a new method is proposed to automatically learn 
the Knowledge Base (KB) by finding an appropriate Data 
Base (DB) by means of a genetic algorithm while using a 
simple generation method to derive the Rule Base (RB). 

The genetic process has learned the number of linguistic 
terms per variable and the membership function param-
eters that define their semantics, while a rule base gen-
eration method has learned the number of rules and their 
composition.

4.2.1.4  Simultaneous Genetic Learning of  KB Compo‑
nents  In the remaining approaches, learning the two 
components of the KB simultaneously was attempted, as 
depicted in Fig. 10. This approach has the advantage of gen-
erating better definitions but has the cost of dealing with a 
larger search space, which makes the learning process more 
difficult and slower. In [33], a contribution that is a reference 
for the simultaneous genetic KB learning process can be 
found. This study examined the applicability of GAs in the 
simultaneous design of membership functions and rule sets 
for fuzzy-logic controllers. Previous studies using genetic 
algorithms have focused on the development of rule sets 
or high-performance membership functions; however, the 
interdependence between these two components suggests 
that a simultaneous design procedure is a more appropriate 
methodology. When GA’s have been used to develop both, 
they have been done serially, for example, design the mem-
bership functions and then use them in the design of the 
rule set. However, this means that the membership functions 
were optimized for the initial rule set and not for the rule 
set designed subsequently. GAs are fully capable of creating 
complete fuzzy controllers, given the equations of motion 
of the system, eliminating the need for human input in the 
design loop. This new method was applied to two problems: 
a cart controller and a truck controller. Beyond the develop-
ment of these controllers, the design of a robust controller 
for the cart problem and its ability to overcome faulty rules 
are also examined.

Fig. 8   Example of genetic lateral tuning and rule selection

Fig. 9   Genetic DB learning (embedded and a priori) Fig. 10   Genetic KB learning process
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4.2.2 � Genetic Learning of KB Components and Inference 
Engine Parameters

A hybrid model between the adaptive inference engine 
and KB component learning is the last area of the GFSs 
categorization. Novel approaches attempt to find high 
cooperation between the inference engine via parameter 
adaptation and the learning of KB components, including 
both in a simultaneous learning process. In [34], a pro-
posal to learn a linguistic RB and the parametric aggre-
gation connectors of inference and defuzzification in a 
single step can be found. Figure 11 presents the coding 
scheme of the proposed model.

4.3 � Genetic Learning: Rule Coding 
and Cooperation/Competition Evolutionary 
Process

Although GAs are not learning algorithms, they may offer 
a powerful and domain-independent search method for 
a variety of learning tasks, such that there has been a 
great deal of interest in using GAs for machine learning 
problems [35–37]. If machine learning methodology is 
based on the search for a good model inside the space 
of possible models, GAs offer a set of advantages for 
machine learning rather than global search algorithms 
because of their flexibility, such that the same GA can 
be used with different representations. Genetic learning 
processes cover different levels of complexity according 
to the structural changes produced by the algorithm, from 
the simplest case of parameter optimization to the highest 
level of complexity for learning the rule set of a rule-
based system via the coding approach and the cooperation 
or competition between chromosomes.

When considering a rule-based system and focusing 
on learning rules, different genetic learning methods fol-
low two approaches to encode rules within a population 
of individuals:

4.3.1 � The ‘‘Chromosome = Rule Set’’ or Pittsburgh 
Approach:

In this approach, each individual represents a whole rule 
set [38]. Crossover serves to provide a new combination of 
rules and mutation provides new rules. In some cases, vari-
able-length rule bases are used, employing modified genetic 
operators to handle variable-length and position-independent 
genomes.

In this case, a chromosome evolves a complete RB and 
competes among them during the evolutionary process. This 
model was initially proposed by Smith in 1980 [38]. Recent 
examples of this approach can be found in [37]. Genetic 
Algorithm for Building Inductive Learning (GABIL) is 
a proposal that follows this approach [39]. GABIL is an 
approach based on genetic algorithms used for inducing 
rule-based systems, particularly for learning Rule Bases 
(RB) and Knowledge Bases (KB) in Fuzzy Rule-Based Sys-
tems (FRBSs). In the context described, GABIL is utilized 
to evolve complete rule sets and compete among them dur-
ing the evolutionary process to improve the performance 
of the fuzzy rule-based systems. GABIL follows a genetic 
algorithm paradigm to generate and optimize rule sets for 
decision-making tasks, taking into account the variable-
length and position-independent genomes characteristic of 
rule-based systems.

This learning approach in two cases has been used: for 
learning Rule Bases (RB) and Knowledge Bases (KB) for 
Fuzzy Rule Bases Systems (FRBSs).

(a) Genetic Learning of RB
The Pittsburgh approach was applied to learn the rule 

bases in two different situations. The first situation refers 
to systems that use a complete rule base represented by a 
decision table or relational matrix. The second situation is 
that of FRBSs, in which the RB is represented using a list 
or set of fuzzy rules.

(a.1) Using a Complete RB
A tabular representation guarantees the completeness of 

the knowledge of the FRBS in the sense that the coverage 
of the input space (the Cartesian product of universes of 

Fig. 11   Example of the coding 
scheme for learning an RB 
and the inference connective 
parameters
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the input variables) is only related to the level of coverage 
of each input variable (the corresponding fuzzy partitions) 
and not to the rules.

Decision tables. A possible representation of the RB of 
an FS is the decision table. This is a classical representation 
used in various GFSs. A chromosome is obtained from the 
decision table by going row-wise and coding each output 
fuzzy set as an integer or any other type of label. It is possi-
ble to include the “no output” definition in a certain position, 
using a “null” label [25, 40].

Relational matrices. Occasionally, GAs are used to mod-
ify the fuzzy relational matrix (R) of a Fuzzy System with 
one input and output. The chromosome is obtained by con-
catenating the m × n elements of R, where m and n are the 
numbers of fuzzy sets associated with the input and output 
variables, respectively. The elements of R that comprise 
the genes may be represented by binary codes [41] or real 
numbers.

(a.2) Using a Partial RB
Neither the relational nor tabular representations are 

adaptable to systems with more than two or three input vari-
ables because of the dimension of a complete RB for these 
situations. This stimulated the idea of working with a set of 
rules. In a set of rules, the absence of applicable rules for 
a certain input that is perfectly covered by fuzzy partitions 
of individual input variables is possible. As a counterpart 
to the loss of completeness, this representation allows the 
compression of several rules with identical outputs into a 
singular rule, which is an important issue as the dimension 
of the system grows.

There are many different methods for coding the rule base 
in this type of an evolutionary system. The code of the rule 
base is typically obtained by concatenating the rule codes.

Rules of fixed length. The first approach represents a rule 
with a code of fixed length and a position-dependent mean-
ing. The code contains as many elements as the number of 
variables in the system. A possible content of these elements 
is a label pointing to a certain fuzzy set in the fuzzy partition 
of the variable or a binary string with a bit per fuzzy set in 
the fuzzy partition of the variable coding the presence or 
absence of the fuzzy set in the rule [42].

Rules of variable length. Codes with position independent 
meaning and based on pairs {variable, membership func-
tion} (the membership functions are described using a label) 
are used in [43].

(b) Genetic Learning of KB
The simultaneous use of the genetic material from the 

DB and RB of an FRBS has produced different and interest-
ing results. The most general approach is the use of a set 
of parameterized membership functions and a list of fuzzy 
rules that are jointly coded to generate a chromosome and 
then applying a Pittsburgh-type GA to evolve a population 
of such chromosomes. This type of GFSs uses chromosomes 

containing two sub-chromosomes that encode DB and RB 
separately, but not independently.

At this point, it is possible to maintain the same division 
that was stated when discussing genetic learning of RBs 
with a Pittsburgh approach: learning complete rule bases or 
partial rule bases.

(b.1) Using a Complete RB
In [44], the rule base is represented as a fuzzy relation 

matrix (R), and the GA modifies R, the fuzzy membership 
functions (triangular), or both simultaneously on a Fuzzy 
Logic Controller (FLC) with one input and one output vari-
able. Each gene was a real number. When generating the 
optimal fuzzy relation matrix, this real number corresponds 
to a fuzzy relation degree with a value between 0 and 1. The 
genetic string is obtained by concatenating m × n real num-
bers that constitute R. When finding the optimal rule base 
and fuzzy membership functions simultaneously, each chro-
mosome allocates two sub-chromosomes: the genes of the 
rule base and the genes of the fuzzy membership functions. 
Both sub-chromosomes are treated as independent entities as 
far as crossover and mutation are concerned, but as a single 
entity, as far as reproduction is concerned.

A slightly different approach is to use a Takagi–Sugeno-
Kang-type (TSK-type) [45] rule base, structuring its genetic 
code as if it came from the decision table. In this case, the 
contents of the code of a rule base are an ordered and com-
plete list containing the consequences of all possible rules, 
where the antecedents are implicitly defined as a function of 
the position the consequent occupies in the list.

TSK refers to a type of fuzzy inference system com-
monly used in fuzzy logic and fuzzy modelling. The TSK 
fuzzy model is characterized by using a linear combina-
tion of input variables to determine the output variable. In 
a TSK-type rule base, the structure is typically organized 
like a decision table, where the genetic code represents the 
consequences of all possible rules and the antecedents are 
implicitly defined based on the positions of the consequents 
in the list. The TSK model consists of fuzzy membership 
functions to describe input variables and coefficients for the 
consequents in the linear combination that form the output 
variable.

The fuzzy membership functions constitute the first sub-
chromosome, whereas the coefficients of the consequents for 
a TSK fuzzy model constitute the second sub-chromosome. 
One gene was used to code each coefficient of the TSK type 
in [46].

(b.2) Using a Partial RB
Liska and Melsheimer [47] used a rule base defined as a 

set of a fixed number of rules and coded each rule with inte-
ger numbers that define the membership function related to 
a certain input or output variable that is applied by the rule 
(membership functions for every variable are ordered). The 
systems use radial membership functions coded using two 
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real numbers (two genes). A genetic string was obtained by 
concatenating the two genes in each membership function.

There are many different methods for coding the rule base 
in this kind of evolutionary system. The code of the rule base 
is typically obtained by concatenating the rule codes. To 
represent a single rule, it is possible to use position-depend-
ent code with as many elements as the number of variables 
in the system. Possible content in these elements is a label 
pointing to a certain fuzzy set in the fuzzy partition of the 
variable [48] or a binary string with a bit per fuzzy set in the 
fuzzy partition of the variable [49].

Using an approximation approach, [50, 51] includes the 
definition of membership functions in the rules, coding each 
rule through the corresponding set of membership functions.

4.3.2 � The ‘‘Chromosome = Rule’’ Approach

In this approach, each individual codifies a single rule and 
the entire rule set is provided by combining several indi-
viduals in a population (rule cooperation) or via different 
evolutionary runs (rule competition). There are three generic 
proposals for this approach.

4.3.2.1  The Michigan Approach  Using this approach, each 
individual encodes a single rule. These types of systems 
are typically called learning classifier systems. This model 
maintains the population of classifiers with credit assign-
ment, rule discovery, and genetic operations applied at the 
individual rule level. These are rule-based message-passing 
systems that employ reinforcement learning and a GA to 
learn rules that guide their performance in a given environ-
ment. The GA is used to detect new rules that replace bad 
ones via competition between chromosomes in the evolu-
tionary process. A complete description is provided in Ref. 
[52]. Reference [53] is a proposal for this approach in which 
the type of Cognitive System (CS) has four basic parts: (1) 
a set of interacting elementary productions, called classi-
fiers, (2) a performance algorithm that directs the action 
of the system in the environment, (3) a simple learning 
algorithm that keeps a record of each classifier's success in 
bringing about rewards, and (4) a more complex learning 
algorithm, called the genetic algorithm, which modifies the 
set of classifiers so that variants of good classifiers persist 
and new, potentially better ones are created in a provably 
efficient manner. An interesting study of this topic can be 
found in [54]. This book [54] is a monograph on learning 
classifier systems, the main objective of which is to com-
pare strength-based classifier systems with accuracy-based 
systems equipped with nine appendices and illustrated with 
many convincing examples. This text studies aspects of 
credit assignment in learning classifier systems, which com-
bine evolutionary algorithms with reinforcement learning 
methods to address a range of tasks, from pattern classifi-

cation to stochastic control to the simulation of learning in 
animals. Credit assignment in classifier systems is compli-
cated by two features: (1) their components are frequently 
modified by evolutionary search and (2) components tend to 
interact. Classifier systems are re-examined from first prin-
ciples, and the result is primarily a formalization of learn-
ing in these systems and a body of theory relating types of 
classifier systems, learning tasks, and credit assignment 
pathologies. Most significantly, it is shown that both main 
approaches have difficulties with certain tasks, which the 
other type does not.

4.3.2.2  The IRL (Iterative Rule Learning) Approach  In the 
Michigan model, each chromosome in the population rep-
resents a single rule; however, contrary to the Michigan 
model, only the best individual is considered to form part 
of the solution, discarding the remaining chromosomes in 
the population. Figure 12 presents a classifier system of the 
Michigan type. Therefore, in the iterative model, GA pro-
vides a partial solution to the learning problem. To obtain 
a set of rules that will be a true solution to the problem, the 
GA must be placed within an iterative scheme similar to the 
following:

1.	 A GA was used to obtain a rule for the system.
2.	 This rule was incorporated into the final set of rules.
3.	 Penalize this rule.
4.	 If the set of rules obtained thus far is adequate to be a 

solution to the problem, the system returns the set of 
rules as the solution. Otherwise, return to step 1.

Fig. 12   A Classifier System of the Michigan Type
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The main difference with respect to the Michigan 
approach is that the fitness of each chromosome is computed 
individually without considering cooperation with others. 
This substantially reduces the search space because only one 
rule is searched for in each iteration sequence.

Supervised Inductive Algorithm (SIA) [55] is a pro-
posal that follows this approach. Reference [55] described a 
genetic learning system called SIA, which learns attribute-
based rules from a set of pre-classified examples. Exam-
ples may be described using a variable number of attrib-
utes, which can be numeric or symbolic, and examples may 
belong to several classes. The SIA algorithm is somewhat 
similar to the Algorithm Quasi-optimal (AQ) ("AQ" is a 
rule learning algorithm developed by Ross Quinlan. The AQ 
algorithm is a symbolic rule induction system that learns 
rules from labelled examples. It aims to generalize from 
examples to create rules that classify new instances accu-
rately. The algorithm uses a top-down approach, starting 
with a general rule and then specializing it to cover specific 
instances while minimizing errors. The AQ algorithm is 
widely known for its simplicity and effectiveness in gener-
ating understandable rules for decision-making tasks. In the 
context of the description provided, the "SIA" algorithm is 
compared to the AQ algorithm, suggesting similarities in 
their approach to supervised rule learning.) because it takes 
an example as a seed and generalizes it using a genetic pro-
cess to find a rule maximizing a noise-tolerant rule evalua-
tion criterion. The SIA approach to supervised rule learning 
significantly reduces the possible rule search space when 
compared to the genetic Michigan and Pitt approaches. SIA 
is comparable to AQ and decision tree algorithms for the 
two learning tasks. Furthermore, it was designed for a data 
analysis task in a large and complex justice domain.

4.3.2.3  The GCCL (Genetic Cooperative‑Competitive Learn‑
ing) Approach  The complete population or a subset of it 
encodes the RB. In this model, the chromosomes compete 
and cooperate simultaneously. COmpetitive Gene-pool 
Inductive learning (COGIN) [56], Reproductive Genetic 
Algorithm Learning (REGAL) [57] and LOgic Grammar-
based GENetic Programming system (LOGENPRO) [58] 
are examples of this representation.

In [56], COGIN is described, a GA-based inductive sys-
tem that exploits the conventions of induction from exam-
ples to provide a framework that promotes the fundamental 
model-building objectives of predictive accuracy and model 
simplicity in order to effectively use genetic search in the 
context of extracting regularities from a dataset of exam-
ples to construct decision models. The predominant type of 
model is a classification rule (or set of rules), which maps 
a set of relevant environmental features into specific cat-
egories or values. Classifying loan risk based on borrower 
profiles, consumer choice from purchase data, or supply 

levels based on operating conditions are all examples of 
this type of model-building task. Although current inductive 
approaches such as ID3 (ID3 (Iterative Dichotomiser 3) is a 
decision tree algorithm used for classification tasks. It oper-
ates by recursively partitioning the data based on features to 
create a tree structure where each internal node represents a 
decision based on a feature, and each leaf node represents a 
class label. ID3 builds the decision tree by selecting the best 
attribute at each step to split the data and create more homo-
geneous subsets. The algorithm aims to maximize informa-
tion gain at each split to construct an effective classification 
model.) and CN2 (CN2 (ClassiNet version 2) is a rule-based 
inductive learning algorithm that focuses on constructing 
classification rules from data. It is known for its ability to 
generate comprehensible rule sets that accurately classify 
instances in a dataset. CN2 uses a separate-and-conquer 
strategy where it iteratively builds rules to cover subsets of 
the data. The algorithm aims to find the best rules for each 
class while ensuring generality and simplicity in the result-
ing model.) perform well on certain problems, their potential 
is limited by the incremental nature of their search. Genetic 
Algorithms (GA) have shown great promise on complex 
search domains, and hence suggest a means for overcoming 
these limitations. The novelty of COGIN lies in its use of 
training set coverage to simultaneously promote competi-
tion in various classification niches within the model and to 
constrain the overall model complexity.

Reference [57] describes REGAL, a distributed genetic-
algorithm-based system designed for learning first-order 
logic concept descriptions from examples. The system is 
a hybrid of the Pittsburgh and Michigan approaches, as the 
population constitutes a redundant set of partial concept 
descriptions, each evolved separately. In order to increase 
effectiveness, REGAL is specifically tailored to the con-
cept learning task; hence, REGAL is task-dependent, but, 
on the other hand, domain-independent. The system proved 
to be particularly robust with respect to parameter settings 
across a variety of application domains. REGAL is based on 
a selection operator called the Universal Suffrage operator, 
which allows the population to asymptotically converge, on 
average, to an equilibrium state, in which several species 
coexist. The system was presented in both serial and parallel 
versions, and a new distributed computational model was 
proposed and discussed.

Reference [58] describes a framework called Generic 
Genetic Programming (GGP), which integrates GP and ILP 
based on the formalism of logic grammars. A system in 
this framework, called The Logic grammar-based Genetic 
Programming system (LOGENPRO), is developed. This 
system has been tested for many problems related to knowl-
edge discovery from databases. These experiments demon-
strated that the proposed framework is powerful, flexible, 
and general. Experiments were performed to illustrate that 
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knowledge in different kinds of knowledge representation, 
such as logic programs and production rules, can be induced 
by LOGENPRO. The problem of inducing knowledge can 
be formulated as the search for a highly fit piece of knowl-
edge in the space of all possible pieces of knowledge. The 
search space can be specified declaratively by the user in the 
framework. Moreover, formalism is sufficiently powerful to 
represent context-sensitive information and domain-depend-
ent knowledge. This knowledge can be used to accelerate 
learning speed and/or improve the quality of the knowledge 
induced. LOGENPRO can emulate the effects of Strongly 
Type Genetic Programming (STGP) and ADFs simultane-
ously and effortlessly.

Different examples of these four genetic learning 
approaches (Pittsburgh, Michigan, IRL, and GCCL) for 
learning KB components can be found in literature. Two 
pioneer GFS proposals focused on the Pittsburgh [25] and 
Michigan [59] approaches. Multiple Objective Genetic 
Fuzzy Learning (MOGUL) [60–62] (MOGUL is a proposal 
that follows the Interactive Rule Learning (IRL) approach 
within the framework of Genetic Fuzzy Systems (GFSs). 
MOGUL focuses on simultaneously optimizing multiple 
conflicting objectives in the context of fuzzy rule base 
optimization. Through the use of evolutionary algorithms, 
MOGUL aims to evolve fuzzy rule bases that strike a bal-
ance between accuracy, interpretability, and other desired 
objectives.) and SLAVE [18] (SLAVE, on the other hand, 
is another proposal that also adopts the Interactive Rule 
Learning (IRL) approach within GFSs. The SLAVE system 
is designed to facilitate the interactive evolution and learn-
ing of fuzzy rule bases. It provides a framework where users 
can actively participate in the evolutionary process, guiding 
the optimization towards a solution that aligns with their 
preferences and domain knowledge. SLAVE emphasizes the 
role of human input and expertise in shaping the evolution 
of fuzzy systems to achieve more effective and interpretable 
models.) are two proposals that follow the IRL approach 
within the framework of GFSs. In [63, 64], we found two 
proposals based on the GCCL approach.

5 � Genetic Fuzzy Systems Outlooks

This section presents a snapshot of the GFS status, stressing 
the following points:

•	 pioneer GFSs contributions, four contributions that mark 
the birth of GFSs in 1991,

•	 the GFSs visibility,
•	 the milestones that cover the books and journal special 

issues in the topic, and
•	 The most cited papers that can also mark milestones are 

important contributions to this topic.

5.1 � Pioneer Papers: The Birth of GFSs in 1991

Below, we briefly describe the four pioneering papers that 
introduced the first genetic tuning and genetic RB learn-
ing proposals following the Michigan and Pittsburgh 
approaches:

•	 Karr’s AI Expert paper (genetic tuning of DB) [20]. Pio-
neering work in genetic tuning has considered linguistic 
FRBSs. The DB definition is encoded in the chromo-
some, which contains concatenated parameters of the 
input and output fuzzy sets.

•	 Valenzuela-Rendon’s ICGA91 paper (Linguistic RB 
Learning, Michigan approach) [59]. This proposal pre-
sents the first GFS based on the Michigan approach 
for learning RBs using DNF fuzzy rules. It employs a 
reward distribution scheme that requires knowledge of 
the correct action; thus, it must be considered a super-
vised learning algorithm. The authors later extended the 
original proposal to enable true reinforcement learning 
[65].

•	 Thrift’s ICGA91 paper (Linguistic RB Learning, Pitts-
burgh Approach) [25]. This is a pioneering work on the 
Pittsburgh approach to learning RBs. This method works 
using a complete decision table that represents a special 
case of a crisp relation defined over the collections of 
fuzzy sets corresponding to the input and output vari-
ables. A chromosome is obtained from the decision table 
by going row-wise and coding each output fuzzy set as 
an integer, including a ‘‘null’’ label as a 0. Therefore, the 
GA employs integer coding.

•	 Pham and Karaboga’s Journal of Systems Engineering 
(relational matrix-based FRBS learning) [41]. This is a 
significantly different approach that uses a fuzzy relation 
R instead of the classical crisp relation (decision table). 
The GA was used to modify the fuzzy relational matrix 
of a one-input, one-output fuzzy model. The chromo-
some is obtained by concatenating the M_N elements of 
R, where M and N are the numbers of linguistic terms 
associated with the input and output variables, respec-
tively. The elements of R are real numbers within the 
interval [0,1].

After the publication of these four pioneer proposals, an 
increasing number of contributions can be found in the spe-
cialized literature with proposals that cover all the different 
areas of categorization, with a rich body of literature on this 
topic and with high visibility.

5.2 � GFSs Visibility

In this section, the visibility of GFSs in the ScienceDi-
rect website is explored. By the search of (“Genetic” and 
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“Fuzzy”) keywords in this science base, the following results 
were obtained:

The number of papers in each year is as follows and 
showed in Fig. 13:

The number of all journal papers in this field has been 
57,393 papers that quotas of different journals are as follows 
and illustrated in Fig. 14:

Expert Systems with Applications (2718), Applied 
Soft Computing (2398), Information Sciences (1473), 

Neurocomputing (1123), Energy (1017), Engineering Appli-
cations of Artificial Intelligence (1012), IFAC Proceedings 
Volumes (995), Computers & Industrial Engineering (962), 
Procedia Computer Science (954), International Journal 
of Electrical Power & Energy Systems (869), Journal of 
Cleaner Production (755), Fuzzy Sets and Systems (677), 
Knowledge-Based Systems (668), Renewable and Sustain-
able Energ Reviews (668), Applied Energy (617), Energy 
Conversion and Management (556), IFAC-Papers Online 
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(531), Electric Power Systems Research (515), European 
Journal of Operational Research (494), Fuel and Energy 
Abstracts (487).

An increasing number of publications per year are 
observed that can allow us to say the field of GFSs has now 
reached a stage of maturity after the earliest papers pub-
lished at 1991, and there are also many basic issues yet to 
be resolved and there is an active and vibrant worldwide 
community of researchers working on these issues.

By similar search of (“Genetic” and “Fuzzy”) keywords 
in IEEE website, the following results were obtained:

Since 1991 up to 2024: Conference Publications (7209), 
Journals & Magazines (1089), Books & eBooks (17), Early 
Access Articles (9).

The time extension of publications in IEEE is as follows:
1991–2000:
Conference Publications (990), Journals & Magazines 

(121), Books & eBooks (1).
2001–2010:
Conference Publications (2870), Journals & Magazines 

(336), Books & eBooks (4), Early Access Articles (1).
2011–2020:
Conference Publications (2809), Journals & Magazines 

(425), Books & eBooks (7).
2021–2024:
Conference Publications (540), Journals & Magazines 

(206), Books & eBooks (5), Early Access Articles (8).
The authors with the most publication in IEEE, are 

brought in the following:
Ishibuchi, Hisao (73), Melin, Patricia (55), Pedrycz, 

Witold (52), Kubota, Naoyuki (49), Fukuda, Toshio (42), 
Castillo, Oscar Lopez (42), Hong, Tzung-Pei P. (38), Her-
rera, Francisco Guzmán (37), Nojima, Yusuke (35), Furu-
hashi, Takeshi (30), Juang, Chia-Feng (27), Chen, Chun-Hao 
(26), Bandyopadhyay, Sanghamitra (24), Lee, Chang-Shing 
(22), Castillo, Oscar (21), Maulik, Ujjwal (20), Mabu, 
Shingo (20), Hirasawa, Kotaro (19), Hagras, Hani (19), 
Abraham, Ajith (19), Murata, Tadahiko (18).

And the publishers with the most publishing are: IEEE 
(8203), IET (55), BIAI (14), TUP (25), MIT Press (5), 
SGEPRI(4).

Also in these years, the number of IEEE conferences with 
this topic in different countries has been as:

China (914), Canada (232), USA (191), Singapore(148), 
Japan (147), India (147), Taiwan (107), Spain (82), UK (72), 
South Korea (67), Turkey (59), Hungary (58).

5.3 � Some GFS Milestones: Books and Special Issues

The GFS milestones associated with the books and special 
issues published in the specialized literature are presented 
below:

(1)	 A. Geyer-Schulz. Fuzzy rule-based expert systems and 
genetic machine learning. Physica–Verlag 1995 [66].

	   This is the first GFS book to focus on fuzzy clas-
sifier systems (Michigan approach) and RB learning 
with genetic programming. This book integrates fuzzy 
rule languages with genetic algorithms and classifier 
systems to obtain fuzzy rule-based expert systems 
with learning capabilities. The first part shows how 
the expressiveness of fuzzy-rule languages can be 
extended beyond fuzzy control. For syntax, context-
free languages are used for semantic- and object-ori-
ented systems. Several applications of these new fuzzy 
rule languages to qualitative models from various fields 
of business administration and management science are 
presented. The second part presents a new approach for 
the integration of fuzzy rule languages with genetic 
algorithms. For this purpose, a new class of genetic 
algorithms over context-free languages was developed 
and analyzed.

(2)	  U. Bodenhofer. Tuning of fuzzy systems using genetic 
algorithms. na, 1996 [67].

	   This book focuses on the application of genetic 
algorithms to optimize and fine-tune fuzzy systems. 
The book provides a comprehensive exploration of 
how genetic algorithms can be effectively employed 
to enhance the performance and adaptability of fuzzy 
systems across various domains. Through practical 
examples and theoretical insights, Bodenhofer eluci-
dates the process of tuning fuzzy systems using genetic 
algorithms, offering valuable guidance for researchers, 
engineers, and practitioners seeking to improve the effi-
ciency of fuzzy systems through evolutionary computa-
tion techniques.

(3)	 W. Pedrycz, Fuzzy Evolutionary Computation, Kluwer 
Academic Publishers, 1997 [68].

	   The main theme of this book is to highlight a syner-
gistic effect that emerges between fuzzy sets and evo-
lutionary computation, and to discuss and quantify the 
main advantages arising from this new symbiosis. The 
scope of the book is broad, ranging from the cover-
age of fundamental ideas in fuzzy sets and evolution-
ary computation through the inclusion of cutting-edge 
research to case studies. The focus is on the applied 
side of the fuzzy evolutionary calculations. Each con-
tribution is systematic and thorough in its presentations 
and emphasizes the design of evolutionary schemes 
that embrace various sources of domain knowledge. 
This is an indispensable reference work for practition-
ers, engineers, and scientists interested in techniques 
of evolutionary computation in the context of fuzzy 
sets and/or global optimization, and will be useful for 
individuals actively pursuing research applications in 
both fuzzy sets and evolutionary computation.
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(4)	  O. Cordo´n, F. Herrera, F. Hoffmann, and L. Magda-
lena. Genetic Fuzzy Systems. Evolutionary Tuning and 
Learning of Fuzzy Knowledge Bases, World Scientific, 
2001 [14].

	   This is the first general GFS book that covers the 
overall state of the art of GFSs. This book provides 
a comprehensive overview of genetic algorithms and 
fuzzy logic, focusing on the synergy between the two 
for building robust intelligent systems.

	   This book summarizes and analyzes the field of 
genetic fuzzy systems, paying special attention to 
genetic algorithms that adapt and learn the knowledge 
base of a fuzzy-rule-based system. It introduces the 
general concepts, foundations, and design principles 
of genetic fuzzy systems and covers the topic of the 
genetic tuning of fuzzy systems. It also introduces three 
fundamental approaches to genetic learning processes 
in fuzzy systems: Michigan, Pittsburgh, and iterative 
learning methods. Finally, it explores hybrid genetic 
fuzzy systems, such as genetic fuzzy clustering or 
genetic neuro-fuzzy systems, and describes several 
applications from different areas.

(5)	 M. Sakawa. Genetic Algorithms and Fuzzy Multiobjec-
tive Optimization (Vol. 14). Springer Science & Busi-
ness Media, 2012.

	   This book delves into the synergy between genetic 
algorithms and fuzzy logic in tackling multiobjec-
tive optimization challenges. This book explores the 
integration of genetic algorithms and fuzzy systems 
to address complex problems with multiple conflict-
ing objectives. It provides insights into how these 
computational techniques can enhance the search for 
optimal solutions in real-world scenarios characterized 
by uncertainty and imprecision. The book serves as a 
comprehensive guide for researchers, practitioners, and 
students interested in the applications of genetic algo-
rithms and fuzzy logic to multiobjective optimization 
problems.

(6)	 N. Siddique, and H. Adeli. Computational intelligence: 
synergies of fuzzy logic, neural networks and evolu-
tionary computing. John Wiley & Sons, 2013.

	   This book explores the interplay and collaborative 
potential of fuzzy logic, neural networks, and evolu-
tionary computing within the realm of computational 
intelligence. The book delves into the theoretical under-
pinnings and practical applications of integrating these 
three powerful paradigms to address complex problems 
in diverse domains. Through a blend of foundational 
concepts, algorithms, and case studies, Siddique and 
Adeli demonstrate the enhanced problem-solving 
capabilities achievable by combining these compu-
tational techniques. This book is a valuable resource 
for researchers, practitioners, and students seeking to 

harness the collective strength of fuzzy logic, neural 
networks, and evolutionary computing for innovative 
solutions and applications.

An important number of contributions that gave matu-
rity to the topic are compiled in the following books 
compile:

•	 F. Herrera and J.L. Verdegay (eds.). Genetic Algorithms 
and Soft Computing. Physica-Verlag, 1996 [69].

•	 E. Sanchez, Shibata and L. Zadeh (eds.). Genetic Algo-
rithms and Fuzzy Logic Systems. Soft Computing Per-
spectives. World Scientific, 1997 [70].

•	 W. Pedrycz (ed.). Fuzzy Evolutionary Computation. Klu-
wer Academic Publishers, 1997 [68].

•	 Y.Q. Zhang, and K. Abraham. Compensatory genetic 
fuzzy neural networks and their applications. Vol. 30. 
World Scientific, 1998 [71].

•	 E. Cox. Fuzzy Modeling and Genetic Algorithms for Data 
Mining and Exploration. Elsevier, 2005 [72].

•	 N. Siddique. Intelligent control: a hybrid approach based 
on fuzzy logic, neural networks and genetic algorithms. 
Vol. 517. Springer, 2013 [73].

•	 A. Tettamanzi, and T. Marco. Soft computing: integrating 
evolutionary, neural, and fuzzy systems. Springer Science 
& Business Media, 2013 [74].

In the following, I provide a list of the journal special 
issues devoted to GFSs, including important contributions 
to all topics of GFSs:

•	 F. Herrera. Special Issue on Genetic Fuzzy Systems for 
Control and Robotics. International Journal of Approxi-
mate Reasoning, Vol 17, No 4, November 1997 [75].

•	 F. Herrera and L. Magdalena. Special Issue on Genetic 
Fuzzy Systems. International Journal of Intelligent Sys-
tems, Vol 13, No 10–11, October–November 1998 [76].

•	 O. Cordo´n, F. Herrera, F. Hoffmann and L. Magdalena. 
Special Issue on Recent Advances in Genetic Fuzzy 
System. Information Sciences, Vol 136, No 1–4, August 
2001 [77].

•	 B. Carse, A.G. Pipe, I. Renners, A. Grauel, A.F. Gómez-
Skarmeta, F. Jiménez, G. Sánchez, O. Cordón, F. Her-
rera, F.A. Gomide, I. Walter. Current issues and future 
directions in evolutionary fuzzy systems research. 
InEUSFLAT Conf. 2003 [78].

•	 O. Cordo´n, F. Gomide, F. Herrera, F. Hoffmann, L. 
Magdalena. Special Issue on Genetic Fuzzy Systems. 
Fuzzy Sets and Systems, Vol 141, No 1, January 2004 
[79].

•	 J. Casillas, M.J. del Jesus, F. Herrera, R. Pe´rez, P. Vil-
lar. Special Issue on Genetic Fuzzy Systems and the 
Interpretability-Accuracy Trade-off. International Jour-
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nal of Approximate Reasoning. Vol 44, No 1, February 
2007 [80].

•	 O. Cordo´n, R. Alcala´, J. Alcala´-Fdez, I. Rojas. 
Genetic Fuzzy Systems. Special Section on Genetic 
Fuzzy Systems: What’s Next?. IEEE Transactions on 
Fuzzy Systems. Vol 15, No 4, August 2007 [81].

•	 B. Carse, A.G. Pipe. Special Issue on Genetic Fuzzy 
Systems. International Journal of Intelligent Systems. 
Vol 22, No 9, September 2007 [82].

•	 F. Herrera. Genetic fuzzy systems: taxonomy, current 
research trends and prospects. Evolutionary Intelli-
gence. Vol 1, pp. 27–46, March 2008 [83].

•	 R. Alcalá, and N. Yusuke. "Special issue on genetic 
fuzzy systems: new advances." Evolutionary Intelli-
gence. Vol 2, pp. 1–3, 2009 [84].

•	 J. Casillas, B. Carse. Special issue on “Genetic Fuzzy 
Systems: Recent Developments and Future Directions”. 
Soft Computing. Vol 13, pp.417–8, March 2009 [85].

•	 Y. Nojima, R. Alcalá, H. Ishibuchi, F. Herrera. Special 
issue on evolutionary fuzzy systems. Soft Computing. 
Vol 15, pp. 2299–2301, December 2011 [86].

•	 R. Alcalá, Y. Nojima, H. Ishibuchi, F. Herrera. Spe-
cial issue on evolutionary fuzzy systems. International 
Journal of Computational Intelligence Systems. Vol 5, 
No 2, pp. 209–211, April 2012 [87].

•	 T. Latinovic, M. Rogic, M. Djurdjevic. Adaptive 
genetic fuzzy systems in industry: current framework 
and new trends. In19 International DAAAM Sympo-
sium “Intelligent Manufacturing & Automation” 2015 
[88].

•	 A. Fernandez, V. Lopez, M.J. del Jesus, F. Herrera. 
Revisiting evolutionary fuzzy systems: Taxonomy, 
applications, new trends and challenges. Knowledge-
Based Systems. Vol 80, pp. 109–121, May 2015 [89].

•	 H. Ishibuchi, Y. Nojima. Multiobjective Genetic Fuzzy 
Systems. Springer handbook of computational intel-
ligence. 2015 [90].

•	 C.W. Tao, C.C. Chuang, H.C. Huang. Editorial mes-
sage: Special issue on advances in evolutionary fuzzy 
systems. International Journal of Fuzzy Systems. 2016 
[91].

•	 A. Fernandez, F. Herrera, O. Cordon, M.J. del Jesus, F. 
Marcelloni. Evolutionary fuzzy systems for explainable 
artificial intelligence: Why, when, what for, and where 
to?. IEEE Computational intelligence magazine. 2019 
[92].

•	 P.K. Dwivedi, S.P. Tripathi. A Review of Multi-Objective 
Evolutionary Based Fuzzy Classifiers. Recent Advances 
in Computer Science and Communications (Formerly: 
Recent Patents on Computer Science). 2020 [93].

•	 A. Yusupbekov, S. Gulyamov, K. Turaev. Optimization of 
the rules base of genetic fuzzy systems. InCEUR Work-
shop Proceedings 2021 [94].

5.3.1 � Abstract on Key Contributions from Referenced 
Papers

The collection of papers that we could find on these special 
issues give us a historical tour on the different stages we can 
find in the evolution of GFSs research:

(1)	 Exploration of Genetic Learning Approaches (1997, 
1998, 2003):

•	 The initial special issues focused on utilizing genetic 
learning approaches such as Michigan, IRL, and 
Pittsburgh to learn KB components in Genetic Fuzzy 
Systems (GFSs) for control, robotics, and intelligent 
systems applications.

•	 Emphasizing the importance of genetic algorithms in 
evolving fuzzy systems, these papers laid the founda-
tion for innovative applications and methodologies 
in genetic fuzzy systems research.

(2)	 Advancements in GFS Models and Branches (2001, 
2003, 2004):

•	 The subsequent special issues introduced advance-
ments in genetic fuzzy systems by exploring new 
branches like genetic rule selection, multi-objective 
genetic algorithms, hierarchical genetic systems, and 
co-evolutionary genetic fuzzy systems.

•	 The collective contributions highlighted novel 
methodologies for learning fuzzy systems, address-
ing high-dimensional problems and incorporating 
domain knowledge for improved performance.

(3)	 (3) Focus on Evolutionary Learning Directions 
(2007, 2012, 2021):

•	 Special issues delved into various evolutionary 
learning directions within Genetic Fuzzy Systems, 
encompassing multi-objective evolutionary learning, 
boosting techniques, and adaptive inference systems.

•	 Addressing the interpretability-accuracy trade-off, 
incremental evolutionary learning strategies, and 
optimization of rule bases, these papers paved the 
way for advancements in evolutionary fuzzy systems 
research.

•	 The last three special issues, published in 2007, 
emphasize three different directions. Carse and 
Pipe’s special issue collect papers focused in the 
mentioned areas (multi-objective evolutionary learn-
ing, boosting and evolutionary learning, …) and 
stress some new ones such as evolutionary adaptive 
inference systems. Casillas et al.’s special issue is 
focused on the trade-off between interpretability 
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and accuracy, collecting four papers that proposed 
different GFSs for tackling this problem. Cordo´n 
et al.’s special issue focuses its attention on novel 
GFS proposals under the title ‘‘What’s Next?’’, col-
lecting highly innovative GFS proposals that can 
mark new research trends. The four collected papers 
are focused on: a new Michigan approach for learn-
ing RBs based on XCS [95], GFSs for imprecisely 
observed data (low quality data) [96], incremental 
evolutionary learning of TS-fuzzy systems [97], and 
evolutionary fuzzy rule induction for subgroup dis-
covery [26].

(4)	 Review and Future Trends in GFS Research (2008, 
2019, 2020):

•	 Review papers and future trend analyses provided 
valuable insights into the evolution of Genetic Fuzzy 
Systems, taxonomy refinements, and emerging 
research directions.

•	 These publications underscored the significance of 
categorization frameworks, multi-objective evolu-
tionary approaches, and applications of evolutionary 
fuzzy systems for explainable artificial intelligence.

(5)	 Latest Developments, Innovations and Challenges 
(2009, 2015, 2021):

•	 Recent publications highlighted innovative pro-
posals, emerging trends, and challenges in Genetic 
Fuzzy Systems research, emphasizing the optimi-
zation of rule bases, taxonomy enhancements, and 
industry applications.

•	 By addressing novel methodologies, applications in 
industry contexts, and future research challenges, 
these papers contributed to the ongoing evolution 
and diversification of the field of Genetic Fuzzy Sys-
tems.

5.4 � The Most Cited Papers at the ISI Web of Science

The search on the ISI Web of Science allows us to get the 
most cited papers that can provide a picture on the important 
contributions on the topic that are representative approaches 
of different categorization areas. Following, we shortly 
describe them, paying attention to the associated area of the 
categorization and the used learning approach.

	 (1)	 Selecting Fuzzy If–Then Rules for Classification 
Problems Using Genetic Algorithms (IEEE Transac-
tions on Fuzzy Systems, 525 cites, 1995) [28].

		    The proposed algorithm was based on a simple GA 
with binary coding representing whether a rule should 

be selected or not from an initial set of candidate rules 
(obtained from a predefined DB by applying a simple 
data-driven method). The problem was formulated as 
a combinatorial optimization problem with two objec-
tives considered by a weighted fitness function: to 
maximize the number of correctly classified patterns 
and to minimize the number of rules. This contribu-
tion is the most classic contribution for genetic rule 
selection and one of the departure points for studies 
in the trade-off between interpretability and accuracy.

	 (2)	  Ten years of genetic fuzzy systems: current frame-
work and new trends (Fuzzy Sets and Systems, 524 
cites, 2004) [16].

		    The objective of this paper is to provide an account 
of genetic fuzzy systems, with special attention to 
genetic fuzzy rule-based systems. After a brief intro-
duction to models and applications of genetic fuzzy 
systems, the field is overviewed, new trends are iden-
ti5ed, a critical evaluation of genetic fuzzy systems for 
fuzzy knowledge extraction is elaborated, and open 
questions that remain to be addressed in the future 
are raised. The paper also includes some of the key 
references required to quickly access implementation 
details of genetic fuzzy systems.

	 (3)	 Simultaneous Design of Membership Functions and 
Rule Sets for Fuzzy Controllers Using Genetic Algo-
rithms (IEEE Transactions on Fuzzy Systems, 448 
cites, 1995) [33].

		    Authors proposed the use of GAs to learn a com-
plete KB for control problems, determining both 
membership functions and RB together in order to 
address their co-dependency (KB learning). They con-
sidered the simple GA for a Pittsburgh approach, with 
integer coding for rule consequents (similar to Thrift’s 
proposal) and integer coding for membership function 
support amplitude (five different amplitude values) in 
the same chromosome. This contribution is a refer-
ence in the topic as a classic Pittsburgh approach for 
genetic KB learning.

	 (4)	  A TSK-type recurrent fuzzy network for dynamic 
systems processing by neural network and genetic 
algorithms (IEEE Transactions on Fuzzy Systems, 
365 cites, 2002) [98].

		    This study presents a novel structure called TSK-
type Recurrent Fuzzy Network (TRFN) that adapts 
to different learning environments using neural net-
works or genetic algorithms. TRFN employs recurrent 
fuzzy if-then rules with TSK-type consequences, feed-
ing internal variables back to input and output lay-
ers for memory and learning enhancement. TRFN is 
tailored for supervised learning (TRFN-S) with neu-
ral networks and genetic learning (TRFN-G) for sce-
narios like reinforcement learning. TRFN-S features 
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compact size and high accuracy, while TRFN-G opti-
mizes parameters using genetic algorithms. Compara-
tive tests show TRFN's efficiency in dynamic system 
identification and control. TRFN outperforms other 
recurrent network models, highlighting its superior 
learning capabilities.

	 (5)	 GA-fuzzy modeling and classification: Complexity 
and performance (IEEE Transactions on Fuzzy Sys-
tems, 360 cites, 2000) [99].

		    A two-step approach was proposed for function 
approximation, dynamic systems modelling and data 
classification problems by learning approximate TS-
rules. First, fuzzy clustering was applied to obtain a 
compact initial KB. Then this model is optimized by 
a real-coded GA subjected to constraints in order to 
maintain the semantic properties of the rules. Each 
chromosome represents the parameters defining each 
fuzzy model (membership functions of the anteced-
ents and coefficients of the consequents), thus per-
forming a tuning of the initial model. This approach 
was also combined with an iterative similarity-driven 
rule base simplification algorithm as an intermediate 
stage between KB generation and parameter optimiza-
tion. This is an important contribution that uses GAs 
for tuning inside a hybrid method, trying to get a more 
interpretable approximate TS model.

	 (6)	 Performance evaluation of fuzzy classifier systems 
for multidimensional pattern classification problems 
(IEEE Transactions on Systems Man And Cybernetics 
Part B-Cybernetics, 350 cites, 1999) [63].

		    The authors investigate the effectiveness of a 
genetic fuzzy machine learning approach for address-
ing multidimensional pattern classification issues 
involving continuous attributes. In their methodology, 
each individual fuzzy if-then rule is managed sepa-
rately, with a corresponding fitness value assigned to 
define a classifier system. The paper outlines the fun-
damentals of fuzzy if-then rules and fuzzy reasoning 
applicable to pattern classification tasks. Furthermore, 
a genetic machine learning technique is introduced 
with the ability to automatically produce fuzzy if-then 
rules from numerical data sets. By utilizing linguistic 
values alongside fixed membership functions in ante-
cedent fuzzy sets, an easy linguistic interpretation of 
each fuzzy rule is established. The fixed membership 
functions simplify the implementation process of their 
method into a computer program. The primary distin-
guishing factors of their method lie in its simplicity of 
implementation and the linguistic clarity provided by 
the generated fuzzy if-then rules. The authors evalu-
ate the performance of their approach through com-
puter simulations on various benchmark problems. 
Despite the absence of a membership function tun-

ing mechanism, their method demonstrates notable 
efficacy when compared to alternative classification 
methodologies such as non-fuzzy machine learning 
tactics and neural networks.

	 (7)	 Fuzzy rule selection by multi-objective genetic local 
search algorithms and rule evaluation measures in 
data mining (Fuzzy Sets and Systems, 307 cites, 
2004) [101].

		    This paper illustrates a method for selecting a small 
set of uncomplicated fuzzy if-then rules to address 
pattern classification problems involving numerous 
continuous attributes. The methodology follows a 
two-phase approach: initial generation of candidate 
rules through rule evaluation metrics in data mining, 
followed by rule selection using multi-objective evo-
lutionary algorithms. Initially, candidate fuzzy if-then 
rules are derived from numerical data and screened 
based on two rule evaluation metrics (confidence and 
support) in data mining. Subsequently, a limited num-
ber of fuzzy if-then rules are chosen from the pre-
screened candidate pool using multi-objective evolu-
tionary algorithms. In the rule selection process, three 
objectives are considered: maximizing classification 
accuracy, minimizing the number of selected rules, 
and minimizing total rule length. Thus, the role of 
multi-objective evolutionary algorithms is to identify 
multiple non-dominant rule sets concerning these 
objectives. The primary contribution of this work is 
introducing the concept of utilizing two rule evalu-
ation metrics as pre-screening criteria for selecting 
fuzzy rules. By generating a specified number of can-
didate rules from numerical data for high-dimensional 
pattern classification problems, the paper demon-
strates through computer simulations that this pre-
screening enhances the efficiency of fuzzy rule selec-
tion. Additionally, the study expands on the previous 
work by transforming a multi-objective genetic algo-
rithm (MOGA) into a multi-objective genetic local 
search (MOGLS) algorithm, where a local search 
procedure fine-tunes the selection (inclusion or exclu-
sion) of each candidate rule. Furthermore, the integra-
tion of a learning algorithm for rule weights (certainty 
factors) with the MOGLS algorithm presents another 
advancement in fuzzy rule selection methodology.

	 (8)	 Single-objective and two-objective genetic algorithms 
for selecting linguistic rules for pattern classification 
problems (Fuzzy Sets and Systems, 268 cites, 1997) 
[29].

		    This paper introduces several techniques for devel-
oping a concise fuzzy classification system compris-
ing a limited number of linguistic classification rules. 
Initially, the authors define a rule selection challenge 
concerning linguistic classification rules with the 
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dual objectives of maximizing correctly classified 
training patterns and minimizing the chosen rule 
count. Subsequently, three approaches for identify-
ing a collection of non-dominant solutions to the rule 
selection problem are presented, all centered around 
a single-objective genetic algorithm. Additionally, 
a multi-objective genetic algorithm-based method 
is proposed to find a set of non-dominant solutions. 
The effectiveness of these proposed methodologies is 
assessed through their application to the renowned iris 
dataset. Furthermore, a hybrid algorithm is proposed 
by amalgamating a learning technique for linguistic 
classification rules with the multi-objective genetic 
algorithm. Through computer simulations on the iris 
dataset, the superior performance of the hybrid algo-
rithm is showcased.

	 (9)	 Optimization of interval type-2 fuzzy logic control-
lers for a perturbed autonomous wheeled mobile robot 
using genetic algorithms (Information Sciences, 265 
cites, 2009) [102].

		    In this paper a tracking controller for the dynamic 
model of a unicycle mobile robot by integrating a kin-
ematic and a torque controller based on type-2 fuzzy 
logic theory and genetic algorithms were described. 
Computer simulations are presented confirming the 
performance of the tracking controller and its applica-
tion to different navigation problems.

	(10)	 Combining a fuzzy optimal model with a genetic algo-
rithm to solve multi-objective rainfall-runoff model 
calibration (Journal of Hydrology, 252 cites, 2002) 
[103].

		    A novel automatic calibration approach for the 
widely utilized Xinanjiang model in China is out-
lined in the paper. The calibration process involves 
two primary components: calibration of water balance 
parameters and calibration of runoff routing param-
eters. The former is accomplished using a straightfor-
ward genetic algorithm (GA), while the latter employs 
a new method that integrates a fuzzy optimal model 
(FOM) with a GA to address the multiple objective 
runoff routing parameter calibration issue. The GA 
utilized in this context with multiple objectives is 
essentially similar to a standard GA, with the excep-
tion of incorporating specific fitness criteria involving 
the membership degree of alternatives obtained by 
FOM within a limited set of alternatives and multi-
ple objectives. The parameter calibration scheme 
focuses on optimizing three key objectives: (1) peak 
discharge, (2) peak time, and (3) total runoff volume. 
To calibrate the model parameters, historical flood 
data from 34 events spanning 12 years at the Shuang-
pai Reservoir are utilized, while flood data from the 
most recent 2 years are employed to validate these 

parameters. The findings of this research and its prac-
tical application demonstrate that the amalgamation 
of GAs and the FOM in a hybrid methodology not 
only effectively leverages the essential flood charac-
teristics but also proves to be efficient and robust in 
performance.

	(11)	 Integration of genetic fuzzy systems and artificial neu-
ral networks for stock price forecasting (Knowledge-
based Systems, 245 cites, 2010) [104].

		    Forecasting stock market movements is acknowl-
edged as a demanding task within the realm of finan-
cial time-series prediction. The key to successful 
stock market prediction lies in achieving optimal 
outcomes by utilizing minimal input data and a sim-
plified stock market model. This study introduces an 
integrated methodology that leverages genetic fuzzy 
systems (GFS) and artificial neural networks (ANN) 
to develop an expert system for forecasting stock 
prices. Initially, stepwise regression analysis (SRA) 
is employed to identify the factors with the most sig-
nificant influence on stock prices. Subsequently, the 
raw data is partitioned into k clusters using self-organ-
izing map (SOM) neural networks. Finally, each clus-
ter is input into distinct GFS models capable of rule 
extraction and data tuning. The effectiveness of the 
proposed approach is assessed by applying it to stock 
price data obtained from the IT and Airlines sectors, 
and comparing the results with previous stock price 
forecasting methods using mean absolute percentage 
error (MAPE). The findings indicate that the proposed 
approach surpasses the performance of prior methods, 
establishing itself as a viable tool for addressing stock 
price forecasting challenges.

	(12)	 A historical review of evolutionary learning methods 
for Mamdani-type fuzzy rule-based systems: Design-
ing interpretable genetic fuzzy systems (International 
Journal of Approximate Reasoning, 244 cites, 2011) 
[105].

		    The balancing act between interpretability and 
accuracy is a fundamental aspect of utilizing fuzzy 
systems. The quest for precise yet easily understand-
able fuzzy systems has been pivotal in the founda-
tional concepts and system identification methodolo-
gies introduced by Zadeh and Mamdani [106]. With 
the progression towards soft computing, there was a 
shift towards prioritizing accuracy in fuzzy model 
construction, leading to fuzzy systems resembling 
black-box models like neural networks. Fortunately, 
the scientific community focused on fuzzy modeling 
has circled back to the roots, emphasizing design 
approaches that address the interpretability-accuracy 
dilemma. Genetic fuzzy systems have gained signifi-
cant traction due to their inherent adaptability and the 
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ability to simultaneously consider various optimiza-
tion criteria. This study presents an overview of the 
prominent genetic fuzzy systems based on Mamdani-
type fuzzy rule-based systems, aimed at generating 
interpretable linguistic fuzzy models with high accu-
racy.

	(13)	 Tuning fuzzy-logic controllers by genetic algorithms 
(International Journal of Approximate Reasoning, 226 
cites, 1995) [107].

		    Authors proposed a tuning method for obtaining 
high-performance fuzzy control rules by means of 
GAs. The tuning method locally fits the membership 
functions of the fuzzy rules dealing with the parame-
ters of the membership functions. A chromosome rep-
resents the parameters of the membership functions 
used by each rule in the initial KB, the chromosome 
represents the concatenated rule parameters. This is 
the first proposal for getting an approximate FRBS via 
tuning associated to the rules.

6 � Some Research Trends in GFSs

This section is introduced some current trends that have 
focused the attention of researchers in the last few years and 
discussed some critical considerations on the publications 
in the topic at the present.

6.1 � Discussing Some Trends in the Past Few Years

In this subsection, from the abundant GFSs literature pub-
lished, we focus our attention into the following current 

trends that are of high interest at the present and show con-
siderable potential in the near future.

1.	 Multi-objective genetic learning of FRBSs: interpret-
ability- precision trade-off.

2.	 GA-based techniques for mining fuzzy association rules 
and novel data mining approaches.

3.	 Learning genetic models based on low quality data 
(noise data and vague data).

4.	 Genetic learning of fuzzy partitions and context adapta-
tion.

5.	 Genetic adaptation of inference engine components.
6.	 Revisiting the Michigan-style GFSs.

6.1.1 � Evolutionary Multi‑objective Learning of FRBSs: 
Interpretability‑Precision Trade‑Off

Obtaining high degrees of interpretability and accuracy is 
a contradictory aim; in practice, one of the two properties 
prevails over the other. Nevertheless, a new tendency in the 
fuzzy modelling scientific community that seeks a good bal-
ance between interpretability and accuracy is increasing in 
importance. The improvement of the interpretability of rule-
based systems is a central issue in recent research, where not 
only the accuracy but also the compacting and interpretabil-
ity of the obtained rules are receiving attention [108, 109].

In multi-objective GFSs, it is desirable to design genetic 
learning algorithms in which the learning mechanism finds 
an appropriate balance between interpretability and accu-
racy. We consider objectives based on accuracy, and objec-
tives that include different complexity/interpretability meas-
ures. Figure 15 from [110] illustrates this concept, where 
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each ellipsoid denotes a fuzzy system. A large number of 
nondominated fuzzy systems exist along the accuracy–com-
plexity trade-off curve.

There exists an important number of contributions 
focused on this topic:

A. Multi-objective genetic fuzzy rule selection [29, 101].
B. Multi-objective genetic RB learning [111–114].
C. Multi-objective genetic data mining [27, 115].
D. Multi-objective genetic tuning [116].
, ….
In the following, a wide range of related studies to multi-

objective genetic fuzzy systems in various research areas is 
briefly reviewed. Of course, it is far from exhaustive. See 
[117] for multi-objective approaches in machine learning, 
and see [118] for multi-objective data mining.

A. Multi-objective Genetic Fuzzy Rule Selection
Two-objective genetic fuzzy rule selection for the design 

of fuzzy classifiers [29], which is a multi-objective version 
of weighted sum-based rule selection [28], was one of the 
earliest studies on multi-objective genetic fuzzy systems. 
In [29], a large number of candidate fuzzy rules were first 
extracted from numerical data using a heuristic rule extrac-
tion procedure. Subsequently, an Evolutionary Multi-objec-
tive Optimization (EMO) algorithm was used to search for 
a number of non-dominated subsets of the candidate fuzzy 
rules with respect to accuracy maximization and complex-
ity minimization. Let N be the number of extracted candi-
date rules: A subset of N candidate rules is represented by a 
binary string of length N and handled as an individual in a 
two-objective genetic fuzzy rule selection. A subset of the N 
candidate rules is represented by a binary string of length N 
and handled as an individual in two-objective genetic fuzzy 
rule selection. Because binary strings are used as individu-
als, we can directly apply existing EMO algorithms, such 
as NSGA-II, SPEA, and SPEA2, with standard genetic 
operators to two-objective genetic fuzzy rule selection. The 
two-objective formulation in [29] was extended to the three-
objective formulation in [119] by introducing the total num-
ber of antecedent conditions (i.e., the total rule length) as an 
additional complexity measure. A memetic EMO algorithm 
(i.e., a hybrid algorithm of EMO and local search) was used 
for three-objective genetic fuzzy rule selection in [101]. The 
same three-objective formulation as in [101, 119] was used 
for non-fuzzy rule selection in [120].

B. Multi-objective Fuzzy Genetics-Based Machine 
Learning (GBML)

Studies on genetics-based machine-learning algorithms 
are often divided into three classes: Pittsburgh, Michigan, 
and IRL approaches (see [3, 121] for GBML and [11, 14, 
16, 122] for Fuzzy GBML). A rule set is handled as an 
individual in the Pittsburgh approach, whereas a single 
rule is handled as an individual in the Michigan approach. 
The final obtained rule set is usually the best individual in 

the final population in the Pittsburgh approach, whereas it 
is the final population in the Michigan approach. Another 
category of GBML is the iterative rule-learning approach 
[18, 60, 123], where a single rule is obtained from its sin-
gle execution.

Thus, multiple runs are required to generate a rule set 
in the iterative rule-learning approach. Multi-objective 
GBML algorithms are typically implemented in the frame-
work of the Pittsburgh approach. In general, the antecedent 
part of each rule is coded as a substring in Pittsburgh-style 
GBML algorithms. The rule set is represented by a con-
catenated string.

A subtraction of integers and/or real numbers is often 
used to represent a single rule. A three-objective fuzzy 
GBML algorithm was compared with its rule selection 
version in [119]. A Pittsburg–Michigan hybrid fuzzy 
GBML algorithm [124] was generalized as a multi-objec-
tive algorithm for interpretability-accuracy trade-off 
analysis in [125]. Other examples of multi-objective fuzzy 
GBML algorithms can be found in [114, 117, 126–128], 
where various aspects of fuzzy systems are adjusted by 
EMO algorithms (e.g., input selection, membership func-
tion tuning, and rule selection). Multi-objective GBML 
algorithms were also implemented for non-fuzzy classifier 
design (e.g., [129]).

C. Evolutionary Multi-Objective Data Mining
Evolutionary algorithms have been applied in the fields 

of knowledge discovery and data mining in various ways 
[130]. EMO algorithms have been used for two different 
tasks: searching for Pareto-optimal rules and searching for 
Pareto-optimal rule sets.

In data mining techniques, such as Apriori [131], sup-
port and confidence have frequently been used for rule 
evaluation. However, other rule-evaluation criteria have 
also been proposed. Among them are gain, variance, chi-
squared value, entropy gain, gini, laplace, lift, and convic-
tion [19]. For non-fuzzy rules, it was shown that the best 
rule according to any of these measures is a Pareto-optimal 
rule for the following two-objective rule discovery prob-
lem [132]:

where R denotes a single rule.
The use of NSGA-II [133], which is a well-known and 

frequently-used EMO algorithm, was proposed in [134, 
135] to search for Pareto-optimal classification rules of 
the two-objective problem in (1). A dissimilarity measure 
between classification rules was used in [136] instead of 
the crowding measure in NSGA-II to increase the diversity 
of obtained Pareto-optimal rules. The Pareto-dominance 
relation used in NSGA-II was modified in [137] in order 
to search for not only Pareto-optimal classification rules 

(1)Maximize {Support(R), Confidence(R)
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but also near Pareto-optimal dominated ones. Similar 
multi-objective formulations to (1) were used to search 
for Pareto-optimal association rules [138] and Pareto-opti-
mal fuzzy association rules [27]. In [139], the trade-off 
between the number of extracted fuzzy rules and the com-
putation time for rule extraction was discussed in fuzzy 
data mining.

The above-mentioned studies on multi-objective genetic 
rule selection and GBML in the previous subsections can be 
viewed as data mining techniques for the search for Pareto-
optimal rule sets. In [140], the use of Pareto-optimal fuzzy 
rules as candidate rules was examined in rule selection.

D. Evolutionary Multi-Objective Feature Selection
Feature selection [141] is an important issue in model-

ling, classification, knowledge discovery, and data mining. 
The basic idea of multi-objective feature selection is to 
minimize the size of a subset of features and maximize its 
performance.

A clear trade-off relationship exists between the size of 
the feature subsets and their performance on the training 
data. Evolutionary multi-objective feature selection has been 
discussed in several studies (e.g., [142–144]). Feature selec-
tion has also been discussed in the context of multi-objective 
genetic fuzzy systems [145].

E. Evolutionary Multi-Objective Clustering
Fuzzy clustering [146] has frequently been used for fuzzy 

rule generation. In evolutionary multi-objective clustering 
[147–150], multiple measures of cluster quality are opti-
mized simultaneously. Evolutionary multi-objective cluster-
ing will play a very important role in multi-objective design 
of fuzzy systems whereas it has not been used in many stud-
ies so far.

F. Evolutionary Ensemble Design
A promising approach to the design of reliable classifiers 

is to combine multiple classifiers into a single one [151, 
152]. Several methods have been proposed for generating 
multiple classifiers such as bagging [153] and boosting 
[154]. The point is to generate an ensemble of classifiers 
with high diversity. Ideally the classification errors by each 
individual classifier in an ensemble should be uncorrelated. 
EMO algorithms have been used to generate an ensemble of 
classifiers with high diversity. Non-dominated neural net-
works were combined into a single ensemble classifier in 
[155–158]. The choice of ensemble members seems to be 
an interesting issue when a large number of non-dominated 
neural networks are obtained. Design of fuzzy ensemble 
classifiers was discussed in [159]. Feature selection was used 
for neural network ensemble design in [160, 161].

G. Multi-objective Neural Network Design
In addition to ensemble design, EMO algorithms have 

also been used for multi-objective design of neural networks 
in various manners. An EMO algorithm was used to generate 
a number of non-dominated neural networks on a receiver 

operating characteristic curve in [162]. Non-dominated 
radial basis function (RBF) networks of different sizes were 
generated in [163]. A multi-objective memetic algorithm 
was used to speed up the back-propagation algorithm in 
[164] where a number of neural networks of different sizes 
were evolved to find an appropriate network structure.

H. Multi-objective Genetic Programming
As in fuzzy systems and neural networks, there exists 

a clear trade-off relationship between training data accu-
racy and tree size in genetic programming. Multi-objective 
genetic programming has been discussed in several studies 
[165–169]. Multi-objective genetic programming is a prom-
ising tool for multi-objective design of tree-structured fuzzy 
systems.

Although the definition of accuracy in a certain applica-
tion is straightforward, the definition of interpretability is 
rather problematic. Most researchers agree that interpret-
ability involves the following aspects: the number of rules 
is sufficient to be comprehensible, rule premises should be 
easy in structure and contain only a few input variables, 
linguistic terms should be intuitively comprehensible, etc.

There is a need to propose new interpretability metrics 
that consider not only the number of rules, but also other 
aspects such as the number of labels of a rule, the shape of 
the membership functions, etc., with a better understand-
ing and formalization of the notions of ‘‘interpretability’’, 
‘‘comprehensibility, or ‘‘simplicity’’. More research on 
evaluation metrics is needed to provide an interpretability 
measure associated with the FRBSs, allowing us to compare 
different FRBSs for a problem from the interpretability point 
of view and including them as objectives in MOEAs.

6.1.2 � GA‑Based Techniques for Mining Fuzzy Association 
Rules and Novel Data Mining Approaches

Recent advancements in Genetic Fuzzy Systems (GFS) have 
leveraged Genetic Algorithms (GAs) to develop innovative 
techniques for mining fuzzy association rules and exploring 
novel data mining approaches. GAs, as a powerful optimiza-
tion algorithm inspired by the process of natural selection, 
have shown significant potential in addressing the complexi-
ties of association analysis and pattern mining within fuzzy 
systems.

One noteworthy area of research in GA-based techniques 
for mining fuzzy association rules involves the integra-
tion of multi-objective optimization methods with genetic 
algorithms. By employing multi-objective optimization, 
researchers aim to simultaneously optimize conflicting 
objectives such as rule coverage, accuracy, and interpret-
ability in the context of fuzzy association rule mining. These 
approaches not only enhance the quality of generated rules 
but also provide decision-makers with a diverse set of solu-
tions that cater to different trade-off preferences.
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Moreover, novel data mining approaches within the realm 
of GFS have been exploring the fusion of evolutionary algo-
rithms with deep learning methodologies. Evolutionary 
Deep Learning frameworks combine the strengths of genetic 
algorithms in global exploration and deep learning in local 
exploitation to enhance the scalability and generalization 
capabilities of fuzzy systems. By integrating these technolo-
gies, researchers have been able to uncover intricate patterns 
and relationships within large and complex datasets, pushing 
the boundaries of traditional data mining techniques.

Additionally, recent studies have been focusing on incor-
porating uncertainty modeling techniques, such as proba-
bilistic graphical models and Bayesian optimization, into 
the evolutionary process of mining fuzzy association rules 
[170]. These approaches aim to capture and reason with 
uncertain or imprecise information present in real-world 
data, enriching the interpretability and robustness of the 
generated fuzzy rules.

Overall, the evolution of GA-based techniques for min-
ing fuzzy association rules and the exploration of novel data 
mining approaches within Genetic Fuzzy Systems present 
exciting avenues for advancing the field of knowledge dis-
covery and decision support systems. By embracing the syn-
ergy of evolutionary algorithms and fuzzy logic, researchers 
are poised to unlock deeper insights from data, facilitate 
transparent reasoning processes, and drive innovation in the 
domain of intelligent data analysis.

Fayyad et al. defined knowledge discovery (KD) as the 
nontrivial process of identifying valid, novel, potentially 
useful, and understandable patterns in data [171]. KD may 
not be considered synonymous with DM; however, they are 
intimately related. KD is a wide-ranging process that covers 
the following distinct stages: comprehension of the prob-
lem, comprehension of the data, pre-processing (or prepara-
tion) of the data, DM, and post-processing (assessment and 
interpretation of the models). The DM stage is responsible 
for automatic KD at a high level, and from the information 
obtained from real data. Some of the important problems 
that DM and KD deal with are rule extraction, identification 
of associations, feature analysis, linguistic summarization, 
clustering, classifier design, and novelty/anomaly detection.

Interpretability is crucial in the field of DM/KD, where 
knowledge should be extracted from databases and repre-
sented in a comprehensible form, or for decision support 
systems, where the reasoning process should be transparent 
to the user. The use of linguistic variables and linguistic 
terms in the discovery process has been explored by differ-
ent authors.

Over the past decade, frequent pattern mining has been 
the focus of DM research. Association analysis is a meth-
odology that is useful for discovering interesting relation-
ships hidden in large datasets. Uncovered relationships can 
be represented in the form of association rules or sets of 

frequent items. Abundant literature can be found that pre-
sents tremendous progress on the topic [172, 173].

As claimed in [174], the use of fuzzy sets to describe the 
association between data extends the types of relationships 
that may be represented, facilitates the interpretation of rules 
in linguistic terms, and avoids unnatural boundaries in the 
partitioning of attribute domains.

Linguistic variables with linguistic terms can contribute 
substantially to advancing the design of association rules 
and the analysis of data to establish relationships and iden-
tify patterns in general [104]. In contrast, GAs, particularly 
EAs, are widely used for evolving rule extraction and pattern 
association in DM/KD [71].

The conjunction in the GFS field provides novel useful 
tools for pattern analysis and for extracting new kinds of use-
ful information with a main advantage over other techniques: 
its interpretability in terms of fuzzy if–then rules. At pre-
sent, we have found interesting contributions focused on the 
genetic extraction of fuzzy association rules [27, 175–177].

We would like to focus on a subdivision of descriptive 
induction algorithms, which has recently received attention 
from researchers, called subgroup discovery.

It is a form of supervised inductive learning of Fig. 16 
Non-dominated fuzzy system subgroup descriptions in 
which, given a set of data and having a property of interest 
to the user, attempts to locate subgroups that are statistically 
‘‘most interesting’’ for the user. Subgroup discovery has the 
objective of discovering interesting properties of subgroups, 
obtaining simple rules (i.e., with an understandable structure 
and few variables), highly significant, and with high support 
(i.e., covering many of the instances of the target class). 
The concept was initially formulated by Klosgen in [178], 
his rule learning algorithm EXPLORA, and by Wrobel in 
[179], the MIDOS algorithm. Both use a rule-extraction 
model based on decision trees to obtain the best subgroups 
within the population. To evaluate the subgroups, evalua-
tion measurements were defined to determine the interest 

Fig. 16   Non-dominated fuzzy systems



A Survey on Genetic Fuzzy Systems﻿	

of an expression through a combination of unusualness and 
size. MIDOS tackles the problem of discovery in multire-
lational databases using the same approach. A recent study 
on this topic can be found in [180]. In [26] we found the first 
approach to the use of GFSs for subgroup discovery.

The use of GFSs for association analysis is a topic that 
would provide interesting future contributions focusing on 
the different research problems that can be found in the fre-
quent pattern mining area [172].

6.1.3 � Learning Genetic Models Based on Low Quality Data 
(Noise Data and Vague Data)

In the realm of Genetic Fuzzy Systems (GFS), the task of 
learning models from low-quality data poses a significant 
challenge yet offers valuable opportunities for research and 
innovation. Low-quality data, characterized by noise and 
vagueness, is commonly encountered in real-world applica-
tions across various domains, such as sensor data analysis, 
medical diagnostics, and financial forecasting.

The presence of noise data, stemming from measurement 
errors, missing values, or irrelevant features, can signifi-
cantly impact the robustness and accuracy of learned mod-
els. Traditional machine learning algorithms may struggle to 
effectively handle noisy data, leading to suboptimal perfor-
mance and reduced interpretability of the generated models. 
In this context, Genetic Fuzzy Systems provide a promising 
framework for robust modeling in the presence of noise, 
thanks to their inherent ability to capture uncertainty and 
imprecision through fuzzy logic representations.

Moreover, the challenge of learning from vague data, 
where information is inherently ambiguous or imprecise, 
underscores the importance of leveraging fuzzy logic prin-
ciples within GFS. Vague data can arise from subjective 
judgments, qualitative assessments, or incomplete infor-
mation, making it particularly suitable for treatment using 
fuzzy sets and fuzzy reasoning approaches. By incorporat-
ing vague data into the learning process of GFS, research-
ers can explore the capacity of fuzzy classifiers to handle 
uncertainties and complex decision-making scenarios that 
conventional models may struggle to address.

Efforts in the research community have begun to explore 
novel formalizations for defining fuzzy classifiers that are 
specifically tailored to handle low-quality data, including 
noise and vagueness. By linking concepts from fuzzy sta-
tistics with genetic modeling techniques, researchers have 
delved into the design of fitness functions and optimiza-
tion strategies that are robust to the uncertainties present in 
noisy and vague datasets. These initiatives aim to enhance 
the adaptability and generalization capabilities of GFS when 
confronted with challenging data scenarios.

The exploration of learning genetic models based on 
low-quality data represents a burgeoning area of research 

that holds great potential for advancing the capabilities 
of Genetic Fuzzy Systems in real-world applications. By 
addressing the nuances of noise and vagueness in data, 
researchers are paving the way for more resilient, interpret-
able, and effective modeling solutions that can thrive in 
complex and uncertain environments [181].

There are many practical problems requiring learning 
models from uncertain data. The experimental designs of 
GFSs learning from data observed in an imprecise way are 
not being actively studied by researchers. However, accord-
ing to the point of view of fuzzy statistics, the primary use 
of fuzzy sets in classification and modelling problems is 
for the treatment of vague data. Using vague data to train 
and test GFSs we could analyse the performance of these 
classifiers on the type of problems for which fuzzy systems 
are expected to be superior. Preliminary results in this area 
involve the proposals of different formalizations for the 
definition of fuzzy classifiers, based on the relationships 
between random sets and fuzzy sets [182] and the study of 
fitness functions (with fuzzy values) defined in the context of 
GFSs [96]. This is a novel area that is worth being explored 
in the near future, and can provide interesting and promis-
ing results.

6.1.4 � Genetic Learning of Fuzzy Partitions and Context 
Adaptation

The DB learning comprises the specification of the uni-
verses of discourse, the number of labels for each linguistic 
variable, as well as the definition of the fuzzy membership 
functions associated to each label. In [183] it was studied 
the influence of fuzzy partition granularity in the FRBS 
performance, showing that using an appropriate number of 
terms for each linguistic variable, the FRBS accuracy can 
be significantly improved without the need of a complex RB 
learning method.

On the other hand, the idea of introducing the notion of 
context into fuzzy systems comes from the observation that, 
in real life, the same basic concept can be perceived differ-
ently in different situations. In some cases, this information 
is related to the physical properties or dimensions of the 
system or process, including restrictions imposed due to the 
measurement acquisition or actuators. In the literature, con-
text adaptation in fuzzy systems has been mainly approached 
as scaling of fuzzy sets from one universe of discourse to 
another by means of non-linear scaling functions whose 
parameters are identified from data.

Different approaches have been proposed to deal with the 
learning of membership functions, granularity, nonlinear 
contexts using GAs, …[49, 184–188].

Although there are an important number of contribu-
tions in the area of DB Learning, but it is still an important 
research area where can be obtained important results, due 
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to the importance of using the adequate membership func-
tions and the adequate context. The use of GFSs is very 
important due to the flexibility for encoding DB compo-
nents together with other fuzzy system components.

6.1.5 � Genetic Adaptation of Inference Engine Components

We know that it is possible to use parametric aggregation 
operators in the design of the inference system and the 
defuzzification method, trying to get the most appropriate 
parameter configuration in any application. The tuning of 
these components can be considered to get more accurate 
fuzzy models. We come across different GFS approaches 
for finding the most appropriate parameters [22, 23].

This is an interesting research area that can provide us 
with the opportunity to adapt the inference parameters to 
an FRBS and to design learning models that can coevolve 
the inference engine parameters together with the KB 
components.

(6) Revisiting the Michigan-style GFSs. The first 
description of a Michigan-style GFS was given in [59]. 
All the initial approaches in this area were based on the 
strength in the sense that a rule (classifier) gets strength 
during interactions with the environment (through rewards 
and/or penalties). This strength can then be used for two 
purposes: resolving conflicts between simultaneously 
matched rules during learning episodes; and as the basis 
of fitness for the GAs.

A completely different approach can be considered in 
which a rule’s fitness, from the point of view of the GA, is 
based on its ‘‘accuracy’’, i.e., how well a rule predicts payoff 
whenever it fires. Notice that the concept of accuracy used 
here is different from the traditionally used.

in fuzzy modelling (i.e., capability of the fuzzy model to 
faithfully represent the modelled system). This accuracy-
based approach offers a number of advantages such as avoid-
ing over-general rules, obtaining optimally general rules, and 
learning of a complete covering map. The first accuracy-
based evolutionary algorithm, called XCS, was proposed 
in [189] and it is currently of major interest to the research 
community in this field.

Casillas et al. proposed in [95] a new approach to achieve 
accuracy-based Michigan-style GFSs. The proposal, Fuzzy-
XCS, is based on XCS but properly adapted to fuzzy sys-
tems, with promising results for function approximation 
problems and for robot simulation online learning. In [190] 
it is proposed an extension of UCS algorithm, a recent Mich-
igan-style genetic learning algorithm for classification [191].

These approaches build a bridge between the Michigan 
style genetic learning studies and the fuzzy systems models. 
This is an interesting research line that can provide interest-
ing results in the near future.

6.2 � Some Critical Considerations

This subsection is discussed the critical issues in some pub-
lications by focus on two aspects, the EAs used in the GFSs 
and the experimental study.

6.2.1 � The EAs Used in the GFSs

In the realm of Genetic Fuzzy Systems (GFSs), various Evo-
lutionary Algorithms (EAs) have been employed to opti-
mize fuzzy systems and enhance their performance. The use 
of a novel EA must be justified from whatever meaningful 
point of view: efficiency, efficacy/precision, interpretability, 
scalability, etc. Here is a comprehensive list of Evolution-
ary Algorithms commonly used in Genetic Fuzzy Systems 
research:

6.2.1.1  Simple GAs  In an important number of contribu-
tions, a description of the simplest GAs, with a classical 
parameter coding (binary alphabet) and simple components 
can be found.

There exists a wide literature on GA’s, in particular, and 
EAs in general, with important approaches that introduce 
important advances. Some examples are the real coding 
for continuous variables, different selection methods, dif-
ferent parent replacement strategies, adaptive components, 
dynamic mutation rate, etc. On the other hand, there are 
specific kinds of GA’s for different tasks, such as niching 
GA’s for multimodal functions, hybrid combinations of GAs 
and local search (memetic algorithms), Chaotic GA’s, etc.

Authors must really know GA components and models 
before applying a simple GA, and choose an adequate algo-
rithm, if necessary, for getting a good GFS.

6.2.1.2  Genetic Programming (GP)  Genetic Programming 
is an evolutionary approach to generating computer pro-
grams that can evolve solutions to complex problems. In the 
context of GFSs, GP can be utilized to evolve fuzzy rule 
sets, optimize rule bases, and improve the modelling capa-
bilities of fuzzy systems.

6.2.1.3  Evolutionary Strategies (ES)  Evolutionary Strat-
egies are optimization algorithms that use mutation and 
recombination operations to adapt candidate solutions over 
generations. In GFSs, ES can be applied to evolve fuzzy 
rule bases, optimize membership functions, and improve the 
performance of fuzzy systems.

6.2.1.4  Particle Swarm Optimization (PSO)  Particle Swarm 
Optimization is a population-based optimization algorithm 
that models the social behavior of organisms. In GFSs, PSO 
can be used to optimize fuzzy system parameters, member-
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ship functions, and rule weights to achieve better accuracy 
and generalization.

6.2.1.5  Differential Evolution (DE)  Differential Evolution 
is a simple yet powerful optimization algorithm that itera-
tively improves candidate solutions by combining mutation 
and crossover operations. DE can be employed in GFSs to 
fine-tune fuzzy systems, adjust parameters, and optimize 
rule bases for improved modelling performance.

6.2.1.6  Cultural Algorithms  Cultural Algorithms combine 
evolutionary computation with a cultural framework to effi-
ciently explore the search space. In GFSs, Cultural Algo-
rithms can be used to evolve fuzzy rule sets, incorporate 
knowledge sharing mechanisms, and promote diversity in 
the population to enhance the overall robustness of fuzzy 
systems.

6.2.1.7  Estimation of  Distribution Algorithms (EDAs)  Esti-
mation of Distribution Algorithms focus on probabilistic 
models to represent and evolve the population of solutions. 
In GFSs, EDAs can be utilized to optimize fuzzy systems by 
capturing the dependencies among fuzzy rules, membership 
functions, and input data to improve the modelling accuracy 
and efficiency.

6.2.1.8  Memetic Algorithms  Memetic Algorithms com-
bine traditional evolutionary algorithms with local search 
techniques to enhance the global optimization process. In 
GFSs, Memetic Algorithms can be applied to evolve fuzzy 
rule bases, fine-tune system parameters, and improve clas-
sification accuracy.

6.2.1.9  Multi‑Objective Evolutionary Algorithms  These 
algorithms focus on optimizing multiple conflicting objec-
tives simultaneously. In GFSs, Multi-Objective Evolution-
ary Algorithms can be used to find a set of trade-off solu-
tions that balance model accuracy, interpretability, and 
complexity.

6.2.1.10  Hybrid Evolutionary Algorithms  Hybrid Evolu-
tionary Algorithms integrate multiple evolutionary and 
non-evolutionary techniques to exploit their complemen-
tary strengths. In the context of GFSs, Hybrid Evolution-
ary Algorithms can combine evolutionary optimization with 
other optimization techniques to enhance the performance 
and robustness of fuzzy systems.

6.2.2 � Experimental Study

At this point, four aspects are focused on to analyse: bench-
mark problems, reproducibility, comparison with the state 
of the art and statistical analysis.

(a) Benchmark problems.
When the experimental analyses are read a different set of 

benchmark problems in every paper can be found. In particu-
lar, the specific applications for learning from data without 
any possibility for getting the data set can be found such that 
it is impossible to reproduce the same experimental study. It is 
necessary to manage adequate and unified sets of benchmark 
problems for learning from data, providing all the necessary 
information for reproducing the experimental study.

(b) Reproducibility.
In the same way, it is not possible to reproduce some algo-

rithms due to the lack of the parameters values used by the 
authors in the experimental study. It is necessary to give a 
complete description of the algorithm components (coding 
approach, operators, parameters, …) for allowing the reader 
to reproduce the algorithms.

(c) Comparison with the state of the art.
When authors propose a new approach, they must first jus-

tify its usefulness, indicating which is the objective and we 
must find a measure for evaluating it (precision, complexity, 
…). Then, it is necessary to make an experimental study com-
paring with the best approach according to the same objec-
tive and same fuzzy system components that are considered. 
Unfortunately, we do not have a study determining the state 
of the art in every area of the categorization as the level to 
reach for a new proposal. However, this is a real need for the 
near future. In any case, authors must compare with the most 
well-known approaches that exist in the abundant literature, 
discussing the advantages of the proposal. It is not enough to 
compare with a simple approach that is not the state of the art 
at the present.

(d) Lack of experimental statistical analysis.
Another critical point is related to the comparative study. 

Currently there is not a systematic evaluation methodology 
for GFSs.

Experimental results reported in the machine learning lit-
erature often use statistical tests of significance to support the 
claim that a new learning algorithm generalizes better. In fact, 
the performance analysis of learning algorithms has always 
centred the attention of investigators in the machine learning 
area, and different comparison proposals have been developed 
(cross validation, uses of 5 × 2cv, leave one out, etc.) in terms 
of their type I and type II errors, both on synthetic datasets, 
and standard benchmarks of machine learning [192, 193]. The 
use of statistical analysis tools is a peremptory necessity in the 
analysis of GFS models as it is in classical machine learning.
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7 � Genetic Fuzzy Systems: Outlooks

The field of GFSs can be considered as an area that needs to 
advance towards more precision and accuracy together with 
more rapidity. In the following three research directions that 
are worth continuing the exploration are enumerated.

1.	 Interpretability quality.
2.	 New data mining tasks: frequent and interesting pattern 

mining, mining data streams, etc.
3.	 Dealing with high dimensional data sets.

7.1 � Interpretability Quality

There exists another important feature for measuring the 
FRBS quality, the model interpretability. It is claimed on 
the interpretability but without metrics for measuring it. It is 
used as an objective during the use of MOEAs for extracting 
fuzzy models but only considering the size of the rule base 
or the number of variables that participate per rule.

Interpretability is considered to be the main advantage 
of fuzzy systems over alternatives like neural networks, 
statistical models, etc. As authors claim in [109], interpret-
ability means that human beings are able to understand the 
fuzzy system’s behaviour by inspecting the RB. Fuzzy sys-
tems constructed from expert knowledge -the traditional 
approach- are usually well understandable.

In the recent years, research has started to focus on the 
trade-off between interpretability and accuracy [126, 127]. 
Analysis of the model interpretability and comprehensibility 
is always convenient, and it is a necessity when accuracy is 
not a model feature.

The inclusion of novel interpretability measures in the 
fitness function of GFS models will provide novel and inter-
esting approaches for getting a good balance between inter-
pretability and precision.

7.2 � New Data Mining Tasks: Frequent 
and Interesting Pattern Mining, Mining Data 
Streams, etc

Many new problems have emerged and have been solved 
by the data mining researchers, but there are still a lot of 
problems that receive attention and new proposals are under 
development. We can find a lot of novel problems far from 
the classic classification and regression problems, prob-
lems such as frequent pattern mining open questions, data 
streams, sequential and time series data, adversary data min-
ing, anomaly detection, non-static, imbalanced data… [194].

As mentioned, linguistic variables with linguistic terms 
can contribute in a substantial way to advance in the design 

of data analysis approaches to establish relationships and 
identify patterns in some of the enumerated problems. The 
development of GFSs may be useful for providing algo-
rithms and solutions to the mentioned problems.

7.3 � Dealing with High Dimensional Data Sets

It is usual to find big databases, i.e., with high number of 
features and/or instances. Regarding the interpretability of 
linguistic FRBSs, the difficulty comes from the exponential 
growth of the fuzzy rule search space with the increase in 
the number of features/instances considered. Usually, human 
users do not want to check hundreds of fuzzy rules, the num-
ber of fuzzy rules is closely related to the interpretability of 
FRBSs. On the other hand, the rule length is also closely 
related to the interpretability of FRBSs.

This problem can be tackled in different ways:
(a) Compacting and reducing the rule set.
As a post-processing approach, this is done under an ini-

tial rule extraction process that provides a big number of 
rules. It appears the problem of the number of rules and 
the size of the coding representation, with the necessity of 
efficient and effective EAs.

(b) Using data reduction techniques.
Carrying out a feature selection process, that determines 

the most relevant variables before or during the inductive 
learning process of the FRBS, and removing irrelevant train-
ing instances prior to FRBS learning. The first approach 
has been already tried in the GFS specialized literature 
[195–197], but the latter, up to our knowledge in the topic, 
has not been used for learning FRBS. For example, it has 
been used for extracting decision trees, see [198, 199].

Feature and instance selection provide smaller training 
sets, which may get more accurate and more compact mod-
els. And in both cases, GAs are used frequently, because the 
selection problem may be defined as the problem of search-
ing the optimal subset of features/instances.

The inclusion of genetic data reduction processes inside 
of a GFS model is a research direction that allows us to 
advance in the extraction of FRBSs with an appropriate bal-
ance between interpretability and accuracy in high dimen-
sional problems.

(c) Using genetic programming for learning compact 
FRBSs.

Genetic programming is an extension to the inspiration of 
GA, where the main problem of GAs concerning the fixed 
problem definition is avoided by using variable-length trees 
instead of fixed-sized individuals. The definition of con-
text-free grammars for rule construction has been revealed 
of special utility for this purpose [58]. The use of genetic 
programming in a GFS model can lead us to obtaining a 
reduced fuzzy rule set, with few antecedents conditions per 
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rule and high-generalization capability, getting FRBSs with 
high interpretability for high-dimensional problems.

(d) Algorithm scalability.
Another problem when we deal with high dimensional 

problems is the analysis of the algorithm scalability on 
big databases, emphasizing the training time and the con-
vergence towards compact and interpretable models. The 
balance between problem size and algorithm scalability is 
another important aspect for GFSs that are worth studying 
in depth. At this point, we must remark the existence of 
efficient parallel GAs [200] as a kind of GAs that would be 
evaluated for designing GFSs for large databases putting 
special emphasis on aspects of scalability and efficiency. 
Another interesting idea that has been advanced in [201] 
consisting of dividing training data sets and the population.

They are divided into the same number of subpopulations 
and training data subsets, which is also the same as the num-
ber of client CPUs. Then each client CPU performs genetic 
learning (genetic rule selection in this contribution) using 
a single training data subset and a single sub-population 
given by the server CPU. It seems that each sub-population 
is likely to over-fit the corresponding training data subset. 
To avoid that, the assignment of the training data subsets 
to the client CPUs changes after a pre-specified number of 
generations (i.e., every ten generation).

8 � GFS Current and Future trends

In this part, the current and future trends of GFSs are probed. 
The topics that in the recent years have been in attention 
point or they have the capability of research in order to 
improve the accuracy, precision and rapidity of GFSs simul-
taneously or to cover and solve more real problems with 
GFS approach.

8.1 � Genetic Type‑2 Fuzzy System

The additional power to represent uncertainty in different 
levels and some robustness exhibition in comparison with 
type-1 fuzzy systems has motivated the interest of the study 
of type-2 fuzzy sets despite of their more difficulty to under-
stand and use than type-1 fuzzy sets. In representing lin-
guistic nature of knowledge, the fixed membership function 
design of type-1 based fuzzy logic controller (FLC) leads to 
the difficulty of rule-based control design. In type-2 FLC as 
the expanded type of type-1 FL, the control characteristic by 
using the footprint of uncertainty (FOU) of the membership 
functions can be effectively improved.

GA’s have been applied in Type-2 Fuzzy Systems (T2FS) 
on different reasons such as learning and performance eval-
uation and optimized designing of type-2 fuzzy inference 
systems, etc.

8.1.1 � Genetic Type‑2 Fuzzy System Papers:

	 (1)	 S. Park, H. L. Kwang, “A designing Method for 
Type-2 Fuzzy Logic Systems Using Genetic Algo-
rithms,” Proc. of Joint 9th IFSA World Congress 
and 20th NAFIPS Intl. Conference, Vancouver, 
Canada, Vol. 5, pp. 2567–2572, 2001 [202].

		    This paper is proposed a design method for a type-2 
FLS using GAs. The proposed method determines 
thepositions and the shapes of the MFs and the rules 
of a type-2 FLS that encodes type-2 fuzzy sets as fea-
tureparameters.

	 (2)	 D. Wu, W.W. Tan, “Genetic learning and perfor-
mance evaluation of interval type-2 fuzzy logic 
controllers”, Engineering Applications of Artificial 
Intelligence, Vol. 19, Issue 8, pp. 829–841, Decem-
ber 2006 [203].

		    This paper is focused on advancing the understand-
ing of interval type-2 fuzzy logic controllers (FLCs). 
First, a type-2 FLC is evolved using Genetic Algo-
rithms (GAs). The type-2 FLC is then compared with 
another three GA evolved type-1 FLCs that have dif-
ferent design parameters. The objective is to examine 
the amount by which the extra degrees of freedom 
provided by antecedent type-2 fuzzy sets are able to 
improve the control performance.

	 (3)	 W.W. Tan, D. Wu, “Design of Type-Reduction 
Strategies for Type-2 Fuzzy Logic Systems using 
Genetic Algorithms”, Advances in Evolutionary 
Computing for System Design Studies in Computa-
tional Intelligence, Vol. 66, pp. 169–187, 2007 [204].

		    This paper has aimed at designing computation-
ally efficient type-reducers using a genetic algorithm 
(GA). While a type-2 FLS has the capability to model 
more complex relationships, the output of a type-2 
fuzzy inference engine is a type-2 FS that needs to be 
type-reduced before defuzzification can be performed. 
Unfortunately, type-reduction is usually achieved 
using the computationally intensive Karnik–Mendel 
iterative algorithm. In order for type-2 FLSs to be 
useful for real-time applications, the computational 
burden of type-reduction needs to be relieved. he pro-
posed type-reducer is based on the concept known 
as equivalent type-1 FSs (ET1FSs), a collection of 
type-1 FSs that replicates the input–output relation-
ship of a type-2 FLS. By replacing a type-2 FS with 
a collection of ET1FSs, the type-reduction process 
then simplifies to deciding which ET1FS to employ 
in a particular situation. The strategy for selecting the 
ET1FS is evolved by a GA. Results are presented to 
demonstrate that the proposed type-reducing algo-
rithm has lower computational cost and may provide 
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better performance than FLSs that employ existing 
type-reducers.

	 (4)	 C. Wagner, H. Hagras, “A Genetic Algorithm 
Based Architecture for Evolving Type-2 Fuzzy 
Logic Controllers for Real World Autonomous 
Mobile Robots” In: Proceedings of IEEE FUZZ 
Conference, London, UK, pp. 193–198, July 2007 
[205].

		    This paper will present a Genetic Algorithm (GA) 
based architecture to evolve the type-2 MFs of interval 
type-2 FLCs for mobile robots that will navigate in 
real world environments. Since autonomous mobile 
robots need control mechanisms such as type-2 FLCs 
which can handle the large amounts of uncertainties 
present in real world environments manually design-
ing and tuning the type-2 Membership Functions 
(MFs) for this purpose is a difficult task and GA can 
perform this task with high performance.

	 (5)	 A. Cai, C. Quek, D.L. Maskell, “Type-2 GA-TSK 
Fuzzy Neural Network”, 2007 IEEE Congress on 
Evolutionary Computation (CEC 2007), pp.1578–
1585, 2007 [206].

		    In this paper a novel fuzzy-neural network, the 
type-2 GA-TSKFNN (T2GA-TSKFNN), combin-
ing a type-2 fuzzy logic system (FLS) and a Genetic 
Algorithm (GA) based Takagi–Sugeno- Kang fuzzy 
neural network (GA-TSKFNN) is presented. The 
rational for this combination is that type-2 fuzzy sets 
are better able to deal with rule uncertainties, while 
the optimal GA-based tuning of the T2GA-TSKFNN 
parameters achieves better classification results. How-
ever, a general T2GA-TSKFNN is computationally 
very intensive due to the complexity of the type-2 to 
type-1 reduction. Therefore, this paper is adopted an 
interval T2GA-TSKFNN against other fuzzy neural 
networks.

	 (6)	 A. Celikyilmaz, I. Burhan Turksen, “Genetic 
type-2 fuzzy classifier functions”, Annual Meeting 
of the North American Fuzzy Information Process-
ing Society (NAFIPS) 2008, Paper # 50,026, New 
York City, May 2008 [207].

		    In this paper a new type-2 fuzzy classifier function 
system is proposed for uncertainty modeling using 
genetic algorithms—GT2FCF. Proposed method 
implements a three-phase learning strategy to capture 
the uncertainties in fuzzy classifier function systems 
induced by learning parameters, as well as fuzzy clas-
sifier functions. Hidden structures are captured with 
the implementation of improved fuzzy clustering. 
The optimum uncertainty interval of the type-2 fuzzy 
membership values are captured with a genetic learn-
ing algorithm.

	 (7)	 N.R. Cazarez-Castro, L.T. Aguilar, O. Castillo, 
“Hybrid Genetic-Fuzzy Optimization of a Type-2 
Fuzzy Logic Controller”, In: Proceedings of the 
2008 8th International Conference on Hybrid 
Intelligent Systems (HIS '08), IEEE Computer 
Society Washington DC, USA, pp. 216–221, 2008 
[208].

		    In this paper a Genetic—Type-2 Fuzzy approach 
is proposed to optimize the parameters of the Mem-
bership Functions (MFs) of a Type-2 Fuzzy Logic 
System (FLS) applied to control. A chromosome to 
represent the parameters of the MFs of a pre-estab-
lished Type-2 FLS, design a fitness function and 
select genetic operators is designed. A case of study 
is proposed to evaluate the optimization process; this 
is to achieve the output regulation problem of a servo-
mechanism with backlash. The problem is the design 
of a type-2 fuzzy logic controller which will be opti-
mized by a GA to obtain the closed-loop system in 
which the load of the driver is regulated to a desired 
position. Simulations results illustrate the effective-
ness of the optimized closed-loop system.

	 (8)	 D. Hildalgo, O. Castillo, P. Melin, “Type-1 and 
type-2 fuzzy inference systems as integration meth-
ods in modular neural networks for multimodal 
biometry and its optimization with genetic algo-
rithms”, Information Sciences, Vol. 179, No. 13, 
pp. 2123–2145, June 2009 [209].

		    In this paper a comparative study between fuzzy 
inference systems as methods of integration in mod-
ular neural networks for multimodal biometry is 
described. These methods of integration are based 
on techniques of type-1 fuzzy logic and type-2 fuzzy 
logic. Also, the fuzzy systems are optimized with sim-
ple genetic algorithms with the goal of having opti-
mized versions of both types of fuzzy systems. First, 
the use of type-1 fuzzy logic and later the approach 
with type-2 fuzzy logic was considered. The fuzzy 
systems were developed using genetic algorithms to 
handle fuzzy inference systems with different mem-
bership functions, like the triangular, trapezoidal and 
Gaussian; since these algorithms can generate fuzzy 
systems automatically. Then the response integration 
of the modular neural network was tested with the 
optimized fuzzy systems of integration. The compara-
tive study of the type-1 and type-2 fuzzy inference 
systems was made to observe the behavior of the two 
different integration methods for modular neural net-
works for multimodal biometry.

	 (9)	 R. Martinez, O. Castillo, L. T. Aguilar, “Optimiza-
tion of interval type-2 fuzzy logic controllers for 
a perturbed autonomous wheeled mobile robot 
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using genetic algorithms”, Information Sciences, 
Vol. 179, No. 13, pp. 2158–2174, June 2009 [102].

		    In this paper a tracking controller for the dynamic 
model of a unicycle mobile robot by integrating a kin-
ematic and a torque controller based on type-2 fuzzy 
logic theory and genetic algorithms were described. 
Computer simulations are presented confirming the 
performance of the tracking controller and its applica-
tion to different navigation problems.

	(10)	 M. Lopez, P. Melin, O. Castillo, “Comparative 
Study of Fuzzy Methods for Response Integration 
in Ensemble Neural Networks for Pattern Recogni-
tion”, Bio-inspired Hybrid Intelligent Systems for 
Image Analysis and Pattern Recognition Studies in 
Computational Intelligence, Vol. 256, pp. 123–140, 
2009 [210].

		    In this paper a new method for response integration 
in ensemble neural networks with Type-1 Fuzzy Logic 
and Type-2 Fuzzy Logic using Genetic Algorithms 
(GA’s) for optimization is described. In this paper pat-
tern recognition with ensemble neural networks for 
the case of fingerprints to the test proposed method 
of response integration is considered. An ensemble 
neural network of three modules is used. Each mod-
ule is a local expert on person recognition based on 
their biometric measure (Pattern recognition for fin-
gerprints). The Response Integration method of the 
ensemble neural networks has the goal of combining 
the responses of the modules to improve the recog-
nition rate of the individual modules. First GA’s are 
used to optimize the fuzzy rules of the Type-1 Fuzzy 
System and Type-2 Fuzzy System to test the proposed 
method of response integration and after using GA’s 
to optimize the membership function of the Type-1 
Fuzzy Logic and Type-2 Fuzzy logic to test the pro-
posed method of response integration and finally 
showed the comparison of the results between these 
methods. In this paper a comparative study of fuzzy 
methods for response integration and the optimiza-
tion of the results of a type-2 approach for response 
integration is showed that improves performance over 
the type-1 logic approaches.

	(11)	  M. Lopez, P. Melin, O. Castillo, “Comparative 
study of fuzzy methods for response integration in 
ensemble neural networks”, International Journal 
of Advanced Intelligence Paradigms, Vol. 1, No. 3, 
pp. 291–317, 2009 [211].

		    In this paper a new method for response integration 
in ensemble neural networks with Type-1 and Type-2 
Fuzzy Logic is presented. Genetic Algorithms (GA's) 
are used for fuzzy system optimisation. In this paper 
pattern recognition with ensemble neural networks for 
the case of fingerprints to test the proposed method 

of response integration is considered. An ensemble 
neural network of three modules is used. Each mod-
ule is a local expert on person recognition based on 
its biometric measure (Pattern recognition for fin-
gerprints). The Response Integration method of the 
ensemble neural networks has the goal of combining 
the responses of the modules to improve the recogni-
tion rate of the individual modules.

	(12)	 R. Hosseini, J. Dehmeshki, S. Barman, M. Mazi-
nani, S.D. Qanadli, “A Genetic type-2 fuzzy logic 
system for pattern recognition in computer aided 
detection systems”, In: Proceedings of 2010 IEEE 
International Conference on Fuzzy Systems 
(FUZZ-IEEE’10), Barcelona, Spain, pp. 1–7, July 
2010 [212].

		    This paper takes advantage of type-2 fuzzy sets as 
three-dimensional fuzzy sets with high potential for 
managing uncertainty issues in vague environments. 
Since a computer aided detection (CAD) system suf-
fers from vagueness and imprecision in both medi-
cal science and image processing techniques. These 
uncertainty issues in the classification components of 
a CAD system directly influence the accuracy. In this 
paper, an automatic optimized approach for generat-
ing and tuning type-2 Gaussian membership function 
(MF) parameters and their footprint of uncertainty 
is proposed. In this approach, two interval type-2 
fuzzy logic system (IT2FLS) methods based on the 
Mamdani rules model are presented for tackling the 
uncertainty issues in classification problems in pat-
tern recognition. Furthermore, the Genetic algorithm 
is employed for tuning of the MFs parameters and 
footprint of uncertainty.

	(13)	 A.H.M. Pimenta, H. de Arruda Camargo, “Genetic 
Interval Type-2 Fuzzy Classifier Generation: A 
Comparative Approach”, 2010 Eleventh Brazilian 
Symposium on Neural Networks, Sao Paulo, Bra-
zil, October 2010 [213].

		    This paper is concentrated on studying the use of 
interval type-2 fuzzy sets for the pattern classification 
problem and relied on the recent advances concerning 
the three-dimensional type-2 membership functions to 
focus on the genetic generation of type-2 fuzzy clas-
sifiers. In this work a three stage Genetic Algorithm 
Architecture is used to generate Fuzzy Classification 
Systems, composed of three Genetic Algorithms that 
generate the rule base, optimize the interval type-2 
membership functions and optimize the number of 
rules. Fuzzy classifiers were generated using the 
Genetic Algorithm Architecture for both type-1 and 
type-2 fuzzy sets, and using another genetic genera-
tion method found in the literature.
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	(14)	 S. K. Oha, H. J. Janga, W. Pedrycz, “A compara-
tive experimental study of type-1/type-2 fuzzy cas-
cade controller based on genetic algorithms and 
particle swarm optimization”, Expert Systems with 
Applications”, Vol. 38, No. 9, pp. 11,217–11,229, 
September 2011 [214].

		    In this paper, the design methodology of an opti-
mized fuzzy controller with the aid of particle swarm 
optimization (PSO) and Genetic Algorithm (GA) for 
ball and beam system is presented. To evaluate per-
formance of each controller, controller characteristic 
parameters such as maximum overshoot, delay time, 
rise time, settling time, and a steady-state error were 
considered. In the sequel, the optimized fuzzy cas-
cade controller is realized and also experimented with 
through running two detailed comparative studies 
including type-1/type-2 fuzzy controller and genetic 
algorithms/particle swarm optimization.

	(15)	 P.Melin, D. Sanchez, L. Cervantes, “Hierarchical 
genetic algorithms for optimal type-2 fuzzy system 
design”, In: Proceedings of 2011 Annual Meeting 
of the North American Fuzzy Information Process-
ing Society (NAFIPS), El Paso, TX, Mexico, pp. 
1–6, March 2011 [215].

		    In this paper the application of genetic algorithms 
for optimal type-2 fuzzy system design is described 
and the approach with two cases is illustrated, one of 
designing optimal neural networks and the other of 
fuzzy control and the feasibility of using hierarchical 
genetic algorithms for designing type-2 fuzzy systems 
is shown by simulation.

	(16)	 H. Gordan, A. Zare, S. Balochian, “A Simplified 
Architecture of Type-2 TSK Fuzzy Logic Control-
ler for Fuzzy Model of Double Inverted Pendu-
lums”, Theory and Applications of Mathematics 
& Computer Science, Vol. 2, No. 2, 2012 [216].

		    This paper is proposed a novel inference mechanism 
for an interval type-2 Takagi–Sugeno-Kang fuzzy 
logic control system (IT2 TSK FLCS) by focusing on 
control applications for case both plant and controller 
use A2-C0 TSK models. The defuzzified output of 
the T2FLS is then obtained by averaging the defuzzi-
fied outputs of the resultant four embedded T1FLSs 
in order to reduce the computational burden of T2 
TSK FS. A simplified T2 TSK FS based on a hybrid 
structure of four type-1 fuzzy systems (T1 TSK FS).

	(17)	 D. Hildalgo, P. Melin, O. Castillo, “An optimiza-
tion method for designing type-2 fuzzy inference 
systems based on the footprint of uncertainty using 
genetic algorithms”, Expert Systems with Applica-
tions, Vol. 39, No. 4, pp. 4590–4598, March 2012 
[217].

		    This paper proposed an optimization method for 
designing type-2 fuzzy inference systems based on 
the footprint of uncertainty (FOU) of the membership 
functions, considering three different cases to reduce 
the complexity problem of searching the parameter 
space of solutions. For the optimization method, the 
use of a genetic algorithm (GA) to optimize the type-2 
fuzzy inference systems, considering different cases 
for changing the level of uncertainty of the member-
ship functions to reach the optimal solution at the end 
is considered.

	(18)	 K.J. Park, D.Y. Lee, “Genetic Design of Fuzzy Neu-
ral Networks Based on Respective Input Spaces 
Using Interval Type-2 Fuzzy Set”, International 
Journal of Software Engineering and Its Applica-
tions, Vol. 7, No. 5, pp. 15–24, 2013 [218].

		    In this paper, the genetic design of fuzzy neural 
networks with multi-output based on interval type-2 
fuzzy set (IT2FSFNNm) for pattern recognition is pre-
sented. IT2FSFNNm is the networks of combination 
between the fuzzy neural networks (FNNs) and inter-
val type-2 fuzzy set with uncertainty. The premise part 
of the networks is composed of the fuzzy partition of 
respective input spaces and the consequence part of 
the networks is represented by polynomial functions 
with interval set. Also, a real-coded genetic algorithm 
to estimate the optimal values of the parameters of 
IT2FSFNNm is considered.

	(19)	 D. D. Nguyen, L. T. Ngo, L. T. Pham, “Genetic 
Based Interval Type-2 Fuzzy C-Means Cluster-
ing”, Lecture Notes of the Institute for Computer 
Sciences, Social Informatics and Telecommunica-
tions Engineering, Volume 109, pp. 239–248, 2013 
[219].

		    This paper deals with a genetic-based interval 
type 2 fuzzy c-means clustering (GIT2FCM), which 
automatically find the optimal number of clusters. A 
heuristic method based on a genetic algorithm (GA) 
is adopted to automatically determine the number 
of cluster based on the validity index. The proposed 
algorithm contains two main steps: initialize randomly 
the population of the GA and use the GA to adjust the 
cluster centroids based on the validity index which is 
computed by interval type 2 fuzzy c-means clustering 
(IT2FCM).

	(20)	 O. Penangsang, M. Abdillah, R. S. Wibowo, A. 
Soeprijanto, “Optimal Design of Photovoltaic–Bat-
tery Systems Using Interval Type-2 Fuzzy Adaptive 
Genetic Algorithm”, Scientific Research, Engineer-
ing, Vol. 5, pp. 50–55, 2013 [220].

		    This paper has proposed a new hybrid method to 
optimize Photovoltaic (PV)-Battery systems. The 
proposed method was named Interval type-2 fuzzy 
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adaptive genetic algorithm (IT2FAGA). Genetic algo-
rithm (GA) has been successfully applied in various 
areas of power systems. To enhance the ability of GA 
to prevent trapping in local optima and increase con-
vergence in a global optima, the crossover probability 
(pcross) and the mutation probability (pmut), parameters 
in GA, are tuned using interval type-2 fuzzy logic 
(IT2FL). The proposed method was also compared to 
fuzzy adaptive genetic algorithm (FGA) and standard 
genetic algorithm (SGA).

	(21)	 D. Bernardo, H. Hagras, E. Tsang, “A genetic 
type-2 fuzzy logic based system for the generation 
of summarised linguistic predictive models for 
financial applications”, Soft Computing, Volume 
17, Issue 12, pp. 2185–2201, December 2013 [221].

		    In this paper, a Genetic Type-2 Fuzzy Logic System 
(FLS) for the modeling and prediction of financial 
applications is proposed. In recent years computa-
tional intelligence techniques to develop predictive 
models for financial applications are applied. Some of 
the computational intelligence techniques like neural 
networks provide good predictive models, neverthe-
less they are considered as black box models which 
do not provide an easy-to-understand reasoning about 
a given decision or even a summary of the generated 
model. However, in the current economic situation, 
transparency became an important factor where there 
is a need to fully understand and analyze a given 
financial model. The proposed system in this paper 
is capable of generating summarized models from a 
specified number of linguistic rules, which enables 
the user to understand the generated financial model. 
The system is able to use this summarized model for 
prediction within financial applications. The proposed 
Genetic type-2 FLS has outperformed white box 
models like the Evolving Decision Rule procedure 
(which is a white based on Genetic Programming and 
decision trees) and gave a comparable performance 
to black box models like neural networks while the 
proposed genetic type-2 FLS provided a white box 
model which is easy to understand and analyze by the 
lay user.

	(22)	 J.M. Mendel. General type-2 fuzzy logic systems 
made simple: a tutorial. IEEE Transactions on 
Fuzzy Systems. 2013 Nov 6;22(5):1162–82 [222].

		    In this article, a comprehensive tutorial on general 
type-2 fuzzy logic systems is presented. The paper 
aims to provide an accessible and insightful guide for 
understanding the principles and applications of gen-
eral type-2 fuzzy logic, a more expressive and flexible 
extension of traditional type-1 fuzzy logic. Mendel 
introduces the fundamental concepts, structure, and 
operations of general type-2 fuzzy logic systems, 

highlighting their advantages in handling uncertain-
ties and vagueness in real-world problems. Through 
detailed explanations and illustrative examples, the 
tutorial equips readers with the knowledge and tools 
necessary to implement and utilize general type-2 
fuzzy logic systems effectively. The paper serves as 
a valuable resource for researchers, practitioners, 
and enthusiasts seeking a deeper understanding of 
advanced fuzzy logic methodologies.

	(23)	 Z. Sun, N. Wang, Y. Bi. Type-1/type-2 fuzzy logic 
systems optimization with RNA genetic algorithm 
for double inverted pendulum. Applied Mathemat-
ical Modelling. 2015 Jan 1;39(1):70–85 [223].

		    In this study, a novel approach for optimizing 
Type-1/type-2 fuzzy logic systems using an RNA 
genetic algorithm was proposed for the control of a 
double inverted pendulum system. The research, pub-
lished in the Applied Mathematical Modelling jour-
nal, delves into the intricate process of enhancing the 
control system efficiency through the integration of 
fuzzy logic and evolutionary computation techniques. 
The utilization of RNA genetic algorithm facilitates 
the optimization of fuzzy logic systems, leading to 
improved performance in controlling complex and 
nonlinear systems like the double inverted pendu-
lum. The findings from this research contribute to the 
advancement of control system design methodolo-
gies by demonstrating the effectiveness of integrat-
ing genetic algorithms with fuzzy logic systems in 
addressing challenging control problems.

	(24)	 A. Starkey, H. Hagras, S. Shakya, G. Owusu. A 
multi-objective genetic type-2 fuzzy logic based 
system for mobile field workforce area optimiza-
tion. Information Sciences. 2016 Feb 1;329:390–
411 [224].

		    The paper presents a novel approach in the realm of 
mobile field workforce area optimization through the 
utilization of a multi-objective genetic type-2 fuzzy 
logic system. By harnessing the power of genetic 
algorithms and type-2 fuzzy logic, the study addresses 
the complexities of optimizing mobile workforce 
areas efficiently. The proposed system offers a unique 
perspective on tackling the challenges faced in field 
workforce management by considering multiple 
conflicting objectives simultaneously. The research 
results, published in the Information Sciences journal, 
showcase the effectiveness of the approach in enhanc-
ing the decision-making process for area optimiza-
tion tasks. The findings shed light on the potential 
of integrating genetic algorithms and fuzzy logic in 
real-world applications, highlighting the importance 
of innovative computational techniques in addressing 
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complex optimization problems in mobile field work-
force management.

	(25)	 A. Téllez-Velázquez, H. Molina-Lozano, L.A. Villa-
Vargas, R. Cruz-Barbosa, E. Lugo-González, I.Z. 
Batyrshin, I.J. Rudas. A feasible genetic optimiza-
tion strategy for parametric interval type-2 fuzzy 
logic systems. International Journal of Fuzzy Sys-
tems, 20, 318–338, 2018 [225].

		    They present a novel genetic optimization strat-
egy tailored for enhancing parametric interval type-2 
fuzzy logic systems. The study addresses the chal-
lenges of optimizing the parameters of such fuzzy 
systems by developing a feasible genetic algorithm 
approach. Through their research, they aim to improve 
the performance and effectiveness of interval type-2 
fuzzy logic systems in handling uncertainty and 
complexity in real-world applications. The proposed 
optimization strategy demonstrates promise in opti-
mizing the parameters, including centers, widths, and 
modifiers, of fuzzy logic systems, paving the way for 
more robust and efficient decision-making processes 
in uncertain environments.

	(26)	 Y. Chen, D. Wang, W. Ning. Forecasting by TSK 
general type‐2 fuzzy logic systems optimized with 
genetic algorithms. Optimal Control Applications 
and Methods. 2018 Jan;39(1):393–409 [226].

		    This study presents a novel approach to forecast-
ing using TSK general type‐2 fuzzy logic systems 
optimized with genetic algorithms. The researchers 
explore the application of genetic algorithms to opti-
mize the parameters of the TSK general type‐2 fuzzy 
logic systems for improved accuracy in forecasting 
tasks. The methodology demonstrates promising 
results in predicting future outcomes by effectively 
utilizing the flexibility and adaptability provided by 
fuzzy logic systems and the optimization capabili-
ties of genetic algorithms. The findings highlight the 
potential of integrating genetic algorithms with fuzzy 
systems for enhancing predictive modeling in various 
domains. This research contributes to the advance-
ment of genetic fuzzy systems in the field of optimal 
control applications and methods.

	(27)	 J.C. Guzmán, I. Miramontes, P. Melin, G. Prado-
Arechiga. Optimal genetic design of type-1 and 
interval type-2 fuzzy systems for blood pressure 
level classification. Axioms. 2019 Jan 15;8(1):8 
[227].

		    The utilization of AI methods like fuzzy logic, 
neural networks, and evolutionary computation holds 
significant importance in the medical field for deliv-
ering efficient and timely diagnoses. Fuzzy logic 
application enables the creation of fuzzy classifiers 
comprising fuzzy rules and membership functions, 

which are crafted based on expert knowledge. In this 
specific scenario, a Mamdani-type fuzzy classifier 
was constructed, featuring 21 rules, two inputs, and 
one output, aimed at classifying blood pressure lev-
els using expert-derived fuzzy rules. Subsequently, 
diverse architectures were developed for classification 
in both type-1 and type-2 fuzzy systems, involving 
adjustments to the membership function parameters 
(triangular, trapezoidal, Gaussian) and optimization 
of fuzzy rules based on expert-defined ranges. The 
primary contribution of the research lies in the devel-
opment of an optimized interval type-2 fuzzy system 
utilizing triangular membership functions. The final 
type-2 system achieved a superior classification rate 
of 99.408% compared to the previously developed 
type-1 classifier in the study "Design of an optimized 
fuzzy classifier for the diagnosis of blood pressure 
with a new computational method for expert rule 
optimization," which achieved 98%. Furthermore, the 
classification rate outperformed other architectures 
proposed in the research.

	(28)	 K. Mittal, A. Jain, K.S. Vaisla, O. Castillo, J. 
Kacprzyk. A comprehensive review on type 2 fuzzy 
logic applications: Past, present and future. Engi-
neering Applications of Artificial Intelligence. 2020 
Oct 1;95:103,916 [228].

		    The paper provides an insightful examination of the 
evolution, current trends, and potential future direc-
tions of type 2 fuzzy logic applications. The review 
delves into the historical progression of utilizing type 
2 fuzzy logic in diverse domains, highlights its pre-
sent-day applications, and offers a forward-looking 
perspective on the advancements shaping its future 
trajectory. By synthesizing existing literature, the 
paper contributes a holistic overview that sheds light 
on the significance and versatility of type 2 fuzzy 
logic within the realm of artificial intelligence and 
engineering applications, paving the way for enhanced 
understanding and innovation in this evolving field.

	(29)	 M.M. Madbouly, E.A. El Reheem, S.K. Guirguis. 
Interval type-2 fuzzy logic using genetic algorithm 
to reduce redundant association rules. J. Theor. 
Appl. Inf. Technol. 2021 Jan 31;99(2):316–28 [229].

		    In the realm of data mining, the synergy of fuzzy 
logic and genetic algorithms has opened new frontiers 
for refining association rules in databases. Madbouly 
et al. present a groundbreaking study where Interval 
Type-2 Fuzzy Logic is harnessed in combination with 
a Genetic Algorithm framework to effectively trim 
redundant association rules. Through a meticulous 
analysis detailed in their work published in the Journal 
of Theoretical and Applied Information Technology, 
the authors demonstrate the novel approach's efficacy 
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in enhancing the rule sets' quality and reducing rule 
redundancy. This research contributes significantly to 
the optimization of data mining processes, offering a 
promising method to streamline association rule min-
ing tasks through a fusion of advanced computational 
techniques.

	(30)	 I. Khan, M.S. Rahman Khan, P. Chandra Shill, A 
Quantum Genetic Algorithm Based Approach for 
Designing Membership Functions and Rule Sets 
for Type 2 Fuzzy Logic Controller, International 
Journal of Engineering Research and Management 
(IJERM), Vol. 9 [230].

		    The Authors present an avant-garde study on 
evolutionary computation and quantum computing 
fusion in the context of fuzzy logic systems. Their 
research introduces a Quantum Genetic Algorithm 
(QGA) framework tailored for optimizing the design 
of membership functions and rule sets for Type-2 
Fuzzy Logic Controllers. By harnessing the power of 
quantum-inspired operations within a genetic algo-
rithm paradigm, the authors propose a novel approach 
to enhance the performance and robustness of fuzzy 
logic controllers. Their work contributes significantly 
to the evolution of genetic fuzzy systems, showcas-
ing the potential synergy between quantum computing 
principles and genetic algorithms in tackling complex 
design challenges in fuzzy logic control systems.

	(31)	 G. Bhandari G, R. Raj, P.M. Pathak, J.M. Yang. 
Robust control of a planar snake robot based on 
interval type-2 Takagi–Sugeno fuzzy control using 
genetic algorithm. Engineering Applications of 
Artificial Intelligence. 2022 Nov 1;116:105,437 
[231].

		    In the realm of robotics and control systems, 
Bhandari et  al. present a pioneering study on the 
robust control of a planar snake robot leveraging Inter-
val Type-2 Takagi–Sugeno Fuzzy Control with the 
aid of Genetic Algorithms. Published in Engineering 
Applications of Artificial Intelligence, this research 
delves into advancing control strategies for complex 
robotic systems. By integrating Interval Type-2 Fuzzy 
Control with the optimization capabilities of Genetic 
Algorithms, the authors propose a method to enhance 
the robustness and adaptability of the snake robot's 
control system. Their findings showcase the effec-
tiveness of the approach in navigating the challenges 
of controlling a planar snake robot, underscoring the 
potential of genetic fuzzy systems in the domain of 
robotics.

	(32)	 X. Feng, Y. Yu, X. Wang, J. Cai, S. Zhong, H. 
Wang, X. Han, J. Wang, K. Shi. A hybrid search 
mode-based differential evolution algorithm for 
auto design of the interval type-2 fuzzy logic sys-

tem. Expert Systems with Applications. 2024 Feb 
1;236:121,271 [232].

		    In the ever-evolving landscape of computational 
intelligence, Feng et al. present an innovative study 
focusing on automating the design process of Interval 
Type-2 Fuzzy Logic Systems using a Hybrid Search 
Mode-Based Differential Evolution Algorithm. Pub-
lished in the esteemed journal Expert Systems with 
Applications, this research introduces a cutting-edge 
approach to enhancing the efficiency and accuracy in 
developing fuzzy logic systems. By integrating differ-
ential evolution techniques with hybrid search modes, 
the authors propose a method that automates the intri-
cate design of Interval Type-2 Fuzzy Logic Systems. 
Their findings underscore the algorithm's effective-
ness in optimizing system design, thereby presenting a 
significant contribution to the advancement of genetic 
fuzzy systems.

8.1.2 � Genetic Type‑2 Fuzzy System Books:

Any book by this title or by this topic as a main topic has not 
been published. Only two books exist that each one assigns 
one chapter to this issue. And another book that assigns a 
section to Genetic Type-2 Fuzzy Systems.

1) L. Grigorie, an edition book, “Fuzzy Controllers, 
Theory and Applications”, February 2011 under CC BY-
NC-SA 3.0 license [233]

Chapter 7 of this book titled “Building an Intelligent Con-
troller using Simple Genetic Type-2 Fuzzy Logic System” 
written by I.A. Hameed, C.G. Sorensen and O. Gree dis-
cusses about Genetic Type-2 Fuzzy systems.

In this chapter in order to reduce the computational bur-
den of T2FS, a simplified T2FS based on a hybrid structure 
of four type-1fuzzy systems (T1FS) and a genetic algorithm 
(GA) is introduced. Despite the advantages offered by type-2 
fuzzy systems (T2FS) in handling uncertainties in control 
applications, one major problem that hinders its wide-spread 
implementation in real-time applications is its high compu-
tational cost. In addition to its rule in providing the system 
with adaptability to cope with changing conditions, a GA 
provides the system with a tool to detect and illustrate the 
amount of uncertainty incorporated in the system. In order to 
show the robustness and reliability of the new implementa-
tion, the developed approach is applied to: (a) control a non-
linear multi-input multi-output (MIMO) system equipped 
with various types of uncertainties as an example of using 
T2FS in industrial applications, and (b) evaluate students’ 
learning achievement as an example of using T2FS in deci-
sion support systems.

2) O. Castillo, P. Melin, “Recent Advances in Inter-
val Type-2 Fuzzy Systems”, Springer Briefs in Applied 
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Sciences and Technology-Computational Intelligence, 
2012 [234].

In Chapter 4 of this book titled “Overview of Genetic 
Algorithms Applied in the Optimization of Type-2 Fuzzy 
Systems” a representative review of optimizing type-2 fuzzy 
system using different kinds of GAs is offered to illustrate 
the advantages of using a bio-inspired optimization tech-
nique for automating the design process of type-2 fuzzy sys-
tems. This overview has showed the diversity of applications 
that has been achieved using GAs for type-2 fuzzy system 
optimization.

3) Castillo O, Melin P, Kacprzyk J, editors. Intui-
tionistic and type-2 fuzzy logic enhancements in neural 
and optimization algorithms: Theory and applications. 
Springer Nature; 2020 Feb 27 [235].

Within the comprehensive volume "Intuitionistic and 
Type-2 Fuzzy Logic Enhancements in Neural and Optimi-
zation Algorithms" edited by Castillo, Melin, and Kacprzyk 
(2020), a significant section is dedicated to Genetic Fuzzy 
Systems. This section delves into the integration of genetic 
algorithms with fuzzy logic methodologies, offering insights 
into the advancement of computational intelligence and 
optimization techniques. The exploration of Genetic Fuzzy 
Systems within the broader context of neural networks and 
optimization algorithms showcases the interdisciplinary 
nature of modern research in fuzzy systems and computa-
tional intelligence. This section serves as a valuable resource 
for researchers and practitioners seeking to delve deeper into 
the fusion of genetic algorithms and fuzzy logic for tackling 
complex real-world problems.

8.2 � Genetic Intuitionistic Fuzzy System (GIFS)

Genetic Intuitionistic Fuzzy Systems (GIFS) represent 
a fusion of genetic algorithms with intuitionistic fuzzy 
logic, offering a robust framework for tackling complex 
decision-making problems. This innovative approach lev-
erages the optimization capabilities of genetic algorithms 
and the uncertainty modeling of intuitionistic fuzzy logic 
to enhance the performance and adaptability of fuzzy sys-
tems. By dynamically evolving membership functions and 
rule sets through genetic operators, GIFS exhibit promising 
capabilities in handling imprecise and uncertain informa-
tion. This survey explores the principles, applications, and 
advancements in Genetic Intuitionistic Fuzzy Systems, shed-
ding light on their potential in addressing real-world chal-
lenges through a synergistic blend of genetic algorithms and 
intuitionistic fuzzy logic.

8.2.1 � Genetic Intuitionistic Fuzzy System (GIFS) Papers

1) F.L.F. Barbosa, M. Tham, J. Zhang, A.D. Quelhas 
“Human Operator Based Fuzzy Intuitive Controllers 

Tuned with Genetic Algorithms”, Advanced Control 
of Chemical Processes, Vol. 7, No. 1, pp. 715–720, 2008 
[236].

The present research has offered an alternative control 
scheme that intends to be a step towards introducing a new 
technology for practical implementation in industry. The 
controller is developed aiming to emulate human operators’ 
actions when manually controlling SISO systems, subject to 
disturbances. The developed control scheme is based on an 
intuitive hypothetical model that describes the way human 
operators (HO) act in a manual control loop, generating the 
Human Operator Based Intuitive Controller (HOBIC). Since 
human operators typically use vague terms when describing 
control actions, it is natural to use fuzzy logic to express 
manual control actions. The HOBIC is then extended using 
the Fuzzy Logic theory. Membership functions within 
Fuzzy-HOBIC are tuned using a genetic algorithm (GA). 
The tuning does not require a process model. It is based on 
historical process operation data containing manual opera-
tion actions from experienced operators. The traditional GA 
is modified to cope with real valued optimisation variables 
and their constraints.

2) X. XU, Y. LEI, W. DAI, “Intuitionistic Fuzzy Multi-
Objective Programming Based on Genetic Algorithm”, 
Electronics Optics & Control Journal, Vol. 1, 2009 [237].

In this paper a model of intuitionistic fuzzy multi-objec-
tive programming based on genetic algorithm is presented. 
First, membership and non-membership functions of object 
and constrain functions were defined. Then, by using intui-
tionistic fuzzy "min–max" operator, an intuitionistic fuzzy 
multi-objective programming model was proposed. Then, 
the model was resolved by genetic algorithm, so it is suitable 
for both linear and nonlinear condition. It is claimed that 
the performance of the presented intuitionistic fuzzy multi-
objective programming is better than fuzzy multi-objective 
programming.

3) G. Chen, X. Liao, X. Yu, Z. Luo, J. Li, “An Interval 
Intuitionistic Fuzzy Number Portfolio Selection Model 
Based on Genetic Algorithms”, International Review on 
Computers & Software, Vol. 6, Issue 7, pp. 1339–1343. 
4p, December 2011 [238].

This paper has discussed a mean absolute deviation port-
folio selection model with interval intuitionistic fuzzy num-
ber. A method for ranking interval valued intuitionistic fuzzy 
numbers is presented, then the non-inferior solutions to such 
problems are defined based on order relations between inter-
val valued intuitionistic fuzzy numbers. Consequently, the 
model can be transformed to a parametric nonlinear pro-
gramming problem. To avoid the model's complexity and 
difficulty in solving the problems by using conventional 
methods, a genetic algorithm is designed in the paper.

4) S. Senthamilarasu, M. Hemalatha. A genetic algo-
rithm based intuitionistic fuzzification technique for 
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attribute selection. Indian Journal of Science and Tech-
nology. 2013 Apr 1:4336–46 [239].

Senthamilarasu and Hemalatha (2013) delve into the 
realm of attribute selection within data mining through a 
novel approach utilizing Genetic Algorithms and Intuition-
istic Fuzzification. Their study, published in the Indian Jour-
nal of Science and Technology, introduces a cutting-edge 
technique that harnesses genetic algorithms for optimizing 
attribute selection processes. By incorporating intuitionistic 
fuzzification methods, the authors enhance the robustness 
and flexibility of attribute selection in data mining tasks. 
The proposed genetic algorithm-based approach offers a 
promising avenue for refining attribute selection strategies, 
showcasing the synergy between evolutionary computa-
tion and fuzzification techniques in improving data analysis 
methodologies.

5) M. Goyal, D. Yadav, A. Tripathi. Intuitionistic fuzzy 
genetic weighted averaging operator and its application 
for multiple attribute decision making in E-learning. 
Indian Journal of Science and Technology. 2016 Jan 10 
[240].

Goyal, Yadav, and Tripathi (2016) present a significant 
contribution to the field of e-learning through the introduc-
tion of an Intuitionistic Fuzzy Genetic Weighted Averaging 
Operator for multiple attribute decision-making processes. 
Their research, published in the Indian Journal of Science 
and Technology, focuses on enhancing decision-making 
capabilities within the e-learning domain by integrating 
intuitionistic fuzzy logic and genetic algorithms. By devel-
oping a specialized operator that combines genetic algo-
rithms' optimization capabilities with intuitionistic fuzzy 
sets' flexibility, the authors offer a robust framework for 
handling complex decision scenarios in e-learning envi-
ronments. This work underscores the potential of genetic 
fuzzy systems in addressing decision-making challenges in 
technology-enhanced learning settings, paving the way for 
more effective and adaptive educational platforms.

6) W. Zang, W. Zhang, W. Zhang, X. Liu. A kernel-
based intuitionistic fuzzy C-Means clustering using a 
DNA genetic algorithm for magnetic resonance image 
segmentation. Entropy. 2017 Oct 27;19(11):578 [241].

In their captivating study published in Entropy, Zang 
et al. (2017) introduce a novel approach to magnetic reso-
nance image segmentation through the fusion of kernel-
based intuitionistic fuzzy C-Means clustering and a DNA 
genetic algorithm. The research presents a cutting-edge 
methodology that harnesses the power of genetic algorithms 
inspired by DNA for optimizing the clustering process in 
image segmentation tasks. By integrating intuitionistic fuzzy 
logic with advanced genetic algorithms, the authors pro-
pose a robust and efficient technique for delineating distinct 
regions in magnetic resonance images. Their work show-
cases the potential of combining bio-inspired optimization 

techniques with fuzzy clustering algorithms to enhance the 
accuracy and efficiency of image segmentation processes.

7) P. Melin. Genetic optimization of type-1, interval 
and intuitionistic fuzzy recognition systems. Notes on 
Intuitionistic Fuzzy Sets. 2018;24:106–28 [242].

Melin (2018) presents a notable contribution to the 
field of computational intelligence with a focus on Genetic 
Optimization of Type-1, Interval, and Intuitionistic Fuzzy 
Recognition Systems. Published in "Notes on Intuitionistic 
Fuzzy Sets," the study dives into the application of genetic 
algorithms to optimize the performance of various fuzzy 
recognition systems. By leveraging genetic optimization 
techniques, the author explores the enhancement of Type-
1, Interval, and Intuitionistic fuzzy systems, shedding light 
on the efficacy and potential of genetic algorithms in fine-
tuning the parameters of fuzzy recognition models. This 
research underscores the significance of genetic fuzzy sys-
tems in advancing pattern recognition methodologies and 
showcases the versatility of genetic algorithms in optimizing 
diverse types of fuzzy systems.

8) P. Hajek, V. Olej. Intuitionistic fuzzy inference sys-
tem with genetic tuning for predicting financial perfor-
mance. In2018 3rd International Conference on Compu-
tational Intelligence and Applications (ICCIA) 2018 Jul 
28 (pp. 81–86). IEEE [243].

Hajek and Olej (2018) showcase a cutting-edge applica-
tion of computational intelligence in financial forecasting 
by introducing an Intuitionistic Fuzzy Inference System 
(IFIS) with genetic tuning capabilities. Presented at the 2018 
International Conference on Computational Intelligence and 
Applications, this research delineates a novel approach for 
predicting financial performance utilizing the fusion of intui-
tionistic fuzzy logic and genetic algorithms. The integra-
tion of IFIS with genetic tuning mechanisms offers a robust 
methodology for enhancing the accuracy and reliability 
of financial predictions. By leveraging the adaptive capa-
bilities of genetic algorithms, the proposed system demon-
strates promise in addressing the challenges of forecasting 
in dynamic financial environments. This study underscores 
the potential of genetic fuzzy systems in improving forecast-
ing accuracy in the realm of financial performance analysis.

9) R.J. Kuo, W.C. Cheng, W.C. Lien, T.J. Yang. Appli-
cation of genetic algorithm-based intuitionistic fuzzy 
neural network to medical cost forecasting for acute 
hepatitis patients in emergency room. Journal of Intel-
ligent & Fuzzy Systems. 2019 Jan 1;37(4):5455–69 [244].

Kuo et al. (2019) present a noteworthy study focusing on 
the application of a Genetic Algorithm-Based Intuitionistic 
Fuzzy Neural Network for medical cost forecasting in emer-
gency room scenarios, specifically targeting acute hepatitis 
patients. Published in the Journal of Intelligent & Fuzzy 
Systems, this research delves into the fusion of genetic 
algorithms, intuitionistic fuzzy logic, and neural networks 
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to enhance the accuracy and efficiency of medical cost pre-
dictions. By leveraging a hybrid computational approach, the 
authors tackle the complexities of forecasting medical costs 
for acute hepatitis patients, providing valuable insights into 
optimizing healthcare resource allocation and management. 
The study showcases the practical utility of genetic fuzzy 
systems in healthcare settings, underlining their potential 
for improving decision-making processes and patient care 
outcomes.

10) R.J. Kuo, T.P. Nguyen. Genetic intuitionistic 
weighted fuzzy k-modes algorithm for categorical data. 
Neurocomputing. 2019 Feb 22;330:116–26 [245].

In the domain of data clustering and analysis, Kuo and 
Nguyen (2019) present a novel approach, the Genetic Intui-
tionistic Weighted Fuzzy k-Modes algorithm, tailored spe-
cifically for handling categorical data. Published in Neu-
rocomputing, this research explores the fusion of genetic 
algorithms, intuitionistic fuzzy logic, and the k-Modes clus-
tering algorithm to address the unique challenges posed by 
categorical data clustering. The proposed algorithm intro-
duces a sophisticated method for optimizing cluster assign-
ments and membership weights in complex categorical 
datasets. By leveraging the power of genetic intuitionistic 
fuzzy systems, the authors demonstrate substantial improve-
ments in clustering performance and accuracy. This work 
contributes significantly to advancing data analysis tech-
niques, offering a promising avenue for efficient handling 
of categorical data in real-world applications.

11) C. Zhang. Classification rule mining algorithm 
combining intuitionistic fuzzy rough sets and genetic 
algorithm. International Journal of Fuzzy Systems. 2020 
Jul;22(5):1694–715 [246].

Zhang (2020) presents a significant advancement in the 
field of computational intelligence through the development 
of a novel Classification Rule Mining Algorithm that inte-
grates Intuitionistic Fuzzy Rough Sets with Genetic Algo-
rithms. Published in the International Journal of Fuzzy 
Systems, this research showcases a hybrid approach that 
leverages the strengths of both Intuitionistic Fuzzy Rough 
Sets and Genetic Algorithms to enhance the efficiency and 
accuracy of classification rule mining processes. By merging 
these two distinct computational paradigms, the proposed 
algorithm offers a synergistic solution for handling com-
plex datasets and extracting meaningful classification rules. 
Zhang's work contributes to the evolution of genetic fuzzy 
systems by offering a promising avenue for addressing clas-
sification challenges in the realm of fuzzy systems and data 
mining.

12) R. Gojković, G. Đurić, D. Tadić, S. Nestić, A. 
Aleksić. Evaluation and selection of the quality methods 
for manufacturing process reliability improvement—
Intuitionistic fuzzy sets and genetic algorithm approach. 
Mathematics. 2021 Jun 29;9(13):1531 [247].

Gojković et al. (2021) present a pioneering study in the 
realm of manufacturing process reliability improvement, 
focusing on the evaluation and selection of quality meth-
ods. Their research introduces a novel approach that inte-
grates Intuitionistic Fuzzy Sets with Genetic Algorithms to 
address the complex task of enhancing process reliability. 
Published in Mathematics, this work details the applica-
tion of advanced computational techniques in optimizing 
quality methods for manufacturing processes. By lever-
aging the synergy between Intuitionistic Fuzzy Sets and 
Genetic Algorithms, the authors demonstrate the efficacy 
of their approach in streamlining the selection process and 
improving reliability. This research offers valuable insights 
into the potential of genetic fuzzy systems in tackling real-
world challenges in industrial settings.

13) R.J. Kuo, C.K. Chang, T.P. Nguyen, T.W. Liao. 
Application of genetic algorithm-based intuitionistic 
fuzzy weighted c-ordered-means algorithm to cluster 
analysis. Knowledge and Information Systems. 2021 
Jul;63(7):1935–59 [248].

In the realm of cluster analysis, Kuo et al. (2021) intro-
duce a pioneering study that combines Genetic Algorithms 
with Intuitionistic Fuzzy Weighted C-Ordered-Means 
Algorithm to enhance clustering processes. Published 
in Knowledge and Information Systems, this research 
presents an innovative approach to clustering analysis 
by incorporating genetic algorithm-based optimization 
techniques with fuzzy logic. The integration of intuition-
istic fuzzy sets and weighted c-ordered-means algorithm 
demonstrates significant improvements in clustering accu-
racy and robustness. The authors' work sheds light on the 
potential of Genetic Fuzzy Systems in addressing complex 
data clustering tasks, highlighting the synergy between 
genetic algorithms and fuzzy logic for advanced knowl-
edge discovery in data analytics.

14) R. Paramanik, S.K. Mahato, N. Kumar, N. Bhat-
tacharyee, R.K. Gupta. Optimization of system reliabil-
ity for multi-level RAPs in intuitionistic fuzzy atmos-
phere using genetic algorithm. Results in Control and 
Optimization. 2022 Dec 1;9:100,175 [249].

Paramanik et al. (2022) present a pioneering study on 
optimizing system reliability for multi-level Risk Assign-
ment Problems (RAPs) in an intuitionistic fuzzy environ-
ment leveraging Genetic Algorithms. Published in Results 
in Control and Optimization, this research delves into 
enhancing system reliability under uncertain conditions 
using advanced computational techniques. By applying 
Genetic Algorithms within an intuitionistic fuzzy frame-
work, the authors propose a method to improve the reli-
ability of complex systems with multi-level RAPs. Their 
findings underscore the efficacy of the Genetic Algorithm-
based approach in optimizing system reliability and miti-
gating risks in uncertain environments, offering valuable 
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insights for decision-makers and analysts navigating reli-
ability challenges.

15) N. Kumar, H. Kumar, D. Sharma. Hybrid fuzzy 
clustering technique to enhance the performance based 
on a fusion of intuitionistic modified fuzzy c-means and 
improved genetic algorithm. International Journal of 
Data Science and Analytics. 2023 Dec 14:1–24 [250].

In the realm of data science and analytics, Kumar, Kumar, 
and Sharma (2023) present a cutting-edge study on enhanc-
ing clustering performance through a Hybrid Fuzzy Cluster-
ing Technique. Their research introduces a fusion approach 
that combines the Intuitionistic Modified Fuzzy C-Means 
algorithm with an Improved Genetic Algorithm, designed 
to optimize clustering results. Published in the International 
Journal of Data Science and Analytics, their work show-
cases the effectiveness of this novel hybrid methodology 
in improving clustering accuracy and efficiency. By merg-
ing the strengths of fuzzy clustering and genetic algorithm 
optimization, the authors provide a significant contribution 
to the field, offering a promising avenue for enhancing data 
analysis processes.

8.2.2 � Genetic Intuitionistic Fuzzy System (GIFS) Books

1) O. Castillo, P. Melin, J. Kacprzyk, editors. Intui-
tionistic and type-2 fuzzy logic enhancements in neural 
and optimization algorithms: Theory and applications. 
Springer Nature; 2020 Feb 27 [235].

The book is a compendium of cutting-edge research 
encompassing the synergy between intuitionistic and 
Type-2 fuzzy logic with neural networks and optimization 
algorithms. This volume delves into the theoretical founda-
tions and practical applications where fuzzy logic paradigms 
play a pivotal role in enhancing computational intelligence 
techniques. Covering a wide array of topics, from neural 
network design to optimization strategies, the book provides 
a comprehensive overview of the latest advancements in the 
field. Researchers and practitioners in the realms of fuzzy 
systems, neural networks, and optimization algorithms will 
find this book to be a valuable resource for exploring novel 
approaches and applications within the domain of genetic 
fuzzy systems.

8.3 � Genetic Type‑3 Fuzzy System

Genetic Type-3 Fuzzy Systems represent a cutting-edge 
advancement in the realm of computational intelligence, 
extending beyond traditional Type-1 and Type-2 fuzzy 
systems. These systems incorporate higher levels of uncer-
tainty and abstraction, enabling them to model complex and 
dynamic systems more effectively. By integrating genetic 
algorithms with Type-3 fuzzy logic, researchers aim to 

enhance the flexibility, adaptability, and robustness of fuzzy 
systems in dealing with intricate real-world problems. The 
evolution from Type-1 to Type-3 fuzzy systems signifies 
a paradigm shift towards accommodating and leveraging 
greater degrees of uncertainty and imprecision, thus offer-
ing promising avenues for addressing challenging decision-
making tasks in diverse domains.

1) Melin P, Sánchez D, Castillo O. Interval Type-3 
Fuzzy Inference System Design for Medical Classifi-
cation Using Genetic Algorithms. Axioms. 2023 Dec 
20;13(1):5 [251].

In their recent publication featured in "Interval Type-3 
Fuzzy Systems: Theory and Design," Castillo, Castro, and 
Melin (2022) delve into the realm of Interval Type-3 Fuzzy 
Logic Systems (IT3FLS). This seminal work explores the 
intricacies and applications of IT3FLS, offering a compre-
hensive overview of this advanced fuzzy logic paradigm. By 
elucidating the theoretical foundations and design principles 
of IT3FLS, the authors shed light on the potential for lev-
eraging higher-order uncertainty in practical decision-mak-
ing scenarios. The insights presented in this work not only 
enrich the understanding of fuzzy systems but also pave the 
way for innovative applications in domains requiring robust 
handling of complex uncertainties. This contribution stands 
as a significant milestone in the evolution of fuzzy logic sys-
tems, emphasizing the importance of Interval Type-3 Fuzzy 
Logic in addressing contemporary challenges in decision 
support and control systems.

2) Castillo O, Castro JR, Melin P. Interval type-3 
fuzzy logic systems (IT3FLS). Interval Type-3 Fuzzy 
Systems: Theory and Design 2022 Mar 14 (pp. 45–98). 
Cham: Springer International Publishing [252].

Melin, Sánchez, and Castillo (2023) present a cutting-
edge research study focusing on the design of an Interval 
Type-3 Fuzzy Inference System for medical classification 
tasks employing Genetic Algorithms. Published in Axioms, 
this research explores the application of advanced fuzzy 
logic techniques in the domain of medical data analysis. By 
integrating Genetic Algorithms into the design process, the 
authors propose an innovative approach to enhance the accu-
racy and interpretability of medical classification systems. 
Their work highlights the potential of Interval Type-3 Fuzzy 
Inference Systems in improving the decision-making pro-
cess in medical diagnostics. This study contributes signifi-
cantly to the field of genetic fuzzy systems, offering valuable 
insights into the synergies between fuzzy logic and evolu-
tionary computation methodologies in medical applications.
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9 � Conclusion Remarks

The integration of Genetic Algorithms (GAs) with fuzzy 
systems in Genetic Fuzzy Systems (GFSs) has emerged 
as a significant research area over the past decades, offer-
ing a versatile framework for knowledge representation 
and modeling. GAs excel in encoding diverse structures, 
including weights, features, and rule parameters, enabling 
the evolution of multiple models of knowledge represen-
tation within a single system. This flexibility empowers 
researchers to design specific genetic components tailored 
to evolving specialized representations, thereby fostering 
innovation in fuzzy modeling and optimization.

Although the hybridization of fuzzy systems with GAs 
has been a fruitful avenue of exploration, particularly in 
evolving rule bases and optimizing fuzzy models, there 
remains untapped potential in extending this synergy to 
novel fuzzy concepts like Z-Numbers and Composite 
Weights-based fuzzy systems. The application of GAs to 
these emerging fuzzy paradigms presents a compelling 
opportunity for future research endeavors, offering new 
avenues for advancing the capabilities and applicability 
of Genetic Fuzzy Systems.

Exploring the integration of GAs with cutting-edge 
fuzzy concepts such as Z-Numbers and Composite 
Weights-based fuzzy systems holds promise for enhancing 
the robustness, interpretability, and decision-making capa-
bilities of GFSs in complex and uncertain environments. 
By delving into these uncharted territories and developing 
tailored genetic components for evolving these novel fuzzy 
aspects, researchers can unlock new dimensions of knowl-
edge representation and optimization within the realm of 
Genetic Fuzzy Systems.

In conclusion, the fusion of Genetic Algorithms with 
advanced fuzzy paradigms in GFSs presents a rich landscape 
for future research endeavors, calling for interdisciplinary 
collaborations and innovative methodologies to push the 
boundaries of intelligent systems modeling and optimiza-
tion. The unexplored territory of applying GAs to new fuzzy 
aspects beckons researchers to embark on a journey of dis-
covery, paving the way for transformative advancements in 
the field of Genetic Fuzzy Systems.
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