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Abstract
The Differential Evolution (DE) algorithm is one of the most popular and studied approaches in Evolutionary Computa-
tion (EC). Its simple but efficient design, such as its competitive performance for many real-world optimization problems, 
has positioned it as the standard comparison scheme for any proposal in the field. Precisely, its simplicity has allowed the 
publication of a great number of variants and improvements since its inception in 1997. Moreover, several DE variants are 
recognized as well-founded and highly competitive algorithms in the literature. In addition, the multiple DE applications and 
their proposed modifications in the state-of-the-art have propitiated the drafting of many review and survey works. However, 
none of the DE compilation work has studied the different variants of DE operators exclusively, which would benefit future 
DE enhancements and other topics. Therefore, in this work, a survey analysis of the variants of DE operators is presented. 
This study focuses on the proposed DE operators and their impact on the EC literature over the years. The analysis allows 
understanding of each year’s trends, the improvements that marked a milestone in the DE research, and the feasible future 
directions of the algorithm. Finally, the results show a downward trend for mutation or crossover variants while readers are 
increasingly interested in initialization and selection enhancements.

1 Introduction

Differential Evolution (DE) is one of the most popular and 
used algorithms in Evolutionary Computation (EC); it was 
developed by Rainer Storn and Kenneth V. Price around 
1995 [1]. Like many other optimization techniques, the DE 
was created to solve real-world engineering problems as the 
Chebyshev polynomial fitting problem and the optimiza-
tion of digital filter coefficients [2, 3]. By using the Genetic 
Annealing algorithm [4], Kenneth found the solution to the 

five-dimensional Chebyshev problem. However, he con-
cludes that this approach does not meet the performance 
requirements of a competitive optimization scheme due to 
its slow convergence and the fact that adjusting the efficient 
control parameters was an arduous task. After this initial 
research, he experimented with modifications to the Genetic 
Annealing into the encoding and arithmetic operations 
instead of logic ones. Eventually, he discovered the differ-
ential mutation operator on which DE is based [5]. After 
Rainer suggested architecture design and creating a separate 
parent and child population, the DE was conceived as we 
know it now.

Due to its simple design and optimization flexibility, the 
DE has been applied to many scientific and engineering opti-
mization problems such as image processing [6, 7], energy 
systems [8, 9], healthcare [10, 11], among several others. 
This flexibility feature of the DE has allowed that nowadays, 
its published researches in the state-of-the-art correspond 
to an enormous amount of related works that are almost 
impossible to gather in a compendium. Actually, since the 
inception of the DE, its rate of related published works has 
grown exponentially as is shown in Fig. 1. Therefore, this 
has propitiated the existence of many works that compile 
all publications related to the DE and group them accord-
ing to specific topics. Of course, they are relevant works 
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that contribute priceless value to their respective fields of 
study [12]. These publications usually present a brief gen-
eral review of the DE and its history, like the survey of 
Opara et al. [13] where the main DE variants are discussed 
through the years. Also, Parouha presented a recent DE over-
view where its most important variants are chronologically 
compared against the Particle Swarm Optimization (PSO) 
variants [14, 15]. Finally, Mashwani discusses the differ-
ent evolutionary strategies inspired by the DE [16], to men-
tion a few related works. Regarding the concept of multiple 
ways to expose a DE review work, another remarkable way 
to expose the state-of-the-art of the DE is according to its 
optimization field. Chakraborty published a priceless recent 
review of the different applications of DE in image process-
ing problems [17], while Qing presented a book explaining 
in detail all the electrical engineering applications of the DE 
[18]. In other engineering fields like chemistry and com-
munications, some important summarize works have been 
published, like the review of Dragoi et al. [19] who exposed 
the use of DE in chemical optimization problems over the 
years, in the same way, Okagbue developed a precise analy-
sis of the impact of DE in wireless communications through 
the years [20], just for mention some review applications. On 
the other hand, a classical way to perform a review work of 
the DE is according to specific algorithm features; however, 
it is worth mentioning that these types of works are usu-
ally the minority among the DE reviews. One of the most 
recent examples was presented by Piotrowski et al. [21], 
who resumed the relevance of different population sizes in 
DE variants. Xin presented the essential hybridizations of 

DE and PSO algorithms to determine the best design opti-
mizers [22]. A related recent and relevant summary work 
was presented by Tanabe et al. [23], where the most critical 
ways to tune the control parameters of DE (mutation and 
crossover rates) are analyzed. Finally, a classical feature of 
any optimization approach is its capability to be competitive 
in multi-objective optimization problems (MOPs); in that 
sense, the most recent related work was proposed by Ayaz, 
who exposed the most remarkable advances in the state-of-
the-art for the improvement of DE in MOPs [24]. All these 
feature information reviews of DE are just a few of the many 
related works.

As noted, the DE has been summarized in many ways 
through the years, and these works must keep existing since 
the published advances in DE are just growing in terms of 
amount and complexity [25]. However, the review (or sur-
veys) works of the DE correspond only to 1% of the DE pub-
lished works; the rest of the topics are shown in Fig. 2. As 
can be seen, most of the works correspond to journal articles 
from different scientific fields. Moreover, after 28 years of 
existence of the DE, there is still a lack of information that 
has been vaguely broached in some review works of the DE 
history, the DE operators, and its variants. The importance 
of discussing the DE operators lies in the fact that nowadays, 
these operators number in the dozens, and to the best of the 
author’s knowledge, there is no work in the literature that 
summarizes all of them. Moreover, as explained before, it 
is well documented that the accuracy and optimization of 
the DE and its variants are directly related to the quality of 
its respective operators. Thus, knowing the advances and 

Fig. 1  Amount of works related to the DE published per year since 1995
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limitations of all DE operators in the literature is crucial to 
proposing a real DE improvement. Regarding the review 
and survey works reported in Fig. 2, in this work, only the 
reviews and survey works directly related to the DE itself 
have been considered. This is quite remarkable since DE is 
one of the algorithms most analyzed in most research fields. 
Another important data is that this work only considers com-
pilation works unrelated to Open Access journals. Thus, 
the literature reports many compilation works about the DE 
applied to said fields. In that sense, Table 1 presents all the 
compilation works used for this article, the editorial they 

belong to, and their publication year. The highlight is that 
all the compilation works with the aforementioned specifi-
cations started to be published in 2010. Also, it is seen that 
Springer used to bet on these types of works in the first half 
of the decade, while Elsevier led the rest of the decade. This 
last editorial continues to publish this type of work.

To solve this lack of information, a survey of all the DE 
operators exposed in the literature is presented in this article. 
The four main stages of the algorithm (initialization, muta-
tion, crossover, and selection) are exposed, analyzed, and 
discussed. Moreover, each stage is separately broached; their 

Table 1  Summarize the reported review works of DE in the literature

No Refs. Title Editorial Year

1 [26] Differential evolution: A recent review based on state-of-the-art works Elsevier 2022
2 [27] Differential Evolution: A review of more than two decades of research Elsevier 2020
3 [23] Reviewing and Benchmarking Parameter Control Methods in Differential Evolution IEEE 2020
4 [13] Differential Evolution: A survey of theoretical analyses Elsevier 2019
5 [28] A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An 

analysis of selected algorithms on the CEC 2013 LSGO benchmark suite
Elsevier 2019

6 [29] Review of Differential Evolution population size Elsevier 2017
7 [30] Recent advances in differential evolution – An updated survey Elsevier 2016
8 [31] Parameter control and hybridization techniques in differential evolution: a survey Springer 2016
9 [32] Differential Evolution: An Overview Springer 2016
10 [33] Parameter control mechanisms in differential evolution: A tutorial review and taxonomy IEEE 2013
11 [34] Differential Evolution Algorithm: Recent Advances Springer 2012
12 [35] Recent advances in differential evolution: a survey and experimental analysis Springer 2010
13 [36] Differential evolution: A survey of the state-of-the-art IEEE 2010

Fig. 2  Amount of articles 
related to DE per publication 
type
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operator variants are analyzed individually so the reader can 
easily find those operators that may be considered more rel-
evant, instead of a single long paragraph where the infor-
mation can be lost. Additionally, at the end of its respective 
subsection, a table summarizes the advantages and limita-
tions of each operator variant so the reader can judge those 
techniques that seem more attractive for future research. On 
the other hand, once all the operators are presented, the sur-
vey ends with a discussion subsection for each stage of the 
DE, trying to offer an objective perspective of the schemes, 
as mentioned earlier.

In the same way, these discussions allow us to compare 
all the operators simultaneously to expose the best ones in 
terms of optimization or give a general view of future oppor-
tunities for each operator. Finally, it is worth mentioning that 
this survey work pretends to be a valuable source of informa-
tion for future DE improvements. Therefore, gathering infor-
mation on the state-of-the-art covers 113 works published 
up to the date of development of this work, demonstrating 
that the presented information is vast and treated through a 
rigorous scientific gathering process. Summarizing the given 
information in this section, this novel review work can be 
synthesized in the following five features:

• This work compiles a considerable amount of the DE 
operator and variants presented in the literature.

• The broached literature processes scientifically 113 pub-
lications regardless of the fields of study.

• The exposed information is orderly presented for easier 
reading to the reader.

• All the presented operators are analyzed and discussed 
deeply.

• This work corresponds to a compendium of priceless 
information for future DE improvements.

The rest of the article is as follows: in Sect. 2, the basics 
of DE are explained, Sect. 3 presents a study of the DE 
operator variants in their respective stages, the discussions 
of the stages of the DE are exposed in Sect. 4, finally Sect. 5 
reports the conclusions of the authors.

2  Differential Evolution

As is known, Differential Evolution (DE) is a population-
based metaheuristic algorithm that uses an iterative process 
to find solutions to a problem. This search for solutions 
is achieved by generating improved candidate solutions 
through an evolutionary process. This process consists of 
four stages: initialization, mutation, crossover, and selec-
tion. Figure 3 shows the flowchart of the general scheme of 
the DE algorithm. These stages are briefly described in the 
following subsections.

2.1  Initialization Stage

The initialization stage is the first step in the DE algorithm 
process to find the global optimal solutions within the search 
space. This process stage randomly generates an initial popu-
lation xd

i,G
 . The initial population of size Np consists of i-th 

individuals with d-dimensionality for each G-th generation, 
represented as xi,G =

{
x1
i,G
, x2

i,G
… , xd

i,G

}
 and is generated by 

a random process with the following equation:

where i = 1,… ,Np , rand(0, 1) represents a uniformly dis-
tributed random variable within the range [0,1], xmin and xmax 
are the lower and upper bounds for each dimension of the 
search space. Once the initial population has been generated, 
the steps involved in the iterative process are carried out.

2.2  Mutation Stage

DE algorithm implements a perturbation process performed on 
the elements of each candidate solution to produce a modified 
version of each individual called mutant vector vd

i,G
 . The most 

common mutation operator used in the DE algorithm is the 
DE/rand/1, defined in Eq. 2.

where xr1, xr2, xr3 are population vectors which are randomly 
selected considering that r1 ≠ r2 ≠ r3 ≠ i , and F is the scale 
factor that is a fixed value by the user in the range of [0, 2].

2.3  Crossover Stage

In this stage, the target individual is combined with a randomly 
chosen individual, generating a trial individual. This process 
is guided by the crossover probability (Cr) (a constant value 
in the [0, 1] range). To generate a new vector, also called trial 
vector ud

i,G
 , the crossover is performed between target vector 

xd
i,G

 , and mutant vector vd
i,G

 as follows:

(1)xd
i,0

= xd
min

+ rand(0, 1) ∗ (xd
max

− xd
min

)

(2)vd
i,G+1

= xr3,G + F(xr1,G − xr2,G)

(3)ud
i,G+1

= ud
G

{
vd
i,G

if d = drand or rand(0, 1) ≤ Cr

xd
i,G

otherwise

Initialization Mutation Crossover
Satisfy stop

criteria?
Selection

Start

End

No

Yes

Fig. 3  Flowchart of DE algorithm
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where drand is a randomly chosen index ∈ 1, 2, ..., d which 
ensures that ui,G includes at least one parameter of the 
mutant vector vi,G.

2.4  Selection Stage

The selection process enables DE to determine the survival 
of the target or trial solution in the next generation through a 
comparison according to their fitness values. The vector with 
the fittest values continues in the next generation’s popula-
tion. This operation is performed as follows:

Once the individual in the population is replaced by a 
new one, the mutation, crossover, and selection process is 
repeated until the optimum is located or the specific termina-
tion criterion is satisfied.

Each stage in the DE algorithm process will be examined 
and expanded upon in the following sections.

3  A Study of the Differential Evolution 
Operators and Their Variants

This section analyzes the operators proposed in the literature 
related to DE. It explains the variants that are possible to find 
for each of the DE stages (initialization, crossover, mutation, 
and selection). Such modified operators were taken from 
previously published articles and explained. Besides, some 
advantages and limitations of the operators are discussed.

3.1  Initialization in DE

In general terms, an initialization approach is always used 
in different algorithms to define their initial parameters and 
establish the initial population. Different studies have dem-
onstrated that the quality of the search of an algorithm is 
directly related to the quality of the initial population [37, 
38]. In the same way, a correctly initialized population can 
be understood as a population of individuals where diversity 
is the most essential feature. Based on the above, different 
initialization processes in the literature have been used in the 
DE. However, many related approaches use an initialization 
already established in the literature. That is why, in this sec-
tion, only the proposed techniques in which the initialization 
phase is one of the novelties of its proposal will be analyzed.

• Micro-opposition-based differential evolution
 Rahnamayan [39] proposed an initialization based 

on micro opposition (micro-ODE) with tiny popula-
tion size. This algorithm was used for sixteen image 

(4)xi,G+1 =

{
u
j

i,G
if f (ui,G+1) ≤ f (xi,G),

x
j

i,G
otherwise,

threshold tasks. The results were compared against 
the well-known Kittler approach, and the micro-ODE 
demonstrated its remarkable benefits against the Kittler 
method [40].

• Quadratic interpolation differential evolution
 Pant [41] presented a novel work in which quadratic 

interpolation is applied in the DE to improve the algo-
rithm’s convergence rate. The QIDE was tested on 10 
benchmark problems and compared against the DE and 
the Opposition-based-learning DE (ODE). The results 
proved a significant improvement to the classical DE.

• Nonlinear simplex differential evolution
 Ali [42] used three different initialization schemes in DE 

to determine the best one in computational terms. The 
novelty of his work is the implementation of the Nonlin-
ear Simplex Method (NSM) as an initialization technique 
[43]. A comparison was made between the DE, ODE, and 
QIDE, demonstrating the competitiveness of NSDE.

• Smart sampling differential evolution
 De Melo [44] used machine learning techniques to find 

promising regions in a continuous search space. Through 
the Smart Sampling method (SS), the proposed SSDE 
was tested in a set of benchmark functions against the 
ODE, QODE, and UQODE algorithms.

• Improved self-adaptive differential evolution with mul-
tiple strategies

 Deng [45] proposed a novel variation of DE based on a 
dynamical population divided according to the fitness of 
the individuals. Deng also used an adjustment method to 
tune the F and Cr factors. The ISDEMS was compared 
with the DE, ACDE, and SACDE on different optimiza-
tion tests, proving the good performance of the ISDEMS.

• Adaptive population topology differential algorithm
 Sun [46] structured a new DE variation for unconstrained 

optimization problems. The APTDE bases its perfor-
mance on actualizing population topology to avoid pre-
mature convergences. The results showed the algorithm’s 
remarkable efficiency.

• Adaptive population tuning scheme
 Zhu [47] based his work on the dynamic population 

concept, where the redundant individuals are removed 
according to their ranking order. This APTS allows for 
the improvement of diversity in the population, which is 
effective, as the results demonstrated, for various evolu-
tionary strategies.

• Symbiosis co-evolutionary model based on the popula-
tion topology differential evolution

 Sun [48] proposed a DE variant similar to the APTDE, 
where the population is divided to improve diversity. The 
SCoPTDE was compared with other related approaches, 
and remarkable results were obtained.

• Adaptive multi-population differential evolution
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 Wang [49] presented the concept of dynamical popula-
tion but applied it to multi-objective systems. His work 
is a hybrid MOEA that allows the improvement of the 
exploitation of the DE. The results showed important 
benefits to DE regarding multi-objective search strate-
gies.

• Cumulative differential evolution
 Aalto in [50] presented a modified DE where the popu-

lation is adapted based on the probability mass function 
(Cumu-DE). This was designed to auto-tune the three-
parameter settings of the DE. The approach proved to 
be faster than other related schemes and computation-
ally effective.

• Ensemble sinusoidal differential evolution with niching 
reduction

 Awad [51] published a variant of LSHADE [52] 
(EsDEr-NR), where the exploration and exploitation 
phases are improved through a mixture of two sinu-
soidal formulas of the already best solutions. The pro-
posal outperformed other related approaches, including 
CMAES variants [53].

• Reinitialization mid-point check
 Du Plessis [54] proposed a novel technique for 

Dynamic DE (DynDE) [55]. This approach allows 
populations to compete for function evaluations based 
on their performance. The results show that all DynDE 
approaches have improved significantly.

• Self-adaptive strategy differential evolution with sym-
metric Latin hypercube design

 Zhao [56] developed a technique where the population 
is initialized by a symmetric Latin hypercube (SLADE-
SLHD), which increases the population’s diversity.

• Chaotically initialized differential evolution
 Ozer [57] presented a novel DE initialized by seven dif-

ferent chaotic maps (CIDE), demonstrating that the sinu-
soidal and circle chaotic maps significantly outperform 
the DE in diverse scenarios.

• Cluster-based population initialization for differential 
evolution frameworks

 Poikolainen [58] developed an initialization of three 
stages (CBPI), where a randomly generated population 
is clustered by a K-means approach and grouped by the 
Euclidean distances of the individuals to improve the 
quality of the initial population.

• Differential evolution based on clustering
 Bajer [59] developed a novel initialization technique 

(DEc) where promising regions are searched through a 
clustering process, and then, a simple Cauchy mutation 
method is used to generate new individuals in the region 
[60].

• Adaptive multi-population differential evolution with 
dynamic population reduction

 Ali [61] presented a new DE variant (sTDE-dR), which 
clusters the population in multiple tribes, and then the 
algorithm utilizes different mutation and crossover 
schemes for each tribe to reduce dynamically the popu-
lation according to the success of the tribes.

• Heuristic for initialization of cluster centers
 Mustafi [62] proposed a new initialization for the 

k-means algorithm through evolutionary strategies. 
Essentially, the DE generates a requisite number of clus-
ters at each iteration; by doing this, the empty clusters 
are avoided, and the k-means are improved.

• Chaotic oppositional differential evolution
 Ahmad [63] presented a novel DE variant that combines 

the concept of chaotic maps and Opposition-Based 
Learning strategies [64] to improve the quality of the pro-
posed initialized solutions of the algorithm. The scheme 
is applied to different classical DE variants over several 
benchmark functions, demonstrating the viability of this 
new initialization process (Table 2).

3.2  Mutation in DE

DE has proven to be one of the most popular and successful 
evolutionary algorithms for solving optimization problems. 
However, due to the problems that continually emerge from 
modern application areas, there is still a need for improve-
ment in the search performance of this algorithm [65]. The 
performance and effectiveness of DE heavily rely on the 
selected mutation operator and its associated control param-
eter value. This has led several researchers to focus their 
work on the ensemble of new approaches or improvement of 
these strategies to make the performance of DE more robust. 
A Mutation in biology can be defined as an instant change in 
a chromosome’s gene composition. In contrast, in the con-
text of evolutionary computation, it can be referred to as a 
random perturbation process performed on selected decision 
variables. In the DE algorithm, an individual is taken as a 
donor and perturbed with a scaled vector differential from 
the other two individuals to produce a mutated individual. 
Generally, the DE mutation strategies can be represented 
in the format ‘DE/�/� ’, where DE stands for Differential 
Evolution, � specifies the base vector to be perturbed, and 
� refers to the number of difference vectors involved in the 
mutation process.

Notably, no single mutation strategy satisfactorily solves 
all the problems that arise [30] because an operator may be 
effective for specific problems but perform poorly for oth-
ers. It is similar to what the “No free lunch theorem [66]” 
establishes. For this reason, different mutation strategies 
with different control parameter settings may better solve 
a particular problem than a single mutation strategy with 
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fixed parameter settings, as is the case with the original ver-
sion of DE.

Each individual in the population is an n-dimensional 
vector representing a candidate solution, so the idea behind 
the original mutation strategy is to take the difference vector 
between two individuals, scale it by the mutation factor, and 
then added to a third individual to create a new candidate 
solution. Figure 4 describes this process in a two-dimen-
sional search space. Two individuals xr1 and xr2 are randomly 
chosen with r1 ≠ r2 , and the scaled version of the difference 
between these two individuals is added to the individual ran-
domly selected r3 ∉ {r1, 2} . This results in a mutant vector 
vi,G , which might be accepted into the population as a new 
candidate solution depending on its fitness value. At every 
generation G, this operator creates a mutant vector ( vi,G ) cor-
responding to each population member, also known as the 
target vector ( xi,G ). Listed below are some of the mutations 
that have been proposed in the last two decades.

• DE/rand/1
 In this strategy (see Eq. 5), three vectors are selected 

from the population, where one will be the base vector 
and disturbed by the difference between the other two. 
The indices of these vectors r1, r2, and r3 must be mutu-
ally exclusive integers randomly chosen from the range 
[1, Np] and different from the index i of the target vector. 
This randomness when selecting the individuals that par-
ticipate in creating a mutant vector makes the algorithm 
able to maintain population diversity and global search 
capability with no bias to any specific search direction. 
Nevertheless, it might slow down the convergence speed 
[67].

 Brest. et al. employing this mutation operator developed 
the JDE algorithm [68], which is a method that seeks to 
adapt the control parameters F and CR automatically and 
get rid of the trial and error practices when establishing 
these values.

• DE/rand/2
 Eq. 6 can be considered an extension of DE/rand/1 since 

a new pair of vectors (r4 and r5) is added, which might 
lead to a better perturbation than the strategies with only 
one difference vector. Some researchers [69] have stated 
that two difference vector strategies are better than DE/
rand/1 due to their ability to improve diversity by produc-
ing more trial vectors while increasing their exploration 
ability of the search space. 

 The self-adaptive DE algorithm with improved mutation 
strategy (IMSaDE) [70] takes this operator along with an 

(5)vi,G = xr3,G + F(xr1,G − xr2,G)

(6)vi,G = xr5,G + F(xr1,G − xr2,G) + F(xr3,G − xr4,G)
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elite archive strategy to generate mutant vectors. In this 
way, they seek to obtain the good exploration capacity 
of this operator and, at the same time, a better conver-
gence rate through the inclusion of individuals with good 
fitness.

• DE/best/1
 The difference between this strategy (Eq. 7) and DE/

rand/1 is that instead of randomly selecting the base 
vector, it utilizes the information of the individual with 
the best fitness found so far ( xbest,G ), attracting all the 
individuals toward the same best position. In fact, accord-
ing to Mezura et al. [71] this scheme is one of the most 
competitive for unimodal, separable, and non-separable 
problems, but due to its exploitative tendency, may cause 
premature convergence, diversity loss, and more chances 
of falling into a local optimum when dealing with multi-
modal problems [72, 73]. 

 It is difficult to find an algorithm that employs only this 
mutation strategy since, in most cases, it is used to com-
pensate for the weak exploitation of other strategies like 
in the original DE algorithm. For example, the Modified 
Mutation Strategy DE (MMDE) algorithm [74] uses this 
operator in conjunction with DE/rand/1, where a random 
number and a threshold determine which one is used.

• DE/best/2
 In this strategy, similarly to DE/rand/2, an additional 

pair of vectors is included, which adds an extra compo-
nent of random variation in each mutation, also seen as 
an enhancement of the exploration capability [75]. The 
strategy is defined as follows: 

 Like in the previous schemes (and practically in 
most mutation operators, unless otherwise stated) 
r1 ≠ r2 ≠ r3 ≠ r4 ≠ i ≠ best  . Ho-Huu et  al. [76] 
included this operator in their proposal alongside DE/
rand/1, DE/rand/2, and DE/best/1, where at each gen-
eration, two of them are selected based on an adaptive 
scheme based on the absolute deviation between the best 
and the mean of the objective function in the previous 
generation.

• DE/current-to-rand/1
 In this mutation operator ( Eq. 9), the current vector 

is the base vector that will be perturbed by the differ-
ence between two pairs of individuals. The effect of this 
method presented in [77] can be seen as a local search 
because the current vector can be attracted to a surround-
ing point determined by the difference of four vectors 
selected randomly. 

(7)vi,G = xbest,G + F(xr1,G − xr2,G)

(8)vi,G = xbest,G + F(xr1,G − xr2,G) + F(xr3,G − xr4,G)

 Its efficacy has been demonstrated when used to address 
multi-objective optimization problems in [78]. In the Fit-
ness Landscape DE (FLDE) algorithm [79], Z. Tan et al. 
used this operator along with DE/rand/1 and DE/current-
to-best/1 to train a random forest model with CEC2014 
and CEC2015 functions to predict the mutation strategy 
when solving new problems.

• DE/current-to-best/1
  Eq. 10, also known as DE/target-to-best/1 [2, p. 140] 

takes into consideration the information of the best solu-
tion so far in the population to the generation of a mutant 
vector, which can be interpreted as an attraction from the 
current vector to the best vector. 

 In an attempt to balance the effects of this mutation oper-
ator, S. Das et al. proposed two neighborhood models 
in the local and global neighborhood-based mutations 
DE (DEGL) algorithm [80]. The first one is known as 
the local neighborhood model, where each individual 
is mutated using the best position of a small zone. The 
second one, referred to as the global mutation model, 
employs the best position of the entire population, just 
like DE/current-to-best/1 does.

• DE/rand-to-best/1
 According to the DE literature, Qin. et al. [72] developed 

this operator that combines the techniques that rely on 
incorporating the current best individual and the subtrac-
tion of two pairs of vectors. The mutant vector is gener-
ated as follows: 

 This operator’s effect on the population gradually guides 
the population toward the best solution. However, the 
attraction is not uniformly among the population at each 
iteration as it would with the DE/current-to-best/1 oper-
ator since an individual can be selected and perturbed 
multiple times in the same iteration.

• DE/current-to-pbest/1
 In the self-adaptive differential evolution with fast and 

reliable convergence performance (JADE) algorithm 
[81], the authors introduced Eq. 12 as a generalized ver-
sion of the operator DE/current-to-best/1 to diversify the 
population and improve the convergence performance of 
the proposal by randomly choosing a vector from the 
top-ranked set of individuals of the current population 
to play the role of the single best solution in DE/current-
to-best, thus guiding guide the search process not only 
toward one single point but to 100p% possibilities. The 

(9)vi,G = xi,G + F(xr1,G − xr2,G) + F(xr3,G − xr4,G)

(10)vi,G = xi,G + F(xbest,G − xi,G) + F(xr1,G − xr2,G)

(11)vi,G = xr3,G + F(xbest,G − x3,G) + F(xr1,G − xr2,G)
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recommended size (p) for this set of good individuals is 
between 5% to 20% of Np. 

 However, to improve the diversity in choosing the indi-
viduals involved in generating a new solution, the authors 
proposed a variation that includes the information of an 
external archive formed by recently explored solutions 
that have been replaced by their offspring in the selection 
phase. The operator with the optional archive is shown 
in Eq. 13

 where x̃r2,g is an individual randomly picked from the 
union of the current population and the archive ( P ∪ A).

 This mutation strategy is also employed in the Success-
History based Adaptive DE (SHADE) algorithm [82] 
where Tanabe and Fukunaga proposed a technique for 
parameter adaptation using a historical memory of suc-
cessful control parameter configurations to guide the 
selection of future control parameter values.

  Furthermore, a similar approach was proposed in 
[83] where the authors presented two mutation schemes 
named DE/e-rand/2 and DE/e-best/2. The letter e refers 
to the fact that the involved individuals in generating 
a mutant vector come from the “elite” part of the top-
ranked population (usually between 30% to 50% ).

• DE/current-to-gr_best/1
 Another variant of DE/current-to-best/1, less greedy 

and more explorative, is proposed in [84]. This mutation 
strategy (Eq. 14) utilizes xgr_best,G that refers to the best 
vector of a dynamic group of q vectors randomly selected 
from the current population to replace the xbest,G of the 
Eq. 10. This feature helps to prevent premature conver-
gence at local optima since it ensures that the target solu-
tions are not always attracted to the same best position of 
the entire population. 

The authors found that a group size of 15% of Np pro-
vides good results on most tested benchmarks. It might 
seem that DE/current-to-pbest/1 and DE/current-to-gr_
best/1 are the same, but while the first one takes xbest,G 
from the best group of the entire population, the second 
one takes it from a group whose members are randomly 
chosen. Consequently, it has more chances of escap-
ing from local optima, but the convergence rate can be 
slower.

• DE/rand-to-best &current/1

(12)vi,G = xi,G + F(x
p

best,G
− xi,G) + F(xr1,G − xr2,G)

(13)vi,G = xi,G + Fi(x
p

best,G
− xi,G) + Fi(xr1,G − x̃r2,G)

(14)vi,G = xi,G + F(xgr_best,G − xi,G) + F(xr1,G − xr2,G)

 In [85], the authors claimed that including information 
from the current individual and the best solution will 
improve the DE algorithm’s exploration and exploita-
tion capabilities. This combination of information is 
carried out as shown in the following equation: 

 Moreover, in Eq. 15, it is observed that two different 
scaling factors intend to control the information’s con-
tribution of the best and the current vectors, achieving a 
similar effect of having two strategies (DE/rand-to-best 
and DE/rand-to-current) in a single one.

• Triangular mutation
 A. Mohamed [86] introduced this mutation intending 

to enhance the global exploration and local exploita-
tion abilities and improve the algorithm’s convergence 
rate. With this adjustment, the convex combination vec-
tor x̄c,G will be used to replace the random base vector 
xr3,G of the Eq. 5. The remaining two vectors will be 
substituted for the best and worst of the three randomly 
chosen vectors to produce the difference vector. The 
triangular mutation is defined in Eq. 16. 

 From Eq. 16 the convex combination vector x̄c,G of the 
triangle is a weighted sum of the three randomly selected 
vectors where the best vector has the highest contribu-
tion, and is defined as follows: 

where the real weights are given by wi = pi∕
∑3

i=1
pi , 

i = 1, 2, 3 and p1 = 1 , p2 = rand(0.75, 1) and 
p3 = rand(0.5, p2) . This mutation process exploits 
the nearby region of each x̄c,G in the direction of each 
(xbest,G − xworst,G) for each mutated vector. It focuses on 
exploiting some sub-regions of the search space, improv-
ing the local search tendency, and accelerating the pro-
posed algorithm’s convergence speed.

• Trigonometric mutation
 In this approach [87], instead of taking the best vector, 

the current one, or a vector randomly chosen as the 
base vector, it will be the one that corresponds to the 
central point of the hyper-geometric triangle formed by 
three randomly chosen vectors. Moreover, the perturba-
tion imposed on this base vector comprises a sum of 
three weighted vector differentials as shown in Eq. 18. 

(15)vi,G = xr3,G + F�(xbest,G − xr2,G) + F�(xi,G − xr1,G)

(16)vi,G = x̄c,G + 2F(xbest,G − xworst,G)

(17)x̄c,G = w1 ⋅ xrbest,G + w2 ⋅ xrbetter,G + w3 ⋅ xrworst,G

(18)
vi,G =(xr1,G + xr2,G + xr3,G)∕3 + (p2 − p1)(xr1,G − xr2,G) +…

…(p3 − p2)(xr2,G − xr3,G) + (p1 − p3)(xr3,G − xr1,G)
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 Where: 

 These weight values scale the contribution magnitudes 
of each differential vector to the perturbation applied to 
the base vector. It is easy to see that the mutant vector 
is strongly biased to the best of the three individuals, so 
this mutation can be considered a greedy local search 
operator.

• Historical population-based mutation
  Meng and Yang [88] developed this strategy (Eq. 20) 

so that the mutant vector contains information not only 
from the current population but from a historical popu-
lation, which reflects the landscape of the target and 
the knowledge extracted over past generations. 

 This way, xp
best,G

 corresponds to a randomly selected indi-
vidual from the current generation’s top p% of the current 
population, x̂r2,G denotes a randomly selected vector from 
the union of the current population and the historical 
individuals in the external archive.

• Reflection-based mutation
 The authors of [89] based their strategy on the Nelder-

Mead method, a traditional direct algorithm for 
unconstrained nonlinear optimization problems that 
construct a polyhedron of n + 1 vertices for n-dimen-
sional optimization. They found that an approximate 
optimal solution can be obtained through reflection, 
expansion, contraction, and shrink operations over 
this polyhedron known as simplex. First, they ran-
domly select four individuals from the current pop-
ulation, sorting them from best to worst according 
to their object function values, f (xr1,G) < f (xr2,G) < 
f (xr3,G) < f (xr4,G) . Then, the mutant vector is gener-
ated according to the Eq. 21

where: 

and the respective weights of xr1,G, xr2,G, and xr3,G are 
defined as follows: 

(19)

p1 =
|f (xr1,G)|

|f (xr1,G)|+|f (xr2,G)|+|f (xr3,G)|

p2 =
|f (xr2,G)|

|f (xr1,G)|+|f (xr2,G)|+|f (xr3,G)|

p3 =
|f (xr3,G)|

|f (xr1,G)|+|f (xr2,G)|+|f (xr3,G)|

(20)vi,G = xi,G + F(x
p

best,G
− xi,G) + F(xr1,G − x̂r2,G)

(21)vi,G = xo,G + F(xr1,G − xr4,G)

(22)xo,G = w1 ⋅ xr1,G + w2 ⋅ xr2,G + w3 ⋅ xr3,G

Although this mutation operation can balance exploration 
and exploitation better than other basic mutation strate-
gies, it is still susceptible to premature convergence when 
solving complex multimodal optimization problems due 
to its tendency towards the best individuals. Thus, the 
authors combined this strategy with DE/rand/1 and DE/
current-to-rand/1.

• Hemostasis-based mutation
 Prabha and Yadav [90] took inspiration from the bio-

logical phenomenon called Hemostasis, which regu-
lates the flow of blood vessels during injury. Hence, 
the operator in Eq. 24 aims to maintain the internal 
environment so it does not get stuck in the local opti-
mum. To do so, this procedure introduces the Hemo-
stasis vectors ( xHeV1 and xHeV2 ), defined as one pair of 
“good” vectors selected randomly from the best half 
of the sorted population and one pair of bad vectors 
chosen randomly from the worst half of the popula-
tion. Then, two trial vectors are generated and later 
compared with the current vector of their respective 
population. 

• Union differential evolution mutation
 Sharifi-Noghabi et al. [91] presented a mutation strategy 

that can be seen as a modification of the DE/rand/2 oper-
ator, where the mechanism to select the vectors involved 
in the generation of a mutant vector, takes into consid-
eration the advantages of both design and fitness spaces 
criteria. The mutant vector is generated as follows: 

where xr1,G , xr2,G are randomly chosen from the popu-
lation, xFS1,G , xFS2,G are the parent vectors selected by 
fitness space criterion, to obtain them it is necessary to:

– Sort the population from best to worst fitness
– Calculate the selection probability for each individ-

ual according to: 

– Select the two individuals using the roulette wheel.

(23)

w1 =
f (xr1,G)

f (xr1,G)+f (xr2,G)+f (xr3,G)

w2 =
f (xr2,G)

f (xr1,G)+f (xr2,G)+f (xr3,G)

w3 =
f (xr3,G)

f (xr1,G)+f (xr2,G)+f (xr3,G)

(24)vi,G = xbest,G + F(xHeV1,G − xHeV2,G)

(25)vi,G = xFS1,G + F(xFS2,G − xr1,G) + F(xDS,G − xr2,G)

(26)Pi =
Np − i

Np
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 xDS,G is the vector selected by design space criterion, and 
to obtain it the next steps are required:

• Construct the distance matrix (DM) based on the Euclid-
ean distance between all the individuals in the population 

• Calculate the probability matrix PM based on DM

• Finally, roulette wheel selection without replacement is 
carried out on every row of PM matrix (for each member 
of the population).

 After seeing how xFSi are obtained, this mutation seems 
more similar to DE/best/2 since vectors with better fitness 
are more likely to be chosen. However, due to Eq. 28, it 
can also be considered a local search operator because 
it exploits the regions around a predefined member by 
assigning a higher probability to closer individuals.

• Gaussian-based mutation
 Huiwang et al.[92] presented an almost parameter-free 

algorithm to determine the optimal control parameter in 
the differential evolution algorithm. The strategy muta-
tion of this proposal (Eq. 29) generates a new vector by 
a Gaussian distribution, sampling the search space based 
on the current position. 

where � = (xbest,G + xi,G)∕2 and � =∣ xbest,G − xi,G ∣ . In the 
early evolutionary phases, the search process focuses on 
exploration due to the large deviation (initially, the dis-
tance between individuals is large). As the generations 
increase, the deviation becomes smaller, and the search 
process will focus on exploitation.

• Cauchy-based mutation
 Although this operator was originally introduced by 

A. Stacey et al. [93] as an improvement of the Par-
ticle Swarm Optimization (PSO) algorithm, M. Ali 
and M.Pant [94] implemented this mutation (with 
some variations) as a mechanism to help individuals 
escape the local basin by allowing them to jump to a 
new region. Each element of the vector has a prob-
ability of 90% of being perturbed by a random number 
generated from a Cauchy distribution, which is simi-
lar to the Gaussian distribution but with more of its 
probability in the tails, increasing the probability of 
large values being generated. This operator is shown 
in Eq. 30

(27)DM =

⎛
⎜⎜⎝

��x1 − x1
�� ⋯ ��x1 − xNP

��
⋮ ⋱ ⋮

��xNP − x1
�� … ��xNP − xNP

��

⎞
⎟⎟⎠

(28)PM = 1 −
DM(i, j)∑
∀k DM(i, k)

(29)Vi,G = N(�, �)

where j corresponds to the jth element of the best solu-
tion (j=1,2..., Dims) at generation G, C(� , 0) stands for a 
random number generated by Cauchy probability distri-
bution with scale parameter and centered at the origin.

Table 3 presents an overview of all the aforementioned 
mutation strategies, their classification and the type of search 
they perform.

3.3  Crossover in DE

The basic algorithmic framework of the DE algorithm con-
forms to four phases: initialization, mutation, crossover, and 
selection. This section centers on the crossover operator 
phase. Since its introduction in 1995, the crossover operator 
has come to enhance the potential diversity of the popula-
tion, in which the mutant vector and current vector cross 
their components in a probabilistic form to produce a trial 
vector (also called offspring). The crossover process allows 
the current solution to inherit features from the donor or 
mutant vector. This combination of elements is controlled 
by a parameter called Crossover Rate (CR), which is set as 
0 to 1. This trial vector contends with the respective ele-
ment of the current population in the current generation to 
know who is the best, with its respective objective function, 
and is transferred into the next generation. Two commonly 
used crossover operators are binomial (uniform) crossover 
and exponential (modular two-point) crossover [2, 26, 30]. 
The principal difference between binomial and exponential 
crossover is that while in the binomial case, the components 
inherited from the mutant vector are arbitrarily selected, 
they form one or two compact sub-sequences in the case 
of exponential crossover. An interesting comparative study 
is proposed by [95, 96]. Another interesting comparative 
study is shown by [97]. Other crossover variants are ana-
lyzed in this section. In [98] proposed a crossover rate repair 
technique for adaptive DE algorithms. The parent-Centric 
Crossover approach was proposed by [99] in which mul-
tiple parents recombine to produce the child and showed 
that the proposed algorithm works better regarding conver-
gence rate and robustness. Epistatic arithmetic Crossover 
was proposed by [100]. A crossover rule called preferential 
crossover rule [101] was proposed to reduce the drawbacks 
of scaling parameters. Self-Adaptive Differential Evolution 
[102] was proposed with adaptive crossover strategies. [103] 
introduced an orthogonal crossover scheme applied in dif-
ferent variants of DE. A locality-based crossover scheme 
for dynamic optimization problems is introduced by [104]. 
Eigenvector-based crossover is proposed by [105] and dem-
onstrates that this scheme can be applied to any crossover 

(30)uj,i.G+1 =

{
xj, best ,G + C(� , 0) if rand(0, 1) ≤ 0.9

xj,i.G otherwise
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strategy. Using a linear increasing strategy, [106] modify the 
crossover rate. [107] proposed a Self-Adaptive Differential 
Evolution (SaDE) improving the generation of trial vectors 
and control parameters values are self-adaptive based on pre-
vious experiences. This work aims to analyze and compare 
the impact of crossover operators and their variants on the 
Differential Evolution algorithm.

• Exponential crossover
 The exponential crossover is proposed in the original 

work of Storn and Price in [1]. Since its introduction, 
the crossover operator allows the construction of a new 
trial element starting from the current and mutant ele-
ments. The exponential (Modular two-point) crossover 
is similar to the 1 to 2-point crossover in GA’s. One 

Table 3  Summary of the DE mutation proposed schemes

Classification Type Mutation Description

Exploration Random DE/rand/1 It uses the difference of two solutions to modify a third. They are all randomly 
chosen and mutually exclusive

DE/rand/2 It employs the difference of four individuals to modify a fifth. They are all ran-
domly chosen and mutually exclusive

Local DE/current-to-rand/1 It uses the difference of two randomly selected vectors to modify the current vec-
tor, also known as the target vector

Probabilistic Cauchy based mut Each element of the best solution has a 90% of the probability of being modified 
by a value from a Cauchy distribution

Exploitation Gaussian-based mut To create a mutant vector, half the sum of the best vector and the target vector is 
used as the mean of the normal distribution. At the same time, the deviation is 
given by the absolute value of the difference between these two vectors

Fully guided DE/best/1 The mutant vector is the result of the perturbation of the best individual with the 
difference of two individuals randomly selected

DE/best/2 The mutant vector is the result of the perturbation of the best individual with the 
difference of four individuals randomly selected

DE/current-to-best/1 The difference between the best vector and the current vector, in addition to the 
difference of two individuals randomly selected, are used to perturb the current 
vector

Partially guided DE/current-to-pbest/1 Similar process of the above mutation but instead of using the best vector of the 
population, it employs one random vector of the top 100p% individuals

DE/current-to-gr-best/1 The vectors involved in creating a mutant vector are the current vector, two 
random vectors, and the best vector of a group formed by randomly selected 
individuals

DE/rand to best/1 A random vector is modified by the difference of four vectors, where one is the 
best vector and the others are randomly picked

DE/rand-to-best &current/1 This strategy is similar to the one above; however, in the second difference, the 
target vector is included instead of a random vector

Triangular Mutation The randomly selected weighted sum of three solutions is modified by the differ-
ence between the best and worst solutions

Trigonometric Mutation Here, the average of 3 randomly selected vectors is perturbed by the sum of three 
weighted differences of these vectors

Hist. pop. based Mut The vectors involved in the perturbation of the target vector are one of the top p% 
of the current population, a random one, the target vector itself, and a randomly 
chosen vector from the union of the current population and an external archive

Reflection based Mut The weighted sum of three random solutions is disturbed by the difference of two. 
Here, the solutions with the best fitness are the ones that influence the result the 
most

Hemostasis based Mut This strategy generates two trial vectors, both perturb the best solution, but the 
first is through the differential of two vectors selected randomly from the best 
half of the sorted population. In contrast, the other perturbation comes from the 
differential of a pair of bad vectors chosen randomly from the worst half of the 
population

UDE Mut Two individuals involved in this strategy are randomly selected, fitness space 
criteria select another two, and the design space criteria select another one
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of the first appearances of the crossover operator is in 
[1], and the implementation of this is to increase the 
diversity of the perturbed parameter vector described 
in the Sect. 3.2. For the exponential crossover, the trial 
vector is generated as follows: 

where the angular brackets ⟨⟩D denote a module function 
with modulus D. The integer L is drawn from [1, D]. In 
Fig. 5 an example of the mechanism of the crossover 
operator for 7-dimensional vectors is shown.

• Binomial crossover
 DE, like GA, is a simple real-coded evolutionary algo-

rithm and uses the concept of fitness in the same sense 
as in genetic algorithms. The most significant difference 

(31)ui,G = uj,G

⎧

⎪

⎨

⎪

⎩

vji,G for j = ⟨n⟩D, ⟨n + 1⟩D,… , ⟨n + L − 1⟩D
xji,G for all otherj ∈ [1,D]

between DE and GA is that in DE, some of the parents 
are generated through a mutation process before crosso-
ver is performed. In contrast, GA usually selects parents 
from the current population, performs crossover, and 
then mutates the offspring. In the DE algorithm, the role 
of the crossover operator is to enhance the diversity of 
the population. The crossover is executed after generat-
ing the donor control vector through mutation. In the vast 
majority of research on the DE algorithm, it is typically 
used the binomial crossover (or continuous crossover) 
that is performed on each of the D variables whenever a 
random number between 0 to 1 is less or equal to the Cr 
(the crossover rate value), in this case for the binomial 
crossover the trial vector is created in the following way: 

where rand(0, 1) is a uniformly distributed random num-
ber, jrand ∈ [1, 2,… ,D].

• Crossover rate repair technique
 In this scheme, the crossover rate in DE is repaired by its 

corresponding binary strings using the average number 
of components taken from the mutant vector. The mean 
value of the binary string is the replacement for the origi-
nal crossover rate. This proposal analyzes the behavior 
of the crossover in DE, and it proposes a methodology 
in which it is considered that the trial vector is directly 
related to its binary strings but not directly related to the 
crossover rate [98]. This work mainly focuses on improv-
ing the adaptive DE algorithm based on the proposed 
crossover rate repair technique to improve its perfor-
mance. The analysis of the proposed method is next: Let 
bi be a binary string generated for each target vector xi as 
follows: 

Consequently, the binomial crossover of DE can be refor-
mulated as: 

where i = 1,… ,NP and j = 1,… ,D . It can see that the 
binary string bi is stochastically related to CR; Neverthe-
less, the trial vector ui is directly related to its binary 
string bi , but not directly related to its crossover rate CR. 
In addition, this work proposes to update the CR based 
on the successful parameter, calculating the CR′ as: 

(32)ui,G = uj,G

{
v
j

i,G
if j = jrand or rand(0, 1) ≤ CR

x
j

i,G
otherwise

(33)bi,j =

{
1, if rndreal(0, 1) ≤ CR or j = jrand
0, otherwise

(34)ui,j = bi,j ⋅ vi,j + (1 − bi,j) ⋅ xi,j

(35)CR
�

i
=

∑D

j=1
bi,j

D

Xr3,G

X1

X2

Vi,G= Xr3,G + F(Xr1,G -Xr2,G)
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*
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*

Fig. 4  Graphical representation of Mutation scheme of DE algorithm
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• Parent-centric crossover
 The proposed modification of the DE algorithm uses par-

ent centric approach [99]. The name of the improvement 
is called DEPCX. This modification measures the bal-
ance between the convergence rate and the algorithm’s 
robustness. Parent-Centric Crossover (PCX) was first 
introduced by [108, 109]. In [108, 109], PCX is a normal 
crossover operator, while in in DEPCX, it is treated as a 
mutant vector and is applied to each candidate solution 
vector, showing better results regarding convergence rate 
and algorithm robustness.

• Epistatic arithmetic crossover
 The epistatic arithmetic crossover operator [100], unlike 

the ordinary arithmetic crossover, considered the impact 
of epistatic genes in the context of evolutionary computa-
tion by expressing the epistatic as a graph product of two 
linear graphs represented by the candidate solution that 
is involved in the crossover process. This operator has 
embedded into a DE variant called eXEDE.

• Preferential crossover
 In [101] is proposed a crossover rule called the preferen-

tial crossover rule. The modified DE algorithm is called 
DEPC. This algorithm uses two population sets called S1 
and S2 . Each set contains N elements (total of the popula-
tion). S2 is called the auxiliary population set and is used 
to record the trial points discarded from the original DE 
process.

• Crossover strategies adaptation
 A self-adaptive Differential Evolution algorithm with 

crossover strategies adaptation (CSA-SADE) is proposed 
in [102]. In this proposal, each individual has its muta-
tion strategy, crossover strategy, and control parameters, 
which can be adaptively adjusted through the entire 
search process. In the case of the crossover strategy, this 
methodology involves binomial and exponential crosso-
ver. For a detailed and longer explanation of the imple-
mentation of the methodology, please refer to [102].

• Orthogonal crossover
 Orthogonal crossover (OX) operators are based on 

orthogonal design [110]. These operators can perform 
a systematic and rotational search in the region the 
parent solutions define. In [103], a framework is sug-
gested using an OX in DE called OXDE, a combination 
of DE/rand/1/bin and a version of OX (QOX). In [111] 
proposes a quantization technique into OX and proposes 
a version of OX, called QOX, for dealing with numerical 
optimization. This version of OX is used in this improved 
version.

• Locality-based crossover
 This article proposes an algorithm called Adaptive 

Differential Evolution with Locality-based Crossover 
(ADE-LbX) [104]. The mutation operation is guided by 
a locality-based scheme that preserves the features of the 

nearest individuals based on Euclidean distance around 
a potential solution. One of the most prominent features 
of this implementation is the use of the L-best crossover 
technique. L-best crossover uses the concept of blending 
rate, which determines the rate at which traits interbreed 
to produce successful offspring, as opposed to conven-
tional crossover techniques that specify a Cr parameter 
of crossover probability.

• Eigenvector-based crossover
 Eigenvector-based Crossover, known as a rotationally 

invariant operator, was proposed by [105] to address 
optimization problems with rotated fitness landscapes 
more effectively. This consists of a rotated coordinate 
system that was first constructed by referring to the 
eigenvector information of the population’s covariance 
matrix. The offspring solutions can then be generated by 
the randomly selected parents from standard or rotated 
coordinate systems to prevent the rapid diversity loss of 
the population. The eigenvectors form a basis of the pop-
ulation and let the crossover operator exchange informa-
tion between the target and donor vectors with a basis of 
eigenvectors rather than a natural basis. The eigenvector-
based crossover operator is fully explained in [105].

• Hybrid linkage crossover
 The hybrid linkage crossover (HLX) was proposed by 

[112] to leverage the problem-specific linkage informa-
tion between pairs of variables for more effective guid-
ance of the search process. An improved differential 
grouping technique was first incorporated into HLX to 
adaptively extract groups of tightly interactive variables 
known as building blocks (BBx). Two group-wise crosso-
ver operators, GbinX and GorthX, were then proposed to 
guide the crossover process without disrupting the tight 
linkage structures of BBs. The proposed HXL scheme 
can be easily adapted into the existing DE variants to 
achieve more promising optimization performance.

• Superior–inferior and superior-superior crossover
 Superior-inferior (SI) Crossover and Superior-Superior 

(SS) Crossover strategies were proposed by [113] to 
improve the diversity of the population in the DE algo-
rithm. The SS scheme is triggered to enhance the explo-
ration strength of an algorithm if the population diver-
sity is too low. The SS scheme promotes the exploitation 
search if the population is diversified. The SS and SI 
schemes are adaptable to typical binomial and exponen-
tial crossover operators and can be incorporated into vari-
ous DE frameworks. The choice that determines which of 
the two implementations is used is given by the calcula-
tion of the diversity of the population given in [113]. This 
diversity decides whether the implementation should be 
used (SI) or (SS).

• Multiple exponential crossover
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 Multiple exponential crossovers enable the formation 
of a new solution by combining multiple segments of 
target and mutant vectors [114]. This semi-consecutive 
crossover operator showed that it is not only prepared 
with the strengths of conventional binomial and expo-
nential crossover operators but also demonstrates better 
capability in handling the subset of tightly interactive 
variables.

• Rotating crossover operator
 A new DE variant was proposed by [115] and consists of 

a rotating crossover operator (RCO) with a multi-angle 
searching strategy, aiming to reduce the likelihood of 
generating inferior offspring solutions by expanding the 
search space tactically. Unlike the conventional binomial 
crossover scheme, the trial vector of RCO can be gener-
ated diversely within the circle regions around the donor 
and target vector by referring to the self-adaptive crosso-
ver parameter and rotation control vectors followed by 
the Levy distribution. This scheme uses a rotation control 
vector and a binary parameter to generate trial vectors 
around target vectors or mutant vectors at certain angles 
and distances. The RCO crossover strategy can generate 
trial vectors by rotating around donor vectors or target 
vectors controlled by rotating vectors, whose direction 
and angles can be guided to flexible search space and 
diverse offspring.

• Optional blending crossover
 In [116] is proposed a switched parameter DE with 

success-based mutation and modified BLX crossover 
(SWDE_Success_mBLX) to solve scalable optimiza-
tion problems without sacrificing the simplicity of its 
algorithmic framework. A simple control parameter 
selection strategy that enables the random and uniform 
switching of mutational scale factors and crossover 
rates within their feasible ranges was first proposed. A 
success-based switching strategy was incorporated to 
determine the mutation schemes of each solution based 
on its search performance history. The crossover of each 
target-donor pair was performed using a binomial crosso-
ver or a modified BLX (mBLX) crossover via a probabil-
ity-based selection scheme. The latter mBLX crossover 
scheme facilitated the search in the region between and 
beyond the dimensional bounds established by the target-
donor pairs to balance the exploration and exploitation 
searches. The mBLX strategy follows a similar philoso-
phy of BLX-�-� [117, 118] but avoids the extra fitness 
evaluation.

• Linear increasing crossover strategy
 Zuo Dexuan and Gao Liqun designed an Efficient 

Improved Differential Evolution (EIDE). Its method 
modifies the scalar factor and improves the crossover 
rate [106]. The IEDE is different from DE in two princi-
pal aspects: 1.- For the scale factor (F) it was adopted a 

random number from a uniform distribution in the range 
[0 − 0.6] , that is F ∼ U(0 − 0.6) . 2.- For crossover rate 
CR it was adopted a linear increasing strategy as follows: 

Where CRmin and CRmax are the minimal and maximal 
crossover rates, respectively. k is the current number of 
iterations, and K is the maximal number of iterations.

In the same way as the last subsections, this crossover 
subsection ends with a summary of the aforementioned 
proposed approaches. Table 4 shows said information in a 
similar structure as the one presented in the initialization 
subsection, where the respective scheme and its reference, 
such as its advantages and limitations, are reported in three 
columns.

3.4  Selection in DE

As mentioned before, the selection stage is usually ignored 
when a new DE modification is proposed because the 
selection stage is not as relevant for the DE algorithm pro-
cess as in a GA. However, over the years, different studies 
have demonstrated that DE improves significantly by add-
ing an enhanced selection approach [27, 120]. Next, the 
different selection approaches presented in the literature 
are explained in detail, such as their respective obtained 
results and the essential part of their methodologies. It is 
worth mentioning that DE selection stage modifications 
related to a multi-objective optimization process will not 
be considered in this work; this is because said process is 
often analyzed as a different field in optimization research, 
which does not compete with this article.

• Roulette wheel selection-elitist-differential evolution
 Ho-Huu et al. [121] presented an elitist selection tech-

nique instead of the common greedy selection. Ho-
Huu utilized the elitist selection technique developed 
in [122], combining the children and parent popula-
tions. Certain individuals are selected from this new 
population to create the next generation. This allows 
the algorithm to accelerate its convergence rate, among 
other important benefits.

• Landscape-based adaptive operator selection mecha-
nism for differential evolution

 Sallam et al. [123] presented a DE multi-modification 
approach, including the selection stage. This new 
algorithm considered the landscape information and 
the performance histories of the operators’ problems. 
About the selection stage, a landscape-based adaptive 
operator was proposed; essentially, this technique is 

(36)CR = CRmin + (CRmax + CRmin) × k∕K
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based on the difference between the information land-
scape vector of the problem and a spherical function 
defined as a reference landscape [124]. The mentioned 
technique is defined as follows: 

where �⃗xb is the best individual in the iteration or sample.
• Improved differential evolution with individual-based 

selection
 Tian et al. [125] presented an Improved Differential 

Evolution with Individual-based parameter setting and 
selection strategy (IDEI) [126]. The author developed 
a diversity-based selection stage established by a mix 
of the well-known greedy selection and defining a new 
weighted fitness value according to the fitness values 
and positions of the target.

• Subset-to-subset
 Guo et al. [127] presented a modification to the DE to 

improve the premature convergence. The author devel-
oped a novel Subset-To-Subset (STS) selection opera-
tor, which divides target and trial populations into sub-
sets to rank them later. An example is given in Fig. 6, 
representing a population of 15 individuals divided 
into 3 subsets. In Fig. 6, the left and right figures show 
the target and trial populations, respectively, while the 
black circles indicate the first pair of respective subsets.

• Noisy-objective-optimization-problem DE
 Rakshit [128] presented an improved DE algorithm 

to optimize a single noisy objective problem (NOP). 
About the selection stage, it is modified to allow com-
petition among individuals in the population; this is 
developed by adding a probabilistic crowding based 
niching (local optima) method [129].

• pbestrr Joint approximate diagonalization of eigenma-
trices

 Yi et al. [130] developed a DE variant based on the well-
known JADE algorithm [81]. In this case, the selec-
tion stage was modified by implementing a pbest wheel 
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operator, which works according to the function value 
of the top vectors chosen in the mutation stage for each 
individual, Eq. 38 summarizes the model as follows: 

where NP and N are the N-dimensional indi-
viduals and the iterations, respectively. thus, 
i = 1, 2, ...,NP;j = 1, 2, ...,N . ui,G and Xi,G are the fitness 
value of the target vector.

• New selection operator
 Zeng et  al. [131] proposed one of the most recent 

selection stage modifications in the literature. Zeng 
proposed that if the DE is in a stage of stagnation, then 
three candidate vectors will survive and be chosen in 
the next generation. Nonetheless, these candidate vec-
tors cannot be randomly chosen since it does not guar-
antee that the population will be improved; that is why 
discarded trial vectors are considered to replace the 
parent vector.

• Ensemble differential evolution for a distributed blocking 
flowshop scheduling problem

 Zhao et al. [132] proposed some modifications to an 
Ensemble Differential Evolution (EDE) for a Distrib-
uted Blocking Flowshop Scheduling Problem (DBFSP), 
which is an optimization problem related to the opera-
tions research field [133]. A biased selection operator 
replaces the original greedy selection operator in the 
selection stage. For the optimization problem, the new 
target individual Xi,g+1 is defined as follows: 

where � is the error of U according to X, while � is 
defined as the selection scale factor, and it belongs to 
the space 0 − 1.

• DE orthogonal array-based initialization and new selec-
tion strategy

 Kumar et al. [134] presented a conservative selection 
scheme for selecting the solutions from current and 
trial populations for processing in the next iteration. 
Basically, a randomly created neighborhood Ns,i of 
size ns is defined for each trial solution. This neigh-
borhood comprises iterative trial solutions under the 
next three conditions: 1. The created trial solution 
must be better than the current population solution. 
2. Each trial solution must comprise 25% of its neigh-
borhood’s solutions. 3. This entire selection process 

(38)pbesti =
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�
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elitej if f
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(39)Xi,g+1 =

{
U if 𝜔 < 0 or rand < max{𝜂 − 𝜔, 0}

X Otherwise

(40)� =
f (U) − f (X)

f (X)

can only be done for the first 60% of the optimization 
process; the classical greedy selection process defines 
the selection of the 40% spare process.

• Multi-objective differential evolution with ensemble 
selection methods

 Qu et al. [135] utilized a Multi-Objective Differential 
Evolution (MODE) for solving the extended Dynamic 
Economic Emission Dispatch (DEED) [136]. To solve 
the said model, the author proposed an ensemble of 
selection methods in the MODE algorithm [137]. This 
selection approach combines the newly generated off-
spring and their parents according to one condition: if 
a uniformly generated random number between 0 and 
1 is ≥ 0.5 , then the classical non-domination sorting 
technique is used to sort the population. Otherwise, the 
summation-based sorting method will be utilized for the 
same purpose.

Finally, to summarize all the given information about 
the modified selection methods for the Differential Evolu-
tion, Table 5 is presented. For as in the rest of the opera-
tors, Table 5 exposes the information structurally with the 
results, metrics, advantages, and limitations of each pro-
posed algorithm.

4  Discussion

In this section, the four stages of the DE will be analyzed 
and discussed to expose the advantages and disadvantages 
of each method in comparison with the rest of its respective 
approaches. In the same way, as far as possible, the best and 
worst variations will be described in terms of computational 
costs, applied experimentation, improvement rates, and com-
plexity development.

4.1  Initialization

As explained in Sect. 3.1, only the works that had as a main 
proposal a novel initialization technique were exposed, 19 
published works related to the said argument. According to 
Bilal et. al [27], the initialization variants for the DE cor-
respond to the 15% of published works, and the best authors’ 
knowledge, said proportion has not changed for this work. In 
that sense, these initialization approaches will be discussed 
in the next paragraphs, trying to define their similarities and 
differences. Moreover, it will be defined the best and worst 
proposed initialization schemes according to specific effec-
tiveness metrics.

Based on the above, the efficiency of the methods can be 
discussed according to the Beyer work et. al [139], which 
defines the efficiency of an EA based on three metrics: 1. 
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Its convergence rate, 2. It can reach the global optima 
in different OP’s, and 3. Its computational cost. In that 
sense, the best operator must allow the algorithm to have 
the perfect balance of these 3 aspects. When Table 2 is ana-
lyzed, it is easy to note that the majority of initialization 
approaches enhance their respective algorithms in terms of 
a speeder convergence rate, being the APTS and RCM the 
only techniques that do not reach this goal. This behavior 
has sense since it is well-known that the quality of the initial 
population directly affects the exploration phase. Therefore, 
an improvement in said stage benefits the early appearance 
of the exploitation phase. On the other hand, Table 2 also 
demonstrates that an improved initial population minimizes 
the computational resources the algorithm needs. However, 
the SSDE, ISDEMS, APTDE, CIDE, CBPI, DEc, sTDE-
dR, and k-means DE are the schemes that do not benefit 
the algorithm in the aforementioned metric. Nonetheless, 
these works correspond to the 42% of the related techniques, 
probing that the computational cost is improved in the 52% 
of the published techniques. Finally, the third metric related 
to the diversity of OP’s tested for each scheme is also sug-
gested in Table 2. The algorithms probed with two or more 
OP’s are the minority of the works, though the ISDEMS, 
Cumu-DE, CIDE, CBPI, sTDE-dR, k-means DE, and CODE 
are the only approaches with said feature. However, these 
last algorithms have demonstrated their capabilities through 
various experiments.

To visualize the reported in Table 2 related to the Beyer 
metrics, Fig. 7 is presented. In said Figure, the three Beyer’s 
metrics are exposed as bars of different textures for better 
comprehension. Also, it can be noted that each algorithm is 
represented by bars of different sizes. More specifically, only 
one reached metric is represented by its respective bar with 
the smaller size; if the algorithm reaches two metrics, then it 
is represented with its two respective bars in a medium size; 
finally, if the scheme reaches the three metrics, then it is 
exposed with the three bars with the longest size. As can be 
seen, only two algorithms reached the three Beyer’s metrics, 
the Cumu-DE and CODE, while the SSDE, APTDE, APTS, 
RCM, and DEc obtained only one metric. Based on Fig. 7, 
it can be deduced that Cumu-DE and CODE are generally 
the best-proposed initialization approaches for the DE in the 
state-of-the-art. Thus, such algorithms are the most promis-
ing schemes for future research without demeriting the rest 
of the techniques.

4.2  Mutation

One of the main reasons for the good performance of any 
optimization algorithm is the ability to balance two oppos-
ing aspects, global exploration, and local exploitation, or, as 
seen from another perspective, find the appropriate trade-
off between population diversity and a high convergence 
rate. To achieve this, during the past two decades, many 
researchers have designed different strategies to enhance the 
selection of the vectors involved in generating a mutant vec-
tor. Some consider the individual’s fitness or ranking in the 
population, whereas others define the selection criterion in 
design space. One of the first deep and serious studies of an 
intelligent selection was realized by Kaelo and Ali [140], 
who used the tournament selection method to obtain the base 
vector from three randomly chosen vectors.

Even though many of the mutation operators recently pro-
posed have been designed to balance the aforementioned 
aspects by making an intelligent selection, they are usually 
accompanied by other complementary modifications and 
techniques such as parameter adaptation mechanism, the use 
of an external archive or a different topology of the algo-
rithm [30, 141]. Therefore, the performance of a mutation 
strategy may vary depending on the approach. One example 
of this was presented by Bujok and Tvrdík [142], where they 
found that including the DE/current-to-pbest/1 mutation in 
their proposal did not bring sufficient enhancement of the 
performance on the CEC2013 benchmark. However, in the 
LSHADE algorithm [143], this same strategy outperformed 
the results in the CEC2014 problems of the JADE algorithm 
where it was originally introduced.

The mutation strategies described above can be classi-
fied into two main categories: random and guided. In the 

Fig. 7  Relation of the DE initialization variants and the metrics of 
Beyer
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first group are all the operators, where the individuals of the 
population do not have a defined search pattern and move 
freely in the search space. The best representatives are DE/
rand/i and DE/current-to-rand/i. Nonetheless, they should be 
utilized depending on the needs of the search process since 
DE/rand/i perturbs any individual in any direction, which is 
beneficial at early generations to discover regions that may 
not have been reached at initialization or to help to escape 
from local optima in multi-modal problems.

With DE/rand/i, some individuals may be disturbed a 
greater number of times than others in the same popula-
tion. Whereas, with DE/current-to-rand/1, the contribu-
tion of each particle in the search process is more equitable 
since each individual is perturbed once every generation, 
giving each individual the same opportunity to explore their 
neighborhood.

The second category contains all those operators that 
influence the search process toward certain positions, usually 
to the best one of the population or the best of a sub-group. 
This guided search prevents the algorithm from wandering 
in the search space, wasting computational resources and 
time, since in some applications, one function access could 
represent more than a simple evaluation of a variable in an 
equation. Nonetheless, one issue that should be highlighted 
is that the quality of the guide vectors is a determining fac-
tor in the performance of these strategies because, in multi-
modal problems, individuals that may seem like promising 
solutions at the beginning could attract other individuals of 
the population to regions that are not close to the best objec-
tive solution the problem causing the algorithm to converge 
prematurely and even get stuck in a local optimum. In this 
category, we can find examples like DE/best/i, DE/current-
to-best/i, DE/rand-to-best/i, Historical population-based 
mutation, and Hemostasis-based mutation.

All these are easy to classify because the vector Xbest or 
Xpbest is present in their respective equation, but what hap-
pens with strategies where there is no evident best vector, 
and even all of them are randomly selected as is the case of 
the Reflection based mutation and the Trigonometric muta-
tion? We might consider them as random strategies, but 
since the information’s contribution of each vector is deter-
mined by its fitness, the resultant mutant vector has a certain 
tendency towards the best of the selected ones. Therefore, it 
becomes a partially guided mutation.

Before including any mutation strategy in a new differen-
tial evolution-based algorithm, it is recommended that the 
needs of the proposal be analyzed to identify which one is 
better suited. A common approach in the literature, consid-
ered a research hotspot [83], is the combination of several 
mutation operators to take advantage of the capabilities of 
each one. The combination of strategies can be done in dif-
ferent ways; here are two common:

The first one employs a candidate pool of mutation 
schemes in which the operators are used depending on some 
selection criteria. For example, in the SaDE algorithm [144], 
a mutation is picked from the candidate pool according to 
the probability learned from its success rate in generating 
improved solutions in previous generations. The selected 
strategy is subsequently applied to the corresponding base 
vector to generate a mutant vector. More specifically, at each 
generation, the probabilities of choosing each strategy in the 
candidate pool are summed to 1. Another example is found 
in the EPSEDE algorithm [145], where, at the initialization 
phase, each member of the initial population is randomly 
assigned to a mutation strategy and associated with param-
eter values taken from the respective pools. If the trial vector 
produced is better than the base vector, the mutation strategy 
and parameter values are maintained for the next generation. 
Otherwise, the individual is randomly reinitialized with a 
new mutation strategy and associated parameter values from 
the respective pools.

The second common method found in the literature is 
dividing the population into subgroups to evolve, each with 
different mutation operators. Chatterjee and Zhou [146] 
generate three subpopulations based on the fitness values 
of the individuals, where the operator DE/best/1 is applied 
to the subpopulation with the higher fitness values, DE/
rand/1 to the lower subgroup and DE/current-to-best/1 to 
the subset with average fitness value. Likewise, Zhan et al. 
[147] employ three subpopulations (each one with a different 
mutation strategy) called the exploration population, exploi-
tation population, and balance population, which co-evolve 
by using the master–slave multi-population framework.

4.3  Crossover

This section will discuss the crossover operator stage and 
the various variants. As can be seen, the Crossover Opera-
tor has undergone many variations and adaptations since 
the Genetic Algorithm and Differential Evolution algorithms 
were introduced. Due to the large number of proposals that 
have arisen, several kinds of research have been done to 
discuss the differences and make a detailed analysis of the 
crossover operator [26, 95–97]. One of the most significant 
comparative works on binomial and exponential crossover 
is the one presented by [96]. Then in [97], it is possible to 
demonstrate a good performance of the exponential crosso-
ver in high-dimensional problems. Outside of these works, 
we can mention the different versions that have emerged 
of the crossover operator. It is not necessary to start from a 
specific order. Still, it can be observed that in the crossover 
rate repair technique, we see that this technique is applied 
directly to the adaptive DE (JADE), emphasizing in an anal-
ysis where they noticed that three algorithms update their 
parameters based on their previous successful experience 
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SaDE, JADE, and MDE_pBX. Still, only the implementa-
tion in JADE is used; it would be worth investigating more 
what would happen if this improvement were implemented 
in the other algorithms of this style using the proposed meth-
odology. In the case of EIDE, applying the linear increasing 
crossover strategy has only been tested with two different 
versions of the DE that handle adaptive parameters. With 
the original DE, it would be interesting to check the scope of 
this crossover when applied in a way that seeks to improve 
the existing DE. Its application and modifying the scaling 
factor showed competitive results in this comparison. How-
ever, in this case, it does not analyze why only these two 
crossovers are used to select which one to choose, nor does it 
investigate what would happen if only the mBLX crossover 
were left alone. The RCO crossover strategy is one of the 
most complex to implement in the JADE algorithm. Unfor-
tunately, implementing this strategy in any other algorithm 
would require an extensive study of the methodology, which 
would complicate adapting this method to other DE vari-
ants. In the implementation of Superior Inferior Crossover, 
it can be noticed that the diversity of the population is used 
as a selection method for the implementation of SI or SS. 
Interestingly, this methodology is rarely used and would be 
worth considering for future implementations in different 
DE schemes. In the case of the DEPCX method, the PCX 
implementation is treated as a mutant vector and applied to 
each candidate solution. This is interesting because a crosso-
ver is manipulated and used as a mutant vector generator. 
However, even though the implementation starts from a 
crossover version of PCX, it is not applied to the crossover 
in the final proposal. The philosophy of epistasis is used, 
which in genetics refers to the effect of one gene on the 
expression of another gene. This means that the so-called 
epistatic gene influences the characteristics of the so-called 
hypostatic genes. In this work, the effect of epistatic genes is 
studied, where each epistatic gene of the offspring depends 
on the corresponding hypostatic genes of its parents using 
an epistatic arithmetic crossover. Although in this proposal, 
the eXEDE algorithm has an implementation of a version of 
a crossover (epistatic arithmetic crossover), it is noted that 
the implementation is applied to the mutation and not in any 
way, specifically in the crossover operator. The purpose of 
this comparison is not to prove which of all the crossover 
proposals is better but to make a compilation of all the pro-
posals that have been made based on the crossover. Another 
purpose of this work is to provide relevant information from 
previous research based on each of the stages of the DE 
algorithm, as well as mention the different research on how 
to parameterize these stages. According to [26], the research 
suggests that for the parameter CR, most researchers use the 
value of 0.5 to implement DE variants. However, one of the 
most significant tables (Table 9 of the article) is the one in 
[26], summarizing all the parameters used (including the CR 

for the crossover) in all the DE versions analyzed. At this 
point, it is important to mention that the crossover phase 
determines how much information is exchanged between 
the mutant vector and the target vector to create a trial solu-
tion. The choice of crossover strategy depends on the desired 
balance between exploration (finding new solutions) and 
exploitation (refining existing ones). For example, binomial 
crossover randomly selects elements from either the mutant 
vector or the target vector to create the trial solution, and 
exponential crossover is similar to binomial but with a prob-
ability factor that controls the influence of the mutant vector.

4.4  Selection

When Table 5 is analyzed, it is easy to note two impor-
tant aspects of the selection stage of DE: firstly, the number 
of proposed selection variations for the DE is quite scarce 
compared with the rest of the operators. Secondly, unlike 
the other operators, the selection stage does not allow the 
establishment of a homogeneous experimental analysis of 
the scheme itself. These two aspects will be discussed below, 
trying to explain their causes and define the best and worst 
exposed DE selection variations.

Bilal et. al [27] in 2020 exposed that the selection varia-
tions correspond only to the 2% of the proposed DE operator 
variations in the state-of-the-art, and to the best authors’ 
knowledge, said statistical proportion has not changed. 
This phenomenon can be attributed to the fact that the most 
remarkable contribution of the DE was the mutation scheme 
[1], while its crossover scheme gained popularity over the 
years. On the other hand, the DE defines a simple greedy 
selection method, which corroborates the aforementioned. 
However, as Table 5 showed, the interest in improving 
the selection stage has increased in the last decade. When 
Table 5 is analyzed, it can be noticed that most proposals are 
tested and designed for general OP’s. This is demonstrated 
with the results of the LSAOS-DE, IDEI, STS, NDE, pbestrr 
JADE, NSO, and OLSHADE-CS algorithms that were 
obtained through the evaluation of classical benchmark func-
tions datasets. Besides, only a few proposed algorithms were 
designed for specific engineering applications, such as the 
ReDE for truss OP’s and EDE for solving DBFS problems. 
Finally, the most different case is the MODE-ESM, which 
corresponds to the only DE selection approach designed for 
a multi-objective OP. This allows us to compare all these 
proposed algorithms at the same time.

Now, regarding the Beyer metrics explained in Sect. 4.1 
[139], when the first metric is studied, it can be noted that 
ReDE, IDEI, and OLSHADE-CS are the best DE variants 
in terms of exploration and exploitation, which makes them 
the DE variants with the best convergence rates. However, 
ReDE is a very recent algorithm, so it has not been probed in 
other classical OP’s. Also, the OLSHADE-CS has a complex 
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structure that makes it hard to implement in other OP’s. 
Nonetheless, this algorithm is the best of the three EAs in 
terms of its convergence rate capabilities. Regarding the sec-
ond aspect, an algorithm will be considered competitive if its 
obtained results involve being the best in two or more opti-
mization cases. In that sense, LSAOS-DE, IDEI, STS, NDE, 
pbestrr JADE, and NSO are the best DE variations. Never-
theless, even though LSAOS-DE and STS perform well in 
many tasks, they are not computationally competitive. On 
the other hand, NDE is a relatively new algorithm, and it 
has not been tested in engineering problems, which makes 
the experimentation of the NDE a very bounded result. The 
rest of the aforementioned approaches are competitive since 
their simplified structure allows them to be tested in many 
tasks. Finally, the third metric is related to the computational 
requirements of the method. Therefore, a computationally 
competitive algorithm can be defined as one with the lowest 
working time. Under that scheme, ReDE, IDEI, EDE, and 
OLSHADE-CS are the best algorithms in terms of compu-
tational efficiency. As noted, this third aspect is only out-
standing by four algorithms, which is the lowest number of 
competitors compared with the other metrics. This can be 
attributed to the fact that a proposed new selection method 
can be defined by a mathematical model but said model is 
just an algebraic representation of a tabular comparison pro-
cess, and these types of processes are well-known for being 
computationally expensive.

To summarize the given information, Fig. 8 presents the 
relation between each DE variant according to its respec-
tive reached efficiency metric. As can be seen, the best DE 
selection proposal is the IDEI, which is the only competitive 
DE variant in the three aspects defined by Beyer. It is true 
that IDEI still needs much more experimentation to test its 
competitiveness with other OPs. However, compared with 
the rest of the DE selection variants, the IDEI probed to have 
a high competitive convergence rate through many bench-
mark functions from different datasets, and it performed said 
datasets with very efficient computational costs.

4.5  General Discussion

The DE has three main phases: mutation, crossover, and 
selection. The variants propose new operators for each 
phase. Each modification directly affects the performance 
of the DE. To properly select an operator, it is necessary 
to understand each phase. Mutation strategies control how 
much variation is introduced into the population. Crossover 
strategies determine how much information the mutant and 
target vectors exchange to create a trial solution. Selection 
strategies determine which individual (target vector vs. trial 
solution) survives in the next generation. Depending on the 
complexity of the problem, the designer should determine 
which phase wants to modify to intensify its benefits. The 
DE often involves parameters like the scaling factor (F) and 
crossover probability (CR) influencing the mutation and 
crossover steps. These parameters can be fine-tuned for 
your specific problem. Some algorithms even employ adap-
tive strategies that adjust these values during optimization. 
Besides, it is important to mention that the scalability of the 
DE variants can be affected by the dimensionality and com-
plexity of the problems. For example, if the dimensionality 
increases, it becomes harder to find the prominent solutions 
where the global optimal is located. Also, the control param-
eters need to be tuned depending on the problem features. 
Ultimately, in this situation, the DE can fail in suboptimal 
solutions.

4.6  Resume of Applied Experimentation

As presented throughout the article, each approach was 
tested on a different dataset, benefiting the respective tech-
nique. Each author decides the best dataset to test their pro-
posal based on his knowledge, optimization focus, or the 
scientific context of the moment. However, this variety of 
datasets makes determining the best proposal among the 
specific DE stage complex. Furthermore, an experimental 
analysis of these techniques could be counterproductive for 
a single article, given the resulting extension of the work. 
Therefore, it has been decided to include Table 6 to sum-
marize the applied dataset to each proposed algorithm. The 
distribution of Table 6 follows the same distribution of the 
rest of the article, including the proposals of initialization, 
mutation, crossover, and selection separately. In addition, 
the experimentation treated in each method is divided into 
two parts: the main and complementary datasets. This allows 
understanding of each dataset’s relevance over the years and 
its use in optimization. Finally, it is worth mentioning that 
many works use classical benchmark functions, but these 
functions tend to be organized through different distribu-
tions or different numbers of functions. Hence, to simplify 
the explanation of these datasets, we have decided to name 
them simply Benchmark functions.Fig. 8  Relation of the DE selection variants and the metrics of Beyer
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Table 6  Experimentation applied to each variation approach

Stage Method Cite Experimentation Year

Main Complement

Initialize Micro-ODE [39] hard-to-threshold images 2008
QIDE [41] Benchmark functions 2009

NSDE [42] Benchmark functions 2012

SSDE [44] Benchmark functions 2012

ISDEMS [45] Benchmark functions Pressure vessel structure 2013

APTDE [46] CEC-2005 2012

APTS [47] CEC-2005 2013

SCoPTDE [48] CEC-2005 2016

AMPDE [49] Bi-objective problems Three-objective problems 2016

Cumu-DE [50] CEC-2005 2015

EsDEr-NR [51] CEC-2014 CEC-2016 2018

RCM [54] MPB benchmark 2012

SLADE-SLHD [56] CEC-2005 2015

CIDE [57] Benchmark functions 2010

CBPI [58] CEC-2013 Lennard–Jones Potential minimization 2015

DEc [59] Benchmark functions 2016

sTDE-dR [61] CEC-2014 2016

k-means DE [62] BBC dataset Email dataset 2019

CODE [63] CEC-2014 2022

Mutation DE/rand/1 [68] Benchmark functions 2006
DE/rand/2 [70] Benchmark functions 2018
DE/best/1 [74] IRIS data Glass data 2020
DE/best/2 [76] Bar truss structures 2016
DE/current-to-rand/1 [79] CEC-2017 2021
DE/current-to-best/1 [72] Benchmark functions CEC-2005 2009
DE/rand-to-best/1 [72] Benchmark functions 2008
DE/current-to-pbest/1 [83] Benchmark functions AFS problem 2020
DE/current-to-grbest/1 [84] CEC-2005 2011
DE/rand-to-best &current/1 [85] Test problems 2006
Triangular mutation [86] Benchmark functions 2015
Trigonometric mutation [87] Benchmark functions Training NN 2003
Hip-DE [88] Benchmark functions CEC-2013 2021
Reflection-based mutation [89] CEC-2013 2018
DEHeO [90] BBOB-2015 2020
UDE [91] CEC-2005 2017
GBDE [92] Benchmark functions 2013
MDE [94] CEC-2008 Benchmark functions 2011

Crossover Rcr [98] CEC-2005 2014

DEPCX [99] Benchmark functions 2008

eXEDE [100] CEC-2014 2016

DEPC [101] Benchmark functions Schubert problem 2007

CSA-SADE [102] CEC-2005 Reaction Kinetic 2015
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As noted, the classical benchmark functions lead the 
majority of initialization variants, followed by the CEC-
2005 and the CEC-2014 in recent years. This makes 
sense since most initialization methods tend to improve 
the exploration phase of the algorithm, which can only 
be tested on complex mathematical objectives. Also, it 
is remarkable that competition datasets like CEC data-
sets have tended to replace classical benchmark func-
tions over the years. The mutation variants tend to be 
tested exclusively with benchmark functions, excluding 
some minimal exceptions. However, it is worth men-
tioning that the CEC-2005 is usually preferred over the 
rest of the competition datasets for testing the mutation 
proposals. The crossover stage has been usually tested 
with benchmark functions and some specific application 
datasets. Finally, the selection stage variants have been 
tested almost exclusively on competition datasets, while 
no selection approach has been tested on any classical 
benchmark function. This can be attributed to the fact that 
the selection stage is one of the main parts for exploita-
tion of the method and to avoid getting trapped into local 

optima. Therefore, these methodologies must be tested on 
highly competitive optimization problems.

5  Conclusions

The DE algorithm has become one of the most popular 
evolutionary strategies and has been used since its creation 
more than twenty years ago. At the same time, its simple 
design has triggered an enormous quantity of variants and 
modifications in its operators. Due to this, several surveys 
and review works have been published to gather informa-
tion on the DE variants and said works had broached the 
subject from different and valuable perspectives. How-
ever, no work has been collected on all the DE-modified 
operators until now. This article grouped the aforemen-
tioned publications according to their scheme (initializa-
tion, mutation, crossover, and selection). In the same way, 
each compilation group ends with a table that summarizes 
and adds remarkable information. Moreover, the gath-
ered data is analyzed in detail in a respective discussion 
section that allows an understanding of the advantages 

Table 6  (continued)

Stage Method Cite Experimentation Year

Main Complement

OXDE [103] Benchmark functions 2012

ADE-LbX [104] CEC-2009 2013

EBC [105] CEC-2011 BBOB-2012 2015

HLXDE [112] Benchmark functions 2015

JADE-SI [113] Benchmark functions 2015

CRm [114] Benchmark functions 2016

RCO [115] CEC-2013 2017

WDE_Success_mBLX [116] CEC-2013 CEC-2010 2017

EIDE [106] Benchmark functions 2012

Binomial Crossover [1] Benchmark functions 1997

Exponential Crossover [119] Fuzzy rules parameters 1996
Selection ReDE [121] Bar truss structures 2018

LSAOS-DE [123] CEC-2014 CEC-2015 2017

IDEI [125] CEC-2005 CEC-2014 2017

STS [127] CEC-2014 2018

NDE [128] CEC-2013 GECCO-2010 2020
pbestrr JADE [130] CEC-2005 Four real-world applications 2016

NSO [131] CEC-2013 CEC-2014 2021

EDE-DBFSP [132] Taillard benchmark 1993 2020

OLSHADE-CS [134] CEC-2017 CEC-2020 2022

MODE-ESM [135] S-ZDT1 R-ZDT4 2019
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and disadvantages of each proposed approach compared 
against the rest of them. The collected information has 
been carried out through an exhaustive search process in 
the state-of-the-art, and it has covered 63 direct research 
articles and 50 directly related works, which assures the 
complete summary of the published DE-modified opera-
tors until the final writing of this work to the best author’s 
knowledge. Additionally, it is worth mentioning that the 
descriptions made for each approach, such as the rank-
ing carried out in some of the discussion subsections, are 
done impartially and without any academic or research 
interest. On the other hand, as future research lines, the 
authors suggest focusing the following related works on 
the improvement and novel proposals of initialization and 
selection schemes since said operators have demonstrated 
to improve the DE; nonetheless, their respective publica-
tions comprise only the 20% of the modified operator pub-
lished articles. Also, extended analysis of the best muta-
tion and crossover operators is feasible for future research. 
Finally, an experimental analysis of each DE stage com-
paring the respective approaches on a single dataset would 
benefit the state-of-the-art.
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