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Abstract
In the last few decades, metaheuristic algorithms that use the laws of nature have been used dramatically in numerous and 
complex optimization problems. The artificial hummingbird algorithm (AHA) is one of the metaheuristic algorithms that was 
invented in 2022 based on the foraging and migration behavior of the hummingbird for modeling and solving optimization 
problems. The algorithm initially starts with an initial random population of solutions. It then uses iterative processes and 
hummingbird position updates to balance exploration and exploitation toward the most optimal solutions. This paper has a 
detailed and extensive review of the AHA algorithm considering the aspects of hybrid, improved, binary, multi-objective, and 
optimization problems. In addition, a wide range of applications of AHA in various fields such as feature selection, image 
processing, scheduling, Internet of Things, classification, clustering, financial and economic issues, forecasting, wireless 
sensor networks, and many engineering challenges are explored. The statistical and numerical results showed that the AHA 
algorithm with deep learning methods, Levy flight, and opposition-based learning had the best performance. Also, the AHA 
algorithm is most widely used in solving multimodal optimization problems and continuous functions.
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1 Introduction

An optimization problem aims to identify the most favora-
ble solution from a set of available choices. An optimiza-
tion problem is composed of three main elements: decision 

variables that define the problem, constraints that restrict 
the solution space, and an objective function that needs to 
be optimized [1]. As science and technology have advanced, 
the complexity of these problems has significantly increased, 
necessitating more sophisticated optimization techniques. 
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These techniques are broadly classified into two groups: 
deterministic and stochastic [2]. Deterministic techniques are 
further categorized into gradient-based and non-gradient-
based techniques. They are particularly efficient for linear, 
convex, or relatively simple problems. However, their effec-
tiveness diminishes in the face of complex issues involving 
non-differentiable functions, nonlinear search spaces, non-
convex challenges, and problems that are NP-hard, which 
are notoriously difficult to solve [3]. In contrast, stochastic 
methods, which have gained prominence due to their adapt-
ability, utilize random operations, searches, and error-prone 
procedures. These methods are adept at navigating com-
plex optimization problems that deterministic approaches 
often find too challenging [4]. In the realm of real-world 
applications, where problems are frequently too intricate 
for deterministic solutions, stochastic techniques, and par-
ticularly metaheuristic algorithms (MAs), are increasingly 
being recognized as viable and effective solutions [5]. These 
stochastic methods are valued for their ability to efficiently 
tackle complex optimization tasks that are commonplace in 
technique scenarios.

Traditional optimization techniques are not suitable for 
complex and combinatorial problems. Because complex 
problems contain scope and decision variables [6]. Tradi-
tional optimization techniques are defined in the form of a 
linear equation and are unable to find the appropriate value 
for the variables of the optimization problem. These tech-
niques include the following disadvantages: (1) Increas-
ing dimensionality: As the number of decision variables 
increases, traditional optimization techniques are not suit-
able for the search space due to the exponential growth of 
possible solutions [7]. (2) Sensitivity to initial conditions: 
Many traditional optimization techniques are sensitive to 
the initial settings of parameters, which can affect the con-
vergence behavior and the quality of the obtained solutions 
[8]. (3) Multi-objective functions: Traditional optimization 
techniques have difficulty dealing with multi-objective or 
stochastic functions, leading to suboptimal solutions or pre-
mature convergence [9]. (4) Parallelization: Parallelization 
of traditional optimization techniques is challenging for 
effective use of modern computing problems and limits the 
scalability and performance of distributed systems. These 
techniques perform poorly when real-world problems are 
faced with uncertainties, outliers, or disordered data.

In contrast, MAs such as AHA are popular due to their 
simple concepts, easy implementation, and versatility in 
problem types. The goal of meta-heuristic algorithms is to 
explore the search space to find an almost optimal and effi-
cient result. MAs use search techniques inspired by natural, 
biological, physical, team, social, or artificial systems. This 
process starts by generating a random number of candidate 
solutions within the range of global and local searches. Then 
the algorithm repeatedly updates the candidate solutions and 

the best candidate is presented as the optimal solution at the 
end of the meta-heuristic algorithm iterations.

Mas have gained considerable traction for their effective-
ness in solving complex optimization problems [10]. Their 
popularity stems from a combination of factors: the sim-
plicity of their underlying principles, the ease with which 
they can be implemented, and their proficiency in tackling 
problems that are high-dimensional and nonlinear. These 
algorithms initiate optimization issues by generating a set 
of feasible solutions at random within the designated prob-
lem space [11]. This process involves continuous iterations 
where the proposed solutions undergo systematic revi-
sions and improvements, adhering to the specific rules of 
the algorithm. The ultimate goal of this iterative process is 
to identify the most suitable candidate solution that effec-
tively addresses the problem at hand. However, it’s crucial to 
understand that MAs don’t always guarantee a globally opti-
mal solution [12]. Owing to their reliance on random search 
techniques, they often converge on quasi-optimal solutions. 
While these solutions may not be the absolute best theoreti-
cally possible, they are generally very close to the optimal 
solution and are usually satisfactory for practical purposes.

Despite their seemingly straightforward approach, the 
efficiency and effectiveness of MAs can vary significantly. 
This variation is largely influenced by the distinct methods 
they employ for exploring the problem space and updating 
the candidate solutions [13]. Different MAs have different 
strategies for balancing the exploration and exploitation 
phases of the search process, which fundamentally affects 
their performance. Some may be better suited for certain 
types of problems or specific conditions within the prob-
lem space. As a result, selecting the right MA for a given 
optimization challenge is a critical decision that can greatly 
impact the quality of the solution and the efficiency of the 
problem-solving process.

Researchers can create appropriate solutions for differ-
ent optimization problems by adjusting the structures and 
parameters of their algorithms. The inherent randomness 
in these algorithms enables them to thoroughly explore 
the entire search space. This helps in avoiding entrapment 
in local optimums and aids in finding favorable solutions. 
MAs stand out in solving a diverse array of optimization 
issues, particularly those that are complex, nonlinear, and 
non-differentiable, due to their versatility and adaptability. 
These algorithms have proven to be invaluable across vari-
ous fields, benefiting both researchers and practitioners in 
their applications [14, 15].

There are metaheuristic algorithms with different ver-
sions: AHA [16], Genghis Khan shark (GKS) [17], Geyser 
inspired Algorithm (GEA) [18], Prairie Dog Optimiza-
tion (PDO) [19], Dwarf Mongoose Optimization (DMO) 
[20], Gazelle Optimization Algorithm (GOA) [21], Lungs 
Performance-based Optimization (LPO) [22], Arithmetic 
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Optimization Algorithm (AOA) [23], Reptile Search Algo-
rithm (RSA) [24], Sinh Cosh Optimizer (SCHO) [25], Ebola 
Optimization Search Algorithm (EOSA) [26], Sine Cosine 
Algorithm (SCA) [27], Gorilla Troops Optimizer (GTO) 
[28], Moth-Flame Optimization (MFO) [29], Puma optimi-
zation (PO) [30], Slime Mould Algorithm (SMA) [31], Equi-
librium Optimizer (EO) [32], Farmland Fertility Algorithm 
(FFA) [33], Electric Eel Foraging Optimization (EEFO) 
[34], African Vultures Optimization Algorithm (AVOA) 
[35], Beluga Whale Optimization (BWO) [36], and Tunicate 
Swarm Algorithm (TSA) [37].

While different MAs have their unique characteristics, 
they share two fundamental stages in their search process: 
exploration and exploitation. Exploration involves a wide-
ranging and random examination of the solution space, 
while exploitation entails a more targeted search in the area 
identified during the exploration phase. As the algorithm 
enhances its exploitation skills, its precision increases and 
its randomness decreases. An algorithm with strong explora-
tion capabilities can rapidly converge to a variety of solution 
sets through more random searching. On the other hand, 
an algorithm with effective exploitation skills can improve 
the quality and accuracy of solutions by focusing on local 
searches. However, enhancing exploration may diminish the 
effectiveness of exploitation and vice versa. Furthermore, 
striking the right balance between these two phases is often 
difficult and varies based on the specific optimization prob-
lem at hand.

The AHA [16] is an innovative bio-inspired optimization 
algorithm designed to address complex optimization chal-
lenges. Drawing inspiration from the extraordinary flight 
capabilities and intelligent foraging behaviors of hum-
mingbirds in nature, this algorithm represents a significant 
advancement in the field of optimization. It uniquely simu-
lates three specific flight maneuvers observed in humming-
bird foraging—axial, diagonal, and omnidirectional. These 
maneuvers are intricately integrated into the algorithm, 
enhancing its ability to navigate through the problem space 
effectively. In addition to these flight patterns, the AHA also 
emulates three distinct foraging behaviors of hummingbirds: 
guided foraging, territorial foraging, and migrating forag-
ing. Each of these behaviors contributes to the algorithm’s 
robustness and adaptability. The guided foraging behavior 
enables the AHA to initially focus on exploring the problem 
space extensively. As the algorithm progresses, this strat-
egy gradually shifts towards more exploitation-oriented 
approaches. The territorial foraging behavior is specifically 
designed to intensify the exploitation process, allowing 
the algorithm to meticulously fine-tune solutions within a 
localized area. In contrast, the migrating foraging strategy 
is implemented to ensure a comprehensive exploration of 
the entire search area, preventing the algorithm from pre-
maturely converging on suboptimal solutions.

A particularly novel aspect of the AHA is its incorpo-
ration of a ‘Visit Table (VT)’, a mechanism that mimics 
the memory of hummingbirds in recalling the locations of 
food sources. This feature allows each virtual ‘humming-
bird’ within the algorithm to keep a position of its last visit 
to various points in the search space, akin to tracking food 
sources. This memory update mechanism is instrumental in 
guiding the algorithm towards more promising regions of the 
search area based on past experiences, thereby enhancing its 
efficiency in selecting optimal or near-optimal solutions. The 
combination of these unique flights and foraging strategies 
within the AHA framework marks a distinct departure from 
traditional optimization algorithms. Its approach to balanc-
ing exploration and exploitation, coupled with its memory-
based strategy for tracking and revisiting solution spaces, 
positions the AHA as a potentially more effective and intel-
ligent tool for solving a wide array of complex optimization 
problems.

The main contributions of this paper are as follows:

• Hybridization, improved model types, and optimization 
problems are explored by the AHA algorithm.

• AHA algorithm is analyzed with pseudocode and flow-
chart.

• Analyze the effectiveness of AHA in solving different 
problems considering convergence rate, exploration, and 
exploitation aspects.

The general structure of this paper is as follows: In 
Sect. 2, the basic concepts of the AHA algorithm are stated. 
In Sect. 3, different methods of the AHA algorithm, includ-
ing combinations, improved, binary mode, multi-objective 
mode, and optimization problems are described. In Sect. 4, 
the AHA algorithm is examined in terms of applications, 
advantages, and disadvantages, and finally, in Sect. 5, we 
discuss the conclusions and future works.

2  Artificial Hummingbird Algorithm (AHA)

In this section, a bio-inspired optimization algorithm called 
AHA, which draws inspiration from the intelligent behaviors 
of hummingbirds, is introduced. The three primary elements 
of the AHA algorithm are described in detail. An illustra-
tion (Fig. 1) is provided, depicting a hummingbird (agent) 
engaged in foraging.

Food Sources: The agent operates as a complex bio-
logical organism in natural ecosystems, it has unique 
abilities in choosing its resources. Using its sharp senses 
and the experience it has gathered from previous times, 
this bird can identify and evaluate the different charac-
teristics of resources. He not only examines the nectar 
quality and nutritional content of each flower but also the 
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rate of nectar regeneration and the number of times the 
flowers have been visited before. In the AHA algorithm, 
it is assumed that each resource has the same number of 
flowers. This simplification is intended to reduce compu-
tational complexity and provide a standard analysis model. 
In this model, each resource is treated as a solution vec-
tor where the rate of nectar regeneration (i.e., the rate at 
which nectar is produced again) is represented by a fitness 
function. The amount of fitness indicates the quality of the 
resource; The higher this value, the better the source of 
food and the increase in the amount of regenerating nectar 
from that source.

Hummingbirds: In this method, each agent is systemati-
cally assigned to a specific feeding spot, meaning the bird 
and its chosen feeding area occupy the same space. These 
agents have the skill to remember their resource’s location 
and rate of nectar replenishment, and they can share this 
knowledge with fellow agents in the group. Additionally, 
every agent can recall the time elapsed since its last visit to 
each feeding location.

Visit Table: In the algorithm’s framework, there exists a 
crucial component known as the VT. This table meticulously 
tracks how often each resource is visited by various agents, 
also recording the time that has passed since a particular 
agent last frequented a certain resource. The unique aspect 
of this system is its prioritization mechanism: resources 
that have been neglected for a more extended period are 
given precedence for future visits by agents. This strategy 
is designed to optimize nectar collection efficiency. The VT 
serves a vital role for each agent. It acts as a guide, help-
ing them to effectively pinpoint their next targeted resource 
based on various factors, including visit frequency and nec-
tar availability. This targeted approach enhances the overall 
foraging efficiency of the agents. Moreover, the dynamic 
nature of the VT is crucial. With every iteration of the algo-
rithm, the information within the table is updated. This 
continuous updating process ensures that the data remains 
current and reflective of the latest feeding patterns and 

preferences of the agents, thereby enabling them to make 
the most informed decisions about where to feed next.

The AHA algorithm, a swarm-based meta-heuristic 
approach, is crafted to address optimization issues. In this 
subsection, three mathematical models are introduced that 
replicate the foraging behaviors of agents: guided foraging, 
territorial foraging, and migrating foraging. These behaviors 
are illustrated in Fig. 2. Furthermore, the architecture of the 
AHA algorithm is segmented into three principal phases.

2.1  Mathematical Model and Algorithm

In Fig. 3, the cycle of the AHA algorithm is shown. The 
AHA algorithm for solving optimization problems contains 
five main cycles.

2.1.1  Initialization

A group of n agents is distributed across n resources, with 
their initial positions randomly determined as per Eq. (1) 
[38].

where “Low” and “Up” represent the lower and upper lim-
its, respectively, for a problem with d dimensions. Here, “r” 
stands for a random vector within the range [0, 1], and “ xi ” 
denotes the position of the i th resource, which corresponds 
to the solution to the problem at hand. Also, the VT for the 
resources is set up initially as outlined in Eq. (2).

In cases where i equals j, the term VTi,j = null signifies 
that an agent is currently feeding at its designated resource. 

(1)xi = Low + r ⋅ (Up − Low )i = 1,… , n

(2)VTi,j =

{
0 if i ≠ j

null i = j
i = 1,… , n;j = 1,… , n

Fig. 1  A foraging hummingbird [16]

Fig. 2  Three foraging behaviors of AHA
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Conversely, when i is not equal to j, VTi,j = 0 illustrates that 
the ith the agent has just explored the jth resource in the 
ongoing iteration.

2.1.2  Guided Foraging

Each agent instinctively seeks out the resource containing 
the most nectar. This means that an ideal source should rap-
idly replenish its nectar and remain unvisited by the agent 
for a significant duration. In the AHA process, an agent aims 
to identify the resources that are most frequently visited for 
its purposeful foraging. Among these, the agent selects the 
source with the quickest nectar replenishment as its chosen 
resource. Once this target is established, the agent proceeds 
to fly towards it to feed.

In the AHA algorithm, the foraging process involves three 
types of flight skills: omnidirectional, diagonal, and axial 
flights. These are effectively represented by incorporating 
a direction switch vector. This vector dictates the availabil-
ity of one or more directions in a d-dimensional space. As 
illustrated in Fig. 4, these flight behaviors are depicted in a 
3-D space. Axial flight enables an agent to travel along any 
coordinate axis. Diagonal flight permits movement from one 
rectangle corner to its opposite, determined by any two of 
the three coordinate axes. Omnidirectional flight means an 
agent can fly in any direction, with the trajectory projected 
onto each of the three axes. While all birds are capable of 
omnidirectional flight, agents uniquely excel in both axial 
and diagonal flights.

These flight behaviors can be extrapolated to a d-dimen-
sional (d-D) space, where the axial flight is described by 
Eq. (3).

The diagonal flight is described as Eq. (4).

The omnidirectional flight is described as Eq. (5).

In Eq. (3), randi([1, d]) is a function that produces a ran-
dom integer between 1 and d. Such functions are often used 
to introduce randomness or simulate variability in models. d 
is a parameter that sets the upper limit of the random integer 
range. randperm(k) generates a random sequence of integers 
from 1 to k. This could be used to create a randomized order 
or arrangement of numbers within a specified range, and r1 
is a random number between (0, 1]. Diagonal flight within a 
d-dimensional space occurs within a hyperrectangle, defined 
by any 2 to d-1 coordinate axes. The movement of an agent 
in 3-D space, utilizing these three flight skills, is depicted 
in Fig. 5. In this figure, omnidirectional flight is indicated 
by red lines, diagonal flight by green lines, and axial flight 
by blue lines. The illustration shows an agent moving from 
(4, 4, 4) to (0, 0, 0). Using the three different flight skills, 
the agent reaches the target location in eight units of time. 
This demonstrates that the mathematical models for these 

(3)D(i) =

{
1 if i = randi([1, d])

0 else
i = 1,… , d

(4)

D(i) =

⎧

⎪

⎨

⎪

⎩

1 if i = P(j), j ∈ [1, k],
P = randperm(k), k ∈

[

2, ⌈r1 ⋅ (d − 2)⌉ + 1
]

, i = 1,… , d
0 else

(5)D(i) = 1i = 1,… , d

Fig. 3  The cycle of the AHA algorithm Fig. 4  Three flight behaviors of agents, a axial flight, b diagonal 
flight, c omnidirectional flight [16]
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flight skills can effectively simulate the searching behaviors 
of agents in both 3-D and multi-dimensional spaces.

Possessing these flight capabilities, an agent reaches 
its chosen resource, thereby securing a potential resource. 
Consequently, an existing resource is refreshed and 
replaced by a new target resource, selected from all avail-
able sources. The mathematical formula that represents 
this guided foraging behavior and the acquisition of a can-
didate resource is formulated as Eq. (6).

In Eq. (6), the variable xi(t) signifies the location of the 
ith resource at a given time t, while xi,tar(t) corresponds to 
the location of the targeted resource which the ith agent 
intends to approach. The term ‘a’ act as a guidance factor, 
adhering to a normal distribution N(0, 1) , characterized 
by a mean value of 0 and a standard deviation of 1. Equa-
tion (6) is instrumental in revising the position of each 
existing resource relative to the targeted resource. This 
equation effectively simulates the directed foraging pat-
terns of agents via diverse flying behaviors. The positional 
update for the ith resource is established in Eq. (8).

(6)vi(t + 1) = xi,tar(t) + a ⋅ D ⋅

(
xi(t) − xi,tar(t)

)

(7)a ∼ N(0, 1)

In Eq. (8), f (⋅) represents the fitness value of the func-
tion. Equation (8) illustrates that if the nectar-refilling rate 
of the prospective resource surpasses that of the exist-
ing one, the agent will forsake its current resource and 
remain at the new one, as determined by Eq. (6), for feed-
ing purposes.

In the AHA, the VT plays an essential role by record-
ing the visitation history to various resources. During each 
iteration, agents consult this table to determine their pre-
ferred target resource. This table maintains a record of the 
time elapsed since a particular resource was last visited by 
the same agent, where longer durations of not being visited 
suggest an increased visit level. Agents exhibit a preference 
for resources that have the highest visit level. In situations 
where several sources are at an equivalent highest visit level, 
the choice falls on the source with a more favorable nectar 
refilling rate. Every agent in the group selects its resource 
according to Eq. (6). As the process unfolds, each agent, 
while engaging in directed foraging as per Eq. (6) towards 
its target, increments the visit levels of all alternate resources 
by 1, except for the one it is currently visiting, which is 
reset to 0. Post the directed foraging phase, an agent remains 
with its current resource until a better nectar refilling rate 
(or solution) is identified. Upon finding a superior solution, 
the agent transitions to this new source. The update of an 
agent’s residing resource mirrors the adjusted visit level 
for that source across the population. The new visit level is 
established as one plus the maximum level recorded among 
the other resources.

Figure 6 displays a VT for six resources, each with an 
agent assigned to it. The numbers in the VT represent the 
visit levels, indicating the duration for which an agent 
has not visited a particular resource. For instance, the 

(8)xi(t + 1) =

{
xi(t) f

(
xi(t)

)
≤ f

(
vi(t + 1)

)
vi(t + 1) f

(
xi(t)

)
> f

(
vi(t + 1)

)

Fig. 5  Movement of an agent in three-dimensional space utilizing 
three distinct flying abilities [16]

Fig. 6  VT of a group of six agents [16]
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number ‘8’ in blue signifies that agent  x2 has not visited 
the resource where agent  x5 is currently located for 8 
time periods.

The following example, a minimization problem, demon-
strates how the VT is managed and how each agent selects 
its target resource in a guided foraging method. In this case, 
involving four agents, their starting positions and the VT 
are established using Eqs. (1) and (2). The first agent comes 
across three resources, all at the same high visit frequency. 
Of these, the one assigned to agent  x4, with the fastest nec-
tar refill, is selected by the first agent, after applying Eqs. 
(6) and (8) for this scenario, the visit frequencies for the 
resources of agents  x2 and  x3 increase by one, since they 
weren’t visited by agent  x1, and the frequency for the chosen 
resource of  x4 is reset to zero. The method of updating visit 
frequencies and choosing the resource for the first agent is 
shown in Fig. 7a.

The second agent encounters three resources, each 
with the highest visit level. Among these, the resource 

of agent  x4 offers the highest nectar-refilling rate, mak-
ing it the target resource for the second agent. Following 
the execution of Eq. (6) and (8) for this agent, the visit 
levels for the resources of agents  x1 and  x3 are raised by 
1, and the visit level for the target source  x4 is reset to 0. 
The resource of agent  x2 is replaced by the candidate  v2, 
as v2’s nectar-refilling rate is superior to that of source 
 x2. Consequently, the visit level for source  x2 needs to 
be adjusted to the highest visit level plus one for each of 
the other agents, in their respective rows. The process of 
updating the visit level and choosing the target resource 
for the second agent is depicted in Fig. 7b.

For the third agent, it opts for the resource belonging to agent 
 x2 as its target, attributed to its maximum visit level. This leads 
to an increment of 1 in the visit levels for the resources of agents 
 x1 and  x4, while resetting the visit level of the chosen target, 
source  x2, to 0. These modifications in the visit level and the 
selection of the target resource for the third agent are depicted 
in Fig. 7c. In the case of the fourth agent, it selects the resource 

Fig. 7  Updating the VT and 
choosing the desired resource 
during a single iteration while 
executing a guided foraging 
strategy [16]
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of agent  x2 as its target, again due to its highest visit level. This 
action resets the visit level of source  x2 to 0 and increases the 
visit levels of the sources of agents  x1 and  x3 by 1. Simultane-
ously, with the substitution of source  x4 by its candidate  v4, the 
visit level for source  x4 is updated to the highest existing visit 
level plus one for each of the other agents. These alterations in 
visit level and the choice of target resource for the fourth agent 
are illustrated in Fig. 7d. After completing one iteration, the 
updated VT for the agents is showcased in Fig. 7.

2.1.3  Territorial Foraging

Once an agent has fed on the nectar at its chosen resource, it 
tends to look for a new resource rather than revisiting other exist-
ing ones. This behavior allows the agent to easily transition to a 
nearby area within its territory, where it might discover a new 
resource as a potential solution, possibly superior to its current 
one. The mathematical equation that models this local search 
behavior of agents during territorial foraging and identifies a 
candidate resource is formulated as Eq. (9).

In Eq. (9), ‘b’ represents a territorial factor that follows 
a normal distribution N(0, 1) , characterized by a mean of 
0 and a standard deviation of 1. This equation enables any 
agent to efficiently locate a new resource in its immediate 
vicinity, based on its unique position and specialized flight 
abilities. Following the execution of the territorial foraging 
strategy, it’s necessary to update the VT (Fig. 8).

2.1.4  Migration Foraging

When an agent frequently encounters an area lacking 
sufficient food, it generally moves to a more distant 
resource for nourishment. In the context of the AHA, 
a migration coefficient is defined. If the iteration count 
exceeds this coefficient’s predetermined threshold, the 
agent at the least efficient nectar-refilling site will shift 
to a randomly generated resource within the entire search 
area. At this point, the agent abandons its prior resource 
in favor of the new location for sustenance. Following 
this, the VT is updated accordingly. The mathematical 
expression that delineates an agent’s migratory foraging 
behavior, transitioning from the site with minimal nectar-
refilling efficiency to a new, randomly selected source, 
is articulated in Eq. (11).

In Eq. (11), xwor is the resource with the worst nectar-
refilling rate in the population.

(9)vi(t + 1) = xi(t) + b ⋅ D ⋅ xi(t)

(10)b ∼ N(0, 1)

(11)xwor(t + 1) = Low + r ⋅ (Up − Low )

In the guided foraging method, should there be no posi-
tional changes of any resource, agents are inclined to select 
various sources as their targeted resources. This tendency 
enhances exploration and diminishes the risk of prematurely 
converging on local optima. In contrast, the replacement of 
a resource with a new one increases its likelihood of being 
chosen as the target by agents at other resources, thus pro-
moting increased exploitation. As outlined in Eq. (6), the 
initial phases of the iterations emphasize exploration due 
to the considerable distances between the resources. Never-
theless, as the iterations advance, these distances gradually 
reduce, thereby shifting the emphasis to exploitation. In the 
territorial foraging approach, an agent focuses on exploita-
tion within its immediate vicinity. Moreover, the migratory 
foraging behavior of agents indicates their involvement in 
exploration over a larger search area.

In the AHA algorithm framework, there are three primary 
parameters: the size of the population, the maximum number 
of iterations, and a singular additional control parameter that 
determines the implementation of migration. In the most chal-
lenging scenario, where no resources are substituted during the 
guided and territorial foraging phases, an agent will methodi-
cally select each resource as its target in successive iterations, 
guided by the VT. Given a 50% likelihood of choosing between 
guided or territorial foraging, and a similar chance of selecting 
any other source during guided foraging, there is a possibility 
that an agent might revisit the same resource as its target after 
2n iterations, representing a worst-case scenario. Under such 
circumstances, the migration foraging tactic becomes crucial to 
prevent stagnation and to improve exploration within the search 
space. Therefore, it is suggested that the migration coefficient 

Fig. 8  Refreshed VT of agents after single iteration [16]
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be defined in correlation with the population size, as outlined 
in Eq. (12).

2.2  Flowchart and Pseudocode of AHA

AHA commences by initializing a random assortment of solu-
tions along with a VT. Each iteration carries a probability of 50% 
to engage in either guided or territorial foraging. In guided for-
aging, agents gravitate towards their target resources, identified 

(12)M = 2n

based on the VT and nectar-refilling rates. Territorial foraging 
encourages agents to inspect the vicinity around them. Follow-
ing every 2n iterations, migration foraging is initiated. These 
foraging strategies integrate three distinct types of flight skills: 
omnidirectional, diagonal, and axial. The algorithm advances 
iteratively, executing a series of operations and computations, 
until it fulfills the predefined termination criteria. The outcome 
is the determination of the resource with the most favorable 
nectar-refilling rate, which approximates the global optimum. 
The flowchart detailing AHA is presented in Fig. 9.

The pseudocode of AHA is given in Algorithm 1.

Fig. 9  The flowchart of AHA
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Algorithm 1. The pseudocode of AHA [16]
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Since 2022, extensive research has been conducted in 
the area of optimization problem-solving using AHA. To 
ascertain the volume of AHA-related papers, an initial step 
involved downloading all AHA-related research papers. 
Subsequently, these papers were categorized based on 

the proportion of papers in various publications and the 
annual publication rate of AHA papers. In Fig. 10 shows 
the distribution of AHA papers across different jour-
nals. The breakdown is as follows: ScienceDirect (35%), 
IEEE (23%), Springer (16%), MDPI (18%), Tandfonline 
(4%), and other journals (4%). From Fig. 10, it’s evident 
that ScienceDirect holds the largest share of AHA paper 
publications.

In Fig. 11, the number of AHA papers published per year 
is shown. The number of AHA papers published in 2022 
was equal to 76.

The papers were carefully selected based on their titles, 
keywords, and abstracts. The investigation into these papers 
was conducted with meticulous precision, involving a thor-
ough examination of every reliable and international data-
base. Each paper underwent an in-depth review, focusing 
on its content and the algorithm type. Any duplicates were 
identified and eliminated during the screening process. In 
the end, papers related to the AHA algorithm were system-
atically categorized. Figure 12 illustrates the methodology 
of this search and displays the quantity of articles at various 
stages of the process.

To collect papers, a search was made in databases such 
as ScienceDirect, Springer, IEEE, MDPI, Tandfonline, and 
various journals in the field of computer engineering and 
applied engineering. Keywords are used for searching. The 

Fig. 10  Percentage of papers 
published with AHA in different 
publications

Fig. 11  Number of AHA papers published per year
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search terms to find articles related to AHA are shown in 
Fig. 13.

3  Methods of AHA

Figure 14 provides a detailed breakdown of the various clas-
sifications of AHA methods. This classification is systemati-
cally organized into four primary categories: Hybridization, 
Improved, Variants of AHA, and Optimization Problems.

Hybridization: This category focuses on the integration 
of AHA with other methodologies, particularly MAs. It 
explores how AHA can be combined with these algorithms 
to enhance problem-solving capabilities.

Improved: Under this category, various sub-categories 
have been identified, each representing a different strategy 
to enhance the effectiveness of AHA. These sub-categories 
involve refining the original algorithms to produce more effi-
cient and accurate solutions.

Variants of AHA: This classification includes the dif-
ferent forms of AHA, such as Binary and Multi-objective 
AHA. These variants are adapted to suit specific types of 
problems, with Binary AHA addressing binary decision 
problems and Multi-objective AHA dealing with problems 
involving multiple objectives.

Optimization Problems: In this section, the application 
of AHA in solving diverse optimization problems is high-
lighted. It demonstrates the versatility of AHA in finding 

Fig. 12  The Procedure for 
extracting papers belongs to the 
AHA algorithm
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the most optimal solutions in various fields, showcasing its 
practical utility in complex problem-solving scenarios.

3.1  Hybridization with other Meta‑Heuristics

In this section, the combination of AHA with other algo-
rithms is examined. AHA uses MAs to solve the problem 
of getting stuck in the local optimum. AHA used KHA, SA, 
PSO, CHOA, PBA, and AO algorithms.

In the study [39], the Binary Krill Herd-Adaptive Hum-
mingbird Algorithm (BAHA-KHA) is introduced, integrat-
ing the Krill Herd Algorithm (KHA) with the Adaptive 
Agent Algorithm (AHA) specifically for task offloading. 
This hybrid model leverages KHA to bolster the efficiency 
of AHA. Additionally, BAHA-KHA tackles the challenge 
of local optimal task scheduling within Fog Comput-
ing (FC) contexts by utilizing the dynamic voltage and 
frequency scaling (DVFS) strategy. For sequencing task 
execution, it employs the Heterogeneous Earliest Finish 

Fig. 13  The search terms to find articles related to AHA
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Time (HEFT) technique. The core objective of the BAHA-
KHA framework is to curtail resource usage and com-
munication between interdependent tasks, while concur-
rently achieving a reduction in energy consumption. The 
model places a particular focus on workflow scheduling 
within the FC environment to diminish energy expenditure 
and shorten the total execution time (makespan) on fog 
computing resources. The effectiveness of this model was 
validated through tests involving five distinct workflows: 
Montage, CyberShake, LIGO, SIPHT, and Epigenomics. 
Comparative analyses indicate that BAHA-KHA surpasses 
the performance of other established algorithms like AHA, 
KHA, Particle Swarm Optimization (PSO), and Genetic 
Algorithm (GA). In terms of results, the BAHA-KHA 
demonstrated a notable decrease in makespan, approxi-
mately 18%, and a reduction in energy consumption by 
around 24% in comparison to the GA.

Model of [40] introduces an innovative adaptive algo-
rithm, termed AHA–SA, which integrates Simulated 
Annealing (SA) with AHA, specifically for Infinite Impulse 
Response (IIR) systems. This model leverages the combined 
advantages of AHA and SA. The cohesive fusion of AHA 
and SA within the AHA–SA optimizer facilitates effective 
exploration of the search space, swift convergence, and the 
achievement of accurate solutions. Comprehensive experi-
mental evaluations highlight the AHA–SA optimizer’s 

superior performance in comparison to other competing 
algorithms, particularly regarding the quality of solutions 
and the rate of convergence.

The model of [41] details a newly proposed hybrid model 
called AHA-PSO, designed to optimize the intricate com-
posite shape-adjustable generalized cubic Ball curves. The 
algorithm integrates PSO to enhance the population vari-
ability of the base AHA algorithm. This improvement is 
targeted at avoiding local optima traps, thereby elevating 
the precision and acceleration of the AHA’s convergence 
process. The proficiency of the AHA-PSO model is evalu-
ated using twenty-five benchmark test functions along with 
the CEC 2022 test suite. Statistical analysis of the results 
is conducted using the Friedman and Wilcoxon rank sum 
tests, demonstrating the AHA-PSO’s substantial competitive 
advantage and practical relevance compared to other con-
temporary optimization algorithms. Moreover, the research 
explores the creation of complex engineering curves by 
developing Composite Shape-adjustable Generalized Cubic 
Ball (CSGC-Ball) curves. These curves are derived from 
Shape-adjustable Generalized Cubic Ball (SGC-Ball) basis 
functions and are integrated with both broad-spectrum and 
focused shape modifiers, allowing for versatile adjustments 
to both the overall and localized shapes of the curves. A 
specialized optimization model for refining the shapes of 
these CSGC-Ball curves is formulated, concentrating on 

Fig. 14  Classification of AHA methods



A Survey of Artificial Hummingbird Algorithm and Its Variants: Statistical Analysis,…

minimizing the energy value of the curve. The proposed 
AHA-PSO algorithm is applied to address this optimiza-
tion problem. The efficacy and dominance of AHA-PSO in 
managing the optimization challenges of CSGC-Ball curve 
shapes are conclusively proven through two distinct numeri-
cal case studies.

Model of [42] presented a groundbreaking method known 
as the Deep Q-learning Network-based Hybrid Enhanced 
Chimp Artificial Hummingbird (DQN-Hybrid ECAH), spe-
cifically designed to overcome computational difficulties in 
the Internet of Things (IoT) environment. This method rep-
resents a significant leap forward in IoT, combining state-of-
the-art strategies to effectively manage the intricate aspects 
of composite services in this area. The implementation of 
advanced chimp artificial hummingbird techniques ensures 
the efficiency and effectiveness of the DQN-Hybrid ECAH. 
Empirical testing demonstrates this approach’s superiority 
compared to other existing methods. It notably achieves 
impressive results in terms of Packet Delivery Ratio (PDR) 
and throughput, while simultaneously maintaining low jit-
ter and reduced average end-to-end delay. These results 
highlight the DQN-Hybrid ECAH method’s ability to sub-
stantially improve the quality of composite services in IoT 
applications. Overall, the DQN-Hybrid ECAH represents a 
significant breakthrough in the IoT sector, offering a novel 
and proficient solution to the complexities of composite ser-
vices in IoT. This method is not just beneficial for enhancing 
IoT application performance, but it also tackles the chal-
lenges associated with real-time adaptive sensing frequently 
found in these environments.

In a study [43], the innovative Artificial Hummingbird 
Pity Beetle Algorithm (AHPBA) is introduced for the selec-
tion of optimal features and weight parameters. The selected 
features are then inputted into Multi Cascaded Atrous based 
Deep Learning Schemes (MCA-DLS) for classification pur-
poses. AHPBA further refines this process by optimizing the 
variance maximization within MCA-DLS. When compared 
to individual signal classification using One-Dimensional 
Convolutional Neural Networks (1DCNN), Long Short-
Term Memory (LSTM), and Deep Neural Networks (DNN), 
MCA-DLS demonstrates superior performance, achieving 
an average accuracy of 94.51%. The application of AHPBA 
further enhances the average accuracy of MCA-DLS, boost-
ing it to 96.4%. This represents a significant improvement 
over traditional optimization techniques, underscoring the 
effectiveness of AHPBA in optimizing deep-learning clas-
sification schemes.

In [44], the authors introduced a new variation of the Par-
ticle Swarm Optimization (PSO) algorithm. This innovative 
approach, inspired by AHA, aims to refine the algorithm’s 
search capabilities and increase the diversity within the 
algorithm’s population. To evaluate the performance of this 
modified PSO algorithm, dubbed PSO-AHA, the researchers 

utilized two sets of standard testing problems: the CEC-
2010 and CEC-2013 benchmark suites. These benchmarks 
are widely recognized in the field for assessing algorithmic 
effectiveness. It also involved a comprehensive comparison 
of the PSO-AHA model with other well-known PSO vari-
ations. This comparison used shifted and rotated test func-
tions derived from the CEC 2005 and CEC 2014 benchmark 
collections, allowing for a robust evaluation against estab-
lished standards. The PSO-AHA algorithm demonstrated 
superior performance over seven others modified PSO 
algorithms. This research indicates that incorporating AHA 
patterns into the PSO framework could be a significant step 
forward in the development of more efficient and effective 
optimization algorithms.

Acknowledging the challenges such as slow search 
velocity, reduced optimization accuracy, and premature 
convergence inherent in the AHA, a novel variant named 
DGSAHA, integrating the golden sine factor, is pro-
posed [45]. This advanced version of AHA initiates chaos 
mapping to create initial candidate solutions, enhancing 
the diversity of the population and paving the way for a 
broader scope of search. The method also involves intro-
ducing perturbations to individuals through differential 
variation within the population. This technique not only 
augments diversity but also aids in retaining superior indi-
viduals, eliminating weaker ones, and guiding the search 
toward the global optimum, thereby averting early con-
vergence. To ascertain the efficacy of DGSAHA, it was 
tested against 25 classical functions, in addition to the 
CEC2014 and CEC2019 benchmark functions, and its 
performance was compared with various representative 
MAs and their advanced versions. The research further 
investigates the scalability of test functions with variable 
dimensions. Utilizing non-parametric statistical analysis 
and performance indices, it was shown that DGSAHA 
possesses exceptional comprehensive optimization capa-
bilities, markedly improving search speed and conver-
gence accuracy, and exhibiting a strong capacity to avoid 
local optima. Furthermore, the practicality and efficacy 
of DGSAHA are substantiated through three engineering 
case studies concentrating on plane and space truss topol-
ogy optimization issues, demonstrating its applicability in 
engineering contexts.

In the model [46], an innovative feature selection (FS) 
optimization algorithm named AHA-AO, which integrates 
the AHA with Aquila Optimization, is introduced. The 
primary function of AHA-AO is to selectively identify 
the most pertinent features, thereby enhancing the over-
all efficacy of model classification. The performance of 
this methodology was assessed using four distinct data-
sets: ISIC-2016, PH2, Chest − XRay , and Blood-Cell. The 
effectiveness of the AHA-AO algorithm was benchmarked 
against five other widely recognized FS optimization 
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algorithms. The results demonstrated impressive accu-
racy rates: 87.30% for the ISIC-2016 dataset, 97.50% for 
the PH2 dataset, 86.90% for the Chest − XRay dataset, and 
88.60% for the Blood-Cell dataset. These outcomes indi-
cate that AHA-AO surpassed the other optimization tech-
niques in performance. Furthermore, AHA-AO exhibited a 
faster capability in identifying relevant features compared 
to other FS models. This accelerated feature selection 
process contributed to the overall improvement in perfor-
mance and efficiency of the deep learning models being 
used. Thus, the proposed AHA-AO algorithm not only 
advanced the accuracy of the models but also enhanced 
their operational speed.

Model of [47] introduced a new hybrid named HAHA-
SA, which combines the AHA with simulated annealing to 
enhance AHA’s performance. The efficacy of HAHA-SA 
was tested through its application to three constrained engi-
neering design problems. For a comprehensive assessment, 

the outcomes of these applications were benchmarked 
against those obtained using established optimizers. Statis-
tical analyses of these results underscored the superiority of 
HAHA-SA in efficiently tackling complex, multi-constrained 
design optimization challenges.

Table 1 shows the main motivation of algorithms with 
AHA combination. Each algorithm has specific advantages 
and they enhance AHA.

In Fig. 15, the advantages of combining the algorithm 
with AHA are shown.

The goal of hybrid algorithms is to balance the stages of 
exploration and exploitation and discover optimal solutions. 
According to the studies, it can be concluded that the best 
results are achieved by the combined models for complex 
and complicated problems. This means that the power of the 
population of agents in the search space increases and each 
agent finds the best optimal points.

Table 1  The main motivation of algorithms with AHA combination

Refs. Type of the problem Hybrid Motivation Publisher Year

[39] Scientific workflow scheduling in fog 
computing

Krill herd algorithm (KHA) Employing various processes to eval-
uate the BAHA-KHA framework

Springer 2023

[40] Infinite impulse response system 
identification

Simulated annealing The suggested method merges the 
advantages of both AHA and SA 
algorithms, leading to efficient 
exploration of the search space, 
quick convergence, and accurate 
results

IEEE 2023

[41] Shape optimization particle swarm optimization (PSO) A modified AHA termed HAHA, 
is introduced, incorporating three 
tactics for efficiently addressing 
intricate optimization challenges

MDPI 2023

[42] QoS requirements in service-oriented 
model

Chimp optimization algorithm ECAH seeks to enhance the conver-
gence ability and address the issue 
of overestimation in the DQN

ScienceDirect 2023

[43] Adaptive sleep apnea detection model Pity beetle algorithm The Artificial Hummingbird Pity 
Beetle Algorithm (AHPBA) has 
been developed to select the most 
appropriate features and weight 
parameters

IEEE 2023

[44] Dynamic economic dispatch PSO The issue of early convergence in 
PSO is tackled by the suggested 
AHA method, which systemati-
cally and progressively develops the 
initial population

ScienceDirect 2023

[45] truss topology engineering optimiza-
tion

Differential evolution (DE) After each iteration, a differential 
mutation operation is applied to the 
candidate solution

ScienceDirect 2022

[46] Efficient feature selection in medical 
image classification

Aquila optimization The solutions are updated through a 
contest between the functions of the 
AHA and AO algorithms

MDPI 2022

[47] mechanical engineering problems simulated annealing Increasing the effectiveness of AHA 
and improving solutions

Others 2022
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3.2  Improved

In this section, chaotic, crossover, data mining, deep learn-
ing, Lévy flight, opposition-based learning (OBL), and 
quantum models are reviewed.

3.2.1  Chaotic

Model of [48] introduces an innovative fault detection 
method for three-phase transmission lines, combining the 
AHA with the Chaotic Concept. This integration enhances 
the quality of solutions. The paper presents a new algorithm, 
termed the Chaotic AHA, inspired by the flight mechanics 
of hummingbirds and chaotic systems. This algorithm aims 
to precisely identify fault locations in transmission lines. It 
has been tested using a Simulink model in MATLAB for a 
400 kV, 300 km transmission line. Voltage and current data 
are collected from both ends of the transmission line for 
analysis. The proposed algorithm is effective in handling 
different types of symmetric and asymmetric faults.

The study in [49] introduces an Enhanced AHA (EAHA) 
for identifying parameters in the control systems of pumped 
storage units. This algorithm incorporates two main strat-
egies to augment its optimization capabilities. Initially, a 
Chebyshev chaotic map is utilized to set up the artificial 
hummingbirds, thereby boosting the global search profi-
ciency of the initial group. Furthermore, Lévy Flight (LF) 

is incorporated during the guided foraging stage to broaden 
the exploration area and prevent early convergence. The 
effectiveness of the EAHA method is assessed against four 
other algorithms using 23 standard test functions, demon-
strating that EAHA outperforms these algorithms in terms 
of accuracy and speed of convergence. The application of 
EAHA in the parameter identification of control systems 
in pumped storage units further confirms its capability to 
address real-world challenges.

3.2.2  Crossover

Model of [50] discusses a new variant of the AHA, named 
Modified AHA (MAHA), which integrates genetic opera-
tors. The study reveals that MAHA enhances convergence 
speed and yields more effective search outcomes. This inno-
vation was applied for the first time in identifying the global 
maximum power point (MPP) in photovoltaic (PV) systems, 
particularly those affected by shading. Typically, PV systems 
have a single MPP under uniform irradiance, easily located 
using standard tracking systems. However, shading alters 
this, resulting in multiple MPPs, including local and global 
MPPs. Traditional MPP tracking methods fail to differentiate 
between these, often settling on local MPPs. Therefore, an 
advanced MPPT technique utilizing a metaheuristic algo-
rithm is essential to pinpoint the global MPP. Most MPPT 
strategies rely on multiple sensors (like those for voltage, 

Fig. 15  The advantages of combining the algorithm with AHA



 M. Hosseinzadeh et al.

current, irradiance, and temperature), increasing control 
system costs. This research proposes a cost-effective global 
MPPT method for PV systems under shadow conditions, 
using just a single sensor. The efficacy of MAHA is demon-
strated through two shadow scenarios, with results indicating 
the superiority of this single-sensor-based MPPT approach 
for PV systems.

In [51], a novel technique known as the Crossover 
Boosted AHA-based AX-RetinaNet (CAHA-AXRNet ) for 
identifying rice plant diseases is presented. This method 
emphasizes the effective detection and classification of dis-
eases in rice plants. It utilizes the CAHA optimization algo-
rithm to refine the hyperparameters within the AX-RetinaNet 
framework. The effectiveness of this approach is evaluated 
using three distinct disease detection datasets, including 
rice plant, rice leaf, and rice disease datasets, to distinguish 
between healthy and diseased rice plants. The method’s 
proficiency in disease detection is gauged using critical 
performance metrics such as precision, FF1 score accuracy, 
specificity, and recall. Demonstrating superior performance 
over existing methods for detecting rice plant diseases, the 
CAHA-AXRNet methodology achieves a notable accuracy 
rate of 98.1%.

3.2.3  Data Mining

In [52], an Enhanced AHA (EAHA) is used to optimize the 
parameters of a Support Vector Machine (SVM) for classify-
ing the safety levels of environments by integrating various 
environmental factors. The EAHA addresses the original 
AHA’s limitations, namely its inadequate global exploration 
capability and slow convergence. This is achieved through 
a combination of strategies: initializing the population with 
Tent chaos mapping and backward learning, employing a 
Lévy Flight (LF) strategy for enhanced search capacity dur-
ing the guided foraging phase, and utilizing a simple method 
to update the worst value at each iteration’s end. Utilizing 
this improved algorithm, the EAHA-SVM safety warning 
model is developed to categorize and forecast the safety 
of coal mine environments into four distinct classes. Sepa-
rate simulations of the EAHA algorithm and the EAHA-
SVM model demonstrate that the EAHA algorithm shows 
enhanced convergence speed and search accuracy, and the 
performance of the EAHA-SVM model is significantly 
better.

Model of [53] introduces a machine learning model 
designed to forecast the impact of  Al2O3 nanoparticle con-
centration on the wear rates of Cu-Al2O3 nanocomposites, 
created through an in situ chemical method. This model is 
an advanced version of the Random Vector Functional Link 
(RVFL) algorithm, enhanced by the AHA. The AHA’s role 
is to optimize the RVFL configuration, thereby improv-
ing the prediction accuracy for  Al2O3 nanoparticles. The 

modified RVFL-AHA model demonstrates high proficiency 
in predicting wear rates for various composites under differ-
ent wear loads and speeds. It achieves remarkable accuracy 
levels, nearing 100% in training and 99.5% in testing, as 
measured by the coefficient of determination R2.

3.2.4  Deep Learning

Model of [54] introduces the HCNN + EHOA + KH-AES 
algorithm for effective attack detection in IoT. It aims to 
improve the detection of attacks promptly. This method 
improves security and accuracy in identifying IoT attacks 
in urban areas using an Intrusion Detection System (IDS) 
equipped with Hybrid Convolutional Neural Networks 
(HCNN). The process involves pre-processing and fea-
ture selection (FS) using the Entropy-Hummingbird Opti-
mization Algorithm (EHOA). For secure data exchanges, 
the Krill Herd-Advanced Encryption Standard (KH-AES) 
algorithm is employed. The NSL-KDD dataset was used for 
implementing the IDS. Data classification covered six attack 
types: U2R, DoS, R2L, Probing, normal, and unknown. The 
classification accuracy is significantly influenced by the 
weights in the HCNN layers. This proposed method was 
compared with existing methods in terms of FS, classifica-
tion, and data share security, demonstrating notable results.

Article [55] presents a hybrid machine learning model 
that merges a Long Short-term Memory (LSTM) neural 
network with AHA optimization to forecast the permeate 
flow and energy efficiency of a Reverse Osmosis (RO) 
unit. For predicting energy savings, the model uses recov-
ery ratio and system pressure as inputs, while system pres-
sure alone is used for permeate flow predictions. The AHA 
algorithm enhances the LSTM’s performance by fine-tun-
ing its parameters. The improved model showed a notable 
increase in prediction accuracy over the standard LSTM 
model. In the power saving prediction test phase, the 
LSTM-AHA model achieved a coefficient of determina-
tion of 0.997, compared to 0.981 for the standalone LSTM. 
For permeate flow prediction, these figures were 0.992 
for LSTM-AHA and 0.97 for LSTM. Furthermore, it was 
observed that the RO unit’s power consumption decreased 
as the recovery ratio increased, with the most significant 
power savings of over 85% occurring at a recovery ratio 
of 10%.

Figure 16 shows the flowchart of LSTM-AHA.
The model of [56] introduced a novel approach combin-

ing a hybrid convolutional neural network-recurrent neural 
network with AHA (HCNNRNN-AHB). This technique 
is adept at categorizing fundus images into two groups: 
exudates and non-exudates. Initially, to reduce false posi-
tives, optic discs are eliminated using the Hough trans-
form technique. Following this, the system extracts color 
and texture features from the fundus images to distinguish 
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between exudates and non-exudates. The HCNNRNN-AHB 
approach, which merges CNN and RNN models with AHB 
optimization, then conducts the classification. The inclusion 
of the AHB algorithm optimizes CNN and RNN parameters, 
thus improving the model’s predictive accuracy. Simulation 
tests are carried out to evaluate the method’s effectiveness 
using various metrics, including accuracy, sensitivity, speci-
ficity, F-score, and area under the curve score. The results 
demonstrate that the HCNNRNN-AHB method attains a 
high classification accuracy of approximately 97.4%.

Model of [57] suggested a three-part approach for devel-
oping an advanced intelligent video surveillance system 
through the use of hybrid deep learning methods. The 
approach begins with a Modified Barnacles Mating Opti-
mization (MBMO) algorithm, designed to segment objects 

from video frames while tackling issues of redundancy and 
temporal complexity. Next, a Chaotic Hummingbird Opti-
mization (CHO) algorithm is applied to enhance feature 
optimization, addressing problems related to data dimen-
sionality. The key innovation is the integration of a Hybrid 
Convolutional Neural Network (CNN) with a Supreme 
Gradient Boosting (hybrid CNN-SGboost ) classifier, aimed 
at achieving accurate object prediction and detection. This 
system is tested against benchmark datasets such as Penn-
Fudan pedestrians, Daimler pedestrian segmentation, and 
Inria person. It’s compared with leading alternatives using 
standard evaluation metrics. The simulation results under-
score the hybrid model’s effectiveness, marking a notable 
improvement in precise object detection for video surveil-
lance systems.

Fig. 16  The flowchart of 
LSTM-AHA
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Model of [58] introduced a new technique for hyper-
parameter optimization (HPO) of a CNN designed 
for arrhythmia classification, employing a modified 
metaheuristic algorithm. This method features a unique 
variant of the MH algorithm, called the memory-enhanced 
AHA. It includes an additional memory unit that stores 
solution evaluations, significantly cutting down computa-
tion time. Furthermore, the research introduces a novel 
fitness function that takes into account both the accuracy 
rate and the total parameter count of each candidate net-
work. The method was tested using raw ECG data from 
the MIT-BIH arrhythmia database. When compared to five 
other MH methods, the proposed approach demonstrated 
competitive or superior performance, achieving a classifi-
cation accuracy of up to 98.87%.

The model of [59] introduced a novel meta-heuristic 
algorithm, the AHA, designed for waste classification based 
on feature selection (FS). However, AHA faces challenges 
like potential entrapment in local optima and slow conver-
gence rates. To address these issues, the paper presents two 
enhanced versions: AHA with Random Opposition-Based 
Learning (AHA-ROBL) and AHA with Opposition-Based 
Learning (AHA-OBL). These variants improve the exploi-
tation phase by employing ROBL and OBL techniques, 
respectively, to avoid local optima and quicken convergence. 
The primary goal of this research is to apply AHA-ROBL 

and AHA-OBL for selecting pertinent deep features from 
two pre-trained CNN models, VGG19 and ResNet20 , for 
efficient waste classification. The TrashNet dataset serves 
as the benchmark for testing the performance of these pro-
posed methods. The performance of AHA-ROBL and AHA-
OBL is assessed through various metrics. The experimental 
results validate the superiority of these proposed algorithms 
over the compared ones, especially in producing the optimal 
number of selected features with the highest precision.

Model of [60] introduced a novel model, AHA-CNN, 
designed for extracting features and classifying cancer dis-
eases. This model, AHB-CNN, determines the likelihood 
of cancer in patients based on data gathered from sensors. 
The outcomes of this analysis are subsequently transmitted 
to hospital management for further evaluation. A signifi-
cant focus of this study is on the application of the Rivest-
Shamir-Adleman (RSA) encryption method. The choice of 
RSA is attributed to its key advantages, including asymmet-
ric encryption capabilities, user-friendliness, straightforward 
implementation, and the high level of security it offers, par-
ticularly due to the complexity involved in factoring large 
prime numbers.

Figure 17 shows the advantages of combining AHA with 
deep learning networks.

One of the common applications of AHA algorithm in 
deep learning techniques is to optimize hyperparameters. 
Deep learning techniques, especially LSTM and CNN mod-
els, have many meta-parameters such as learning rate, batch 
size, number of layers, etc. The AHA algorithm can effec-
tively find the best value for meta-parameters in the high-
dimensional search space, which potentially leads to better 
performance of LSTM and CNN models [61]. To process 
the image data by CNN, the AHA algorithm can select the 
optimal feature. The AHA algorithm helps to find a subset 
of similar features to train CNN layers, thus reducing the 
dimensionality of the input space and improving computa-
tional efficiency. AHA algorithm can help optimal configu-
ration for LSTM or CNN models. These settings include 
number of layers, size of layers, number of activation func-
tions, etc.

3.2.5  Lévy Flight

Lévy Flight (LF) is a type of random walk where the lengths 
of steps adhere to the Lévy distribution. This distribution 
stands apart from normal and Cauchy distributions due to its 
heavy-tailed nature, implying a greater likelihood of retain-
ing the same position. Under similar conditions, LF, guided 
by the Lévy distribution, covers a substantially broader 
search area compared to Brownian motion, which operates 
under a uniform distribution. The AHA is recognized as a 
population optimization algorithm noted for its rapid com-
putation, minimal parameters, and ease of implementation. 

Fig. 17  The advantages of combining AHA with deep learning net-
works
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Nonetheless, its broader application is somewhat constrained 
due to two primary shortcomings: a tendency towards pre-
mature convergence and the risk of getting trapped in local 
minima. To address these issues, numerous enhancements 
have been proposed and implemented by researchers. Incor-
porating LF into the AHA enhances its efficiency in explor-
ing the search space, effectively mitigating these limitations.

Model of [62] introduced an enhanced version of the 
AHA, termed Adaptive Levy AHA (ALAHA). This new 
variant incorporates adaptive search strategies and LF. The 
algorithm begins by employing Kent mapping in its initial 
phase to distribute the hummingbird agents. Subsequently, 
LF is integrated as an adaptive weighting factor. This inte-
gration serves to modify the step size during the AHA’s 
guided and regional search phases, thereby augmenting the 
global search capabilities of the population. Furthermore, 
the algorithm implements an adaptive distance search around 
individual hummingbirds based on the convergence of the 
population, aiming to refine the search accuracy. To evaluate 
the performance of ALAHA, 10 classical benchmark test 
functions are utilized. The algorithm’s effectiveness is then 
compared with other algorithms from various perspectives. 
The outcomes of these tests indicate notable enhancements 
in ALAHA, particularly in terms of superior search capabil-
ity, stability, and robustness. This improvement suggests that 
the ALAHA algorithm represents a significant advancement 
in optimization techniques.

Model of [63] presented an Improved AHA (IAHA) 
model, designed specifically to minimize total fuel gen-
eration costs, environmental pollution, and overall power 
losses in AC-Multi-Terminal Direct Current (AC-MTDC) 
power systems. This advanced IAHA incorporates various 
Territorial Foraging Tactics (TFTs) along with a Linear 
Control Process (LCP), effectively enhancing both local 
and global search capabilities. In contrast to the traditional 
AHA, the IAHA was tested on the modified IEEE 57-bus 
and 30-bus hybrid AC and multi-terminal HVDC power sys-
tems for assessment. The simulation results highlighted the 
IAHA’s considerable economic, environmental, and techni-
cal advantages. Particularly, within the IEEE 57-bus hybrid 
AC-MTDC power system, IAHA realized a notable reduc-
tion in fuel costs, emissions, and losses by 22%, 59.51%, 
and 71.83%, respectively, compared to the baseline scenario. 
Similarly, for the IEEE 30-bus hybrid AC-MTDC system, 
IAHA demonstrated decreases in fuel costs, emissions, and 
losses by 17.01%, 16.04%, and 28.49%, respectively, relative 
to the original case. These findings emphasize the IAHA’s 
efficiency in enhancing performance in AC-MTDC power 
systems.

The AHA often struggles with a balance between explo-
ration and exploitation abilities, leading to premature 
convergence and low precision. Model of [64] proposed 
a multi-strategy enhanced version of AHA, termed the 

LCAHA (Levy Chaotic AHA), which incorporates a sinu-
soidal chaotic map strategy, LF, and novel cross and update 
foraging strategies. Initially, the LCAHA employs the sinu-
soidal chaotic map strategy during initialization, enhanc-
ing the population’s ergodicity. The integration of LF then 
improves the population’s diversity, controls premature con-
vergence, and increases stability. Furthermore, the introduc-
tion of two innovative strategies, cross-foraging and update 
foraging, further augments the algorithm’s exploratory and 
developmental capabilities. These three tactics collabo-
ratively enhance the comprehensive efficacy of the AHA. 
The efficacy of LCAHA is rigorously tested on 23 classical 
benchmark test suites, including CEC2017, CEC2019, and 
CEC2020, as well as six engineering optimization scenar-
ios. The quantitative empirical findings highlight LCAHA’s 
potential in addressing intricate optimization challenges. 
Notably, the algorithm is applied to two spacecraft trajec-
tory optimization cases, where its practical applicability and 
potential are convincingly demonstrated through experimen-
tal results.

Model of [65] introduced a refined version of the 
improved AHA (IAHA), specifically designed to address 
the task scheduling problem. The IAHA incorporates a set 
of innovative initialization rules, including global selection, 
local selection, and random selection, which collectively 
aim to enhance the quality of the initial population. Fur-
thermore, the algorithm employs LF to improve both guided 

Fig. 18  The combination of LF and SSS with AHA
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and territorial foraging. Another key feature of IAHA is the 
integration of the Simplex Search Strategy (SSS), which is 
utilized to augment migration foraging, thereby boosting the 
algorithm’s capability to seek optimal solutions. To fine-
tune the IAHA, orthogonal tests are conducted to identify 
the most effective combination of parameters. Furthermore, 
the performance of IAHA is evaluated through comparative 
tests against various versions of AHA and other algorithms, 
using both a benchmark case and a simulated crowdsourcing 
scenario. The experimental findings demonstrate that the 
IAHA is capable of consistently obtaining superior solutions 
in many instances, showcasing its efficiency and economic 
viability as a solution to task scheduling challenges. Fig-
ure 18 shows the combination of LF and SSS with AHA.

The model of [66] introduced a novel parameter estima-
tion technique utilizing a recent metaheuristic algorithm 
known as the AHA. The simplicity and ease of implemen-
tation of AHA make it an attractive choice for addressing 
parameter estimation challenges. However, a notable draw-
back of AHA is its slow convergence speed, leading to an 
excessive number of function evaluations before achiev-
ing the desired results. To counteract these limitations, the 

study proposes two enhancements to the classical AHA, 
resulting in a new variant named Improved AHA (IAHA). 
This variant is specifically tailored to address the param-
eter estimation issues in Proton Exchange Membrane Fuel 
Cell (PEMFC) stacks. IAHA was utilized to determine uni-
dentified parameters in six distinct PEMFC stacks, and its 
effectiveness was compared with 11 renowned optimizers. 
The criteria for comparison included accuracy of outcomes, 
convergence speed, stability, and CPU time. The empiri-
cal findings indicate that IAHA exceeds the performance 
of rival algorithms in all aspects, except for CPU time, 
where its performance is akin to that of other methods. This 
demonstrates IAHA’s effectiveness in enhancing parameter 
estimation in PEMFC stacks while maintaining reasonable 
computational efficiency.

The model of [67] addressed the complex issue of sto-
chastic optimal reactive power dispatch (ORPD) in the 
context of renewable energy sources like solar PV, wind 
turbines, and hydropower generation systems, which are 
inherently uncertain. To represent the variability in time-var-
ying load demand and power generation from these renew-
able sources, the study employs several probability density 

Fig. 19  The advantages of com-
bining AHA with levy flight

Table 2  Improvement of AHA by levy flight method

Refs. Models Objective Advantages Disadvantages

[62] Adaptive search and levy flight 
AHA (ALAHA)

benchmark test function Population diversity Achieve a solution in the final 
iterationsGood convergence

[63] Improved artificial hummingbird 
optimizer (IAHO)

Economic emission operation Strong global searchability High execution time
Good convergence

[64] Lévy flight and chaotic map AHA 
(LCAHA)

Engineering applications Faster convergence Achieve a solution in the final 
iterationsGood convergence

[65] Improved artificial hummingbird 
optimizer (IAHO)

Task scheduling Good convergence High execution time

[66] Improved artificial hummingbird 
optimizer (IAHO)

Optimization of engineering 
problems

Balance between explora-
tion and exploitation

Slow convergence rate

[67] AHA Stochastic optimal reactive power 
dispatch

Good convergence High execution time
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functions (PDFs), including normal, lognormal, Weibull, 
and Gumbel distributions. A Monte Carlo simulations-based 
method is then used to generate an appropriate number of 
scenarios, effectively reducing the complexity of these sto-
chastic models. The second major contribution of this paper 
is the development of an enhanced version of the AHA, 
named Modified AHA (MAHA). This improved algorithm 
incorporates LF motion and distance bandwidth motion 
around the best solution. These additions are designed to 
augment both the exploratory and exploitative capabilities 
of the traditional AHA and prevent it from getting trapped 
in local minima. The efficacy of MAHA is rigorously tested 
on the IEEE 30-bus system, focusing on reducing active 
power loss, improving voltage profiles, and enhancing volt-
age stability. The results demonstrate that MAHA outper-
forms several well-known conventional algorithms like the 
original AHA, GWO, SCA, Dragonfly Optimization (DO), 
Black Widow Optimization (BWO), and other cutting-edge 
algorithms in solving the ORPD problem. This indicates the 
proposed MAHA’s effectiveness and superiority in this field.

Figure 19 shows the advantages of combining AHA with 
levy flight.

Table 2 shows the improvement of AHA by the LF. Items 
such as the advantages and disadvantages of levy flights have 
been analyzed.

3.2.6  Opposition‑Based Learning

The novel oppositional chaotic AHA (OCAHA) was effec-
tively employed for solving both single-objective (SOP) 
and multi-objective (MOP) design optimization challenges 
related to forced-draft counter-flow evaporative cooling 
towers [68]. For the SOP framework, Merkel’s method was 
utilized to determine the geometric dimensions of the cool-
ing tower. This determination was based on correlations of 
the overall mass-transfer coefficient and the loss coefficient 
pertinent to the film packing within the tower fill. The algo-
rithm focused on two primary decision variables: the mass 
flow rate of the cooling air and the cross-sectional area of 
the tower fill. The outcome was a notable average reduction 
of 2.37% in the total annual cost compared to the baseline 
study, achieved through enhanced convergence speed in all 
test scenarios. In the context of MOP, the algorithm concur-
rently optimized four critical performance metrics for wire-
mesh-filled cooling towers. These metrics encompassed 
the cooling range, the tower characteristic ratio, the tower 
effectiveness, and the water evaporation rate, to maximize 
the overall efficiency. The decision variables in this sce-
nario were the mass flow rates of water and air. OCAHA 
demonstrated superior performance in identifying the most 
optimized solution compared to other designs, achieving 
the most effective overall optimization results from previ-
ous research.

Model of [69] introduced an innovative method for 
designing a fractional order proportional-integral-derivative 
(FOPID) controller. This design is centered around a modi-
fied version of the elite opposition-based AHA (m-AHA), 
which is tailored for the optimal tuning of controller param-
eters. This novel approach has shown superior performance 
over existing optimization techniques in benchmark func-
tions. Its effectiveness is further demonstrated in the appli-
cation of cruise control systems, where it brings enhanced 
flexibility and precision. This research makes a significant 
contribution to the field of autonomous vehicle technology. 
It presents a new and efficient strategy for the design of 
FOPID controllers, which has the potential to improve the 
driving experience by ensuring greater safety and reliability. 
The integration of Opposition-Based Learning (OBL) with 
AHA, as illustrated in Fig. 20 of the study, is a key aspect of 
this advanced controller design approach.

In [70], a novel iteration of the AHA is presented, named 
CODA. This iteration enhances AHA by integrating Oppo-
sition-Based Learning (OBL), a chaos mechanism, and the 
Differential Evolution (DE) algorithm. The DE algorithm is 
particularly utilized to optimize the configuration of chaotic 
maps, and OBL is employed to determine the best initial 
population. CODA’s advanced capabilities enable it to effec-
tively avoid local optima and improve the exploration of spe-
cific areas of interest. CODA’s application is demonstrated 

Fig. 20  The combination of OBL with AHA
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in the task scheduling of fog computing systems, where it 
is used in conjunction with the Analytic Hierarchy Process 
(AHP) to ascertain task priorities. The primary objectives 
of this task scheduling are to minimize energy consumption, 
duration, and costs. The results of these simulations indicate 
that CODA outperforms other established meta-heuristic 
algorithms in terms of energy efficiency, makespan (total 
completion time), and cost. Compared to existing algorithms 
such as AHA, Gravitational Search Algorithm (GSA), MFO, 
SOA, SSA, WOA, SCA, PSO, MVO, and DE, CODA dem-
onstrates superior performance in meeting the demands of 
the task scheduling process. On average, the CODA-based 
task scheduling model surpasses other research studies, 
achieving a 46% improvement in makespan, an 8% reduc-
tion in cost, and a 41% decrease in energy consumption.

Model of [71] proposed an enhanced version of the 
AHA, named Adaptive Opposition AHA (AOAHA), 
which incorporates an adaptive opposition approach to 
decide the usage of opposition-based learning (OBL). 
This enhancement, featuring an adaptive updating 
mechanism, is designed to enable the original algorithm 
to achieve more precise results, especially when deal-
ing with complex problems. The AOAHA underwent 
thorough assessment through 23 benchmark functions, 
where its performance was meticulously compared not 
only with the original AHA but also with other modern 
optimization algorithms. These comparisons included an 
evaluation against the Supply–Demand-Based Optimi-
zation (SDO), the Wild Horse Optimizer (WHO), and 
the TSA, offering a comprehensive analysis of the capa-
bilities of both its predecessor and current contempo-
raries in the field. One of the key applications of the 
AOAHA was in the development of accurate models for 
solar cell systems, a crucial component in solar power 
plants, aiming to boost their overall efficiency. The 
research involved conducting experiments on both static 
and dynamic models of solar cell systems, ensuring that 
the proposed model accurately reflects real-world sce-
narios. The results of these applications were assessed 
using multiple methods, including comparisons with 
other advanced and effective optimization techniques. 
The AOAHA showed its potential through its impressive 
results in these applied tests, indicating its effectiveness 
in enhancing the accuracy and efficiency of complex 
system models.

3.2.7  Quantum

Model of [72] explored the synthesis of two machine-learn-
ing techniques, namely Random Vector Functional Link 
(RVFL) and Relevance Vector Machine (RVM), with two 
innovative optimization algorithms: the Quantum-based 

Avian Navigation Optimizer Algorithm (QANA) and the 
AHA. This integrative approach is deployed to forecast 
evapotranspiration data from two climatic stations situated 
in the semi-arid regions of Pakistan, utilizing the optimized 
machine learning models. The combined RVFL and RVM 
models, optimized with QANA and AHA, are deployed to 
forecast evapotranspiration data. To evaluate the precision 
of these models, the study employs four statistical meas-
ures: Root Mean Square Errors (RMSE), Mean Absolute 
Errors, the Determination Coefficient, and the Nash–Sut-
cliffe Efficiency. These metrics are used to assess the per-
formance across different input combinations, which include 
variables like minimum temperature, maximum temperature, 
and extraterrestrial radiation. Additionally, the study inves-
tigates the effects of varying data segmentation strategies 
and periodicity on the models’ effectiveness. Amongst the 
tested models, the RVM-QANA, particularly when config-
ured with a 75–25% training-to-test data split and incorpo-
rating a comprehensive range of inputs (including minimum 
temperature, maximum temperature, extraterrestrial radia-
tion, and MN). This outcome highlights the RVM-QANA 
model’s capability for accurately predicting climatic data in 
semi-arid environments.

Model of [73] presented a refined version of the AHA 
for feature selection (FS), incorporating elements of 
Quantum-based optimization. The primary objective 
of this Quantum-enhanced AHA (QAHA) is to boost 
the population’s ability to explore and identify viable 
regions more effectively. To validate the effectiveness 
of the QAHA in FS, extensive experiments were carried 
out using eighteen datasets from the UCI machine learn-
ing repository. In these tests, QAHA was benchmarked 
against other FS methods, where its efficiency was firmly 
established. Furthermore, the study extended its exami-
nation to a real-world context by applying QAHA to four 
datasets from the Smart Internet of Things (SIoT). The 
performance results from these SIoT datasets demon-
strated QAHA’s high efficiency in improving accuracy 
through the reduction of feature numbers. Specifically, in 
the UCI dataset experiments, QAHA achieved an impres-
sive average accuracy of 93% across the eighteen data-
sets. For the SIoT datasets, QAHA showed accuracies of 
approximately 90.7%, 98.7%, 92.2%, and 84.6% for the 
Trajectory, GAS sensors, Hepatitis, and MovementAAL 
datasets, respectively. These results highlight QAHA’s 
potential in effectively handling both academic and real-
world data scenarios.

Figure  21 shows the percentage of improved AHA 
based on different methods. The largest percentage belongs 
to deep learning. Deep learning has used AHA to improve 
parameters and training.
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3.3  Variants of AHA

3.3.1  Binary

In [74], the AHA demonstrated superior performance 
compared to several traditional techniques when ana-
lyzed using the Wilcoxon test. This algorithm has been 
successfully applied to various practical problems, par-
ticularly in the energy sector. The study is motivated 
by the binary codes of various optimization algorithms 
provided by different researchers, leading to the devel-
opment of a binary version of the AHA specifically for 
tackling discrete optimization problems. The effective-
ness of this binary AHA is assessed through benchmark 
functions, and its results are juxtaposed with those of 
the original AHA across various dimensions. This com-
parative analysis serves to highlight the strengths and 
applications of the binary AHA in solving discrete opti-
mization challenges.

Model of [75] introduced the Pareto-Discrete Hum-
mingbird Algorithm (PDHA), a novel approach specifi-
cally designed to effectively solve the Partial Sequence-
Dependent Disassembly Line Balancing Problem 
(PSD-DLBP). The PDHA operates in two key stages: a 
self-searching stage and an information-interacting stage. 
These stages are structured to create a balance between 
the algorithm’s exploration and exploitation capabilities. 

The performance and superiority of the PDHA were thor-
oughly evaluated by comparing it with four other models 
across two examples of varying scales. Furthermore, it 
was demonstrated that the PDHA excels in addressing the 
challenges of the PSD-DLBP, indicating its effectiveness 
and potential for practical applications in this domain.

3.3.2  Multi‑Objective

In many real-world scenarios, particularly in science and 
engineering, there is a need to address problems involv-
ing multiple objectives simultaneously. These objectives 
often conflict with each other, making it challenging to 
achieve a balanced resolution for each goal. Such prob-
lems are known as multi-objective optimization problems 
(MOOPs). In MOPs, solutions that are not outperformed 
on all objectives by other solutions are referred to as 
Pareto optimal solutions. In the context of multi-objec-
tive optimization (MOO), the ideal solution represents a 
compromise among various feasible options. This solu-
tion is a trade-off, meaning it might not be the absolute 
best for any single objective but is optimal when consid-
ering all objectives collectively. Typically, a mathemati-
cal formulation of a MOO problem involves m objec-
tives, n variables, q equality constraints, and p inequality 
constraints. This formulation is generally encapsulated 
in what is referred to as Eq. (13).

Fig. 21  Percentage diagram of 
Improved AHA based on differ-
ent methods
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Owing to the fragmented nature of the Pareto front (PF) 
and the intricacy of the objective, locating precise solutions 
within a limited timeframe can be an expensive endeavor. In 
such cases, seeking an approximate solution is often more 
feasible for practical purposes. These types of challenges can 
be effectively addressed through population-based optimi-
zation techniques, which are capable of generating a set of 
equilibrium solutions.

This section describes the MOAHA method for Multi-
Objective Optimization (MOO) problems. It incorporates 
three primary components [76]:

1. An external archive is integrated into MOAHA to pre-
serve the best non-dominated (ND) solutions found at 
each search step.

2. During the optimization, the archive is efficiently 
managed using the Dynamic Elimination-Based 
Crowding Distance (DECD) method. This technique, 
known for its effectiveness and lack of need for addi-
tional parameters, is employed to enhance solution 
diversity. It involves removing fewer essential solu-
tions with lower crowding distances to maintain a 
constant-sized Evolutionary Algorithm (EA). When a 
solution with the smallest current crowding distance 
is taken out of the Pareto optimal set (PS), only the 
crowding distances of adjacent solutions need updat-
ing, while the rest remain the same. Before removing 
the ith solution, which has the latest lowest crowd-
ing distance, the crowding distances of the solutions 
immediately before and after this solution are recal-
culated according to Eq. (14) and Eq. (15) [77].

  After the ith solution, which has the most recently 
calculated lowest crowding distance (CD), is removed, 
the CDs of the solutions immediately before and after 
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and Eq. (17) for the solution succeeding it [77].
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3. In the phase of updating solutions, the refinement of 

non-dominated solutions is carried out using a strategy 
that employs the non-dominated sorting (NDS) tech-
nique. This method is vital in improving the convergence 
rate of the solutions.
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Fig. 22  The basic working flowchart of MOAHA-DECD [77]
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 In the context of a MOO problem, the Multi-Objective 
AHA (MOAHA) initially establishes an Efficient Archive 
(EA) with a set number and creates a random population 
of Hummingbird Behaviors (HBs). Following this, a VT is 
initiated, and all non-dominated solutions from the initial 
population are recorded in the archive. During each itera-
tion, MOAHA randomly chooses between territorial and 
directed foraging with a 50% probability. In guided forag-
ing, each HB alters its location based on the target Feature 
Set (FS) determined by the VT and dominance relation. 
Conversely, in territorial foraging, an HB searches within 
its local neighborhood. After completing a foraging round, 
the solution is updated by refreshing the VT using the 
non-dominated sorting (NDS) method. In migrating for-
aging, solutions at the worst non-dominated (ND) points 
are randomly reinitialized within the search area, and the 
VT is modified accordingly. At the end of each iteration, 
ND solutions from the new population are added to the 
archive. If the archive size exceeds its predetermined limit, 
the Efficient Archive technique based on dynamic elimina-
tion-based crowding distance (DECD) is employed.

The aforementioned procedures are iteratively executed 
until they fulfill the pre-established limit of iterations. 
Consequently, this results in the creation of an archive that 
encompasses the Pareto Front (PF), featuring the optimum 
non-dominated solutions. Figure 21 illustrates the funda-
mental workflow of MOAHA-DECD for a single MOOP, 
with each MOOP generating a unique Pareto front. The 
Pareto optimal solutions are sets of non-dominated or 
equally good solutions that improve one objective function 
and lead to a trade-off with another. A comparative analysis 
of MOOPs in different scenarios, particularly in reducing 
energy consumption, was conducted. This analysis provides 
decision-makers with a range of solutions, enabling them to 
apply their industrial insight to select the most “preferred” 
solution for their specific context.

Figure  22 shows the basic working flowchart of 
MOAHA-DECD.

The model of [78] introduced an innovative multi-objec-
tive AHA method designed to enhance antenna isolation 
through the optimization of each antenna’s geometric param-
eters. It employs an efficient chaotic sampling technique for 
generating discrete random samples. The effectiveness of 
this tuning approach is demonstrated using an antenna array 
as a case study. Findings indicate that this proposed method 
successfully improves antenna isolation without the need for 
extra decoupling mechanisms.

The model of [79] introduced a novel Multi-Objective 
AHA (MOAHA) algorithm. This algorithm mimics the 
unique flight abilities and smart foraging strategies of 
hummingbirds in nature. It utilizes three distinct types of 
flight maneuvers; axial, oblique, and all-around in its food 

search methodologies. The MOAHA is evaluated through 
five practical engineering case studies. To assess its per-
formance, various metrics like spacing (S), Inverted Gen-
erational Distance (IGD), and Maximum Spread (MS) are 
employed, comparing MOAHA with other algorithms like 
MOPSO, MOWOA, and MOHHO. The results indicate that 
the proposed algorithm is capable of generating high-quality 
Pareto fronts, exhibiting notable precision, uniformity, and 
highly competitive results in both qualitative and quantita-
tive terms.

The model of [80] introduces a new Multi-objective 
AHA (MOAHA) based approach for optimizing the allo-
cation and sizing of Renewable Distributed Generators 
(RDG) and the operation strategy of Battery Energy Stor-
age Systems (BESS) to improve the Voltage Stability Margin 
(VSM). This method underwent rigorous testing on three 
different electrical systems: the IEEE 33-bus system, the 
IEEE 69-bus system, and the distribution grid on Masirah 
Island in Oman. The Pareto fronts produced by this approach 
demonstrated superior effectiveness when compared with 
results from four contemporary metaheuristic techniques in 
this domain. These techniques include the Multi-objective 
Multi-verse Optimization (MOMVO), the Multi-objective 
Equilibrium Optimization Technique (MOEOT), the Multi-
objective Particle Swarm Optimization (MOPSO), and the 
Non-dominated Sorting Genetic Algorithm-III (NSGA-III). 
The comparative analysis showcased this method’s enhanced 
efficiency in optimizing multiple objectives simultaneously. 
The results demonstrated that the optimal Pareto solution 
candidates (PSC) generated by MOAHA successfully met 
the VSM constraints and cost objectives across all three test 
systems. Additionally, they facilitated substantial energy 
transfer during both peak and off-peak times. Moreover, all 
PSCs successfully prevented voltage violations, and there 
was a notable reduction in active power losses during each 
optimization period and total energy losses overall.

The model of [81] presented an Integrated Energy Man-
agement System (IEMS) framed as a mixed-integer non-
linear problem, addressed using a Multi-objective AHA 
(MOAHA). This IEMS is designed to handle the variabil-
ity and uncertainty of Renewable Energy Sources (RES) 
and is evaluated under four distinct scenarios: good, bad, 
average weather, and a forecast based on a stochastic RES 
model. The efficacy of this IEMS is compared in-depth with 
the traditional energy management strategy (CEMS), both 
with and without the inclusion of the Home Hybrid Battery 
(HHB) storage system and Demand Response (DR). Further-
more, the performance of MOAHA is compared against the 
advanced Multi-objective PSO (MOPSO). The assessment 
employs four quality metrics to measure the advantages of 
the proposed IEMS: Renewable Contribution Factor (RCF), 
Greenhouse Gas (GHG) emissions, Loss of Power Supply 
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Probability (LPSP), and Saving Cost (SC). The findings 
indicate that the MOAHA model outperforms the other 
models in these comparisons.

This study proposes a method for stabilizing a nonlinear 
ball-wheel system using a fuzzy fractional-order adaptive 
robust feedback linearization control technique [82]. In this 
method, a controller utilizing feedback linearization adopts 
a decoupled sliding mode to determine the sliding surfaces 
and adjust the adaptive coefficients. Following this, the 
controller’s efficiency is further improved by incorporat-
ing fractional-order calculus and systems based on fuzzy 
logic. Additionally, the multi-objective AHA (MAHA) is 
employed to optimize the control coefficients. This opti-
mization process involves two key objective functions: the 
integral of the absolute values of the control efforts and the 
errors within the system.

The model of [83] introduced an updated version of the 
multi-objective red kite optimization algorithm (MOROA), 
designed to optimize both targeted fitness functions. This 
research was conducted using two standard distribution 
networks: the IEEE-33 bus and the IEEE-69 bus. The effec-
tiveness of the proposed ROA is evaluated by comparing it 
with various optimization algorithms, including the dung 
beetle optimizer (DBO), African vulture’s optimization algo-
rithm (AVOA), bald eagle search (BES) algorithm, Bonobo 
optimizer (BO), GWO, multi-objective MVO (MOMVO), 
multi-objective GWO (MOGWO), and multi-objective 
AHA (MOAHA). In the case of the IEEE-33 bus network, 
the new ROA significantly reduced power loss by 58.24% 
and voltage deviation by 90.47%. Similarly, the IEEE-69 
bus network, achieved reductions in power loss and voltage 
deviation by 68.39% and 93.22%, respectively. These results 
demonstrate the efficiency and robustness of the proposed 
ROA in addressing the challenges of integrating Renewable 
Energy Sources (RESs) and Flexible Charging Stations 
(FCSs) into electrical networks.

In research [77], the Multi-Objective AHA with Dynamic 
Elimination-Based Crowding Distance (MOAHA-DECD) 
is applied within an ASPEN Plus–MATLAB framework to 
optimize energy efficiency in the production of low-density 
polyethylene (LDPE). The study tackles three distinct objec-
tives: Problem 1 (P1) focuses on minimizing energy costs 
while maximizing productivity; Problem 2 (P2) aims at 
minimizing energy costs and maximizing conversion; and 
Problem 3 (P3) involves minimizing energy costs, maximiz-
ing productivity, and maximizing conversion. Key decision 
variables in the process include the inlet pressure, and the 
mass flow rates of two initiators, tert-butyl peroxypivalate 
(TBPPI) and tert-butyl 3,5,5-trimethyl-peroxy hexanoate 
(TBPIN), specifically in reacting zones 3 and 5. The Pareto 
solutions generated exhibit a comprehensive and evenly dis-
tributed coverage across the entire Pareto front (PF), featur-
ing diverse points. The outcomes indicate that the optimal 

results include the highest productivity at 554.958 million, 
the lowest energy cost, and the highest conversion rate.

The study in [84] applies three different optimization 
techniques to a self-supplied thermodynamic system: the 
Non-Dominated Sorting Genetic Algorithm II (NSGA-II), 
PSO, and the Multi-Objective AHA (MOAHA), which is 
inspired by hummingbird foraging behavior. According to 
the findings, the MOAHA model demonstrates superior per-
formance, particularly in optimizing energy consumption.

In a study [76], a specialized Multi-Objective AHA 
(MOAHA) is developed to tackle intricate multi-objective 
optimization tasks, particularly in the realm of engineer-
ing design. MOAHA incorporates an external repository 
designed to record Pareto optimal solutions. It also intro-
duces a groundbreaking technique known as Dynamic 
Elimination-Based Crowding Distance (DECD) for efficient 
archive management. This innovative strategy guarantees 
the preservation of solution variety within the population, 
enhancing the robustness of the optimization process. More-
over, MOAHA integrates a sophisticated non-dominated 
sorting mechanism, fostering a solution update process 
that refines Pareto optimal solutions and thereby enhances 
the algorithm’s convergence capabilities. The efficacy of 
MOAHA is further evidenced through its application to 
five complex, real-world engineering design challenges. This 
demonstrates MOAHA’s adeptness in resolving elaborate 
multi-objective problems in real-world scenarios, where true 
Pareto optimal solutions and fronts are not pre-identified.

Model of [85] introduced a novel AHA designed for iden-
tifying the optimal sites and capacities of biomass-based 
Distributed Generators (DGs) in radial distribution net-
works. This method is characterized by improved explora-
tion and exploitation phases, enhancing its search efficiency 
and averting the risk of being ensnared in local optima. The 
primary goals are to reduce network active power loss and 
voltage fluctuations. A specialized adaptation of the AHA 
algorithm is developed to effectively address a dual-objec-
tive task, aiming to concurrently mitigate both issues. This 
modified methodology is rigorously evaluated across three 
different radial distribution networks, specifically the IEEE 
33-bus, IEEE 69-bus, and IEEE 119-bus systems. In this 
process, it is benchmarked against various other optimi-
zation techniques, including but not limited to the fractal 
search algorithm, PSO, GA, WOA, sperm swarm optimiza-
tion, tunicate swarm algorithm, pathfinder algorithm, SOA, 
SCA, multi-objective water cycle algorithm, multi-objective 
GWO, and multi-objective sparrow search algorithm. To fur-
ther substantiate the effectiveness of the proposed strategy, 
comprehensive statistical assessments are conducted. These 
include the Wilcoxon test, Friedman test, Analysis of Vari-
ance (ANOVA), and Kruskal Wallis tests, providing a robust 
evaluation of the approach’s performance. The results from 
this extensive analysis strongly support the superiority and 
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efficiency of the modified AHA-based method, especially in 
its application to integrate biomass-based Distributed Gen-
erators (DGs) into radial distribution networks.

In a study [86], an innovative method utilizing the AHA is 
presented for addressing the optimal reactive power dispatch 
(ORPD) challenge. This AHA-inspired model leverages the 
dynamic flight and foraging behaviors of hummingbirds to 
optimally adjust control variables. These variables encom-
pass generator bus voltages, settings of on-load tap-changing 
transformers (OLTCs), and the magnitude of switchable 
shunt VAR compensators, to minimize key performance 
metrics. Moreover, the research introduces a multi-objective 
optimal reactive power dispatch framework (MO-ORPD), 
designed to concurrently optimize individual objectives. 
This framework takes into consideration the integration of 
renewable energy sources (RES) and the variability in power 
demands. The efficiency and resilience of the AHA-based 
model are confirmed through empirical tests conducted on 
the IEEE 14-bus and IEEE 39-bus systems, specifically 
focusing on solving the ORPD problem. The outcomes are 
then benchmarked against other well-established optimiza-
tion methods in the field. To substantiate the model’s effec-
tiveness, box plots, and statistical evaluations using SPSS 
software are utilized.

Figure 23 shows the percentage of variants of AHA 
based on two different methods. Figure 23 shows that the 
percentages of Binary and Multi-objective are 15% and 85%, 
respectively.

3.4  Optimization

Optimization is a fundamental principle focused on identi-
fying the most advantageous decision variables to achieve 
either the minimum or maximum outcome of a specified 
objective function. Optimization techniques operate by 
systematically exploring the search space to uncover the 
optimal solution for complex problems. The optimization 
process initiates a series of improvements in alignment with 
the objective function, considering various constraints and 
parameters. When this process is applied in conjunction 
with the target objective function, aiming for minimization 
leads to achieving the optimal value for the desired deci-
sion variables. The intricacy of optimization challenges is 
on an exponential rise. Many complex real-world optimi-
zation issues present a formidable structure that requires 
resolution through gradient-free optimization methods, 
beyond the scope of classical algorithms. The limitations of 
these traditional optimization algorithms in tackling tough 
optimization problems have spurred researchers to develop 
or refine nature-inspired optimization algorithms. Fur-
thermore, the increasing computational complexity in this 
field has prompted researchers to innovate and create new, 
advanced nature-inspired optimization algorithms, under-
lining the necessity for such developments in the realm of 
optimization.

Table 3 shows a general review of AHA papers in the 
field of optimization in 2023.

Fig. 23  Percentage of variants 
of AHA based on two different 
methods
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In the design of Wireless Sensor Networks (WSNs), 
energy consumption is a crucial parameter as it determines 
the lifespan of individual sensor nodes and, consequently, 
the entire network. Balancing energy limitations with the 
resource constraints of the sensors is vital for optimal net-
work performance. However, in networks with numerous 
nodes, conventional direct routing tends to be energy-
intensive, potentially shortening the network’s lifespan sig-
nificantly. Drawing from traditional wired networks, hier-
archical or cluster-based routing methods are commonly 
employed in large WSNs, offering benefits like scalability, 
efficient communication, and fault tolerance. In such hier-
archical structures, the network is divided into smaller units 
called clusters, each overseen by a Cluster Head (CH). The 
CH is responsible for collecting or merging data from nodes 
within its cluster. This routing technique often involves both 
inter-cluster and intra-cluster communications, functioning 
in a multi-hop manner. Here, a sensor node is designed to 
communicate only with its closest neighbor, conserving its 
energy by avoiding attempts to reach far-off nodes. Other 
clustering strategies focus on achieving a balance between 
reliable sensing and the minimization of communication 
overhead, often through unsupervised learning processes. 
In this regard, the AHA has introduced effective routing and 
clustering rules. The application of AHA has led to reduced 
energy consumption and extended network lifetime, show-
casing its efficacy in optimizing WSNs.

Cloud computing encompasses a variety of resources such 
as storage, computing power, and networking capabilities. 
These resources are effectively transformed into services 
accessible to users through the process of virtualization. 
However, there is a notable interplay between the quality of 
these services and factors like the rate of resource utiliza-
tion, as well as the relationship between service quality and 
energy consumption. Consequently, when it comes to the 
optimization of resource deployment and scheduling, a com-
prehensive approach is required that considers and jointly 
manages all available resources. In this regard, it’s essential 
to aim for an optimization that not only enhances the Qual-
ity of Service (QoS) but also simultaneously reduces energy 
consumption and costs. The AHA has been utilized for task 
scheduling and resource allocation in cloud computing envi-
ronments. When compared to other algorithms such as PSO, 
GA, Ant Colony Optimization (ACO), and Artificial Bee 
Colony (ABC), AHA has demonstrated greater efficiency, 
highlighting its effectiveness in optimizing cloud computing 
resources.

Table 4 shows a general review of AHA papers in the 
field of optimization in 2022.

Control engineering is intricately linked to the explora-
tion and development of dynamic systems, aiming to design 
controllers that are efficient, reliable, and effective. With the 
advent of PID control, there has been a surge of interest in 

tuning methods that enhance the performance of PID con-
trollers. However, the PID control strategy, especially for 
nonlinear systems, faces certain challenges. These include 
the difficulty in selecting appropriate controller gains, 
a process known as tuning. If the controller gains are set 
too low, the system may fail to meet its control objectives. 
Conversely, overly high controller gains can lead to system 
instability, despite being a feasible choice. Therefore, one of 
the primary concerns in control engineering is the precise 
tuning of controller parameters. The aim is to adjust these 
variables to not only stabilize the closed-loop control system 
but also to meet various objectives. These objectives encom-
pass stability, longevity, performance tracking and measure-
ment, noise reduction, disturbance rejection, and robustness 
against environmental uncertainties. In this regard, the AHA 
emerges as an apt choice for determining control parameters 
in both engineering and scientific domains. Its suitability 
stems from its ability to effectively navigate the complexities 
of parameter tuning in control systems.

4  Discussion

The AHA incorporates a migration strategy that is particu-
larly formulated to prevent local stagnation, a key feature in 
optimization scenarios where there is a significant risk of 
settling on a local optimum instead of reaching the global 
optimum. This strategy is vital in such contexts. By moving 
towards a more distant resource when a frequently visited 
area becomes exhausted, the AHA emulates a tactic that 
improves its capacity to thoroughly explore the solution 
space. This approach effectively decreases the chances of 
the algorithm becoming trapped in local optima.

The effectiveness of Artificial Neural Networks (ANNs) 
is largely influenced by two critical factors: the structure 
of the network and its training methodology. The key to 
unlocking the full potential of ANNs lies in selecting an 
optimal network structure and an effective training algo-
rithm. This involves making informed decisions about the 
number of neurons, their arrangement, connection weights, 
hidden layers, and biases. The challenge of finding the 
best network structure is a complicated task, often charac-
terized by non-differentiability and multimodality. Train-
ing algorithms for ANNs can be broadly categorized into 
two types: gradient-based and metaheuristic-based. The 
gradient-based approach, one of the earliest methods for 
optimizing ANNs, is known for its proficient local search 
capabilities. However, its effectiveness heavily relies on 
the initial parameter values and starting positions. This 
method tends to require extensive exploration and longer 
learning times and suffers from slow convergence rates. 
It is particularly prone to getting stuck at local optima in 
complex scenarios, especially in flat regions with minimal 
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gradient changes. On the other hand, the metaheuristic-
based approach leverages heuristic search strategies, excel-
lent exploration abilities, and the inclusion of randomness 
operators. This approach shows great promise in devel-
oping effective algorithms capable of solving real-world 
optimization problems across various applications. In this 
context, the AHA stands out as a powerful tool for training 
ANNs. It addresses and overcomes many of the limitations 
inherent in the gradient-based approach, positioning itself 
as a robust and reliable solution for complex optimization 
challenges in ANN training.

The combination of AHA with KHA, known as the 
AHA–KHA hybrid, enhances the performance of AHA 
by boosting population diversity and mitigating the issue 
of becoming ensnared in local optima [39]. In this hybrid 
approach, a vector is integrated into AHA to record the most 
effective solutions found, specifically the best local solution 
achieved by each agent and the best global solution achieved 
by the entire swarm. The techniques from KHA are then 
applied, utilizing these stored local and global best positions. 
KHA introduces its mutation method to the target vector, 
leveraging both the local and global best solutions to attain 
an improved position. This collaborative strategy combines 
the strengths of both AHA and KHA, leading to more effec-
tive optimization outcomes.

The AHA is employed for global search due to its strong 
exploration capabilities, while Differential Evolution (DE) 
is integrated for local search to enhance exploitation, thereby 
boosting the precision of the solutions. In each iteration, 
the first step involves calculating the average fitness of the 
entire population. Following this, for every search agent, 
a determination is made: if the agent’s fitness is below the 
average fitness, its position is updated using AHA’s step and 
position vectors. Conversely, if the agent’s fitness is above 
the average, the position is revised through DE’s mutation, 
crossover, and selection processes. This dual approach effec-
tively combines the strengths of both AHA and DE, opti-
mizing both the exploration and exploitation aspects of the 
search process.

An enhancement to the AHA has been developed by 
incorporating opposition-based learning (OBL), aimed 
at boosting the algorithm’s efficiency. This enhancement 
focuses on improving the exploitation phase of AHA, 
thereby achieving a more balanced interplay between explo-
ration and exploitation. Once the positions of the agents 
are updated, OBL is applied to half of the population. This 
involves evaluating whether the agent’s position is superior 
to its opposite counterpart, with the fitter of the two being 
selected as the agent’s position. Furthermore, OBL is uti-
lized to refine the initialization process of the population. 
This results in initial solutions that exhibit better fitness, 
contributing to a more accurate convergence towards the 
global optimum. During the initialization phase of an agent’s 

position in AHA, OBL is used to determine the opposite of 
the position. The fitter of these two positions is then selected 
as a member of the initial population. Figure 24 illustrates 
the distribution of AHA methods across four different areas, 
showcasing the application of this enhanced approach.

Researchers have used the AHA as applicable and use-
ful methods for optimizations in various disciplines. Fig-
ure 25 shows the division of the AHA-based optimization 
domain in 2022 papers. The division is based on six different 
(biomedical engineering, electrical engineering, water engi-
neer, network engineering, data engineering, industrial engi-
neering) fields. The percentage results show that the AHA 
algorithm is the most used in electrical engineering. Also, 
medical engineering is in second place for processing patient 
images. The deterministic approaches used for parameter 
estimation in industrial engineering suffer from various 
limitations. These include being prone to getting stuck in 
local optimal solutions, sensitivity to initial conditions, high 
computational demands, vulnerability to noise and outliers, 
tendency to converge to suboptimal solutions, inability to 
handle complex nonlinear models, non-differentiable func-
tions, and multi-objective optimization challenges. These 
shortcomings are addressed by AHA, which not only over-
comes local minima but also provides more reliable results 
compared to other methods. Utilizing population-based tech-
niques, AHA ensures consistency in parameter estimation 
for industrial engineering tasks.

Figure 26 shows the division of the AHA-based optimiza-
tion domain in 2023 papers. The division is based on six dif-
ferent (biomedical engineering, electrical engineering, water 
engineer, network engineering, data engineering, industrial 
engineering) fields. The percentage results show that the 
AHA algorithm is the most used in electrical engineering. 
Also, water engineering is in the second place for predicting 
rain, precipitation, flood forecasting, etc.

The AHA algorithm, while beneficial, faces challenges 
with operational compatibility in complex scenarios, often 
leading to unsatisfactory solution accuracy within a given 
timeframe. Conversely, the PSO algorithm is heavily reliant 
on the number of iterations and is characterized by a high 
number of initial parameters, alongside the complexity of its 
physical and mathematical underpinnings. However, a nota-
ble strength of the AHA algorithm is its minimal depend-
ency on parameters, possessing the least possible number 
of parameters, which stands out as a unique advantage. To 
address these issues, a hybrid AHA-PSO algorithm has 
been developed [44]. This hybrid algorithm aims to resolve 
AHA’s limitations in exploitation and prevent it from get-
ting trapped in local optima. By combining AHA with PSO, 
the hybrid algorithm enhances the exploitation capabilities 
of AHA, thereby reducing the likelihood of converging to 
local optima. The hybrid algorithm operates on an iterative 
level, initially applying AHA followed by PSO. This strategy 
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utilizes AHA’s exploration strengths and PSO’s exploita-
tion advantages. The optimal position identified by AHA is 
leveraged as the global best position for PSO, which then 
proceeds to further exploit the search space for an improved 
position. Consequently, the velocity and position update 
equations of PSO are integrated into AHA, enhancing the 
overall effectiveness and efficiency of the algorithm in navi-
gating complex search spaces.

Table 5 shows the general advantages and disadvantages 
of the AHA algorithm.

The AHA outperforms traditional optimization methods 
in terms of rapid convergence and enhanced search capabili-
ties, owing to its minimal reliance on algorithmic param-
eters. Furthermore, AHA achieves a more effective equi-
librium between exploration and exploitation compared to 
other algorithms. This balance is crucial for the algorithm’s 
performance: exploration involves venturing into new areas 
of the search space, while exploitation focuses on thoroughly 
investigating areas around previously visited points. Further-
more, AHA’s versatility allows it to be effectively combined 
with other AI-related techniques, enhancing its applicability 
and efficiency in various computational contexts. This adapt-
ability of AHA, paired with its balanced approach to explor-
ing and exploiting the search space, contributes significantly 
to its overall effectiveness as an optimization tool.

Numerous research efforts have demonstrated that the 
AHA is effective in addressing a wide range of standard 
problems, including real-world applications and both con-
strained and unconstrained issues. Nonetheless, AHA is not 
without its minor shortcomings. There are instances where 
the algorithm may become trapped in local optima, experi-
ence premature convergence, or require an extended period 
to converge [44]. These limitations, however, can be effec-
tively mitigated through the use of hybrid models and the 
implementation of beneficial operators. Enhancements to 
AHA can be achieved by fine-tuning the balance between 
exploratory search and exploitation, ensuring the diversity of 
the search is maintained, and facilitating faster convergence. 
These adjustments can significantly improve the overall per-
formance and effectiveness of the AHA in solving complex 
problems.

In the AHA, a high exploration rate can lead to rapid 
convergence. This results in a more random search of the 
solution space, yielding a diverse array of solutions. To 
enhance the quality and precision of these solutions, AHA 
tends to focus its search within a more localized area when 
the opportunity for effective exploitation is at its peak. 
However, there is a trade-off between exploration and 
exploitation capabilities: as one improves, the other tends 
to diminish, and this effect is reciprocal. An additional 
challenge within AHA is finding the optimal blend of 
these two capabilities, exploration and exploitation, as 
the ideal mix is not uniform across all problem types [96]. Ta
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Consequently, striking a balance between these two phases 
that is universally effective for all optimization problems 
is a complex task. This inherent difficulty in achieving a 
universally applicable equilibrium between exploration and 
exploitation in AHA makes it challenging to optimize its 
performance across diverse problem sets.

The literature shows that the AHA algorithm often has 
a low convergence rate. This slowness in reaching optimal 
solutions can be a significant problem in optimization prob-
lems. To solve the problem, two strategies can be used. In 
the first step, the crowding method is diverse, which includes 
strategic selection and generation of new solution candi-
dates in a way that optimally expands the search space. This 

Fig. 24  Percentage of AHA 
methods based on four different 
areas

Fig. 25  Segmentation of the 
AHA-based optimization 
domain in 2022 papers
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approach ensures that the algorithm does not prematurely 
converge to sub-optimal solutions and explores a wider set 
of solutions. Second, the implementation of mechanisms 
such as chaos and quantum to maintain population diver-
sity. Such mechanisms ensure that a wide and diverse set 
of solutions is always present in the algorithm’s population 
set. This diversity prevents the AHA algorithm from getting 
stuck in local optima and encourages the exploration of dif-
ferent spaces. By integrating these methods, the efficiency 

and effectiveness of AHA can be significantly increased, 
leading to faster and more accurate convergence to the opti-
mal solution.

5  Conclusion and Future Works

The AHA is innovative in the field of meta-heuristic 
algorithms that was developed in 2022. This algorithm is 
inspired by the unique search and migration behaviors of 

Fig. 26  Segmentation of the 
AHA-based optimization 
domain in 2023 papers

Table 5  Advantages and 
disadvantages of the AHA 
algorithm

Features Factors

Advantages ✓ AHA is easy to understand and implement
✓ High power in solving complex and hybrid optimization problems
✓ High-quality solutions
✓ The concept of equilibrium between exploitation and exploration
✓ Migration mode prevents premature convergence
✓ Diversity of the population
✓ Low computational time
✓ Optimal convergence with a low number of iterations
✓ The visit table in AHA helps to eliminate non-optimal solutions
✓ Getting quality results effectively in less computational time
✓ AHA demonstrates remarkable competitiveness in identifying optimal values
✓ The balance between local search and global search
✓ AHA achieves the optimal solution by three main steps

Disadvantages × Incomplete exploitation in the solution of intricate problems
× Increase of iterations with increasing the size of the problems
× Territorial foraging may lead to local optima
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hummingbirds. The AHA algorithm has been used for a 
wide variety of optimization problems, including continu-
ous, discrete, and multi-objective problems. In this paper, a 
comprehensive and complete review of AHA and its applica-
tions in various optimization scenarios was reviewed. The 
search procedures were carried out systematically through 
search engines and authoritative databases such as Google 
Scholar, IEEE, ScienceDirect, Springer, MDPI, Tandfonline, 
etc. The advantages, limitations and challenges of the AHA 
algorithm was investigated in various practical problems. 
The effectiveness of the AHA is significantly influenced by 
its ability to balance exploration and exploitation. The AHA 
algorithm with hybrid approaches has been able to improve 
the extensive search capabilities and refinement capabili-
ties to find a more robust solution. The AHA algorithm has 
attracted the attention of researchers due to its strong perfor-
mance. AHA has been used in a wide range of applications 
in control engineering, clustering, water engineering, image 
processing, industrial engineering, structural engineering, 
and other applications. In addition, the AHA is presented to 
solve mathematical optimization problems such as uncon-
strained optimization, constrained optimization, schedul-
ing problems, and forecasting problems. AHA research has 
shown significant results, especially in the areas of multi-
objective optimization and optimization. Key advantages of 
AHA include robustness in solution quality, ability to main-
tain an optimal balance between exploration and exploita-
tion, scalability for high-dimensional problems, and simple 
design. These features make the AHA algorithm a versatile 
and powerful tool in optimization problems.

According to the investigations, it was concluded that 
the AHA includes the following limitations: (1) One of the 
limitations of the AHA algorithm is premature convergence. 
Employing strategies such as combining population diversity 
mechanisms or adaptive inertia weight strategies are suit-
able to reduce premature convergence. (2) The AHA may 
have scalability issues when dealing with high-dimensional 
optimization problems or large datasets. In the area of AHA 
scalability, hybrid optimization approaches can be used to 
increase efficiency. (3) AHA’s balance between exploration 
and exploitation may not always be optimal, leading to sub-
optimal solutions. Development of dynamic adaptive mecha-
nisms to adjust the rate of exploration and exploitation is a 
beneficial strategy. (4) The AHA algorithm may not adapt 
well to dynamic optimization environments where the objec-
tive function or constraints change over time. It is fruitful to 
propose an adaptive AHA to adjust operators to change in 
response to dynamic environments.

To consider future directions, the following key aspects 
will be focused on:

1. Multi-objective optimization using AHA: Multi-objec-
tive optimization is very important in scenarios where 

decisions require balancing different conflicting objec-
tives. The AHA algorithm is capable of finer and more 
efficient solutions and can provide more comprehensive 
results.

2. Hybrid optimization with AHA: Hybrid optimization 
includes a wide range of applications such as schedul-
ing and resource allocation. The application of AHA 
to these types of problems can significantly increase 
the usefulness and effectiveness, especially in scenar-
ios where the nature of the problem variables plays an 
important role in the complexity and accuracy of the 
solutions.
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