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Abstract

Generative adversarial network, in short GAN, is a new convolution neural network (CNN) based framework with the great
potential to determine high dimensional data from its feedback. It is a generative model built using two CNN blocks named
generator and discriminator. GAN is a recent and trending innovation in CNN with evident progress in applications like
computer vision, cyber security, medical and many more. This paper presents a complete overview of GAN with its structure,
variants, application and current existing work. Our primary focus is to review the growth of GAN in the computer vision
domain, specifically on image enhancement techniques. In this paper, the review is carried out in a funnel approach, starting
with a broad view of GAN in all domains and then narrowing down to GAN in computer vision and, finally, GAN in image
enhancement. Since GAN has cleverly acquired its position in various disciplines, we are showing a comparative analysis
of GAN v/s ML v/s MATLAB computer vision methods concerning image enhancement techniques in existing work. The
primary objective of the paper is to showcase the systematic literature survey and execute a comparative analysis of GAN
with various existing research works in different domains and understand how GAN is a better approach compared to exist-
ing models using PRISMA guidelines. In this paper, we have also studied the current GAN model for image enhancement
techniques and compared it with other methods concerning PSNR and SSIM.

1 Introduction in 2014 by researchers Ian ] GoodFellow et al. [28] in his

research paper published in IEEE Journal.

Generative adversarial networks are the sub-class of the gen-
erative model, with the competence to produce/verify a new
set of data. A generative adversarial network was introduced
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Most neural networks aim to learn from the limited data
set, which usually faces misclassification and overfitting
problems. The GAN model is a powerful architecture with
a component of self-generate, self-learning and competence
to overcome the limitation of traditional networks.

According to GoodFellow et al. [28] research paper pub-
lished in 2014, GAN and its structure are described as a
two-player min—max game or Nash Equilibrium with the
function value V(D,G). The detailed mathematical descrip-
tion is given by Good Fellow is shown in Formula 1.

min max V(D, G)
G D

VD, G) = E, puair[10g DO + E, . [log(1 — D(G(2)))]
ey
In 2015, a new variant of GAN was proposed by ABC,
and this work has become a basic approach for all upcoming
variants of GAN. In this work, the GAN is mainly broken
down into two modules, Generator G(A) and Discriminator
D(A). Here, the generator generates the data, similar to the
training dataset, and the discriminator is a network trying
to identify the real and generated data. The GAN model
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work on the principles of game probability. The theory is to
generate a random variable (A) whose properties are simi-
lar to the actual variable. Specifically, the generation of the
random variable experiment is repeated N number of times
until it gets the actual variable value which is known as
Probability(P). And the possible outcome of this is known as
sample space represented by Q. Overall we claim it as prob-
ability distribution function P(A) where the probability of all
outcomes can generate the result R as shown in Formula 2.

P:Q—-7Z

distribution concept; after training, the generator forms
compressed data distribution corresponding to multi-
dimensional vector space. The architecture of the genera-
tor is shown in Fig. 2.

Discriminator: Discriminator is a supervised GAN
model that uses input and general variables based on the
class label. The discriminator inputs value from real and
generated dataset and predict a binary label O and 1, clas-
sifying the received data as fake or the same, respectively.
The architecture of the discriminator is shown in Fig. 3.

(assuming the probability of generated random variable is always positive P(A) = 0)

Hence, we can say the summation of all probability can
give an actual variable, i.e. ZA€QP(A)=1. A simple real-
time example of GAN is two people playing Guess the num-
ber in the mind game. R. Chang et al. 2023 [143] and Z Pan
et al. 2019 [105] are some of the experimental works that
supported the above hypothesis. The simple GAN model
concerning Game probability is shown in Fig. 1.

1.1 Basic Modules of GAN

GAN deep learning module is mainly made of two adver-
sarial network modules Generator and a Discriminator.
Generator: It is an unsupervised model in GAN that
generates new values in input distribution based on the
summary of real input variable distribution. The generator
reads fixed-length random vectors based on the Gaussian

Fig.1 Architecture of GAN
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Fig. 3 Architecture of Discriminator in GAN

1.2 Applications of GAN

A generative adversarial network is a trending neural net-
work model with several fascinating applications in various
domains. The usage of the GAN model in many applications
has shown a drastic change in the result and system accuracy.
In this study, we have discussed some of the well-known
applications of GAN as follows.

1.2.1 Application of GAN in Cyber and Network Security

The various anomalies in the security system are damaging
the system and our privacy. The new GAN approach is vital
in improving cyber security and building a safer system envi-
ronment that protects against various attacks. GAN is one of
the latest ideas in self-driving cars to enhance their safety
and protection during navigation and collection of specific
sensor data. These days, applying GAN in cyber security
has become one of the exciting fields among researchers. A
large set of research works can be observed using the GAN
approach in the cyber security area.

The GAN model can be practiced to detect various cyber
intrusions like distributed denial of service attacks, botnet
attacks etc. [1]. To detect cyber-physical system attacks,
FID-GAN, an unsupervised intrusion detection system, is
designed [2]. Many imbalanced data set problems during
intrusion detection are solved by using simple GAN and
GAN with Earth-Mover distance in [6, 7]. To enhance the
accuracy of GAN model, the labelled sample set is expanded
by using an advanced binary classification model [3]. In
Yixuan Wimu et al., a mining approach is presented based
on the fuzzy rough set, CNN and GAN to enhance intru-
sion detection based on feature extraction [4, 5]. GAN and
modified versions of GAN, like PAC-GAN, have notably
contributed to detecting malware and standard packets in
cyber security [8, 9].

Overall, GAN can be used in most of the studies related
to threat detection [10-12], false data injection attacks

imbalanced data problems etc., in the cyber and network
security domain.

1.2.2 Application of GAN in Healthcare Industry

GAN is one of the fascinating inventions of Al that has con-
tributed to most of the domains in today's research envi-
ronment. Most of the SURPRISING and splendid tasks of
human and Al bots are the work of GAN. The healthcare
industry is one of the majorly benefited fields of GAN.
Radiology images like CT, MRI, ultrasound, radiography,
and elastography resolution can be enhanced by GAN. The
small data set problem during the training phase is one of the
major issues addressed in the healthcare domain by GAN.

To understand the role of GAN in healthcare, we have
gone through different research works. The major work was
observed in enhancing image clarity. In Yuhui Ma et al.,
[13] a versatile novel approach, Still-GAN, is introduced
to enhance low and high-quality images. Lesion Focused
Multiscale in [14] and enhancement of low-resolution coun-
terparts of CT images by the GAN-Circle approach [15] are
a few other enhancement techniques noted. To enhance and
generate a high-resolution 3D medical image, hierarchical
amortized GAN is used in research work presented in [16].

The other notable application of GAN is image genera-
tion and synthesis. Chikato Yamasoba et al. [17] presented
an approach to generate different modality images using
DCGAN and Cycle GAN. In [18], a one more approach
where DC-GAN is used for medical data synthesis, and gen-
erating MR images using GAN is observed [19]. Strategies
like GAN augmentation for liver lesion classification [20],
fund-GAN approach to augment fundus image for retinal
image classification [21], pseudo-3D cycle GAN lumbar
spine data synthesis [22] and 3D multi-conditional GAN
for image augmentation in lung module classification some
more work reviewed in image augmentation [23]. Finally,
we noticed a few more applications like medical image seg-
mentation by using MS-GAN [24], U-net Based GAN [26],
image fusion on GAN [25] and tumour classification [27].
In conclusion, GAN has become a boon and advantage for
the growth of the medical field.

1.2.3 Application of GAN in Computer Vision

In this survey, we have considered some of the applications
of GAN, which have made revolutionary improvements in
computer vision. The application of GAN in computer vision
can be classified into the generation of image datasets, super-
resolution, creating human face photographs, image-to-
image translation, generating realistic pictures, face frontal
view generation and generating new human poses.
Generating image datasets is an approach to creating
new plausible images from existing images. Firstly, this
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approach was designed by Ian Goodfellow et al. in 2014
[28]. In this paper, the author has generated a likely image
from the MINIST data set. The MINIST dataset combines
CIFAR-10 small objects and the Toronto face database.
In 2015 [29], Alec Radford et al. designed an approach to
stabilize GAN. This approach was beneficial to overcome
with small dataset overfit problem in CNN and ML.

To enhance the image resolution, SRGAN is one of the
well-known approaches used widely. In this approach, the
generated image has a higher pixel resolution; some of the
known works using SRGAN were conducted in 2016 by
Christin Leidg et al. [30] and in 2017 by Huang Bin et al.
[31]. In 2018, Subeesh et al. [32] presented an approach
to creating a high-resolution image for photographs using
the SR network.

The GAN model can also be applied to generate pic-
tures of human faces. In 2017, Tero Karras et al. [33] pub-
lished a work where celebrity faces are generated from
input samples, and the generated output is quite similar.
Later many works were published using Tero Karras et al.
work as a base paper.

The image-to-Image translation is a vital application of
image translation research using GAN. The first paper on
image translation was published in 2016 by Philip Isola
et al. [34]. The work was proposed on conditional adver-
sarial Network and pix2pix approach. In 2018, Andrew
Brock et al. [35] proposed a work to generate realistic
photographs using bigGAN. It is noticed the generated
images are very similar to the old photos with better accu-
racy. Face frontal view generation by GAN came to light
in 2017 by Rui Hang et al. [36]. The global and local GAN
is used in this paper. The face photos taken from various
angle is used to generate the different frontal view and
human poses.

To analyze the growth and advancement of GAN in vari-
ous fields, we have queried across the different journals with
a keyword "GAN" and "Generative Adversarial Network"
with a filter of publication year from 2016 to 2023. This
search aims to give a detailed, comprehensive overview
for researchers and practitioners where we can answer the
following research questions based on the growth of GAN,
as shown in Table 1. In Table 2, CONF: Conference, JOR:
Journal, EAA: Early Access Article, MAG: Magazine, BOK:
Book, RA: Review Article, RSA: Research Article, BOC:

Book Chapter, COP: Conference Proceeding, RWE: Refer-
ence Work Entry and RW: Reference Work.

After analyzing research questions, we understood that
the progress of GAN in various domains is increasing
exponentially, especially in computer vision, as observed in
RQS5 in Table 2. This paper aims to analyze and understand
current practices, approaches and ground truth of GAN in
computer vision and image enhancement techniques. Our
contribution to this paper is as follows:

e A detailed literature survey on GAN and its variants is
carried out. The detailed report on the technique and the
current tool is outlined by framing the research questions.

e A detailed review of existing work in image enhance-
ment techniques in GAN is discussed. Depth analysis of
evaluation metrics, datasets, methodology and tools of
various methods are explained in detail by carrying out
a systematic literature review.

e We highlighted some of the gaps and challenges in the
spectrum of image enhancement techniques using GAN,
which can be helpful for future research work.

Overall, this paper is structured as follows, in Sect. 2, the
detailed review process is presented by defining the research
question. In Sect. 3, variants of GAN in computer vision and
outcome of research questions are outlined; Sect. 4, gaps and
challenges are discussed, and in Sect. 5 conclusion.

2 Taxonomy of Systematic Literature Review

To perform a detailed and systematic literature survey, we
have referred few benchmark review works proposed by
Bugen et al. [37], B Kitchenham et al. [38] and M. A Barbar
et al. [39] in the area of software engineering. Throughout
this paper, we have taken up their approaches to design our
review and manifested our survey into three significant steps
planning, conducting, and reporting, as shown in Fig. 4.

2.1 Planning
The primary aim of this stage is to give sufficient infor-

mation and give a systematic path for the conduction and
reporting stage. This phase consists of three steps.

Table 1 Defined research
question to analyze growth of

Research question

GAN in various field RQI
RQ2
RQ3
RQ4
RQ5

How is the research growth of GAN in various Domain?

How many numbers of publication available on GAN in computer vision?
How is the increase in publication count on GAN in cyber security?

How is the scope for GAN in Healthcare?

How is research growth of GAN in computer vision?

@ Springer
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 SYSTEMATIC LITERATURE
REVIEW

REPORTING

IDENTIFYING THE NEED
FOR A SURVEY

SELECTION OF STUDY

FORMULATE RESEARCH ON CRITERIA BASIS

QUESTION

REVIEW PROTOCOL

REPORTING FINDINGS

DATA EXTRACTION AND
MONITORING

!

Fig.4 Taxonomy of Systematic Literature Review

e Identifying the need for a Survey
Before a systematic survey, the research scholar must
understand how important the survey is. The researcher
should undergo existing survey work available, and we
have read a good count of work to perform this step.
e Formulate Research Question
A well-structured research question will help to under-
stand the identified study in a proper direction. We have
drawn all possible research questions in this phase to
match our study.
e Review Protocol

Generally, protocols are the critical element in most of the
literature survey. Analyzing the described research question,
planned strategy, and background context meet the designed
survey or not is executed in this step. In this study, we have
followed a hierarchical approach to review protocol.

2.2 Conducting

Conducting is the next step after the planning. In this phase,
there are four steps.

e Search Strategy
It is a predefined approach that aims to find possible
primary research papers related to our work. In this step,
we designed a search technique based on a specific key-
word, a synonym of a keyword or a constructed string
using possible keywords.

e Selection of Study on Criteria Basis
Various challenges are encountered during the litera-
ture selection process, like language, author, journal etc.
The presented work follows a well-defined protocol to
decrease bias and ensure fairness.
¢ Study Quality Assessment
This process's primary goal is to ensure the quality
and relevance of selected papers from the previous steps.
Here, we have fixed a set of quality metrics to appraise
the quality of this study.
e Data Extraction and Monitoring
In this phase, the source and form used to collect the
required data for the study are designed. We have care-
fully selected the necessary references and entities in our
research and well-recorded them.

2.3 Reporting

In this phase, all the extracted and analyzed data is summa-
rized well. This phase consists of two steps.

e Data Synthesis
In this step, data synthesis and summarization are
achieved using a graphical and tabular approach, which
is more suitable for understanding.
e Reporting Finding

In this stage, the synthesized data is reported in the proper
channel that can target research scholars and evidence.

2.4 Implementation of Systematic Literature
Review

2.4.1 ldentifying the Need for a Survey

To identify the importance of the study, we tried to ana-
lyse the current research trend, especially in GAN. We have
searched various journals, and it is observed there has been
a steady growth in the count of papers published over the
years, as shown in Table 2.

2.4.2 Formulate Research Question

Picking a research question is an essential first step to define
the overall purpose of the specific study. In this paper, we
have established stable research questions (RQ) to guide
researchers, increase confidence in the domain and under-
stand the recent exercise and trend of GAN in computer
vision. The established RQs and SRQs are given in Table 3.

@ Springer
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2.4.3 Review Protocol

After defining the RQs, the research questions are sent to
the research guide, research supervisor and co-supervisor
to check the depth and correctness of the RQ. The research
guide has also evaluated the protocol design of this study.
After reviewing the protocol from the supervisor, we pro-
ceeded further in our research.

2.4.4 Search Strategy

We have started our research with the intent to compile as
many studies and work related to our research domain. In
this phase of the collection, we included all possible key-
words and also phrases that match the keywords. The pos-
sible keyword used is shown in Table 4.

To collect the study papers, we looked into several journal
repositories. However, many digital journals are available
these days; the selected journals for this paper are listed
below.

Web of Science
IEEE digital library
ACM digital library
Springer

Semantic Scholar

This search is restrained to the period of 2014 to 2023,
including journals, conferences and archives.

Table 3 Defined research question to perform systematic literature survey

2.4.5 Selection of Study on Criteria Basis

In selecting the relevant work after the search and collection
process, we established two inclusion criteria to pick the
most relevant study, as listed below.

e The keyword should be part of the abstract, keyword and
title.

e Few papers have worked in GAN and do not involve the
keyword in the abstract, title and keywords. We have
gone through the complete article to complete the selec-
tion process in such cases.

To skip some studies that do not support the objective and
aim of the study, we have defined three exclusion criteria as
follows.

e Studies which are not in English.

e GAN papers related to healthcare, cyber security, net-
works and other domains unrelated to computer vision.

e Conference proceedings are not considered for the study.

The detailed inclusion process is shown using the
PRISMA approach in Fig. 5.

2.4.6 Study Quality Assessment

After the selection process, accessing quality proof is crucial
to conduct a proper systematic review. The result obtained

QNO Research question

Justification

RQ-1 What are the well-known variants of GAN?

SRQ-1.1 What are the frameworks available to work with GAN?

SRQ-1.2 What are the applications of different types of GAN?

RQ-2
using GAN?

SRQ-2.1 Which are the datasets typically used in image enhancement by GAN?
SRQ-2.2 What are the models used in image enhancement techniques using GAN?
SRQ-2.3 What are the metrics used to evaluate image enhancement using GAN?

RQ-3

What are the well-known approaches for image enhancement techniques

Whether GAN is a better approach for image enhancement? How is image

Describe all the possible variants of GAN
Identify different frameworks to work with GAN variants
List application of each GAN variant

Describe different approaches that support image
enhancement techniques using GAN

Find the dataset that is used in existing work
Categorize commonly used models in existing work
List the evaluation metrics used in existing work
Perform a comparative analysis of results

enhancement performance in GAN, MATLAB and other platforms for

image enhancement?

Table 4 Various keywords used

. Keyword 1
in search strategy

“Generative Adversarial Network” OR “GAN”

Keyword 2
Keyword 3

Keyword 4

“GAN in computer vision” OR “GAN in image processing”

“Image enhancement using GAN” OR “Image enhancement using
Generative Adversarial Network” OR “Image clarity improvement
using GAN”

“Types of Generative Adversarial Network” OR “GAN variants”

@ Springer
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from the survey should be firm and avoid all sorts of bias.
This paper uses the criteria stated in research work [40] to
analyse the quality assessment.

2.4.7 Data Extraction and Monitoring

In this phase, we will extract the data required for the study.
After going through six journal repositories to answer the
defined RQs, we have set some rules and minimal entities
required from each paper. In this paper, we extracted author
details, publication details, journal details, dataset, features,
methods, and metrics used.

2.4.8 Data Synthesis and Reporting
The data synthesis and reporting is the last phase of the sys-

tematic review, where the findings from the data extraction
stage are segregated and presented as a supportive definition

DATABASE

SPRINGER ACM DIGITAL  |EEE DIGITAL
LIBRARY LIBRARY

SCIENCE
DIRECT

WEB OF
SCIENCE

SEMANTIC
SCHOLAR

Y

RESEARCH WORK IDENTIFIED [2014-2023]
13682

Y

RESEARCH WORK IDENTIFIED [2018-2023]
6352

T DUPLICATE ARTICLES
*‘ REMOVED

UNIQUE WORK [2018-2023]
5568
2
CONSIDERING
< TITLE/KEYWORD/ABSTRACT REMOVED|
Y IRRELEAVANT ARTICLES
WORKS MATCHES THE KEYWORDS AND
OBJECTIVE
933 - \
= ARTICLES RELATED TO IMAGE
*‘ PROCESSING USING GAN MODEL
\ J
RESEARCH WORK RELATED TO IMAGE
PROCESSING USING GAN [2018-2023]
589 . N
ARTICLE WITHOUT IMPLEMENTATION/
|« RESULT/ COMPLETE DETAILS ARE
A2 L REMOVED

FINAL LISTED ARTICLES FOR REVIEW
205

Fig.5 Prisma Inclusion Process for Systematic Literature Review

for RQs. In this phase, we have used graphs and tables to
visualize the summarized data.

3 Outcomes

3.1 RQ-1: What are the Well-known Variants
of GAN?

3.1.1 Deep Convolutional Generative Adversarial Networks
(DCGAN)

The DCGAN layer model was proposed by Radford et al.
in 2015, in which they presented two CNN models, namely
discriminator and generator with a convolution transpose
layer as shown in Fig. 6.

The principal aim of DCGAN is to support unsupervised
learning using stride and transposed convolution for down-
sampling and upsampling[66].

The essence of DCGAN is as follows:

e Eliminates all hidden layers.

e Max pooling layers are replaced with the stride convolu-
tion layer and fractional stride convolution layer in the
discriminator and generator, respectively.

e Batch normalisation is used, except for the generator's
output layer and the discriminator's input layer.

e Leaky ReLu is applied in all layers of the discriminator.

e ReLu is used in the generator except in the output layer.
In the generator output layer, tanh is applied.

In this paper, some of the work based on DCGAN are pre-
sented. In the survey process, our foremost aim is to identify
the methodology, model and application where DCGAN can
be applied. In [41], Yurika Sagawa et al. presented a model
for facial image generation using attributes and labels by
DCGAN, and a few more works are noticed where research-
ers' primary motivation was to generate a facial image using
DCGAN in [44, 46, 53, 58, 61].

The DCGAN gives a higher contribution in data aug-
mentation to enhance any target CNN model's accuracy by
increasing the dataset's size or building a training model,
as seen in [52, 59]. However, the most noticeable work of
DCGAN is in creating and performing analysis of Anime
Characters [61, 63]. It is noticed using the DCGAN with
the CNN model or some well-known algorithm like self-
learning [58], SVM [46] etc., will give better accuracy. The
detailed study of DCGAN is outlined in Table 5.

3.1.1.1 SRQ-1.2: What Are the Applications of DCGAN? Based
on the applications of DCGAN in computer vision, we noticed
the higher contribution of DCGAN is marked in image genera-
tion and data augmentation. Considering all 25 works together,
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100z +

Project and reshape

Fig.6 Proposed DCGAN Model In [66]

we observed five papers specially used for face image synthesis,
six on data augmentation, two on anime character generation,
four on resolution enhancement, and eight on data generation.
Table 5 illustrates a detailed study of 25 research papers on
DCGAN; based on this table, Fig. 7 outlines a list of DCGAN
applications. Hence it concludes DCGAN works fine in situa-
tions of image generation.

3.1.2 Conditional Generative Adversarial Networks (CGAN)

Conditional GAN (CGAN) is a novel approach and a well-
known variant of GAN designed to train generative models.
The first glance of CGAN was in 2015, presented by Mehdi
Mirza et al. [67].

The primary function of conditional GAN is to learn
samples from distribution instead of sampling from mar-
ginal distribution. In conditional GAN sampling is based
on additional auxiliary information like labels and data. The
detailed architecture is given in Fig. 8. Based on Fig. 8 the
2-player min—max function v(G, D) given in [29] can be
redefined for CGAN as shown below.

minmax V(D, G) = E, o log D] + E. i, log(1 = DGE)]
)

Here D(xly) is the discriminator with x input and y label,
and G(xly) is the generator with noise vector and y label.

Generally, the major applications of CGAN are video
generation, face generation, Image-to-Image Synthesis and
Text to Image Synthesis. When we queried IEEE digital
library with the keyword CGAN and filtered from 2019 to
2023, 24 publication topics were listed; in the extracted list,
image classification, feature extraction, and medical image
processing are the top 3 publication topics for CGAN. In
this study, we have received 34 papers on CGAN by restrict-
ing our subject to CGAN in computer vision and image
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processing. The detailed outline of the studied research
papers is given in Table 6.

In the survey phase, we came across various works;
among these, image processing in the medical field using
CGAN has many notable results. In [68], Changhee Han
et al. used 3D Multi conditional GAN to augment a small
fragmented CT image dataset. Similar works are observed in
Ke Xu et al. [69] and Meng Li et al. [70], presenting a novel
approach of CGAN named MCRGAN with the capacity to
generate pseudo-CT images under limited training dataset
conditions and transform-based architecture CGAN called
MedViTGAN for augmentation of synthetic histopathology
image. In the medical field, one more application of CGAN
is image segmentation. In [71, 72], we noticed the applica-
tion of CGAN in improving lesion contrast of MR images
and retinal vessel segmentation. Image denoising by Zhao
Yang et al. [73],[74]and Miao Tian et al. [75], Image syn-
thesis by Huan Yang et al. [76], Zhaohui Liang et al. [77]
and Yulin Yang et al. [78] are some of the noticed works of
CGAN in image processing for the medical field.

Apart from medical image processing, we have studied
the application of CGAN in the computer vision domain.
In Jeongik Cho et al. [79], CGAN increases hyperparam-
eters and reduces training speed. The designed approach
uses multiple GANs, sharing all the hidden layers. In [80],
the work presented by Tetsuya Ishikawa et al. illustrated a
method to augment training data using CGAN. Few works
in computer vision addressed problems like large model size
and high interface time [81], and in [82], Felipe Coelho Silva
et al. demonstrated a semi-automatic frame for manga art
colourization. The other application of CGAN is in qual-
ity reconstruction, Art font, image generation, video games,
rejuvenation of face image etc. In Table 6, we have given a
comparative analysis of all our studies in CGAN based on
parameters like purpose, model and outcome.
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Table 5 Comparative study on DCGAN model

Author and year

Problem addressed

Approach

Outcome

Yurika Sagawa et al. [41], 2018
Juping Zhong et al. [42], 2019
Daeun Dana Kim et al. [43], 2020

Bingqi Liu et al. [44], 2022

Mohammed A B
mahmoud et al. [45], 2019

Li Sun et al. [46], 2021

Xiuhong Yang et al. [47], 2021

Jiacheng Xu et al. [48], 2021
Qiufeng Wu et al. [49], 2020

Moktari Mostafa et al. [50], 2021

Nandini Kumari et al. [51], 2021

WenHao Li et al. [52], 2020

Kai Wu et al. [53], 2020
Sung Nien Yu et al. [54], 2022
Taizhi Lv et al. [55], 2020

Kunwang et al. [56], 2020

Qiushi Sun et al. [57], 2022

Shawi R. E et al. [58], 2022

Sayeda Samia Nasrin et al. [59],
2020

Christine Devis et al. [60], 2021

Zecheng Li et al. [61], 2021

Xiuhong Yang et al. [62], 2021

Develop attribute added face
generation system

Recognition of street house
number

Generation of labeled pedestrian
dataset

Image Generation

Recognition of traffic signal

Apple quality classification
method

Restoring missing and damaged
face area

Tackle block effect problem in
geometry compression

Data augmentation for tomato leaf
dataset

Enhancing cross spectral resolu-
tion Iris recognition

Enhancing the clarity of recon-
structed image using ImageNet

Noise reduction for structured
light

Data augmentation of faces in
campus data

Improving of distinguish ability in
Emotion recognition

Improve the accuracy of face
detection

Recognition of object in night
scene

Synthesis of face image from
facial part

Patch based breast cancer clas-
sification

Henna art design generation
Traffic sign recognition for image
generation by GAN

Anime character generation

Semantic face generation

Attribute extraction- CNN
Enhancing resolution—DCGAN
Feature Extraction-CNN

Face image generation -DCGAN
DCGAN

Improvised DCGAN

Feature Extraction-DCGAN

Classification- multilayer per-
ceptron neural network, pseudo
inverse learning autoencoder

Image segmentation -SVM

Data Expansion -DCGAN,
Improved RSNet

Improvised DCGAN

encoder and Decoder Generation

Local and Global adversarial
discriminator

3D AE-DCGAN
DCGAN

DCGAN, CGAN and CPGAN:
To enhance maximum pairwise
similarity between future

Pre-trained model using DCGAN

DCGAN to generate dataset
Autoencoder to denoise the struc-
tured light

Rotate and Render DCGAN
RSNet, DCGAN

CNN with local binary pattern
and DCGAN

DCGAN: To generate day image
same as night

Faster R-CNN- feature fusion and
multiscale ROI detection

Deep Learning and DCGAN

Semi Supervised DCGAN and
self learning technique

DCGAN

DCGAN, LSGAN, WGAN

DCGAN

DCGAN and dual discriminator

Similar Person Score-49.2

Model become stable as the training
increase

As training increase realistic in
generated image increase

Problem of gradient disappearance
solved

Image quality is improved

DCGAN value is 2.02 higher than
normal GAN

Better result compared to existing
work
Recognition rate-99.72%

Classification Accuracy -96.5%

PSNR—26.28
SSIM—0.8954

Increase in the mean BD-PSNR by
1.325 dB and 4.55 dB respectively

Accuracy-94.33%

Recognition accuracy have lower
EER value of 1.5%

Lower the loss between generated
and real image

Robustness is increased and noise is
decreased

Accuracy rate is 97.6%
Accuracy rate 90.34%
Recognition Accuracy 85%

MAP=282.6%

PSNR:34.38%
SSIM:0.956%

Accuracy: 77.3%
F-measure: 85.72

Better than existing work

LSGAN proved better with 84.9%
accuracy

Image with better quality and
accuracy

Better accuracy
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Table 5 (continued)

Author and year Problem addressed

Approach

Outcome

Yifei Jiang et al. [63], 2021 Anime character generation with

performance analysis
Mingyu Qiao et al. [64], 2021
Wang Tin Fe et al. [65], 2021

Data expansion flower dataset
Image in-painting using ISAR
algorithm

DCGAN with GUI

Image with better quality and
accuracy

DCGAN and RSNet classification Accuracy is significantly improved

DCGAN: Image Quality
ISAR imaging algorithm

PSNR:28.51
SSIM: 0.90

DATA GENERATION HIEEEESESSSSSS——— 8
RESOLUTION... NS 4
ANIME CHARACTER... HEEE >
DATA AUGMENTATION NN o
FACE IMAGE GENERATION NEENNNNNEN 5

0 2 4 6 8 10

Fig. 7 List of Applications Used In DCGAN
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/
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®__>

CGAN

_)
—

DISCRIMINATOR

Fig.8 Conditional GAN Model

3.1.2.1 SRQ-1.2: What are the Applications of CGAN? After
studying 34 research works on CGAN in computer vision,
we recorded Image to Image Synthesis is one of the well-
noted applications. Considering the application and pur-
pose of all 34 works, a detailed pictorial view is given in
the graph of Fig. 9. From Fig. 9, we can conclude Image
to Image Synthesis, Image Enhancement and Text to Image
Synthesis are some of the applications where CGAN can
definitely be used.

@ Springer

3.1.3 Cycle Generative Adversarial Networks (CYCLEGAN)

CycleGAN is another noteworthy variant of GAN presented
in 2017 by Jun-Yan Zhu et al. [102]. The principal objec-
tive of the model is to map the images without paired data
using the mapping function G(x->y) and an adversarial loss
function.

The image generates from the first generator, G(x), is
similar to y, that is, G(x->y)= >y =G(x). Moreover, in
this approach using inverse mapping, y will learn from x
that is F(y->x)= >x=F(y). It can be said F(G(x))=x and
G(F(y)) =y using inverse mapping and cycle consistency
loss. The pictorial representation of the Cycle GAN meth-
odology is given in Fig. 10.

During the training process, Cycle GAN focuses more on
the training dataset and follows a few practices as follows.

e The training set paired image {xi,yi} where all xi in a
dataset has yi as its counterpart.

e The training set paired image {xi,yi} where every xi in
the dataset dont have any match with yi.

To get a broad view of CycleGAN and its methodology,
we have surveyed more than 25 research papers. The sig-
nificant observation is that CycleGAN is majorly used for
Image Synthesis, especially in the medical field. In Taesung
Kwon et al. [103] and Jawook Gu et al. [123], image synthe-
sis is used for denoising low-dose CT images. CycleGAN
is also used for augmentation purposes in the classification
of Melanoma medical images when a limited labelled data-
set is available for training purposes[104]. ECG restoration
[104] and fundus image enhancement in diabetic retinopathy
classification [112] are the other recognized applications of
CycleGAN in medical image processing. Moving apart, if
we consider the general application of CycleGAN in com-
puter vision, SAR to optical image registration [106, 120],
NIR to RGB image [116] and VIS to NIR image [117] are
the maximal noted research works. Along with this, image
colourization, denoising and image enhancement in low
light and night images are the few other works observed. A
detailed study of Cycle GAN is given in Table 7.
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Fig.9 List of Applications
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Fig. 10 Cycle GAN Training Process [101]

3.1.3.1 SRQ-1.2: What are the Applications Of Cycle-
GAN? Based on the research and problem addressed in
the state of art methods from Table 7, we collected some
of the following basic observations. Firstly, CycleGAN is
majorly used in Image Synthesis for unpaired data in vari-
ous domains. Secondly, using CycleGAN, training time and
memory consumption can be reduced. At last, CycleGAN is
also helpful for converting any existing supervised method
to an unsupervised one. The detailed usage of CycleGAN is
given in Fig. 11.

3.1.3.2 Style Generative Adversarial Networks (STYLE-
GAN) StyleGAN is a variant of GAN introduced by Tero
Karras et al. in 2019 [134]. It is the first variant of GAN
focused on the advancement and improvement of the gen-
erator, then the discriminator. This model is built with two

networks, namely the mapping network and the synthe-
sis network. The StyleGAN inputs the latent space vector
directly into the mapping network, which comprises eight
fully connected layers. The output of the mapping network
is later sent to the synthesis network architecture consist-
ing of 18 convolution layers and an AdalN style network.

The synthesis network produces 4 X4 to 1024X1024-
sized images in every layer. Gaussian noise is added to the
activation map before sending the images into the AdalN
method. And this is the primary reason that StyleGAN
can produce high-resolution images. The comphrehensive
architecture of StyleGAN is shown in Fig. 12.

The significant changes and updation in the StyleGAN
compared to other GAN architecture are as follows.

e Tuning and bilinear upsampling are added.

@ Springer
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A Systematic Review on Generative Adversarial Network (GAN): Challenges and Future Directions

OTHERS

IMAGE RESTORATION
DATA AUGMENTATION
STYLE TRANSFER
IMAGE ENHANCEMENT
IMAGE SYNTHESIS

IMAGE TRANSFORMATION
Fig. 11 List of Applications used in CycleGAN
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e Latent vector input is not added to the generator.

e Gaussian noise is added in each block.
e Mapping and Synthesis networks are added.

Fig. 12 STYLEGAN Architecture [133]

Since StyleGAN was introduced in 2019, we got only
a few research work on this model related to computer
vision. The survey shows that most of the work collected
from the paper is on the enhancement of image qual-
ity and advancement of StyleGAN. Dongsik Yoon et al.
develops the image using StyleGAN with ResNet using

[135] started with the objective of generating diverse
face images using available static faces. A similar work is
observed in Shao Xiaofeng et al. [150], where the author
the FFHQ dataset. The idea of single-dimension pluralistic
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A. A.Nayak et al.

face image generation is taken to 3D pluralistic image gen-
eration in [136], where they worked on fixed styleGAN
and RigNet with the 3DMM model. StyleGAN can also
be used for classification, as demonstrated in [137], Face
generation from the masked image in [138] and [151].
StyleGAN is widely used in fashion [154] and painting

Table 8 Comparative study on style GAN model

[145] [155] for better-quality images. The detailed study
on StyleGAN is outlined in Table 8.

3.1.3.3 SRQ-1.2: What are the Applications of STYLE-
GAN? To understand the application of StyleGAN in com-
puter vision, we have been through 20 research papers.

Author and year Problem addressed Model Outcome
Dongsik Yoon et al. 2023 [135] Generation of several possible Style GAN with pSp encoder and SSIM =0.883
faces from Facial inpainting SeFa algorithm FID=25.95

Aayush Tewari et al. 2020 [136]

Chen Zhao et al. 2020 [137]

Viktor Varkarakis et al. 2020
[138]

Siavash Khodadadeh et al. 2022
[139]

Saleh Hussin Salem Hussin et al.
2020 [140]

Gabriel Hermosilla et al. 2021
[141]

Yichun Shi et al. 2021 [142]

Tero Karaas et al. 2020 [134]

Hariharan et al. 2022 [144]

Siwei Liao et al. 2021 [145]

Dana Cohen Hochberg et al. 2022
[146]

Pengsen Ma et al. 2022 [147]

Elad Richardson et al. 2021[148]
Way Tan et al. 2021 [149]

Shao Xiaofeng et al. 2021 [150]

‘Wanchao Su et al. 2022 [151]
Tianyi Wei et al. 2022 [152]
InMoon Choi et al. 2022 [153]

Rajesh Rohilla et al. 2022 [154]

3D Face Rig control for portrait
images

Generation of high quality skin
image for Melanoma skin lesion
classification

Building synthetic and scalable
facial dataset

Identity preserving in face image
generation

Image Synthesis from person
re-ID dataset

Thermal image generation

Generating 3D view images for
available synthetic image

Improving and Analyzing image
quality

Image Quality enhancement

Generation of interactive movie
poster with different colors and
layouts

Annotation and Classification of
images with limited labels

Embedding of Chinese traditional
painting into latent space

Image to Image translation

Analysis and removal of circular
artifacts generated by StyleGAN

Generation of more than one
reasonable image from masked
images

Sketch to portrait image genera-
tion

Enhancement of styleGAN effec-
tiveness and efficiency

Generating high resolution fash-
ion model images

Editing of portrait without reduc-
ing quality

Fixed Style GAN with 3DMM

SLA-StyleGAN with
DenseNet201

Retraining of StyleGAN
StyleGAN

Style an LSRO algorithm for
assigning uniform labels for
generated unlabeled images

StyleGAN2 and YoloV3

StyleGAN?2 and differentiable
renderer

StyleGAN with generator nor-
malization

StyleGAN and DCGAN

StyleGAN with interactive Evolu-
tionary computation

Self supervised-StyleGAN with
integrated encoder

StyleGAN with deep residual
shrinkage networks

pSp framework and StyleGAN

StyleGAN and pixel instance
normalization layer

StyleGAN with ResNet

Spatially conditioned-StyleGAN

E2Style feed forward network
with StyleGAN inversion

StyleGAN

StyleGAN

The model proved better in Interac-
tive Rig Control, Style Mixing
and Conditional Image Generation

BMA =93.64%

Generated images have better qual-
ity compared to existing approach

Quality of generated face
FID=41.64

SSIM=0.38

FID=12.67

Accuracy =99.98% in classification
of thermal face images

FID=29.81

FID =6.93 Improvement in LSUN
dataset compared to other
approaches

Fakeness and quality of image is
increased

Computer simulation shows effec-
tive performance

Gives high accuracy for classifica-
tion of small labelled dataset of
size 50

FID increased by 21% and gen-
eration of image under noise
increased by 10%

Less training time and no adversary
needed

RestrictsS the appearance of circu-
lar artifacts in generated images

Generated pluralistic face images
have better quality then existing
approaches

Usability and expressiveness of
system is high

Model optimization increased

Better quality enhancement com-
pared to existing approaches

Straight forward, effective and
efficient model
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Qualty Enhancement _w
Classification g

Image Transformation

Image Synthesis _8

Fig. 13 List of Applications used in STYLEGAN

As we observed, StyleGAN in computer vision is widely
used to address quality enhancement problems in generated
images. Another major application of StyleGAN, as per the
literature study, is Image Synthesis. For a better understand-
ing of applications of StyleGAN in computer vision, we
have plotted the graph as shown in Fig. 13.

3.1.4 Super Resolution Generative Adversarial Networks
(SRGAN)

Super Resolution GAN is a well-known GAN variant to
convert images with low resolution to high-resolution. This
model was proposed by Twitter researchers in 2017. SRGAN
model mainly subsist of three networks, namely generator,
discriminator and VGG16 network, which is built using per-
ceptual loss function.

The generator network consists of a convolution layer,
PReLU layer and k3n64S1 strands with skip connection.
And the discriminator network consists of a convolution
layer, Leaky ReLU layer and k3n64S1 strands. The simple
training network of SRGAN is illustrated in Fig. 14.

Super Resolution GAN is mainly used for creating
photo-realistic images by using down-sampled images. In
this study, we have been through some existing works to
understand the role of SRGAN in removing the artefacts in
low-resolution images. SRGAN can be used across various
domains using computer vision techniques. In Yudai Nagano
et al. [156], SRGAN creates a high-resolution food image.
The author has mainly focused on inducing noises like jpg,
blur etc. Junchao et al. [167], in this work the author used
SRGAN for textile image reconstruction to get better accu-
racy than bilinear. In the survey, we observed most of the
SRGAN works are based on facial resolution enhancement
in the face image. In Hao Dou et al. [157], Minjie et al.
[160], and Hai Nguyen Truong et al. [166], the SRGAN
is used for facial resolution enhancement using orthogo-
nal projection, wavelet transform and total variation loss,
respectively. The SRGAN can be used to enhance the CT

Down Sampled LOowW

Y

HIGH
RESOLUTION RESOLUTION GENERATOR =
IMAGE IMAGE Y
'
Up Sampled
1
'
'
SUPER :
RESOLUTION .
IMAGE :
'
'
1
P 1
% '
'
1
'
'
1
'

Fig. 14 SRGAN Training Network

images [161] and fundus images [163] in medical image
processing. The researcher Nai Feng Zhang et al. [174] have
used SRGAN to deblur distant pedestrians. and Yong Hun
Kim et al. [158] used SRGAN to restore old documents. The
detailed study on SRGAN is outlined in Table 9.

3.1.4.1 SRQ-1.2:Whatare the Applications of SRGAN? After
analyzing several research works on SRGAN, we noted that
image resolution enhancement, especially facial, medical
image, textile, and pedestrian images, are the main areas in
which SRGAN is used. SRGAN can also be used for image
segmentation, classification and restoration purposes. The
detailed use of SRGAN in various domains is shown in
Fig. 15.

3.2 SRQ-1.1: What are the Frameworks Available
to Work with GAN?

Generative Adversarial Network (GAN) is successfully used
for image synthesis, data augmentation, image restoration
and many more. Practising GAN on primary python IDE or
any framework is challenging and lengthy. To minimize the
complexity these days, we have various tools in the market
to support GAN. In this section, we have discussed available
GAN tools, their features and applications that simplify the
usage of GAN.

e GANLAB

It is a visual interactive experiment tool to train GAN
with a 2D data distribution model and visualize the inter-
nal working system. The GAN lab is built on TensorFlow.
js and UI on GPU accelerated deep learning library. Using
the GAN Lab, model learning visualization and improving
fake samples is much easier.

Some of the features of GAN LAB are:

@ Springer
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Table 9 (continued)

Outcome

Problem addressed Model

Author and year

0.722

0.73
Better accuracy compared to existing

AP=

SRGAN with SSD Network

Detection small and blurry pedestrian from images

Naifeng Zhang et al. 2022 [174]

Fl=

Enhancing resolution of face in facial images Enhanced SRGAN using multiple SRGAN

Mohsin Ullah et al. 2021[175]

approaches

Result images have realistic texture

ESRGAN + with noise in generator

Nathana¢l Carraz Rakotonirina et al. 2020 Improvising SRGAN

[176]

SRGAN with residual encoding and decoding Texture details and subjective visual effects are

Single image reconstruction

Ying Liu et al. 2021 [189]

enhanced

structure

Slow motion code

Adjustment of the interactive hyperparameter is pos-
sible

User-defined data distribution is possible.

VeGANs

VeGAN:S is a python library with PyTorch framework for

GAN. This library is mainly designed for developers willing
to develop their own generator and discriminator network.

TORCH-GAN

Torch-GAN is a PyTorch framework for GAN. This
framework is a collection of building blocks of GAN
which gives customization for popular GAN datasets.
Torch-GAN library offers provision for adding a new
plugin for loss function and architecture, as well as the
option to visualize various logging backgrounds.
HYPERGAN

HyperGAN is a framework with a user interface and
API. Building the GAN model on HyperGAN makes the
training process more straightforward. In HyperGAN,
replacing part of GAN with JSON file or creating a new
GAN is way easier than in other frameworks.
IMAGINAIRE

Imaginaire is an invention of NVIDIA; also a PyTorch-
based GAN library integrating all the NVIDIA image and
video synthesis projects. This library has several func-
tionalities with six algorithms like Pix2PixHD, FUNIT,
MUNIT, UNIT, COCO-FUNIT and SPADE.
MIMICRY

Mimicry is a lightweight PyTorch library to monitor
GAN's loss and probability curves. This library is sup-
ported by the Tensor board, which is helpful in the per-
formance comparison of multiple GAN models.
GAN TOOLKIT

GAN toolkit is a flexible library by IBM based on No
code approach. This library helps the user to work with
config files and command line arguments. It is an open-
source library that allows multiple libraries like Keras,
PyTorch and Tensor flow.
TFGAN

TFGAN is a light weighted library used for the evalu-
ation of GAN. This library comprises many GAN opera-
tions, normalization techniques, losses etc. TFGAN can
be used in Google TPU and GPU and is also compatible
with Tensorflow2. For the self-study of GAN, TFGAN
is the best tool.
PyGAN

PyGAN is a library in Python to implement models
like CGAN, GAN, adversarial autoencoder and energy-
based GAN. This library is mainly used for semi-super-
vised learning.
STUDIOGAN
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OTHERS

GENERATING IMAGES

IMAGE SEGMENTATION

FACIAL RESOLUTION ENHANCEMENT

| 3]
IMAGE RECONSTRUCTION N
. 3]

RESOLUTION ENHANCEMENT

Fig. 15 List of Applications used in SRGAN

StudioGAN is a library for GAN on PyTorch Framework
for both conditional and unconditional image generation.
StudioGAN has an inbuilt benchmark for CIFARIO, Tiny-
Image Net and ImageNet. This library has a unique feature
that performs better for low memory consumption.

3.3 RQ-2: What are the Well-known Approaches
for Image Enhancement Techniques Using GAN?

Image Enhancement is a technique of manipulating digital
pixel value so that the resultant images are more suitable for
visualization and further analysis. The general idea of image
enhancement is to process the given image and make it more
convenient for the specific application.

Image enhancement can be executed in different ways; it
can be the sharpening of image features such as boundaries,

Fig. 16 Image Enhancement
Techniques

edges etc. It can also be removing noise, increasing an
image's brightness or changing contrast. It is said that image
enhancement can't improve the inherent content of data, but
it can enhance the dynamic range of chosen features.

There are numerous techniques for image enhancement
in computer vision. And Fig. 16 shows a general approach
or hierarchy to carry out image enhancement.

To understand the methodology used for image enhance-
ment using GAN, we studied many research papers on dif-
ferent variants of GAN for image enhancement techniques.
Some researchers worked on the enhancement of face images
and their features [31, 175, 184, 200], and some papers
mainly concentrated on computer vision in the medical field.
In [178] [180, 190], the author focused on enhancing the
clarity of the fundus image for better recognition of the iris.
And in [76, 128, 191, 195, 202, 204], the author's principal
objective was enhancing X-Ray, MRI and CT Scan images.
The research in image enhancement is not only restricted
to image processing in the medical field; it has also shown
a comprehensive improvement in enhancing low light, low
luminance and underwater images. In Table 10, we have
illustrated all the studied research work in detail based on
their methodologies.

3.4 RQ-2.1: Which are the Datasets Typically Used
in Image Enhancement by GAN?

We observed various datasets were used in numerous stud-
ies related to image enhancement using GAN variants for
testing and training purposes. Generally, the datasets are

IMAGE ENHANCEMENT

l

'

SPATIAL TRANSFORM
l POINT OPERATION l } OPERATION ! l PSEUDO COLOURING ’ OPERATION
Contrast Stretching Noise Smoothening False Coloring Linear Filtering
Noise Clipping Median Filtering Pseudo Coloring Root Filtering
Window Slicing LP, HP and BP Fitering Homomorphic
Fitering
Histogram Model Zoomi
istogram Modeling ooming —
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publicly available on the internet; in some cases, datasets
are private, self-created, and acquired. It is found these data-
set has made an incredible advancement in image enhance-
ment using GAN. In turn, because of these datasets, most
of the GAN variants can achieve their desired outcome. In
Table 11, all the datasets used in different research papers
related to image enhancement in GAN are displayed respec-
tively to their variants.

3.5 RQ-2.2: What are the Models Used in Image
Enhancement Techniques Using GAN?

This section illustrates various GAN variants used in image
enhancement. Based on studies and considering all the GAN
variants used for image enhancement, we have outlined
Table 12 in this paper. While presenting the summary table,
we considered noise removal, clarity enhancement, blurri-
ness removal, contrast enhancement and brightness enhance-
ment as image enhancement techniques. In this paper, we
assessed 69 reports to study image enhancement using GAN.
Based on 69 articles, Table 12 is drawn, listing all the vari-
ants of GAN used for image enhancement, the number of
studies in each category and the percentage of studies in
each category (PSC). Using Table 12, we can reveal SRGAN
is the most used GAN in the image enhancement approach.

3.6 RQ-2.3: What are the Metrics Used to Evaluate
Image Enhancement Using GAN?

This section of the paper showcases various measurement
metrics used in calculating, analysing and assessing the
performance of the model used for image enhancement in
GAN. Table 13 defines multiple metrics and performance
units in all the studies on image enhancement methods. It
also gives the proper explanation and description of each
measurement metric and the number of studies related to
each metric. Based on Table 13, it can be concluded PSNR
and SSIM are often used measurement metrics to evaluate
image enhancement studies across various GAN models.

3.7 RQ-3: Whether GAN is a Better Approach
for Image Enhancement? How is Image
Enhancement Performance in GAN, MATLAB,
and Other Platforms for Image Enhancement?

To analyse how the GAN model is efficient for image
enhancement compared to the other existing techniques,
we split our analysis based on three categories: (i) Image
enhancement using the GAN model (ii) Image enhance-
ment using machine learning (iii) Image enhancement
using MATLAB.

In this review work, we considered a maximum of ten
sample existing studies from each category [204] [205]
[206] [207] [208] [209] [210] [211] [212] [213] [214]
[215] [216] [217] [218] [219]. And the PSNR and SSIM
performance metrics are used for comparative analysis.
We recorded minimum and maximum PSNR and SSIM
observed from the collected sample study from each cate-
gory as given in Table 14. Overall, in this section, Table 14
and Fig. 17 present the gist of the comparative analysis. By
analyzing Table 14, we can say the GAN model is a better
approach for image enhancement.

4 Limitations and Challenges

Please make sure that the paper you submit is final and
complete, that any copyright This section lists some of the
challenges, limitations and gaps noticed during the study.
The observed gaps are as follows.

e Minimal work is proposed to enhance and restore the
image by extracting the original features of the image.

e Using the GAN model for training purposes can
increase the output, but it is noticed the model will
become very unstable so that in each iteration result
gets varied.

e One more notable observation in numerous image
enhancement works is that handling high-frequency
and low-frequency features in images using the same
model doesn’t give effective results.

e Combining GAN with the extra deep neural network
can increase the accuracy of output, but a rapid increase
in training time is observed.

e It is noticed no single GAN model is designed to
address all possible noise in the image during the image
enhancement technique.

5 Conclusion

The presented SLR illustrates the study of various state-
of-the-art methods on GAN, variants on GAN and image
enhancement techniques using GAN. This research gives
a detailed view of the existing work of GAN published
from 2018 to 2023. Throughout this paper, we answered
all the possible questions on GAN by discussing its his-
tory, application, variants, limitations, image enhancement
approaches, and conducted a comparative and summariz-
ing examination of distinctions with other existing works.
The overall summary of this study is as follows.
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Table 11 The list of datasets for image enhancement using GAN

GAN Variants Dataset

Covid-19 chest X-Ray, NICE II, 1- HAZE 0-HAZE, TOPCON 1/ TOPCON 3D OCT 3000, CT image slices, MR- CT Mix

Robot Car dataset, 200 X-Ray dataset, EyePAC, APMCT, Berkelay deep drive dataset, RESIDE dataset, Cardiac CT scan dataset

DCGAN NASA/JPL, AIRSAR, VIM 1, CelebA, SVHAN dataset, CIFAR-10, WVU face dataset, ISAR images
CGAN
dataset, PASCAL VOC 2012, BraTS 13
CYCLEGAN
STYLEGAN CelebA, VoT'100, GoPro dataset, ISIC 2019, CASIA, LSUN dataset
SRGAN

BSD100, DIV2K dataset, League of Legends dataset, OCT dataset, ILD/NSCLC dataset, CelebA, Flickr Faces HQ dataset, Muct
Face database, CT image dataset, DukeMTMC dataset

Table 12 The list of models for image enhancement using GAN with

respect to their distribution

GAN Variant  Study reference Count PSC
DCGAN [41, 50, 51, 65, 177, 187] [144, 186] 8 12%
CGAN [31, 76, 180, 181, 192] [71, 73,75, 14 20%
91, 195, 198] [72, 73, 86]
CYCLEGAN  [190, 192, 194, 199, 203] 11 16%
[103, 110, 112, 115, 124] [128]
STYLEGAN [137,138, 144, 179, 182] [143-147] 13 19%
[151-153]
SRGAN [178, 191, 196-198] 16 23%
[157, 160-162, 166]
[165, 169, 170, 172, 173]
[174]
VANILA GAN [184, 188] 3%
OTHERS [183, 185, 193, 200, 201] 5 7%

The GAN model is widely used in many domains like
machine designing, architecture, medicine, construc-
tion, computer vision etc.

Linear growth is observed in research publications
related to GAN. And in 2019-2020, a rapid increase in
the publication count was seen.

Every GAN model has its own specialization approach;
for example, the DCGAN can be mainly used in data
augmentation like this; the detailed explanation of
every variant of GAN is given in section III.

The SRGAN model holds a significant role in image
enhancement.

PSNR and SSIM have widely used performance metrics
for image enhancements.

Table 13 The list of measurement metrics used for image enhancement using GAN in various studies

Measurement metrics Definition Studies
Accuracy Accuracy = (TN +TP)/(TN+FN+FP+TP) 18
Precision Precision=TP/(TP + FN) 5
Recall Recall=TP/(TP + FN) 4

FID- Frechet Inception Distance Metrics to analyze the quality of images generated by the GAN models 4

PSNR—Peak Signal-to-Noise Ratio

ity of image

SSIM—Structural Similarity Index
MSE—Mean-Square Error

original image

IS — Inception Score

EER — Equivalent Error Rate

LEARNING RATE

NIQE—Naturalness Image Quality Evaluator

PIQE—Perception based Image Quality Evaluator It is a no reference image quality score of images

CNR—Contrast-to-Noise Ratio
LOSS

DETECTION RATE
DETECTION RATE

It is a metrics to judge quality of image generated by GAN

It is a position where false reject rate is equal to false accept rate
It is an adjustment of network weight with respect to loss gradient
Quality score of images

It is the ratio of estimated contrast of image and noise
Prediction of uncertainty based on variation of actual label value
It is a true positive rate of confusion matrix TPR=TPTP+FN

It is a true positive rate of confusion matrix TPR=TPTP+FN

It is the ratio of maximum power of image and power of noise that reduce the qual- 29

It’s an image quality metrics which computes image using reference image 23
It is a cumulative squared error analyzed by the ratio of the compressed and the 2

N NN = NN =
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Table 14 Performance analysis

. : Category Number of performance Max Min
of image enhgncement in studies metrics
various techniques
Image Enhancement using GAN model 10 PSNR 36 dB 22 dB
SSIM 0.25 0.65
Image Enhancement using Machine Learn- 10 PSNR 34 dB 19.09 dB
ing [204, 205] SSIM 0.38 0.86
Image Enhancement using MATLAB 6 PSNR 34.3dB 17.8 dB
SSIM 0.31 0.74

Fig. 17 Comparison of Result
Among Different Techniques

B Image Enhancement using MATLAB.

B Image Enhancement using Machine Learning

B Image Enhancement using GAN model

e The experimental result demonstrates that GAN is a Declarations
practical approach and outperforms as a better model

for image enhancement than other techniques Competing Interests This study has no conflicts of interest and is not

funded by any Organization/Institution. All authors have participated in
) ) ) . conception and design, anal-lysis and interpretation of the data, draft-
With the rapid progress in technology and multime- ing the article or revising it critically for important intellectual content,

dia, GAN still needs to address many challenges. And this ~ and approval of the final version.
study gives a route map and valuable basic details for the
research community in developing compelling research
works on GAN.

Ethical and Informed Consent for Data Used Not Applicable.
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