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Abstract
Generative adversarial network, in short GAN, is a new convolution neural network (CNN) based framework with the great 
potential to determine high dimensional data from its feedback. It is a generative model built using two CNN blocks named 
generator and discriminator. GAN is a recent and trending innovation in CNN with evident progress in applications like 
computer vision, cyber security, medical and many more. This paper presents a complete overview of GAN with its structure, 
variants, application and current existing work. Our primary focus is to review the growth of GAN in the computer vision 
domain, specifically on image enhancement techniques. In this paper, the review is carried out in a funnel approach, starting 
with a broad view of GAN in all domains and then narrowing down to GAN in computer vision and, finally, GAN in image 
enhancement. Since GAN has cleverly acquired its position in various disciplines, we are showing a comparative analysis 
of GAN v/s ML v/s MATLAB computer vision methods concerning image enhancement techniques in existing work. The 
primary objective of the paper is to showcase the systematic literature survey and execute a comparative analysis of GAN 
with various existing research works in different domains and understand how GAN is a better approach compared to exist-
ing models using PRISMA guidelines. In this paper, we have also studied the current GAN model for image enhancement 
techniques and compared it with other methods concerning PSNR and SSIM.

1 Introduction

Generative adversarial networks are the sub-class of the gen-
erative model, with the competence to produce/verify a new 
set of data. A generative adversarial network was introduced 

in 2014 by researchers Ian J GoodFellow et al. [28] in his 
research paper published in IEEE Journal.

Most neural networks aim to learn from the limited data 
set, which usually faces misclassification and overfitting 
problems. The GAN model is a powerful architecture with 
a component of self-generate, self-learning and competence 
to overcome the limitation of traditional networks.

According to GoodFellow et al. [28] research paper pub-
lished in 2014, GAN and its structure are described as a 
two-player min–max game or Nash Equilibrium with the 
function value V(D,G). The detailed mathematical descrip-
tion is given by Good Fellow is shown in Formula 1.

In 2015, a new variant of GAN was proposed by ABC, 
and this work has become a basic approach for all upcoming 
variants of GAN. In this work, the GAN is mainly broken 
down into two modules, Generator G(A) and Discriminator 
D(A). Here, the generator generates the data, similar to the 
training dataset, and the discriminator is a network trying 
to identify the real and generated data. The GAN model 

(1)

min
G

max
D

V(D,G)

V(D,G) = Ex pdata(x)[logD(x)] + Ez p(z)[log(1 − D(G(z)))]
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work on the principles of game probability. The theory is to 
generate a random variable (A) whose properties are simi-
lar to the actual variable. Specifically, the generation of the 
random variable experiment is repeated N number of times 
until it gets the actual variable value which is known as 
Probability(P). And the possible outcome of this is known as 
sample space represented by Ω. Overall we claim it as prob-
ability distribution function P(A) where the probability of all 
outcomes can generate the result R as shown in Formula 2.

P: Ω → Z

distribution concept; after training, the generator forms 
compressed data distribution corresponding to multi-
dimensional vector space. The architecture of the genera-
tor is shown in Fig. 2.

Discriminator:  Discriminator is a supervised GAN 
model that uses input and general variables based on the 
class label. The discriminator inputs value from real and 
generated dataset and predict a binary label 0 and 1, clas-
sifying the received data as fake or the same, respectively. 
The architecture of the discriminator is shown in Fig. 3.

Fig. 1  Architecture of GAN

Fig. 2  Architecture of Generator in GAN

(2)

(assuming the probability of generated random variable is always positive P(A) ⩾ 0)

Hence, we can say the summation of all probability can 
give an actual variable, i.e. ΣAЄΩP(A) = 1. A simple real-
time example of GAN is two people playing Guess the num-
ber in the mind game. R. Chang et al. 2023 [143] and Z Pan 
et al. 2019 [105] are some of the experimental works that 
supported the above hypothesis. The simple GAN model 
concerning Game probability is shown in Fig. 1.

1.1  Basic Modules of GAN

GAN deep learning module is mainly made of two adver-
sarial network modules Generator and a Discriminator.

Generator: It is an unsupervised model in GAN that 
generates new values in input distribution based on the 
summary of real input variable distribution. The generator 
reads fixed-length random vectors based on the Gaussian 
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1.2  Applications of GAN

A generative adversarial network is a trending neural net-
work model with several fascinating applications in various 
domains. The usage of the GAN model in many applications 
has shown a drastic change in the result and system accuracy. 
In this study, we have discussed some of the well-known 
applications of GAN as follows.

1.2.1  Application of GAN in Cyber and Network Security

The various anomalies in the security system are damaging 
the system and our privacy. The new GAN approach is vital 
in improving cyber security and building a safer system envi-
ronment that protects against various attacks. GAN is one of 
the latest ideas in self-driving cars to enhance their safety 
and protection during navigation and collection of specific 
sensor data. These days, applying GAN in cyber security 
has become one of the exciting fields among researchers. A 
large set of research works can be observed using the GAN 
approach in the cyber security area.

The GAN model can be practiced to detect various cyber 
intrusions like distributed denial of service attacks, botnet 
attacks etc. [1]. To detect cyber-physical system attacks, 
FID-GAN, an unsupervised intrusion detection system, is 
designed [2]. Many imbalanced data set problems during 
intrusion detection are solved by using simple GAN and 
GAN with Earth-Mover distance in [6, 7]. To enhance the 
accuracy of GAN model, the labelled sample set is expanded 
by using an advanced binary classification model [3]. In 
Yixuan Wimu et al., a mining approach is presented based 
on the fuzzy rough set, CNN and GAN to enhance intru-
sion detection based on feature extraction [4, 5]. GAN and 
modified versions of GAN, like PAC-GAN, have notably 
contributed to detecting malware and standard packets in 
cyber security [8, 9].

Overall, GAN can be used in most of the studies related 
to threat detection [10–12], false data injection attacks 

imbalanced data problems etc., in the cyber and network 
security domain.

1.2.2  Application of GAN in Healthcare Industry

GAN is one of the fascinating inventions of AI that has con-
tributed to most of the domains in today's research envi-
ronment. Most of the SURPRISING and splendid tasks of 
human and AI bots are the work of GAN. The healthcare 
industry is one of the majorly benefited fields of GAN. 
Radiology images like CT, MRI, ultrasound, radiography, 
and elastography resolution can be enhanced by GAN. The 
small data set problem during the training phase is one of the 
major issues addressed in the healthcare domain by GAN.

To understand the role of GAN in healthcare, we have 
gone through different research works. The major work was 
observed in enhancing image clarity. In Yuhui Ma et al., 
[13] a versatile novel approach, Still-GAN, is introduced 
to enhance low and high-quality images. Lesion Focused 
Multiscale in [14] and enhancement of low-resolution coun-
terparts of CT images by the GAN-Circle approach [15] are 
a few other enhancement techniques noted. To enhance and 
generate a high-resolution 3D medical image, hierarchical 
amortized GAN is used in research work presented in [16].

The other notable application of GAN is image genera-
tion and synthesis. Chikato Yamasoba et al. [17] presented 
an approach to generate different modality images using 
DCGAN and Cycle GAN. In [18], a one more approach 
where DC-GAN is used for medical data synthesis, and gen-
erating MR images using GAN is observed [19]. Strategies 
like GAN augmentation for liver lesion classification [20], 
fund-GAN approach to augment fundus image for retinal 
image classification [21], pseudo-3D cycle GAN lumbar 
spine data synthesis [22] and 3D multi-conditional GAN 
for image augmentation in lung module classification some 
more work reviewed in image augmentation [23]. Finally, 
we noticed a few more applications like medical image seg-
mentation by using MS-GAN [24], U-net Based GAN [26], 
image fusion on GAN [25] and tumour classification [27]. 
In conclusion, GAN has become a boon and advantage for 
the growth of the medical field.

1.2.3  Application of GAN in Computer Vision

In this survey, we have considered some of the applications 
of GAN, which have made revolutionary improvements in 
computer vision. The application of GAN in computer vision 
can be classified into the generation of image datasets, super-
resolution, creating human face photographs, image-to-
image translation, generating realistic pictures, face frontal 
view generation and generating new human poses.

Generating image datasets is an approach to creating 
new plausible images from existing images. Firstly, this 

Fig. 3  Architecture of Discriminator in GAN

(2)

(assuming the probability of generated random variable is always positive P(A) ⩾ 0)
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approach was designed by Ian Goodfellow et al. in 2014 
[28]. In this paper, the author has generated a likely image 
from the MINIST data set. The MINIST dataset combines 
CIFAR-10 small objects and the Toronto face database. 
In 2015 [29], Alec Radford et al. designed an approach to 
stabilize GAN. This approach was beneficial to overcome 
with small dataset overfit problem in CNN and ML.

To enhance the image resolution, SRGAN is one of the 
well-known approaches used widely. In this approach, the 
generated image has a higher pixel resolution; some of the 
known works using SRGAN were conducted in 2016 by 
Christin Leidg et al. [30] and in 2017 by Huang Bin et al. 
[31]. In 2018, Subeesh et al. [32] presented an approach 
to creating a high-resolution image for photographs using 
the SR network.

The GAN model can also be applied to generate pic-
tures of human faces. In 2017, Tero Karras et al. [33] pub-
lished a work where celebrity faces are generated from 
input samples, and the generated output is quite similar. 
Later many works were published using Tero Karras et al. 
work as a base paper.

The image-to-Image translation is a vital application of 
image translation research using GAN. The first paper on 
image translation was published in 2016 by Philip Isola 
et al. [34]. The work was proposed on conditional adver-
sarial Network and pix2pix approach. In 2018, Andrew 
Brock et al. [35] proposed a work to generate realistic 
photographs using bigGAN. It is noticed the generated 
images are very similar to the old photos with better accu-
racy. Face frontal view generation by GAN came to light 
in 2017 by Rui Hang et al. [36]. The global and local GAN 
is used in this paper. The face photos taken from various 
angle is used to generate the different frontal view and 
human poses.

To analyze the growth and advancement of GAN in vari-
ous fields, we have queried across the different journals with 
a keyword "GAN" and "Generative Adversarial Network" 
with a filter of publication year from 2016 to 2023. This 
search aims to give a detailed, comprehensive overview 
for researchers and practitioners where we can answer the 
following research questions based on the growth of GAN, 
as shown in Table 1. In Table 2, CONF: Conference, JOR: 
Journal, EAA: Early Access Article, MAG: Magazine, BOK: 
Book, RA: Review Article, RSA: Research Article, BOC: 

Book Chapter, COP: Conference Proceeding, RWE: Refer-
ence Work Entry and RW: Reference Work.

After analyzing research questions, we understood that 
the progress of GAN in various domains is increasing 
exponentially, especially in computer vision, as observed in 
RQ5 in Table 2. This paper aims to analyze and understand 
current practices, approaches and ground truth of GAN in 
computer vision and image enhancement techniques. Our 
contribution to this paper is as follows:

• A detailed literature survey on GAN and its variants is 
carried out. The detailed report on the technique and the 
current tool is outlined by framing the research questions.

• A detailed review of existing work in image enhance-
ment techniques in GAN is discussed. Depth analysis of 
evaluation metrics, datasets, methodology and tools of 
various methods are explained in detail by carrying out 
a systematic literature review.

• We highlighted some of the gaps and challenges in the 
spectrum of image enhancement techniques using GAN, 
which can be helpful for future research work.

Overall, this paper is structured as follows, in Sect. 2, the 
detailed review process is presented by defining the research 
question. In Sect. 3, variants of GAN in computer vision and 
outcome of research questions are outlined; Sect. 4, gaps and 
challenges are discussed, and in Sect. 5 conclusion.

2  Taxonomy of Systematic Literature Review

To perform a detailed and systematic literature survey, we 
have referred few benchmark review works proposed by 
Bugen et al. [37], B Kitchenham et al. [38] and M. A Barbar 
et al. [39] in the area of software engineering. Throughout 
this paper, we have taken up their approaches to design our 
review and manifested our survey into three significant steps 
planning, conducting, and reporting, as shown in Fig. 4.

2.1  Planning

The primary aim of this stage is to give sufficient infor-
mation and give a systematic path for the conduction and 
reporting stage. This phase consists of three steps.

Table 1  Defined research 
question to analyze growth of 
GAN in various field

No. Research question

RQ1 How is the research growth of GAN in various Domain?
RQ2 How many numbers of publication available on GAN in computer vision?
RQ3 How is the increase in publication count on GAN in cyber security?
RQ4 How is the scope for GAN in Healthcare?
RQ5 How is research growth of GAN in computer vision?
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• Identifying the need for a Survey
  Before a systematic survey, the research scholar must 

understand how important the survey is. The researcher 
should undergo existing survey work available, and we 
have read a good count of work to perform this step.

• Formulate Research Question
  A well-structured research question will help to under-

stand the identified study in a proper direction. We have 
drawn all possible research questions in this phase to 
match our study.

• Review Protocol

Generally, protocols are the critical element in most of the 
literature survey. Analyzing the described research question, 
planned strategy, and background context meet the designed 
survey or not is executed in this step. In this study, we have 
followed a hierarchical approach to review protocol.

2.2  Conducting

Conducting is the next step after the planning. In this phase, 
there are four steps.

• Search Strategy
  It is a predefined approach that aims to find possible 

primary research papers related to our work. In this step, 
we designed a search technique based on a specific key-
word, a synonym of a keyword or a constructed string 
using possible keywords.

• Selection of Study on Criteria Basis
  Various challenges are encountered during the litera-

ture selection process, like language, author, journal etc. 
The presented work follows a well-defined protocol to 
decrease bias and ensure fairness.

• Study Quality Assessment
  This process's primary goal is to ensure the quality 

and relevance of selected papers from the previous steps. 
Here, we have fixed a set of quality metrics to appraise 
the quality of this study.

• Data Extraction and Monitoring
  In this phase, the source and form used to collect the 

required data for the study are designed. We have care-
fully selected the necessary references and entities in our 
research and well-recorded them.

2.3  Reporting

In this phase, all the extracted and analyzed data is summa-
rized well. This phase consists of two steps.

• Data Synthesis
  In this step, data synthesis and summarization are 

achieved using a graphical and tabular approach, which 
is more suitable for understanding.

• Reporting Finding

In this stage, the synthesized data is reported in the proper 
channel that can target research scholars and evidence.

2.4  Implementation of Systematic Literature 
Review

2.4.1  Identifying the Need for a Survey

To identify the importance of the study, we tried to ana-
lyse the current research trend, especially in GAN. We have 
searched various journals, and it is observed there has been 
a steady growth in the count of papers published over the 
years, as shown in Table 2.

2.4.2  Formulate Research Question

Picking a research question is an essential first step to define 
the overall purpose of the specific study. In this paper, we 
have established stable research questions (RQ) to guide 
researchers, increase confidence in the domain and under-
stand the recent exercise and trend of GAN in computer 
vision. The established RQs and SRQs are given in Table 3.

Fig. 4  Taxonomy of Systematic Literature Review
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2.4.3  Review Protocol

After defining the RQs, the research questions are sent to 
the research guide, research supervisor and co-supervisor 
to check the depth and correctness of the RQ. The research 
guide has also evaluated the protocol design of this study. 
After reviewing the protocol from the supervisor, we pro-
ceeded further in our research.

2.4.4  Search Strategy

We have started our research with the intent to compile as 
many studies and work related to our research domain. In 
this phase of the collection, we included all possible key-
words and also phrases that match the keywords. The pos-
sible keyword used is shown in Table 4.

To collect the study papers, we looked into several journal 
repositories. However, many digital journals are available 
these days; the selected journals for this paper are listed 
below.

• Web of Science
• IEEE digital library
• ACM digital library
• Springer
• Semantic Scholar

This search is restrained to the period of 2014 to 2023, 
including journals, conferences and archives.

2.4.5  Selection of Study on Criteria Basis

In selecting the relevant work after the search and collection 
process, we established two inclusion criteria to pick the 
most relevant study, as listed below.

• The keyword should be part of the abstract, keyword and 
title.

• Few papers have worked in GAN and do not involve the 
keyword in the abstract, title and keywords. We have 
gone through the complete article to complete the selec-
tion process in such cases.

To skip some studies that do not support the objective and 
aim of the study, we have defined three exclusion criteria as 
follows.

• Studies which are not in English.
• GAN papers related to healthcare, cyber security, net-

works and other domains unrelated to computer vision.
• Conference proceedings are not considered for the study.

The detailed inclusion process is shown using the 
PRISMA approach in Fig. 5.

2.4.6  Study Quality Assessment

After the selection process, accessing quality proof is crucial 
to conduct a proper systematic review. The result obtained 

Table 3  Defined research question to perform systematic literature survey

QNO Research question Justification

RQ-1 What are the well-known variants of GAN? Describe all the possible variants of GAN
SRQ-1.1 What are the frameworks available to work with GAN? Identify different frameworks to work with GAN variants
SRQ-1.2 What are the applications of different types of GAN? List application of each GAN variant
RQ-2 What are the well-known approaches for image enhancement techniques 

using GAN?
Describe different approaches that support image 

enhancement techniques using GAN
SRQ-2.1 Which are the datasets typically used in image enhancement by GAN? Find the dataset that is used in existing work
SRQ-2.2 What are the models used in image enhancement techniques using GAN? Categorize commonly used models in existing work
SRQ-2.3 What are the metrics used to evaluate image enhancement using GAN? List the evaluation metrics used in existing work
RQ-3 Whether GAN is a better approach for image enhancement? How is image 

enhancement performance in GAN, MATLAB and other platforms for 
image enhancement?

Perform a comparative analysis of results

Table 4  Various keywords used 
in search strategy

Keyword 1 “Generative Adversarial Network” OR “GAN”

Keyword 2 “GAN in computer vision” OR “GAN in image processing”
Keyword 3 “Image enhancement using GAN” OR “Image enhancement using 

Generative Adversarial Network” OR “Image clarity improvement 
using GAN”

Keyword 4 “Types of Generative Adversarial Network” OR “GAN variants”



A Systematic Review on Generative Adversarial Network (GAN): Challenges and Future Directions  

from the survey should be firm and avoid all sorts of bias. 
This paper uses the criteria stated in research work [40] to 
analyse the quality assessment.

2.4.7  Data Extraction and Monitoring

In this phase, we will extract the data required for the study. 
After going through six journal repositories to answer the 
defined RQs, we have set some rules and minimal entities 
required from each paper. In this paper, we extracted author 
details, publication details, journal details, dataset, features, 
methods, and metrics used.

2.4.8  Data Synthesis and Reporting

The data synthesis and reporting is the last phase of the sys-
tematic review, where the findings from the data extraction 
stage are segregated and presented as a supportive definition 

for RQs. In this phase, we have used graphs and tables to 
visualize the summarized data.

3  Outcomes

3.1  RQ‑1: What are the Well‑known Variants 
of GAN?

3.1.1  Deep Convolutional Generative Adversarial Networks 
(DCGAN)

The DCGAN layer model was proposed by Radford et al. 
in 2015, in which they presented two CNN models, namely 
discriminator and generator with a convolution transpose 
layer as shown in Fig. 6.

The principal aim of DCGAN is to support unsupervised 
learning using stride and transposed convolution for down-
sampling and upsampling[66].

The essence of DCGAN is as follows:

• Eliminates all hidden layers.
• Max pooling layers are replaced with the stride convolu-

tion layer and fractional stride convolution layer in the 
discriminator and generator, respectively.

• Batch normalisation is used, except for the generator's 
output layer and the discriminator's input layer.

• Leaky ReLu is applied in all layers of the discriminator.
• ReLu is used in the generator except in the output layer. 

In the generator output layer, tanh is applied.

In this paper, some of the work based on DCGAN are pre-
sented. In the survey process, our foremost aim is to identify 
the methodology, model and application where DCGAN can 
be applied. In [41], Yurika Sagawa et al. presented a model 
for facial image generation using attributes and labels by 
DCGAN, and a few more works are noticed where research-
ers' primary motivation was to generate a facial image using 
DCGAN in [44, 46, 53, 58, 61].

The DCGAN gives a higher contribution in data aug-
mentation to enhance any target CNN model's accuracy by 
increasing the dataset's size or building a training model, 
as seen in [52, 59]. However, the most noticeable work of 
DCGAN is in creating and performing analysis of Anime 
Characters [61, 63]. It is noticed using the DCGAN with 
the CNN model or some well-known algorithm like self-
learning [58], SVM [46] etc., will give better accuracy. The 
detailed study of DCGAN is outlined in Table 5.

3.1.1.1 SRQ‑1.2: What Are the Applications of DCGAN? Based 
on the applications of DCGAN in computer vision, we noticed 
the higher contribution of DCGAN is marked in image genera-
tion and data augmentation. Considering all 25 works together, Fig. 5  Prisma Inclusion Process for Systematic Literature Review
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we observed five papers specially used for face image synthesis, 
six on data augmentation, two on anime character generation, 
four on resolution enhancement, and eight on data generation. 
Table  5 illustrates a detailed study of 25 research papers on 
DCGAN; based on this table, Fig. 7 outlines a list of DCGAN 
applications. Hence it concludes DCGAN works fine in situa-
tions of image generation.

3.1.2  Conditional Generative Adversarial Networks (CGAN)

Conditional GAN (CGAN) is a novel approach and a well-
known variant of GAN designed to train generative models. 
The first glance of CGAN was in 2015, presented by Mehdi 
Mirza et al. [67].

The primary function of conditional GAN is to learn 
samples from distribution instead of sampling from mar-
ginal distribution. In conditional GAN sampling is based 
on additional auxiliary information like labels and data. The 
detailed architecture is given in Fig. 8. Based on Fig. 8 the 
2-player min–max function v(G, D) given in [29] can be 
redefined for CGAN as shown below.

Here D(x|y) is the discriminator with x input and y label, 
and G(x|y) is the generator with noise vector and y label.

Generally, the major applications of CGAN are video 
generation, face generation, Image-to-Image Synthesis and 
Text to Image Synthesis. When we queried IEEE digital 
library with the keyword CGAN and filtered from 2019 to 
2023, 24 publication topics were listed; in the extracted list, 
image classification, feature extraction, and medical image 
processing are the top 3 publication topics for CGAN. In 
this study, we have received 34 papers on CGAN by restrict-
ing our subject to CGAN in computer vision and image 

(2)
min
G

max
D

V(D,G) = Ex pdata(x)[logD(x)] + Ez p(z)[log(1 − D(G(z)))]

processing. The detailed outline of the studied research 
papers is given in Table 6.

In the survey phase, we came across various works; 
among these, image processing in the medical field using 
CGAN has many notable results. In [68], Changhee Han 
et al. used 3D Multi conditional GAN to augment a small 
fragmented CT image dataset. Similar works are observed in 
Ke Xu et al. [69] and Meng Li et al. [70], presenting a novel 
approach of CGAN named MCRGAN with the capacity to 
generate pseudo-CT images under limited training dataset 
conditions and transform-based architecture CGAN called 
MedViTGAN for augmentation of synthetic histopathology 
image. In the medical field, one more application of CGAN 
is image segmentation. In [71, 72], we noticed the applica-
tion of CGAN in improving lesion contrast of MR images 
and retinal vessel segmentation. Image denoising by Zhao 
Yang et al. [73],[74]and Miao Tian et al. [75], Image syn-
thesis by Huan Yang et al. [76], Zhaohui Liang et al. [77] 
and Yulin Yang et al. [78] are some of the noticed works of 
CGAN in image processing for the medical field.

Apart from medical image processing, we have studied 
the application of CGAN in the computer vision domain. 
In Jeongik Cho et al. [79], CGAN increases hyperparam-
eters and reduces training speed. The designed approach 
uses multiple GANs, sharing all the hidden layers. In [80], 
the work presented by Tetsuya Ishikawa et al. illustrated a 
method to augment training data using CGAN. Few works 
in computer vision addressed problems like large model size 
and high interface time [81], and in [82], Felipe Coelho Silva 
et al. demonstrated a semi-automatic frame for manga art 
colourization. The other application of CGAN is in qual-
ity reconstruction, Art font, image generation, video games, 
rejuvenation of face image etc. In Table 6, we have given a 
comparative analysis of all our studies in CGAN based on 
parameters like purpose, model and outcome.

Fig. 6  Proposed DCGAN Model In [66]
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Table 5  Comparative study on DCGAN model

Author and year Problem addressed Approach Outcome

Yurika Sagawa et al. [41], 2018 Develop attribute added face 
generation system

Attribute extraction- CNN
Enhancing resolution—DCGAN

Similar Person Score-49.2

Juping Zhong et al. [42], 2019 Recognition of street house 
number

Feature Extraction-CNN
Face image generation -DCGAN

Model become stable as the training 
increase

Daeun Dana Kim et al. [43], 2020 Generation of labeled pedestrian 
dataset

DCGAN As training increase realistic in 
generated image increase

Bingqi Liu et al. [44], 2022 Image Generation Improvised DCGAN Problem of gradient disappearance 
solved

Image quality is improved
DCGAN value is 2.02 higher than 

normal GAN
Mohammed A B
mahmoud et al. [45], 2019

Recognition of traffic signal Feature Extraction-DCGAN
Classification- multilayer per-

ceptron neural network, pseudo 
inverse learning autoencoder

Better result compared to existing 
work

Recognition rate-99.72%

Li Sun et al. [46], 2021 Apple quality classification 
method

Image segmentation -SVM
Data Expansion -DCGAN, 

Improved RSNet

Classification Accuracy -96.5%

Xiuhong Yang et al. [47], 2021 Restoring missing and damaged 
face area

Improvised DCGAN
encoder and Decoder Generation
Local and Global adversarial 

discriminator

PSNR—26.28
SSIM—0.8954

Jiacheng Xu et al. [48], 2021 Tackle block effect problem in 
geometry compression

3D AE-DCGAN Increase in the mean BD-PSNR by 
1.325 dB and 4.55 dB respectively

Qiufeng Wu et al. [49], 2020 Data augmentation for tomato leaf 
dataset

DCGAN Accuracy-94.33%

Moktari Mostafa et al. [50], 2021 Enhancing cross spectral resolu-
tion Iris recognition

DCGAN, CGAN and CPGAN: 
To enhance maximum pairwise 
similarity between future

Recognition accuracy have lower 
EER value of 1.5%

Nandini Kumari et al. [51], 2021 Enhancing the clarity of recon-
structed image using ImageNet

Pre-trained model using DCGAN Lower the loss between generated 
and real image

WenHao Li et al. [52], 2020 Noise reduction for structured 
light

DCGAN to generate dataset
Autoencoder to denoise the struc-

tured light

Robustness is increased and noise is 
decreased

Kai Wu et al. [53], 2020 Data augmentation of faces in 
campus data

Rotate and Render DCGAN Accuracy rate is 97.6%

Sung Nien Yu et al. [54], 2022 Improving of distinguish ability in 
Emotion recognition

RSNet, DCGAN Accuracy rate 90.34%

Taizhi Lv et al. [55], 2020 Improve the accuracy of face 
detection

CNN with local binary pattern 
and DCGAN

Recognition Accuracy 85%

Kunwang et al. [56], 2020 Recognition of object in night 
scene

DCGAN: To generate day image 
same as night

Faster R-CNN- feature fusion and 
multiscale ROI detection

MAP = 82.6%

Qiushi Sun et al. [57], 2022 Synthesis of face image from 
facial part

Deep Learning and DCGAN PSNR:34.38%
SSIM:0.956%

Shawi R. E et al. [58], 2022 Patch based breast cancer clas-
sification

Semi Supervised DCGAN and 
self learning technique

Accuracy: 77.3%
F-measure: 85.72

Sayeda Samia Nasrin et al. [59], 
2020

Henna art design generation DCGAN Better than existing work

Christine Devis et al. [60], 2021 Traffic sign recognition for image 
generation by GAN

DCGAN, LSGAN, WGAN LSGAN proved better with 84.9% 
accuracy

Zecheng Li et al. [61], 2021 Anime character generation DCGAN Image with better quality and 
accuracy

Xiuhong Yang et al. [62], 2021 Semantic face generation DCGAN and dual discriminator Better accuracy



 A. A. Nayak et al.

3.1.2.1 SRQ‑1.2: What are the Applications of CGAN? After 
studying 34 research works on CGAN in computer vision, 
we recorded Image to Image Synthesis is one of the well-
noted applications. Considering the application and pur-
pose of all 34 works, a detailed pictorial view is given in 
the graph of Fig. 9. From Fig. 9, we can conclude Image 
to Image Synthesis, Image Enhancement and Text to Image 
Synthesis are some of the applications where CGAN can 
definitely be used.

3.1.3  Cycle Generative Adversarial Networks (CYCLEGAN)

CycleGAN is another noteworthy variant of GAN presented 
in 2017 by Jun-Yan Zhu et al. [102]. The principal objec-
tive of the model is to map the images without paired data 
using the mapping function G(x- > y) and an adversarial loss 
function.

The image generates from the first generator, G(x), is 
similar to y, that is, G(x- > y) =  > y = G(x). Moreover, in 
this approach using inverse mapping, y will learn from x 
that is F(y- > x) =  > x = F(y). It can be said F(G(x)) = x and 
G(F(y)) = y using inverse mapping and cycle consistency 
loss. The pictorial representation of the Cycle GAN meth-
odology is given in Fig. 10.

During the training process, Cycle GAN focuses more on 
the training dataset and follows a few practices as follows.

• The training set paired image {xi,yi} where all xi in a 
dataset has yi as its counterpart.

• The training set paired image {xi,yi} where every xi in 
the dataset dont have any match with yi.

To get a broad view of CycleGAN and its methodology, 
we have surveyed more than 25 research papers. The sig-
nificant observation is that CycleGAN is majorly used for 
Image Synthesis, especially in the medical field. In Taesung 
Kwon et al. [103] and Jawook Gu et al. [123], image synthe-
sis is used for denoising low-dose CT images. CycleGAN 
is also used for augmentation purposes in the classification 
of Melanoma medical images when a limited labelled data-
set is available for training purposes[104]. ECG restoration 
[104] and fundus image enhancement in diabetic retinopathy 
classification [112] are the other recognized applications of 
CycleGAN in medical image processing. Moving apart, if 
we consider the general application of CycleGAN in com-
puter vision, SAR to optical image registration [106, 120], 
NIR to RGB image [116] and VIS to NIR image [117] are 
the maximal noted research works. Along with this, image 
colourization, denoising and image enhancement in low 
light and night images are the few other works observed. A 
detailed study of Cycle GAN is given in Table 7.

Table 5  (continued)

Author and year Problem addressed Approach Outcome

Yifei Jiang et al. [63], 2021 Anime character generation with 
performance analysis

DCGAN with GUI Image with better quality and 
accuracy

Mingyu Qiao et al. [64], 2021 Data expansion flower dataset DCGAN and RSNet classification Accuracy is significantly improved
Wang Tin Fe et al. [65], 2021 Image in-painting using ISAR 

algorithm
DCGAN: Image Quality
ISAR imaging algorithm

PSNR:28.51
SSIM: 0.90

Fig. 7  List of Applications Used In DCGAN

Fig. 8  Conditional GAN Model



A Systematic Review on Generative Adversarial Network (GAN): Challenges and Future Directions  

Ta
bl

e 
6 

 C
om

pa
ra

tiv
e 

stu
dy

 o
n 

C
G

A
N

 m
od

el

A
ut

ho
r a

nd
 Y

ea
r

Pr
ob

le
m

 A
dd

re
ss

ed
A

pp
ro

ac
h

Re
m

ar
ks

C
ha

ng
he

e 
H

an
 e

t a
l. 

20
19

 [6
8]

3D
 m

ul
ti 

co
nd

iti
on

al
 G

A
N

 to
 g

en
er

at
e 

re
al

ist
ic

 
C

T 
im

ag
e 

to
 e

nh
an

ce
 p

er
fo

rm
an

ce
 o

f 3
D

 
ob

je
ct

 d
et

ec
tio

n

M
C

G
A

N
 w

ith
 tw

o 
di

sc
rim

in
at

or
 a

nd
 fa

ste
r 

RC
N

N
Fi

xe
s t

he
 fa

ls
e 

po
si

tiv
e 

ra
te

D
uc

 M
in

h 
Vo

 e
t a

l. 
20

22
 [8

9]
D

es
ig

ne
d 

a 
m

od
el

 fo
r l

ar
ge

 C
G

A
N

 c
om

pr
es

-
si

on
PP

C
D

-G
A

N
 e

ve
ry

 c
on

vo
lu

tio
n 

la
ye

r i
s c

on
tin

-
ue

d 
by

 le
ar

na
bl

e 
m

as
k 

la
ye

r
Effi

ci
en

t p
ar

am
et

er
 re

du
ct

io
n 

an
d 

sp
ee

d 
in

cr
ea

se

Y
ito

ng
 L

i e
t a

l. 
20

19
 [9

6]
Se

qu
en

ce
 im

ag
e 

ge
ne

ra
tio

n 
fo

r s
to

ry
 v

is
ua

liz
a-

tio
n 

us
in

g 
m

ul
ti 

lin
e 

pa
ra

gr
ap

h
Se

qu
en

ce
 o

f C
G

A
N

 w
ith

 d
ee

p 
co

nt
ex

t e
nc

od
er

 
an

d 
tw

o 
di

sc
rim

in
at

or
V

is
ua

l Q
ua

lit
y-

74
.1

7
C

on
si

ste
nc

e-
 7

9.
15

Re
le

va
nc

e—
78

08
an

d 
its

 b
et

te
r t

ha
n 

ex
ist

in
g 

ap
pr

oa
ch

Pr
ar

ab
dh

 R
ai

pu
rk

ar
 e

t a
l. 

20
21

 [1
00

]
A

dd
in

g 
de

ta
ils

 to
 o

ve
r e

xp
os

ed
 sa

tu
ra

te
d 

re
gi

on
 im

ag
e

C
G

A
N

PS
N

R-
17

.5
7

SS
IM

- 0
.7

8
Y

in
gx

ue
 Z

ha
ng

 e
t a

l. 
20

20
 [1

01
]

Id
en

tif
yi

ng
 tr

affi
c 

es
tim

at
io

n 
ba

se
d 

on
 ti

m
e 

sl
ot

C
U

R
B

 G
A

N
 b

as
ed

 o
n 

G
A

N
Sh

ow
s 5

2.
77

%
 R

M
SE

 a
nd

 5
5.

38
%

 M
A

PE
 v

al
ue

 
im

pr
ov

em
en

t
M

at
eu

s C
 S

ilv
a

et
 a

l. 
20

21
 [9

9]
D

ef
ol

ia
tio

n 
an

d 
le

af
 sh

ap
e 

es
tim

at
io

n
U

ne
t b

as
ed

 c
on

di
tio

na
l G

A
N

 u
si

ng
 O

ts
u 

M
et

ho
d

D
am

ag
e 

es
tim

at
io

n 
va

lu
e-

R
M

SE
 =

 2.
09

Sh
ar

ad
a 

M
ur

al
i e

t a
l. 

20
19

 [9
3]

Tr
an

sf
or

m
in

g 
sty

le
 a

nd
 d

es
ig

n 
fro

m
 o

ne
 d

at
a 

se
t t

o 
an

ot
he

r d
at

a 
se

t u
si

ng
 C

G
A

N
M

ul
tip

le
 c

on
di

tio
na

l i
np

ut
 G

A
N

 w
ith

 a
n 

ab
ili

ty
 

ti 
in

pu
t i

am
ge

 a
nd

 c
la

ss
 la

bl
e

LP
IP

S 
=

 0.
58

83

M
ia

o 
Ti

an
 e

t a
l. 

20
21

 [7
5]

En
ha

nc
in

g 
im

ag
e 

de
no

is
in

g 
in

 M
R

I i
m

ag
e

C
G

A
N

SS
IM

—
0.

94
B

et
te

r S
SI

M
 a

nd
 ro

bu
stn

es
s

Ye
 Y

ua
n 

et
 a

l. 
20

20
[9

1]
G

en
er

at
io

n 
of

 a
rt 

fo
nt

C
G

A
N

 w
ith

 ty
pe

fa
ce

 a
nd

 o
rn

am
en

t n
et

w
or

k
H

ig
h 

qu
al

ity
 im

ag
e 

ar
e 

ge
ne

ra
te

d

M
in

gy
i C

he
n 

et
 a

l. 
20

18
 [9

7]
Sy

nt
he

si
s o

f f
ac

ia
l e

xp
re

ss
io

n
D

ou
bl

e 
en

co
de

r c
on

di
tio

na
l G

A
N

 to
 c

ha
ng

e 
or

ig
in

al
 a

nd
 ta

rg
et

 e
xp

re
ss

io
n 

us
in

g 
as

so
ci

a-
tiv

e 
le

ar
ni

ng

Sa
tis

fa
ct

or
y 

re
su

lt 
co

m
pa

re
d 

to
 e

xi
sti

ng
 w

or
k

Ru
be

n 
Ro

dr
ig

ue
z 

To
rr

ad
o 

et
 a

l. 
20

20
 [9

0]
C

G
A

N
 b

oo
tst

ra
pp

in
g 

fo
r l

ev
el

 g
en

er
at

io
n 

in
 

vi
de

o 
ga

m
e

C
on

di
tio

na
l E

m
be

dd
in

g 
Se

lf 
A

tte
nt

io
n 

G
A

N
 

w
ith

 a
 a

n 
ap

pr
oa

ch
 to

 c
on

di
tio

n 
th

e 
tra

in
in

g 
of

 g
en

er
at

or
 a

nd
 d

is
cr

im
in

at
or

Re
du

ce
 th

e 
nu

m
be

r o
f l

ev
el

 re
qu

ire
d 

fo
r t

ra
in

in
g

Je
on

gi
k 

C
ho

 e
t a

l. 
20

20
 [7

9]
Im

pr
ov

ed
 A

C
G

A
N

CA
G

A
N

 to
 im

pr
ov

e 
A

C
G

A
N

 b
at

ch
 n

or
m

al
iz

a-
tio

n 
an

d 
co

ns
ist

en
cy

 in
 re

al
 a

nd
 g

en
er

at
ed

 
da

ta

Tr
ai

ni
ng

 sp
ee

d 
is

 im
pr

ov
ed

 a
nd

 h
yp

er
pa

ra
m

et
er

s 
ar

e 
re

du
ce

d

H
ua

n 
Ya

ng
 e

t a
l

20
19

 [7
6]

G
en

er
at

e 
m

ul
ti 

co
nt

ra
st 

M
R

I i
m

ag
e

C
G

A
N

Pr
es

er
ve

 h
ig

h 
fr

eq
ue

nc
y

PS
N

R
—

20
.6

8
M

uy
an

g 
Li

 e
t a

l. 
20

20
 [8

1]
Re

du
ci

ng
 m

od
el

 si
ze

 a
nd

 in
te

rfa
ce

 ti
m

e 
of

 
ge

ne
ra

to
r i

n 
C

G
A

N
C

G
A

N
 w

ith
 n

eu
ra

l a
rc

hi
te

ct
ur

e 
se

ar
ch

M
an

y 
C

G
A

N
 v

ar
ia

nt
s c

an
 b

e 
co

m
pr

es
se

d 
w

ith
-

ou
t l

oo
si

ng
 v

is
ua

l q
ua

lit
y

M
ira

n 
H

eo
 e

t a
l. 

20
19

 [9
2]

Re
fle

ct
io

n 
re

m
ov

al
Pr

es
er

vi
ng

 lo
w

 a
nd

 h
ig

h 
fr

eq
ue

nc
y 

de
ta

il 
us

in
g 

C
G

A
N

PS
N

R
—

20
.2

0
SS

IM
—

0.
72

57
Zh

ao
hu

i L
ia

ng
 e

t a
l. 

20
20

 [7
7]

G
en

er
at

io
n 

of
 C

O
V

ID
-1

9 
ch

es
t X

- r
ay

 fr
om

 
no

rm
al

 c
he

st 
X

- r
ay

C
G

A
N

 w
ith

 o
pt

im
iz

at
io

n 
ar

ch
ite

ct
ur

e
A

cc
ur

ac
y-

 0
.9

6

Ta
hm

id
a 

M
ah

m
ud

 e
t a

l. 
20

18
 [8

8]
Re

co
ns

tru
ct

io
n 

of
 m

is
si

ng
 fr

am
e 

us
in

g 
C

G
A

N
C

G
A

N
PS

N
R

—
35

.0
3

SS
IM

—
0.

93
V

u 
N

gu
ye

n 
et

 a
l. 

20
17

 [9
8]

Sh
ad

ow
 d

et
ec

tio
n 

in
 si

ng
le

 im
ag

e
C

G
A

N
 w

ith
 a

dd
iti

on
al

 se
ns

iti
vi

ty
 p

ar
am

et
er

s
17

%
 e

rr
or

 re
du

ct
io

n 
co

m
pa

re
d 

to
 e

xi
sti

ng
 w

or
k



 A. A. Nayak et al.

Ta
bl

e 
6 

 (c
on

tin
ue

d)

A
ut

ho
r a

nd
 Y

ea
r

Pr
ob

le
m

 A
dd

re
ss

ed
A

pp
ro

ac
h

Re
m

ar
ks

Fe
lip

e 
C

oe
lh

o 
Si

lv
a 

et
 a

l. 
20

19
 [8

2]
Se

m
i a

ut
om

at
ic

 fr
am

ew
or

k 
fo

r c
ol

or
in

g 
M

an
ga

 
co

nc
ep

t a
rt

C
G

A
N

 w
ith

 h
in

t-b
as

ed
 li

ne
-a

rt 
co

lo
riz

at
io

n 
te

ch
ni

qu
e

St
ill

 n
ee

d 
to

 b
e 

im
pr

ov
ed

 c
om

pa
re

d 
to

 e
xi

sti
ng

 
w

or
k

M
oh

am
m

ad
 H

am
gh

al
am

 e
t a

l. 
20

20
 [7

1]
Im

pr
ov

in
g 

th
e 

co
nt

ra
st 

of
 b

ra
in

 le
si

on
 im

ag
e

C
G

A
N

 w
ith

 n
ov

el
 g

en
er

at
or

 a
nd

 M
ar

ko
vi

an
 

di
sc

rim
in

at
or

PS
N

R
 –

 2
2.

33
SS

IM
 –

 0
.7

24
5

A
ng

 N
an

 G
u 

et
 a

l. 
20

21
 [8

3]
A

cq
ui

si
tio

n 
fr

am
ew

or
k 

to
 g

iv
e 

pr
ed

ic
tiv

e 
ec

ho
 

vi
ew

 o
f h

ea
rt

C
on

str
ai

ne
d 

co
nd

iti
on

al
 G

A
N

84
%

 c
or

re
la

tio
n 

ob
se

rv
ed

 b
et

w
ee

n 
ge

ne
ra

te
d 

gr
ou

nd
 tr

ut
h 

an
d 

se
gm

en
ta

tio
n 

m
as

k 
ar

ea
X

ia
od

on
g 

Li
u 

et
 a

l. 
20

20
 [9

5]
C

ol
or

 c
or

re
ct

io
n 

fo
r u

nd
er

w
at

er
 im

ag
es

C
G

A
N

 w
ith

 m
ul

ti 
sc

al
e 

fe
at

ur
e 

fu
si

on
 d

is
-

cr
im

in
at

or
 a

nd
 P

at
ch

 G
A

N
PS

N
R

—
22

.0
0

M
SE

—
0.

00
55

K
an

g 
Li

ao
 e

t a
l. 

20
20

 [8
7]

Re
ct

ifi
ca

tio
n 

of
 ra

di
al

 d
ist

or
tio

n
C

G
A

N
 tr

ai
ne

d 
by

 lo
w

 to
 h

ig
h 

pe
rc

ep
tu

al
 lo

ss
 

an
d 

va
rio

us
 st

ru
ct

ur
al

 im
ag

e 
m

ap
pi

ng
B

et
te

r P
SN

R
 a

nd
 S

SI
M

 v
al

ue
 c

om
pa

re
d 

to
 e

xi
st-

in
g 

ap
pr

oa
ch

Li
 T

ao
 e

t a
l. 

20
18

 [8
4]

A
ut

om
at

ic
 g

en
er

at
io

n 
of

 a
tte

nu
at

io
n 

m
ap

 fr
om

 
M

R
 im

ag
e

N
ov

el
 C

G
A

N
 a

pp
ro

ac
h 

by
 c

om
bi

ni
ng

 g
en

er
a-

to
r a

nd
 d

is
cr

im
in

at
or

 lo
ss

Pi
xe

l p
re

di
ct

io
n 

er
ro

r r
ed

uc
ed

 b
y 

50
%

K
e 

X
u 

et
 a

l. 
20

19
 [6

9]
Ps

eu
do

 P
C

T 
ge

ne
ra

tio
n 

fo
r M

R
 im

ag
es

M
C

RC
G

A
N

, R
es

N
et

 +
 G

A
N

Q
ua

lit
y 

of
 P

C
T 

ge
ne

ra
tio

n 
in

cr
ea

se
d

K
ye

on
gj

in
 A

nn
 e

t a
l. 

20
21

 [8
5]

O
ve

rc
om

e 
cl

as
s i

m
ba

la
nc

e 
pr

ob
le

m
 in

 C
X

R
 

da
ta

se
t

C
la

ss
 a

ct
iv

at
io

n 
re

gi
on

 in
flu

en
ce

 m
ax

im
iz

at
io

n 
co

nd
iti

on
al

 (C
A

R
IM

-c
G

A
N

)
Pr

ob
ab

ili
ty

 o
f d

is
ea

se
s o

cc
ur

re
nc

e 
in

 b
ou

nd
ed

 
re

gi
on

 is
 in

cr
ea

se
d 

an
d 

ge
ne

ra
tio

n 
co

st 
re

du
ce

d
Jin

gk
ua

n 
So

ng
 e

t a
l. 

20
22

 [9
4]

Re
nd

er
in

g 
an

d 
pe

rs
on

al
ity

 p
re

se
rv

at
io

n 
in

 fa
ce

 
ag

in
g

D
ua

l c
on

di
tio

na
l G

A
N

—
A

G
E 

G
A

N
 +

  +
 by

 
sh

ar
in

g 
th

e 
w

ei
gh

t w
ith

 d
ua

l a
nd

 p
rim

al
 p

ar
t 

of
 st

ea
m

lin
e

B
et

te
r p

er
fo

rm
an

ce
 c

om
pa

re
d 

to
 e

xi
sti

ng
 

ap
pr

oa
ch

Zh
ao

 Y
an

g 
et

 a
l. 

20
21

 [7
3]

D
en

oi
si

ng
 C

T 
im

ag
e

C
G

A
N

 w
ith

 st
ru

ct
ur

al
 lo

ss
 b

as
ed

 o
n 

un
pa

ire
d 

da
ta

Effi
ci

en
t d

en
oi

si
ng

 p
er

fo
rm

an
ce

M
at

eu
s B

al
ta

za
r d

e 
A

lm
ei

da
 e

t a
l. 

20
21

 [7
4]

Lo
w

 d
os

e 
C

T 
im

ag
e 

de
no

is
in

g
G

RC
-G

A
N

 u
si

ng
 n

et
w

or
k 

ga
te

s
Fo

cu
se

s m
or

e 
on

 d
en

oi
si

ng
 c

om
pa

re
d 

to
 e

xi
sti

ng
 

w
or

ks
C

hu
fu

 D
en

g 
et

 a
l. 

20
21

 [8
6]

Im
ag

e 
tra

ns
la

tio
n 

fr
am

ew
or

k 
to

 tr
an

sl
at

e 
fro

m
 

M
R

I t
o 

ot
he

r i
m

ag
e

C
G

A
N

 w
ith

 o
ne

 h
ot

 v
ec

to
r a

nd
 G

R
A

D
-C

A
M

B
et

te
r p

er
fo

rm
an

ce
 c

om
pa

re
d 

to
 e

xi
sti

ng
 

ap
pr

oa
ch



A Systematic Review on Generative Adversarial Network (GAN): Challenges and Future Directions  

3.1.3.1 SRQ‑1.2: What are the  Applications Of Cycle‑
GAN? Based on the research and problem addressed in 
the state of art methods from Table 7, we collected some 
of the following basic observations. Firstly, CycleGAN is 
majorly used in Image Synthesis for unpaired data in vari-
ous domains. Secondly, using CycleGAN, training time and 
memory consumption can be reduced. At last, CycleGAN is 
also helpful for converting any existing supervised method 
to an unsupervised one. The detailed usage of CycleGAN is 
given in Fig. 11.

3.1.3.2 Style Generative Adversarial Networks (STYLE‑
GAN) StyleGAN is a variant of GAN introduced by Tero 
Karras et al. in 2019 [134]. It is the first variant of GAN 
focused on the advancement and improvement of the gen-
erator, then the discriminator. This model is built with two 

networks, namely the mapping network and the synthe-
sis network. The StyleGAN inputs the latent space vector 
directly into the mapping network, which comprises eight 
fully connected layers. The output of the mapping network 
is later sent to the synthesis network architecture consist-
ing of 18 convolution layers and an AdaIN style network.

The synthesis network produces 4 × 4 to 1024X1024-
sized images in every layer. Gaussian noise is added to the 
activation map before sending the images into the AdaIN 
method. And this is the primary reason that StyleGAN 
can produce high-resolution images. The comphrehensive 
architecture of StyleGAN is shown in Fig. 12.

The significant changes and updation in the StyleGAN 
compared to other GAN architecture are as follows.

• Tuning and bilinear upsampling are added.

Fig. 9  List of Applications 
Used

Fig. 10  Cycle GAN Training Process [101]
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• Gaussian noise is added in each block.
• Mapping and Synthesis networks are added.
• Latent vector input is not added to the generator.

Since StyleGAN was introduced in 2019, we got only 
a few research work on this model related to computer 
vision. The survey shows that most of the work collected 
from the paper is on the enhancement of image qual-
ity and advancement of StyleGAN. Dongsik Yoon et al. 
[135] started with the objective of generating diverse 
face images using available static faces. A similar work is 
observed in Shao Xiaofeng et al. [150], where the author 
develops the image using StyleGAN with ResNet using 
the FFHQ dataset. The idea of single-dimension pluralistic Ta
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Fig. 11  List of Applications used in CycleGAN

Fig. 12  STYLEGAN Architecture [133]
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face image generation is taken to 3D pluralistic image gen-
eration in [136], where they worked on fixed styleGAN 
and RigNet with the 3DMM model. StyleGAN can also 
be used for classification, as demonstrated in [137], Face 
generation from the masked image in [138] and [151]. 
StyleGAN is widely used in fashion [154] and painting 

[145] [155] for better-quality images. The detailed study 
on StyleGAN is outlined in Table 8.

3.1.3.3 SRQ‑1.2: What are the  Applications of  STYLE‑
GAN? To understand the application of StyleGAN in com-
puter vision, we have been through 20 research papers. 

Table 8  Comparative study on style GAN model

Author and year Problem addressed Model Outcome

Dongsik Yoon et al. 2023 [135] Generation of several possible 
faces from Facial inpainting

Style GAN with pSp encoder and 
SeFa algorithm

SSIM = 0.883
FID = 25.95

Aayush Tewari et al. 2020 [136] 3D Face Rig control for portrait 
images

Fixed Style GAN with 3DMM The model proved better in Interac-
tive Rig Control, Style Mixing 
and Conditional Image Generation

Chen Zhao et al. 2020 [137] Generation of high quality skin 
image for Melanoma skin lesion 
classification

SLA-StyleGAN with 
DenseNet201

BMA = 93.64%

Viktor Varkarakis et al. 2020 
[138]

Building synthetic and scalable 
facial dataset

Retraining of StyleGAN Generated images have better qual-
ity compared to existing approach

Siavash Khodadadeh et al. 2022 
[139]

Identity preserving in face image 
generation

StyleGAN Quality of generated face 
FID = 41.64

Saleh Hussin Salem Hussin et al. 
2020 [140]

Image Synthesis from person 
re-ID dataset

Style an LSRO algorithm for 
assigning uniform labels for 
generated unlabeled images

SSIM = 0.38
FID = 12.67

Gabriel Hermosilla et al. 2021 
[141]

Thermal image generation StyleGAN2 and YoloV3 Accuracy = 99.98% in classification 
of thermal face images

Yichun Shi et al. 2021 [142] Generating 3D view images for 
available synthetic image

StyleGAN2 and differentiable 
renderer

FID = 29.81

Tero Karaas et al. 2020 [134] Improving and Analyzing image 
quality

StyleGAN with generator nor-
malization

FID = 6.93 Improvement in LSUN 
dataset compared to other 
approaches

Hariharan et al. 2022 [144] Image Quality enhancement StyleGAN and DCGAN Fakeness and quality of image is 
increased

Siwei Liao et al. 2021 [145] Generation of interactive movie 
poster with different colors and 
layouts

StyleGAN with interactive Evolu-
tionary computation

Computer simulation shows effec-
tive performance

Dana Cohen Hochberg et al. 2022 
[146]

Annotation and Classification of 
images with limited labels

Self supervised-StyleGAN with 
integrated encoder

Gives high accuracy for classifica-
tion of small labelled dataset of 
size 50

Pengsen Ma et al. 2022 [147] Embedding of Chinese traditional 
painting into latent space

StyleGAN with deep residual 
shrinkage networks

FID increased by 21% and gen-
eration of image under noise 
increased by 10%

Elad Richardson et al. 2021[148] Image to Image translation pSp framework and StyleGAN Less training time and no adversary 
needed

Way Tan et al. 2021 [149] Analysis and removal of circular 
artifacts generated by StyleGAN

StyleGAN and pixel instance 
normalization layer

RestrictsS the appearance of circu-
lar artifacts in generated images

Shao Xiaofeng et al. 2021 [150] Generation of more than one 
reasonable image from masked 
images

StyleGAN with ResNet Generated pluralistic face images 
have better quality then existing 
approaches

Wanchao Su et al. 2022 [151] Sketch to portrait image genera-
tion

Spatially conditioned-StyleGAN Usability and expressiveness of 
system is high

Tianyi Wei et al. 2022 [152] Enhancement of styleGAN effec-
tiveness and efficiency

E2Style feed forward network 
with StyleGAN inversion

Model optimization increased

InMoon Choi et al. 2022 [153] Generating high resolution fash-
ion model images

StyleGAN Better quality enhancement com-
pared to existing approaches

Rajesh Rohilla et al. 2022 [154] Editing of portrait without reduc-
ing quality

StyleGAN Straight forward, effective and 
efficient model
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As we observed, StyleGAN in computer vision is widely 
used to address quality enhancement problems in generated 
images. Another major application of StyleGAN, as per the 
literature study, is Image Synthesis. For a better understand-
ing of applications of StyleGAN in computer vision, we 
have plotted the graph as shown in Fig. 13.

3.1.4  Super Resolution Generative Adversarial Networks 
(SRGAN)

Super Resolution GAN is a well-known GAN variant to 
convert images with low resolution to high-resolution. This 
model was proposed by Twitter researchers in 2017. SRGAN 
model mainly subsist of three networks, namely generator, 
discriminator and VGG16 network, which is built using per-
ceptual loss function.

The generator network consists of a convolution layer, 
PReLU layer and k3n64S1 strands with skip connection. 
And the discriminator network consists of a convolution 
layer, Leaky ReLU layer and k3n64S1 strands. The simple 
training network of SRGAN is illustrated in Fig. 14.

Super Resolution GAN is mainly used for creating 
photo-realistic images by using down-sampled images. In 
this study, we have been through some existing works to 
understand the role of SRGAN in removing the artefacts in 
low-resolution images. SRGAN can be used across various 
domains using computer vision techniques. In Yudai Nagano 
et al. [156], SRGAN creates a high-resolution food image. 
The author has mainly focused on inducing noises like jpg, 
blur etc. Junchao et al. [167], in this work the author used 
SRGAN for textile image reconstruction to get better accu-
racy than bilinear. In the survey, we observed most of the 
SRGAN works are based on facial resolution enhancement 
in the face image. In Hao Dou et al. [157], Minjie et al. 
[160], and Hai Nguyen Truong et al. [166], the SRGAN 
is used for facial resolution enhancement using orthogo-
nal projection, wavelet transform and total variation loss, 
respectively. The SRGAN can be used to enhance the CT 

images [161] and fundus images [163] in medical image 
processing. The researcher Nai Feng Zhang et al. [174] have 
used SRGAN to deblur distant pedestrians. and Yong Hun 
Kim et al. [158] used SRGAN to restore old documents. The 
detailed study on SRGAN is outlined in Table 9.

3.1.4.1 SRQ‑1.2: What are the Applications of SRGAN? After 
analyzing several research works on SRGAN, we noted that 
image resolution enhancement, especially facial, medical 
image, textile, and pedestrian images, are the main areas in 
which SRGAN is used. SRGAN can also be used for image 
segmentation, classification and restoration purposes. The 
detailed use of SRGAN in various domains is shown in 
Fig. 15.

3.2  SRQ‑1.1: What are the Frameworks Available 
to Work with GAN?

Generative Adversarial Network (GAN) is successfully used 
for image synthesis, data augmentation, image restoration 
and many more. Practising GAN on primary python IDE or 
any framework is challenging and lengthy. To minimize the 
complexity these days, we have various tools in the market 
to support GAN. In this section, we have discussed available 
GAN tools, their features and applications that simplify the 
usage of GAN.

• GAN LAB

It is a visual interactive experiment tool to train GAN 
with a 2D data distribution model and visualize the inter-
nal working system. The GAN lab is built on TensorFlow. 
js and UI on GPU accelerated deep learning library. Using 
the GAN Lab, model learning visualization and improving 
fake samples is much easier.

Some of the features of GAN LAB are:

Fig. 13  List of Applications used in STYLEGAN

Fig. 14  SRGAN Training Network
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• Slow motion code
• Adjustment of the interactive hyperparameter is pos-

sible
• User-defined data distribution is possible.
• VeGANs

VeGANs is a python library with PyTorch framework for 
GAN. This library is mainly designed for developers willing 
to develop their own generator and discriminator network.

• TORCH-GAN
  Torch-GAN is a PyTorch framework for GAN. This 

framework is a collection of building blocks of GAN 
which gives customization for popular GAN datasets. 
Torch-GAN library offers provision for adding a new 
plugin for loss function and architecture, as well as the 
option to visualize various logging backgrounds.

• HYPERGAN
  HyperGAN is a framework with a user interface and 

API. Building the GAN model on HyperGAN makes the 
training process more straightforward. In HyperGAN, 
replacing part of GAN with JSON file or creating a new 
GAN is way easier than in other frameworks.

• IMAGINAIRE
  Imaginaire is an invention of NVIDIA; also a PyTorch-

based GAN library integrating all the NVIDIA image and 
video synthesis projects. This library has several func-
tionalities with six algorithms like Pix2PixHD, FUNIT, 
MUNIT, UNIT, COCO-FUNIT and SPADE.

• MIMICRY 
  Mimicry is a lightweight PyTorch library to monitor 

GAN's loss and probability curves. This library is sup-
ported by the Tensor board, which is helpful in the per-
formance comparison of multiple GAN models.

• GAN TOOLKIT
  GAN toolkit is a flexible library by IBM based on No 

code approach. This library helps the user to work with 
config files and command line arguments. It is an open-
source library that allows multiple libraries like Keras, 
PyTorch and Tensor flow.

• TFGAN
  TFGAN is a light weighted library used for the evalu-

ation of GAN. This library comprises many GAN opera-
tions, normalization techniques, losses etc. TFGAN can 
be used in Google TPU and GPU and is also compatible 
with Tensorflow2. For the self-study of GAN, TFGAN 
is the best tool.

• PyGAN
  PyGAN is a library in Python to implement models 

like CGAN, GAN, adversarial autoencoder and energy-
based GAN. This library is mainly used for semi-super-
vised learning.

• STUDIOGANTa
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StudioGAN is a library for GAN on PyTorch Framework 
for both conditional and unconditional image generation. 
StudioGAN has an inbuilt benchmark for CIFARIO, Tiny-
Image Net and ImageNet. This library has a unique feature 
that performs better for low memory consumption.

3.3  RQ‑2: What are the Well‑known Approaches 
for Image Enhancement Techniques Using GAN?

Image Enhancement is a technique of manipulating digital 
pixel value so that the resultant images are more suitable for 
visualization and further analysis. The general idea of image 
enhancement is to process the given image and make it more 
convenient for the specific application.

Image enhancement can be executed in different ways; it 
can be the sharpening of image features such as boundaries, 

edges etc. It can also be removing noise, increasing an 
image's brightness or changing contrast. It is said that image 
enhancement can't improve the inherent content of data, but 
it can enhance the dynamic range of chosen features.

There are numerous techniques for image enhancement 
in computer vision. And Fig. 16 shows a general approach 
or hierarchy to carry out image enhancement.

To understand the methodology used for image enhance-
ment using GAN, we studied many research papers on dif-
ferent variants of GAN for image enhancement techniques. 
Some researchers worked on the enhancement of face images 
and their features [31, 175, 184, 200], and some papers 
mainly concentrated on computer vision in the medical field. 
In [178] [180, 190], the author focused on enhancing the 
clarity of the fundus image for better recognition of the iris. 
And in [76, 128, 191, 195, 202, 204], the author's principal 
objective was enhancing X-Ray, MRI and CT Scan images. 
The research in image enhancement is not only restricted 
to image processing in the medical field; it has also shown 
a comprehensive improvement in enhancing low light, low 
luminance and underwater images. In Table 10, we have 
illustrated all the studied research work in detail based on 
their methodologies.

3.4  RQ‑2.1: Which are the Datasets Typically Used 
in Image Enhancement by GAN?

We observed various datasets were used in numerous stud-
ies related to image enhancement using GAN variants for 
testing and training purposes. Generally, the datasets are 

Fig. 15  List of Applications used in SRGAN

Fig. 16  Image Enhancement 
Techniques
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publicly available on the internet; in some cases, datasets 
are private, self-created, and acquired. It is found these data-
set has made an incredible advancement in image enhance-
ment using GAN. In turn, because of these datasets, most 
of the GAN variants can achieve their desired outcome. In 
Table 11, all the datasets used in different research papers 
related to image enhancement in GAN are displayed respec-
tively to their variants.

3.5  RQ‑2.2: What are the Models Used in Image 
Enhancement Techniques Using GAN?

This section illustrates various GAN variants used in image 
enhancement. Based on studies and considering all the GAN 
variants used for image enhancement, we have outlined 
Table 12 in this paper. While presenting the summary table, 
we considered noise removal, clarity enhancement, blurri-
ness removal, contrast enhancement and brightness enhance-
ment as image enhancement techniques. In this paper, we 
assessed 69 reports to study image enhancement using GAN. 
Based on 69 articles, Table 12 is drawn, listing all the vari-
ants of GAN used for image enhancement, the number of 
studies in each category and the percentage of studies in 
each category (PSC). Using Table 12, we can reveal SRGAN 
is the most used GAN in the image enhancement approach.

3.6  RQ‑2.3: What are the Metrics Used to Evaluate 
Image Enhancement Using GAN?

This section of the paper showcases various measurement 
metrics used in calculating, analysing and assessing the 
performance of the model used for image enhancement in 
GAN. Table 13 defines multiple metrics and performance 
units in all the studies on image enhancement methods. It 
also gives the proper explanation and description of each 
measurement metric and the number of studies related to 
each metric. Based on Table 13, it can be concluded PSNR 
and SSIM are often used measurement metrics to evaluate 
image enhancement studies across various GAN models.

3.7  RQ‑3: Whether GAN is a Better Approach 
for Image Enhancement? How is Image 
Enhancement Performance in GAN, MATLAB, 
and Other Platforms for Image Enhancement?

To analyse how the GAN model is efficient for image 
enhancement compared to the other existing techniques, 
we split our analysis based on three categories: (i) Image 
enhancement using the GAN model (ii) Image enhance-
ment using machine learning (iii) Image enhancement 
using MATLAB.

In this review work, we considered a maximum of ten 
sample existing studies from each category [204] [205] 
[206] [207] [208] [209] [210] [211] [212] [213] [214] 
[215] [216] [217] [218] [219]. And the PSNR and SSIM 
performance metrics are used for comparative analysis. 
We recorded minimum and maximum PSNR and SSIM 
observed from the collected sample study from each cate-
gory as given in Table 14. Overall, in this section, Table 14 
and Fig. 17 present the gist of the comparative analysis. By 
analyzing Table 14, we can say the GAN model is a better 
approach for image enhancement.

4  Limitations and Challenges

Please make sure that the paper you submit is final and 
complete, that any copyright This section lists some of the 
challenges, limitations and gaps noticed during the study. 
The observed gaps are as follows.

• Minimal work is proposed to enhance and restore the 
image by extracting the original features of the image.

• Using the GAN model for training purposes can 
increase the output, but it is noticed the model will 
become very unstable so that in each iteration result 
gets varied.

• One more notable observation in numerous image 
enhancement works is that handling high-frequency 
and low-frequency features in images using the same 
model doesn’t give effective results.

• Combining GAN with the extra deep neural network 
can increase the accuracy of output, but a rapid increase 
in training time is observed.

• It is noticed no single GAN model is designed to 
address all possible noise in the image during the image 
enhancement technique.

5  Conclusion

The presented SLR illustrates the study of various state-
of-the-art methods on GAN, variants on GAN and image 
enhancement techniques using GAN. This research gives 
a detailed view of the existing work of GAN published 
from 2018 to 2023. Throughout this paper, we answered 
all the possible questions on GAN by discussing its his-
tory, application, variants, limitations, image enhancement 
approaches, and conducted a comparative and summariz-
ing examination of distinctions with other existing works. 
The overall summary of this study is as follows.



 A. A. Nayak et al.

Ta
bl

e 
10

  
C

om
pa

ra
tiv

e 
stu

dy
 o

n 
im

ag
e 

en
ha

nc
em

en
t u

si
ng

 G
A

N
 w

ith
 re

sp
ec

t t
o 

m
et

ho
do

lo
gy

A
ut

ho
r a

nd
 y

ea
r

Pr
ob

le
m

 st
at

em
en

t
M

et
ho

do
lo

gy
M

od
el

O
ut

co
m

e

H
ua

ng
 B

in
 e

t a
l. 

20
17

 [3
1]

G
en

er
at

in
g 

hi
gh

 re
so

lu
tio

n 
im

ag
es

 
us

in
g 

lo
w

 re
so

lu
tio

n 
im

ag
es

Tr
ai

ni
ng

 a
nd

 te
sti

ng
 p

ha
se

 a
re

 p
ip

e-
lin

ed
 a

nd
 

sk
ip

 c
on

ne
ct

io
n 

la
ye

r i
s a

dd
ed

 in
 b

ou
nd

ar
y 

eq
ui

lib
riu

m
 G

A
N

Fa
ce

 c
on

di
tio

na
l G

A
N

PS
N

R
 =

 32
.4

2

W
ei

 F
a 

Zh
en

g 
et

 a
l. 

20
20

 [1
77

]
G

en
er

at
in

g 
hi

gh
 q

ua
lit

y 
co

m
ic

 im
ag

es
C

on
si

st 
of

 o
ne

 fu
ll 

co
nv

ol
ut

io
n 

la
ye

r f
ol

lo
w

ed
 

by
 B

N
 la

ye
r a

nd
 R

eL
U

 A
ct

iv
at

io
n

Im
pr

ov
ed

 D
C

G
A

N
 a

nd
 

C
ar

t G
A

N
O

pt
im

al
 le

ar
ni

ng
 ra

te
 o

f o
pt

i-
m

iz
er

 =
 0.

00
02

 a
nd

 0
.0

00
1

Sa
nt

ho
sh

 e
t a

l. 
20

21
 [1

78
]

En
ha

nc
in

g 
re

tin
al

 im
ag

es
A

cq
ui

si
tio

n →
 P

re
pr

oc
es

si
ng

 →
 D

ow
ns

am
pl

e 
H

R
 im

ag
e 

to
 L

R
 im

ag
e →

 U
ps

am
pl

e 
w

ith
 4

x
Re

tG
A

N
 b

as
ed

 o
n 

SR
G

A
N

A
cc

ur
ac

y =
 0.

98
Pr

ec
is

io
n =

 0.
98

Re
ca

ll 
=

 0.
98

2
K

ar
en

 P
an

et
ta

 e
t a

l. 
20

22
 [1

79
]

U
nd

er
w

at
er

 im
ag

e 
en

ha
nc

em
en

t
D

ist
or

te
d 

un
de

rw
at

er
 im

ag
e 

is
 c

as
ca

de
d 

to
 3

C
L 

ar
ch

ite
ct

ur
e 

fo
r e

nc
od

in
g 

an
d 

de
co

di
ng

. H
ig

h 
fr

eq
ue

nc
y 

fro
m

 a
ll 

la
ye

r

C
R

N
U

16
 m

od
el

 u
si

ng
 

G
A

N
U

nd
er

w
at

er
 d

ist
or

tio
n 

re
m

ov
ed

M
in

 B
eo

m
 L

ee
 e

t a
l. 

20
19

 [1
80

]
En

ha
nc

in
g 

iri
s r

ec
og

ni
tio

n 
ac

cu
ra

cy
N

or
m

al
iz

ed
 ir

is
 im

ag
e 

ar
e 

cr
ea

te
d 

by
 a

rb
itr

ar
y 

ch
an

ge
 in

 ir
is

 a
nd

 p
up

il 
co

or
di

na
to

r
C

G
A

N
EE

R
 =

 2.
96

%

K
an

gh
ui

 Z
ha

o 
et

 a
l. 

20
20

 [1
81

]
D

eh
az

in
g 

of
 si

ng
le

 im
ag

e
Re

sn
et

 fo
r f

ea
tu

re
 e

xt
ra

ct
io

n 
an

d 
D

en
se

ne
t f

or
 

fe
at

ur
e 

le
ar

ni
ng

En
ha

nc
ed

 G
A

N
 w

ith
 

Re
sN

et
PS

N
R

 =
 20

.4
7

SS
IM

 =
 0.

86
57

B
in

gx
in

 Z
ha

o 
et

 a
l. 

20
19

 [1
82

]
D

eb
lu

rr
in

g 
of

 m
ot

io
n 

im
ag

e
To

 o
bt

ai
n 

no
n 

lo
ca

l f
ea

tu
re

s s
ep

ar
at

e 
bl

oc
k 

is
 

us
ed

 in
 g

en
er

at
or

N
on

 lo
ca

l s
im

ila
rit

y 
fe

at
ur

e 
an

d 
m

ul
tis

ca
le

 g
en

-
er

at
iv

e 
ad

ve
rs

ar
ia

l l
os

s t
o 

re
sto

re
 e

dg
e

LN
L-

PG
A

N
PS

N
R

 =
 31

.2
7

SS
IM

 =
 0.

93

Ya
li 

C
ai

 e
t a

l. 
20

19
 [1

83
]

Te
xt

 to
 im

ag
e 

sy
nt

he
si

s
In

tro
du

ct
io

n 
to

 d
ua

l m
od

ul
e 

to
 e

nh
an

ce
 lo

ca
l 

an
d 

gl
ob

al
 st

ru
ct

ur
e.

 A
tte

nt
io

n 
em

be
dd

in
g 

m
od

ul
e 

to
 m

er
ge

 m
ul

tip
lic

at
io

n 
fe

at
ur

e

D
ua

l a
tte

nt
io

n 
G

A
N

IS
 =

 4.
59

FI
D

 =
 14

.0
6

Zh
ao

hu
i L

ia
ng

 e
t a

l. 
20

20
 [7

6]
C

ov
id

 1
9 

de
te

ct
io

n 
in

 X
-r

ay
In

pu
t →

 G
A

N
 →

 S
ig

m
oi

d 
en

tro
py

 →
 R

es
ne

t f
or

 
fin

al
 c

la
ss

ifi
ca

tio
n 

ta
sk

C
G

A
N

A
cc

ur
ac

y =
 97

.8
%

Pr
ec

is
io

n =
 0.

95
Re

ca
ll 

=
 0.

98
Ju

n 
H

w
a 

K
im

 e
t a

l. 
20

21
 [1

84
]

En
ha

nc
em

en
t o

f e
m

ot
io

n 
in

 fa
ci

al
 

im
ag

es
Re

m
ov

e 
th

e 
no

is
e 

la
be

l a
nd

 c
la

ss
 im

ba
la

nc
e 

pr
ob

le
m

 b
y 

lo
ss

 v
al

id
at

io
n 

sc
he

m
e

G
A

N
C

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

 8
5.

59

Q
i M

ao
 e

t a
l. 

20
18

 [1
85

]
En

ha
nc

ed
 im

ag
e 

de
co

di
ng

 b
y 

pr
e-

se
rv

in
g 

ed
ge

Fe
at

ur
e 

ex
tra

ct
io

n 
st

ac
k 

an
d 

fe
at

ur
e 

pr
ed

ic
tin

g 
su

b 
br

an
ch

 a
re

 u
se

d
EP

-G
A

N
PS

N
R

 =
 28

.8
0

SS
IM

 =
 0.

83
B

ha
rg

av
 e

t a
l. 

20
20

 [1
87

]
Re

co
ns

tru
ct

io
n 

of
 fM

R
I i

m
ag

e 
w

ith
 

hi
gh

 c
la

rit
y

Li
ne

ar
 re

gr
es

si
on

 u
se

d 
to

 e
lic

it 
in

fo
rm

at
io

n
D

C
G

A
N

Pe
rc

ep
tu

al
 L

os
s

Tr
ai

ni
ng

 L
os

s =
 60

.4
6

Va
lid

at
io

n 
Lo

ss
 =

 67
.0

4
Fe

ng
 G

u 
et

 a
l. 

20
19

 [1
87

]
N

oi
se

 fr
ee

 h
ig

h 
re

so
lu

tio
n 

im
ag

e
G

en
er

at
or

 to
 re

m
ov

e 
no

is
e 

fro
m

 lo
w

 re
so

lu
-

tio
n 

SA
R

 im
ag

e.
 D

is
cr

im
in

at
or

 n
et

w
or

k 
to

 d
i 

be
tw

ee
n 

su
pe

r r
es

ol
ut

io
n 

im
ag

e 
an

d 
re

al
ist

ic
 

H
R

 im
ag

e

N
oi

se
 F

re
e 

D
C

G
A

N
PS

N
R

 =
 16

.2
4

SS
IM

 =
 0.

48

B
o 

X
u 

et
 a

l. 
20

22
 [1

88
]

En
ha

nc
e 

th
e 

qu
al

ity
 o

f u
nd

er
w

at
er

 
im

ag
es

Pa
tG

A
N

 is
 u

se
d 

to
 d

is
cr

im
in

at
or

 to
 c

al
cu

la
te

 
pr

ob
ab

ili
ty

 o
f e

ac
h 

pa
tc

h
G

A
N

SS
IM

 =
 0.

87
PS

N
R

 =
 33

.4
5

Q
ua

ng
 T

 M
 P

ha
n 

et
 a

l. 
20

21
 [1

90
]

En
ha

nc
in

g 
th

e 
cl

ar
ity

 o
f r

et
in

al
 im

ag
e

D
re

es
en

 se
gm

en
ta

tio
n 

m
as

k 
is

 u
se

d 
in

 g
en

er
at

or
C

yc
le

G
A

N
A

cc
ur

ac
y =

 0.
65

8
Pr

ec
is

io
n =

 0.
66

Re
ca

ll 
=

 0.
65

F1
 =

 0.
66



A Systematic Review on Generative Adversarial Network (GAN): Challenges and Future Directions  

Ta
bl

e 
10

  (
co

nt
in

ue
d)

A
ut

ho
r a

nd
 y

ea
r

Pr
ob

le
m

 st
at

em
en

t
M

et
ho

do
lo

gy
M

od
el

O
ut

co
m

e

M
ar

tin
 Ja

m
es

 e
t a

l. 
20

21
 [1

91
]

En
ha

nc
in

g 
th

e 
qu

al
ity

 o
f C

T 
Sc

an
H

yb
rid

 lo
ss

 fu
nc

tio
n 

is
 u

se
d 

in
 g

en
er

at
or

 v
ia

 
lin

ea
r c

om
bi

na
tio

n 
of

 a
dv

er
sa

ria
l l

os
s

EQ
G

A
N

 a
nd

 E
SR

G
A

N
M

SE
 =

 49
.6

6

Y
i Z

ho
u 

et
 a

l. 
20

17
 [1

92
]

N
oi

se
 re

du
ct

io
n 

fro
m

 O
C

T 
im

ag
e

Le
ar

ni
ng

 st
yl

e 
tra

ns
fe

r b
et

w
ee

n 
2 

O
C

T 
im

ag
es

C
G

A
N

 a
nd

 C
yc

le
G

A
N

SN
R

 =
 0.

07
8

C
N

R
 =

 0.
05

0
Re

nj
un

 W
an

g 
et

 a
l. 

20
22

 [1
93

]
En

ha
nc

in
g 

lo
w

 li
gh

t i
m

ag
e

M
od

el
in

g 
th

e 
re

la
tio

ns
hi

p 
be

tw
ee

n 
ea

ch
 fe

at
ur

e 
an

d 
pi

xe
l i

m
ag

e
Fe

at
ur

e 
at

te
nt

io
n 

an
d 

pi
xe

l a
tte

nt
io

n 
is

 re
qu

ire
d

M
ix

 a
tte

nt
io

n 
gu

id
ed

 
G

A
N

PS
N

R
 =

 22
.3

8
SS

IM
 =

 0.
84

H
ar

sh
an

a 
W

el
ig

am
po

la
 e

t a
l. 

20
20

 
[1

94
]

En
ha

nc
in

g 
lo

w
 li

gh
t i

m
ag

es
 u

si
ng

 
Re

tin
ex

Re
tin

ex
 d

ec
om

po
si

tio
n 

ne
tw

or
k 

an
d 

pa
tc

h 
di

sc
rim

in
at

or
C

yc
le

G
A

N
M

SE
 =

 0.
01

7
N

IQ
E 

ra
tio

 =
 1.

79
W

oo
k 

K
im

 e
t a

l. 
20

18
 [1

95
]

In
cr

ea
si

ng
 c

on
tra

st 
of

 P
ET

/C
T 

im
ag

es
A

da
pt

iv
e 

hi
sto

gr
am

 e
qu

al
iz

at
io

n 
w

ith
 C

G
A

N
C

G
A

N
SS

IM
 =

 0.
94

N
as

im
 Ja

m
sh

id
i A

va
na

ki
 e

t a
l. 

20
20

 
[1

96
]

G
am

in
g 

co
nt

en
t q

ua
lit

y 
en

ha
nc

em
en

t
M

od
ifi

ed
 lo

ss
 fu

nc
tio

n 
is

 a
dd

ed
 to

 S
RG

A
N

. I
n 

ge
ne

ra
to

r s
ki

p 
co

nn
ec

tio
n 

is
 im

pr
ov

ed
SR

G
A

N
PI

Q
E 

=
 45

.1
75

 b
lu

rr
in

es
s

N
IQ

E 
=

 37
.3

6
D

on
g 

K
ye

on
 L

ee
 e

t a
l. 

20
19

 [1
97

]
Im

ag
e 

en
ha

nc
em

en
t b

y 
pr

es
er

vi
ng

 
re

so
lu

tio
n

St
rid

e 
co

nv
ol

ut
io

n 
la

ye
r i

s r
em

ov
ed

 a
nd

 lo
ss

 is
 

ge
ne

ra
te

d 
fro

m
 V

G
G

16
 n

et
w

or
k 

w
ith

ou
t h

av
-

in
g 

m
ax

po
ol

 la
ye

r

SR
G

A
N

PS
N

R
 is

 im
pr

ov
ed

 b
y 

0.
75

 d
B

Ju
sti

n 
H

al
l e

t a
l. 

20
20

 [1
98

]
Lo

w
 re

so
lu

tio
n 

im
ag

e 
en

ha
nc

em
en

t
B

at
ch

 n
or

m
al

iz
at

io
n 

la
ye

r i
s r

em
ov

ed
 in

 g
en

er
a-

to
r. 

In
cl

us
io

n 
is

 a
dd

ed
 in

 e
ac

h 
co

nv
ol

ut
io

n 
la

ye
r o

f g
en

er
at

or
 n

et
w

or
k

SR
G

A
N

PS
N

R
 in

cr
ea

se
d 

by
 2

.2
 d

B

Zi
qi

 W
an

g 
et

 a
l. 

20
21

 [1
99

]
In

cr
ea

si
ng

 a
cc

ur
ac

y 
of

 P
ne

um
on

ia
 

D
et

ec
tio

n
D

at
as

et
 →

 S
or

tin
g →

 E
nh

an
ce

m
en

t (
Po

si
tiv

e 
C

yc
le

 G
A

N
 a

nd
 N

eg
at

iv
e 

C
yc

le
 G

A
N

)
C

yc
le

G
A

N
 w

ith
 

Re
sN

et
A

cc
ur

ac
y 

en
ha

nc
ed

 b
y 

86
.7

%

H
ow

ar
d 

M
ar

tin
 e

t a
l. 

[2
00

]
En

ha
nc

in
g 

th
e 

re
so

lu
tio

n 
of

 fa
ce

 
im

ag
e

Pr
ep

ar
in

g 
lo

w
 re

so
lu

tio
n 

an
d 

gr
ou

nd
 tr

ut
h 

da
ta

-
se

t →
 in

pu
t t

o 
Re

sN
et

 G
A

N
 →

 R
R

D
B

G
A

N
Re

sN
et

 G
A

N
 a

nd
 

R
R

D
B

G
A

N
A

cc
ur

ac
y =

 98
.9

0
VA

L 
=

 96
.7

6
Ye

nw
ei

 P
an

g 
et

 a
l. 

20
19

 [2
01

]
Re

m
ov

al
 v

is
ua

l h
az

e 
fro

m
 im

ag
e

G
en

er
at

or
 is

 m
od

ifi
ed

 b
y 

ad
di

ng
 tr

an
sm

is
si

on
 

m
ap

 a
nd

 o
pt

im
iz

ed
 b

y 
m

in
im

iz
in

g 
lo

ss
 fu

nc
-

tio
n 

co
ns

ist
 o

f p
ix

el
w

is
e 

lo
ss

, p
er

ce
pt

ua
l l

os
s 

an
d 

ad
ve

rs
ar

ia
l l

os
s

H
RG

A
N

PS
N

R
 =

 25
.8

4
SS

IM
 =

 0.
92

H
ar

ih
ar

an
 e

t a
l. 

[1
44

]
En

ha
nc

in
g 

im
ag

e 
qu

al
ity

C
on

vo
lu

tio
n 

an
d 

co
nv

ol
ut

io
n 

tra
ns

po
rt 

la
ye

r i
s 

us
ed

 in
 g

en
er

at
or

D
C

G
A

N
/S

ty
le

G
A

N
Q

ua
lit

y 
of

 g
en

er
at

ed
 im

ag
e 

in
cr

ea
se

d

Ya
ng

Ya
ng

 Q
u 

et
 a

l. 
[2

03
]

En
ha

nc
in

g 
ob

je
ct

 lo
w

 il
lu

m
in

at
io

n
Lo

ss
 fu

nc
tio

n 
an

d 
ne

ste
d 

di
sc

rim
in

at
or

 is
 u

se
d

C
yc

le
G

A
N

A
cc

ur
ac

y 
is

 in
cr

ea
se

d



 A. A. Nayak et al.

• The GAN model is widely used in many domains like 
machine designing, architecture, medicine, construc-
tion, computer vision etc.

• Linear growth is observed in research publications 
related to GAN. And in 2019–2020, a rapid increase in 
the publication count was seen.

• Every GAN model has its own specialization approach; 
for example, the DCGAN can be mainly used in data 
augmentation like this; the detailed explanation of 
every variant of GAN is given in section III.

• The SRGAN model holds a significant role in image 
enhancement.

• PSNR and SSIM have widely used performance metrics 
for image enhancements.

Table 11  The list of datasets for image enhancement using GAN

GAN Variants Dataset

DCGAN NASA/JPL, AIRSAR, VIM 1, CelebA, SVHAN dataset, CIFAR-10, WVU face dataset, ISAR images
CGAN Covid-19 chest X-Ray, NICE II, 1- HAZE 0-HAZE, TOPCON 1/ TOPCON 3D OCT 3000, CT image slices, MR- CT Mix 

dataset, PASCAL VOC 2012, BraTS 13
CYCLEGAN Robot Car dataset, 200 X-Ray dataset, EyePAC, APMCT, Berkelay deep drive dataset, RESIDE dataset, Cardiac CT scan dataset
STYLEGAN CelebA, VoT100, GoPro dataset, ISIC 2019, CASIA, LSUN dataset
SRGAN BSD100, DIV2K dataset, League of Legends dataset, OCT dataset, ILD/NSCLC dataset, CelebA, Flickr Faces HQ dataset, Muct 

Face database, CT image dataset, DukeMTMC dataset

Table 12  The list of models for image enhancement using GAN with 
respect to their distribution

GAN Variant Study reference Count PSC

DCGAN [41, 50, 51, 65, 177, 187] [144, 186] 8 12%
CGAN [31, 76, 180, 181, 192] [71, 73, 75, 

91, 195, 198] [72, 73, 86]
14 20%

CYCLEGAN [190, 192, 194, 199, 203]
[103, 110, 112, 115, 124] [128]

11 16%

STYLEGAN [137, 138, 144, 179, 182] [143–147]
[151–153]

13 19%

SRGAN [178, 191, 196–198]
[157, 160–162, 166]
[165, 169, 170, 172, 173]
[174]

16 23%

VANILA GAN [184, 188] 2 3%
OTHERS [183, 185, 193, 200, 201] 5 7%

Table 13  The list of measurement metrics used for image enhancement using GAN in various studies

Measurement metrics Definition Studies

Accuracy Accuracy = (TN + TP)/(TN + FN + FP + TP) 18
Precision Precision = TP/(TP + FN) 5
Recall Recall = TP/(TP + FN) 4
FID- Frechet Inception Distance Metrics to analyze the quality of images generated by the GAN models 4
PSNR—Peak Signal-to-Noise Ratio It is the ratio of maximum power of image and power of noise that reduce the qual-

ity of image
29

SSIM—Structural Similarity Index It’s an image quality metrics which computes image using reference image 23
MSE—Mean-Square Error It is a cumulative squared error analyzed by the ratio of the compressed and the 

original image
2

IS – Inception Score It is a metrics to judge quality of image generated by GAN 1
EER – Equivalent Error Rate It is a position where false reject rate is equal to false accept rate 2
LEARNING RATE It is an adjustment of network weight with respect to loss gradient 4
NIQE—Naturalness Image Quality Evaluator Quality score of images 2
PIQE—Perception based Image Quality Evaluator It is a no reference image quality score of images 2
CNR—Contrast-to-Noise Ratio It is the ratio of estimated contrast of image and noise 1
LOSS Prediction of uncertainty based on variation of actual label value 2
DETECTION RATE It is a true positive rate of confusion matrix TPR = TPTP + FN 2
DETECTION RATE It is a true positive rate of confusion matrix TPR = TPTP + FN 2
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• The experimental result demonstrates that GAN is a 
practical approach and outperforms as a better model 
for image enhancement than other techniques.

With the rapid progress in technology and multime-
dia, GAN still needs to address many challenges. And this 
study gives a route map and valuable basic details for the 
research community in developing compelling research 
works on GAN.
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