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ML algorithms have shown significant potential in vari-
ous fields such as healthcare, finance, e-commerce, transpor-
tation, and autonomous systems. ML models in healthcare 
can accurately evaluate medical images to identify diseases 
such as cancer, aid in diagnosing illnesses, forecast patient 
outcomes, and suggest individualized treatment strategies. 
ML algorithms are used in finance for fraud detection, algo-
rithmic trading, risk assessment, and client segmentation to 
enhance efficiency and profitability [2–3]. ML in autono-
mous systems, such self-driving vehicles and drones, allows 
for immediate decision-making using sensor data, resulting 
in safer and more dependable performance.

The optimization procedure plays an important role for 
the success of ML models. Optimization is the process of 
repeatedly modifying the parameters of a model to reduce or 
increase a preset objective function, such a loss function in 
supervised learning [4]. The objective of optimization is to 
identify the parameters that most accurately match the pro-
vided data and perform well on novel information, thereby 
enhancing predicted accuracy and performance.

Optimization approaches play an important role in train-
ing ML models for obtaining high accuracy, efficiency, and 

1 Introduction

In recent years, the wide range of data in various industries 
has brought about both benefits and difficulties. Modern 
data generation exceeds conventional techniques of analy-
sis in terms of volume, velocity, and diversity, resulting in 
it becoming increasingly difficult for individuals to extract 
useful information on their individual. An effective remedy 
for this issue is machine learning (ML), a branch of artificial 
intelligence that provides automated techniques for getting 
beneficial knowledge from enormous quantities of data [1].

  Rahul Priyadarshi
rahul.glorious91@gmail.com

Kewei Bian
rebekahbian1@163.com

1 College of Department of Linguistics and Translation, City 
University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, 
Hong Kong 999077, China

2 Faculty of Engineering & Technology, ITER, Siksha ‘O’ 
Anusandhan University, Bhubaneswar 751030, India

Abstract
Optimization approaches in machine learning (ML) are essential for training models to obtain high performance across 
numerous domains. The article provides a comprehensive overview of ML optimization strategies, emphasizing their 
classification, obstacles, and potential areas for further study. We proceed with studying the historical progression of opti-
mization methods, emphasizing significant developments and their influence on contemporary algorithms. We analyse the 
present research to identify widespread optimization algorithms and their uses in supervised learning, unsupervised learn-
ing, and reinforcement learning. Various common optimization constraints, including non-convexity, scalability issues, 
convergence problems, and concerns about robustness and generalization, are also explored. We suggest future research 
should focus on scalability problems, innovative optimization techniques, domain knowledge integration, and improving 
interpretability. The present study aims to provide an in-depth review of ML optimization by combining insights from 
historical advancements, literature evaluations, and current issues to guide future research efforts.

Received: 25 December 2023 / Accepted: 18 March 2024 / Published online: 29 March 2024
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024

Machine Learning Optimization Techniques: A Survey, Classification, 
Challenges, and Future Research Issues

Kewei Bian1 · Rahul Priyadarshi2

1 3

http://orcid.org/0000-0001-5725-9812
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-024-10110-w&domain=pdf&date_stamp=2024-3-28


K. Bian, R. Priyadarshi

generalization abilities. Optimization algorithms allows 
models to learn from data, adapt to complicated patterns, 
and generate reliable forecasts by modifying model param-
eters. The selection of an optimization method can greatly 
impact the efficiency and convergence of a ML model, mak-
ing it an essential decision throughout the model develop-
ment process [5].

Gradient descent is a basic optimization procedure used 
in many ML methods, such as neural networks. Gradient 
descent variations including Stochastic Gradient Descent 
(SGD), mini-batch gradient descent, and Adam optimizer 
are effective at optimizing large-scale models with mil-
lions of parameters. Bayesian optimization is a widely used 
approach that probabilistically searches the parameter space 
to identify the best configuration for hyperparameters, hence 
improving model performance and generalization [6–7].

Regularization methods like L1 and L2 have become 
essential for reducing overfitting and enhancing the general-
ization abilities of ML models. Regularization, achieved by 
including a penalty term into the loss function, supports the 
acquisition of more straightforward representations by the 
model [8]. This serves to minimize the probability of recol-
lecting irrelevant details in the training data and enhances 
the model’s performance on novel, unknown data.

Hyperparameter optimization techniques like grid 
search, random search, and Bayesian optimization assist in 
determining the most suitable hyperparameters, improving 
ML model performance together with optimization algo-
rithms. Hyperparameters like learning rate, batch size, and 
regularization strength have a substantial influence on the 

behaviour and effectiveness of models, necessitating metic-
ulous adjustment for best results [9].

Optimization methods are essential in ML since they 
allow models to learn from data, adjust to intricate pat-
terns, and provide precise predictions in different fields. The 
increasing amount and complexity of data necessitate the 
creation of efficient and scalable optimization algorithms, 
which are crucial for advancing ML and exploring new 
potential for innovation and discovery [10].

An in-depth explanation of optimization approaches 
used to a wide range of ML issues across several domains 
is outlined in Table 1. Each case study provides a detailed 
examination of a genuine problem, including the dataset, 
optimization method, and achieved performance metrics. 
The table presents valuable insights on the effectiveness and 
flexibility of optimization approaches in addressing intri-
cate issues with a focus on real-world applications in many 
fields such as healthcare, finance, transportation, and envi-
ronmental research. By using these case studies, experts and 
researchers may understand how optimization approaches 
can be tailored to particular domains, allowing for the cre-
ation of educated problem-solving strategies and decision-
making processes in real-world scenarios.

1.1 Purpose and Structure of the Paper

This study aims to provide an extensive overview of ML 
optimization approaches, categorize them according to their 
goals and features, recognize typical obstacles, and suggest 
potential research paths in the domain. The presentation 

Table 1 Case studies of optimization in real-world applications
Application Domain Problem Description Dataset Optimization Technique Used Performance Metrics Achieved
Healthcare Predicting Disease Risk Electronic Health 

Records (EHR)
Random Forest with Bayesian 
Optimization for Hyperparameter 
Tuning

AUC, Accuracy, Sensitivity, 
Specificity

Finance Portfolio Optimization Historical Stock Mar-
ket Data

Markowitz Portfolio Optimization Portfolio Return, Risk (Stan-
dard Deviation), Sharpe Ratio

Autonomous 
Systems

Path Planning for 
Autonomous Vehicles

Lidar and Camera Sen-
sor Data

Genetic Algorithms for Path 
Planning

Path Completion Time, Colli-
sion Avoidance Rate

E-commerce Recommender Systems User Purchase History Collaborative Filtering with Matrix 
Factorization

Recommendation Accuracy, 
Precision, Recall

Manufacturing Production Scheduling Factory Production 
Data

Genetic Algorithms for Scheduling 
Optimization

Production Efficiency, 
Time-to-Market

Energy Power Grid 
Optimization

Smart Meter Data Particle Swarm Optimization for 
Load Balancing

Energy Cost Reduction, Grid 
Stability

Agriculture Crop Yield Prediction Soil and Weather Data Support Vector Machines with Grid 
Search Optimization

Crop Yield Prediction Accu-
racy, Crop Health Monitoring

Transportation Vehicle Routing 
Optimization

Delivery Orders and 
Traffic Data

Simulated Annealing for Routing 
Optimization

Delivery Time, Fuel 
Consumption

Retail Inventory Management Sales Data and Supply 
Chain Information

Dynamic Programming for Inven-
tory Optimization

Stockout Rate, Holding Costs

Telecommunications Network Optimization Call Records and 
Network Topology

Tabu Search for Network Routing 
Optimization

Network Latency, Call Drop-
ping Rate

Environmental 
Science

Pollution Control Air Quality Monitor-
ing Data

Genetic Algorithms for Emission 
Reduction Strategies

Pollution Levels, Public 
Health Impact
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will start by examining current literature on optimization 
methods in ML, emphasizing important advancements and 
patterns. It will then provide a structured categorization 
of optimization methods, including different algorithms, 
approaches, and methodologies. The paper will explore the 
problems of ML optimization, including complications in 
the optimization landscape and scalability concerns. The 
paper will explore prospective directions for future study, 
such as creating new optimization algorithms, tackling 
scaling issues, and improving the interpretability of opti-
mization outcomes. The study seeks to provide significant 
insights into the current state of ML optimization and direct 
future research in this quickly changing exposed using a 
systematic method.

2 Background and Literature Review

The recent development of optimization strategies in ML 
has originated in the early stages of artificial intelligence 
research. The approaches have advanced considerably over 
time in response to the challenges of learning from data and 
developing intelligent systems. Here is an in-depth elabora-
tion of the historical milestones mentioned:

Frank Rosenblatt’s perceptron algorithm belongs to the 
first examples of optimization methods in the field of ML. 
The perceptron, introduced in the late 1950s, established the 
groundwork for learning systems based on neural networks. 
The system used a basic version of gradient descent to mod-
ify the weights of connections between neurons in order to 
reduce classification mistakes [11].

Paul Werbos introduced backpropagation in the 1970s, 
which was a major improvement in optimization methods 
for neural networks. The approach facilitated the effective 
training of multi-layer neural networks by backpropagat-
ing mistakes and changing weights by gradient descent. 
Backpropagation transformed neural network research and 
established the scene for the revival of deep learning several 
decades later [12].

Nouretdinov, Ilia, et al. introduced support vector 
machines (SVMs) in the 1990s, which marked a significant 
change in ML optimization. SVMs have shown the efficacy 
of convex optimization methods in classification applica-
tions by offering a strong structure for optimizing the mar-
gin between classes. SVMs emerged popular due to their 
capacity to manage high-dimensional data and generalize 
well to novel instances [13].

Convex optimization approaches became popular in 
ML in the early 2000s because of its theoretical assurances 
and computational efficiency. Stephen Boyd and Lieven 
Vandenberghe provided substantial contributions to the 
advancement of convex optimization techniques and their 

utilization in ML [14]. Convex optimization has established 
a strong mathematical basis for several ML models such as 
logistic regression, linear SVMs, and robust PCA.

The 2015s observed a renewed interest in neural networks 
and the emergence of deep learning. Advancements in opti-
mization algorithms like SGD, Adam, and RMSprop were 
essential in facilitating the training of deep neural networks 
with multiple levels. Geoffrey Hinton, Yoshua Bengio, and 
Yann LeCun were important individuals in showcasing the 
effectiveness of deep learning in computer vision, natural 
language processing, and voice recognition across several 
fields [15].

In recent years, there has been a trend towards investigat-
ing new optimization strategies that expand beyond conven-
tional gradient-based approaches. Evolutionary algorithms, 
metaheuristic optimization, and Bayesian optimization are 
effective methods for solving non-convex optimization 
problems and navigating intricate search spaces. Further-
more, progress in technology, such as the development of 
specialized accelerators like GPUs and TPUs, has hastened 
the training of extensive ML models.

The present state of research on optimization strategies 
in ML includes a diverse collection of studies that cover 
algorithmic advancements, theoretical understandings, and 
real-world implementations. Many works by well-known 
authors have greatly progressed the area, illuminating dif-
ferent elements of optimization. Here is an in-depth analysis 
of the literature and the significant contributions made by 
prominent authors.

Authors [16] are prominent characters who have made 
significant advancements in optimization approaches within 
the area of ML. They have developed important algorithms 
such as SGD and Adam, which are now essential for train-
ing neural networks. Authors study established the founda-
tion for comprehending the significance of optimization in 
deep learning and its influence on model effectiveness.

Authors [17] work has significantly advanced our knowl-
edge of optimization issues in training deep neural net-
works. His research has provided insights into problems 
like disappearing gradients and inflating gradients, which 
provide major obstacles in improving deep neural networks. 
His research has led to the development of methods such as 
batch normalization and skip connections that tackle these 
challenges and enhance the robustness of training.

Recent research has delved into the convergence of opti-
mization with other disciplines including reinforcement 
learning, meta-learning, and federated learning. Research-
ers such as [18] have studied optimization methods for 
reinforcement learning algorithms to enhance sampling 
efficiency and convergence characteristics. Researchers like 
as [19] have investigated optimization techniques for meta-
learning, which entails acquiring the ability to learn across 
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combining optimization, computer science, and physics is 
advancing innovation in this field, resulting in the creation 
of advanced optimization methods that provide enhanced 
performance and dependability. The optimization methods 
utilized in ML are comprehensively summarized in Table 2. 
The article accentuates the vast array of research initiatives 
devoted to advancing the bleeding edge of optimization 
algorithms and overcoming common challenges. In addi-
tion to optimizing training for particular neural network 
and ML model types, the objectives pertain to scalability 
concerns, non-convex optimization challenges, and optimi-
zation challenges in deep learning, reinforcement learning, 
and natural language processing. In addition to investigat-
ing distributed training, model parallelism, regularization 
techniques, and specialized optimization strategies tailored 
to particular domains and model architectures, the proposed 
solutions include the development of adaptive optimization 
algorithms such as Adam and SGD.

Optimization strategies in ML have evolved throughout 
time due to the pursuit of effective, scalable, and reliable 
algorithms. Optimization has played a crucial role in shaping 
the discipline from early perceptron’s to the deep learning 
revolution. Literature encompasses a wide range of works, 
from fundamental methods such as SGD to sophisticated 
implementations in reinforcement and federated learning 
[26]. Interdisciplinary techniques are necessary to address 
difficulties such as non-convexity and scalability. Collabo-
ration will be essential for developing optimization methods 
and their practical applications as the subject progresses.

3 Survey of Machine Learning Optimization 
Techniques

ML optimization methods have significance for modifying 
model parameters to achieve optimal results in tasks includ-
ing classification, regression, clustering, and reinforcement 
learning. This study intends to provide an in-depth review 
of the various optimization strategies used in ML, including 
various objectives, algorithms, and perspectives.

3.1 Classification of Optimization Techniques Based 
on Optimization Objectives

ML optimization strategies are often classified accord-
ing to the specific objectives they aim to improve. These 
goals usually consist of accuracy, speed, and generalization 
performance, all of which are essential for the overall effi-
ciency of ML models.

several tasks and domains. Federated learning, developed 
by researchers such as [20], aims to enhance models collec-
tively across decentralized devices while safeguarding data 
privacy, leading to distinctive optimization difficulties and 
possibilities.

The literature on optimization strategies includes both 
theoretical studies and actual implementations in many 
fields [21]. have advanced the theoretical underpinnings of 
convex optimization by establishing precise mathematical 
structures to elucidate optimization techniques and their 
characteristics. Researchers such as [22] have utilized opti-
mization techniques in computer vision, natural language 
processing, and robotics to effectively solve complex tasks, 
showcasing the efficacy of optimization-driven approaches.

It is crucial to identify common issues and trends in opti-
mization strategies in ML to comprehend the existing situ-
ation and direct future research efforts. Here is a detailed 
examination of common obstacles and upcoming patterns:

One of the main obstacles in optimizing ML is handling 
non-convex goal functions. Several practical optimization 
problems have non-convex surfaces, which may result in 
suboptimal solutions and convergence challenges. Research-
ers like [23] have tackled these obstacles by creating adap-
tive optimization algorithms such as Adam. Adam modifies 
learning rates and integrates momentum to better negotiate 
non-convex terrains. Non-convex optimization continues to 
be a focus of study, with efforts directed towards develop-
ing more resilient algorithms that can effectively deal with 
intricate optimization surfaces.

Optimization algorithms have a significant problem in 
terms of scalability, especially in the presence of massive 
data and intricate model designs. As datasets expand and 
models get more intricate, conventional optimization meth-
ods may face challenges in meeting computing requirements 
[24]. have investigated distributed training and model par-
allelism strategies to address scalability issues efficiently. 
These methods include spreading out computations over 
numerous devices or machines to facilitate effective train-
ing on large datasets and intricate models. Scalability is still 
a challenge, particularly with the emergence of new para-
digms like federated learning and edge computing.

Efforts to develop more effective and resilient optimi-
zation algorithms are a prominent focus in ML research. 
Conventional optimization methods might experience prob-
lems including sluggish convergence, sensitivity to begin-
ning conditions, and vulnerability to adversarial assaults. 
Researchers are investigating innovative methods including 
evolutionary algorithms, metaheuristic optimization, and 
quantum-inspired optimization to tackle these difficulties 
[25]. These methods use concepts from biology, nature, 
and quantum physics to create optimization algorithms 
that are more effective and resilient. Collaborative research 
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and achieve higher performance in many machine learning 
applications.

3.1.2 Speed-Oriented Optimization Techniques

Optimization strategies focused on speed are essential for 
effectively training ML models, especially when utiliz-
ing large-scale datasets and computationally demanding 
tasks. The strategies aim to optimize the training process to 
decrease computing time and resource requirements, as well 
as resulting in quicker convergence and enhanced efficiency.

1) Mini-Batch Gradient Descent: Mini-batch gradient 
descent is an adaptation of the gradient descent optimi-
zation process that splits the training data into smaller 
batches. Mini-batch gradient descent estimates gradi-
ents by utilizing a subset of data samples, compared to 
batch gradient descent which uses the complete dataset 
or SGD which uses a single data point [46]. Mini-batch 

3.1.1 Accuracy-Oriented Optimization Techniques

Precision-focused optimization techniques like SGD, 
Adam, AdaGrad, RMSprop, Nesterov Accelerated Gradient 
(NAG), and Adadelta are crucial for refining machine learn-
ing models to get superior prediction accuracy and reduce 
error measures. The strategies concentrate on improving 
model parameters via the adjustment of learning rates, the 
use of momentum, and the efficient exploration of optimiza-
tion landscapes. Adam and RMSprop algorithms are profi-
cient in optimizing complex, non-convex objective functions 
in deep learning by adjusting learning rates dynamically and 
considering past gradients [44–45]. NAG is a technique that 
improves standard gradient descent by adding momentum, 
which accelerates convergence and enhances performance. 
Adadelta adjusts learning rates automatically by considering 
gradient magnitude and update history, removing the need 
for human modifications. These accuracy-focused optimiza-
tion strategies allow practitioners to effectively train models 

Table 2 Authors’ contributions to advancing optimization in machine learning
Authors Objective Proposed Solution
 [27] Tackle non-convex optimization difficulties. Create an adaptive optimization method called Adam that modifies 

learning rates and includes momentum.
 [28] Address issues related to scalability. Investigate distributed training and model parallelism methods to 

enhance training efficiency on extensive datasets and intricate models.
 [29] Address problems such as disappearing and exploding 

gradients in deep neural networks.
Implement batch normalization and skip connections to enhance training 
stability.

 [30] Improve the theoretical comprehension of convex 
optimization.

Create precise mathematical foundations for convex optimization 
techniques.

 [31] Advanced optimization methods for deep learning. Present SGD and illustrate its efficacy in training deep neural networks.
 [31] Enhance optimization for reinforcement learning 

algorithms.
Explore methods to enhance sampling efficiency and convergence quali-
ties in reinforcement learning.

 [32] Create optimization methods for federated learning. Create algorithms for collaborative training on decentralized devices 
while maintaining data confidentiality.

 [33] Investigate optimization techniques for meta-learning. Explore methods for acquiring the ability to learn efficiently across 
many jobs and fields.

 [34] Explore optimization methods for training deep learn-
ing models.

Implement layer-wise pretraining and unsupervised pretraining 
approaches to enhance convergence and generalization.

 [35] Enhance optimization for deep neural networks. Suggest use dropout regularization strategy to mitigate overfitting and 
enhance model generalization.

 [36] Tackle obstacles in maximizing the efficiency of 
convolutional neural networks (CNNs).

Create visualization methods, such as deconvolutional networks, to 
examine the activity of ML and provide guidance for improvement.

 [37] Explore the optimization difficulties encountered 
while training deep neural networks.

Implement strategies such as cyclical learning rates to enhance optimi-
zation convergence and resilience.

 [38] Enhance the training process of recurrent neural 
networks (RNNs).

Recommend using methods like as gradient trimming to address prob-
lems like expanding gradients that may occur during RNN training.

 [39] Investigate optimization difficulties in natural lan-
guage processing (NLP).

Explore methods for customizing optimization tactics to suit the unique 
features of NLP tasks.

 [40] Enhance the training process of tree-based models. Implement methods such as gradient boosting and early stopping to 
enhance optimization convergence and accuracy.

 [41] Explore optimization methods for support vector 
machines (SVMs).

Implement kernel approximation and online learning methods to 
improve the efficiency of SVM training.

 [42] Tackle obstacles in training generative adversarial 
networks (GANs).

Recommend using approaches such as Wasserstein GANs and spectral 
normalization to enhance the stability and convergence of GAN training.

 [43] Enhance the training process of extensive neural 
networks for audio manipulation.

Implement layer-wise optimization and model parallelism approaches to 
enhance optimization efficiency and scalability.
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the computational and memory requirements of ML 
models by expressing parameters and activations with 
a reduced number of bits. Quantizing model param-
eters and activations to lower precision, such as 8-bit 
integers, using model quantization and compression 
approaches may greatly decrease memory bandwidth 
needs and speed up inference on hardware systems with 
restricted computing capabilities [50]. Methods like 
as quantization-aware training and post-training quan-
tization allow users to train models with lower accu-
racy without significant loss in performance, making 
them ideal for speed-focused applications with limited 
resources.

6) Early Stopping and Model Checkpointing: Early 
stopping and model checkpointing are methods used 
to supervise the training process and terminate train-
ing when certain convergence criteria are reached or 
performance indicators level off. Early stopping strat-
egies enable practitioners to halt training prematurely 
by assessing the model’s performance on a valida-
tion set at intervals, thereby averting overfitting and 
decreasing the consumption of training time and com-
puting resources [51]. Model checkpointing strategies 
enhance early halting by intermittently storing copies 
of the model parameters during the training process. 
These checkpoints enable the continuation of training 
from intermediate stages, recovery from failures, and 
deployment of trained models for inference. They help 
optimize the use of computing resources and support 
repeatability and scalability in ML processes.

Speed-focused optimization methods like momentum 
optimization, adaptive learning rate scheduling, model 
quantization and compression, and early stopping/model 
checkpointing are crucial for speeding up the training pro-
cess and cutting down on computational costs in ML tasks. 
By using these methods, professionals may maximize the 
use of computing resources, speed up model convergence, 
and expand their ML processes to manage bigger datasets 
and more intricate models efficiently.

3.1.3 Generalization-Oriented Optimization Techniques

Optimization strategies focused on generalization are cru-
cial for ensuring ML models generalize well to novel data 
and prevent overfitting. These methods focus on enhancing 
model parameters to enhance the model’s capacity to gener-
alize, leading to more resilient and dependable performance 
on novel instances.

1) Regularization: Regularization methods like L1 and 
L2 have a tendency to avoid overfitting by punishing 

gradient descent allows for more frequent updates as 
well as faster convergence by adjusting model param-
eters using gradients calculated from each mini-batch, 
as opposed to batch gradient descent. Practitioners may 
take use of both stochastic and batch gradient descent 
advantages by using this technique, achieving a com-
promise between computing economy and convergence 
speed.

2) Parallelization and Distributed Training: Paralleliza-
tion approaches divide computing tasks across numer-
ous processing units like GPUs, TPUs, or distributed 
clusters. Parallelization approaches expedite training 
durations and enhance computational efficiency by han-
dling several data points concurrently across several 
processing units. Distributed training involves sharing 
both the model parameters and data over numerous 
devices or processors to parallelize the process [47]. 
This enables simultaneous calculation of gradients, 
changes to parameters, and assessments of the model, 
resulting in substantial reductions in training duration 
and resource needs. Frameworks like as TensorFlow, 
PyTorch, and Horovod provide strong support for dis-
tributed training on different hardware setups, enabling 
practitioners to use parallelization and distributed com-
puting methods to accelerate the training process.

3) Momentum Optimization: Momentum optimization 
is a method that improves the conventional gradient 
descent by including momentum into the parameter 
updating process. Momentum optimization involves 
accumulating a moving average of prior gradients to 
guide parameter changes, instead than depending just 
on the present gradient. Momentum optimization may 
expedite convergence by using momentum, particularly 
when dealing with noisy or sparse gradients [48]. The 
momentum term reduces oscillations and aids in navi-
gating steep optimization landscapes more efficiently, 
resulting in quicker convergence throughout the optimi-
zation process.

4) Adaptive Learning Rate Scheduling: Adaptive learn-
ing rate scheduling approaches modify the learning rate 
during training by considering parameters including 
gradient magnitudes, parameter updates, and conver-
gence progress. Examples of learning rate schedules 
include the learning rate decay, which decreases the 
learning rate over time, and learning rate warm-up, 
which boosts the learning rate at the beginning of train-
ing [49]. Adaptive learning rate scheduling approaches 
optimize the training process by adjusting the learning 
rate based on the optimization landscape, leading to 
quicker convergence and enhanced stability.

5) Model Quantization and Compression: Model quan-
tization and compression approaches seek to decrease 
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5) Ensemble Learning: Ensemble learning approaches 
amalgamate many base models to create a more resilient 
and precise composite model. Ensemble approaches 
combine predictions from numerous models to enhance 
generalization performance by reducing variation and 
bias of individual models [57]. Bagging, boosting, and 
stacking techniques use a variety of base models trained 
on distinct portions of the training data or using vari-
ous methods to capture complementing characteristics 
of the underlying data distribution. Ensemble learning 
efficiently utilizes the combined knowledge of numer-
ous models to provide more reliable predictions and 
improve generalization to new instances.

6) Transfer Learning: Transfer learning is a ML method 
that utilizes information acquired from a source domain 
or job to enhance performance on a target domain or task. 
Transfer learning allows models to improve their ability 
to generalize to new data and tasks with limited anno-
tated training data by transferring representations learnt 
from pre-trained models trained on large-scale datasets 
[58]. Transfer learning is beneficial when the target task 
lacks adequate training data or when the source and tar-
get domains have comparable fundamental properties. 
Transfer learning improves generalization performance 
and speeds up model convergence by using pre-trained 
models as feature extractors or fine-tuning their param-
eters for the target task. This makes it a valuable tool for 
optimization focused on generalization.

Generalization-oriented optimization approaches including 
data augmentation, early stopping, ensemble learning, and 
transfer learning are crucial for enhancing the resilience and 
generalization capabilities of ML models. By integrating 
these methods throughout the training process, profession-
als may efficiently combat overfitting, promote the acqui-
sition of more accurate features, and enhance the model’s 
capacity to generalize to novel data and tasks.

3.2 Popular Optimization Algorithms

Optimization algorithms are essential in training ML models 
since they constantly update model parameters to minimize 
or maximize an objective function. This article presents an 
overview of popular optimization techniques in ML, each 
with distinct methods and compromises to achieve effective 
model optimization.

3.2.1 Gradient Descent and Its Variants

Gradient descent is an important optimization approach 
that reduces objective functions by repeatedly modifying 
model parameters in the direction opposite to the gradient 

high parameter values [52–53]. Regularization strate-
gies enhance the learning of simpler models that can 
generalize more effectively to novel data by including 
regularization terms into the objective function.

 ●  L1 Regularization (Lasso): L1 regularization 
introduces a penalty term based on the absolute 
value of the model’s parameters into the loss func-
tion. This penalty promotes sparsity in the param-
eter space, which decreases the model’s complexity 
and removes unnecessary features.

 ● L2 Regularization (Ridge): L2 regularization 
introduces a penalty term that is directly related to 
the squared size of the model’s parameters into the 
loss function. This penalty promotes the use of lower 
parameter values and smoother decision boundaries, 
which aids in preventing overfitting and enhancing 
generalization performance.

2) Dropout: Dropout is a regularization method utilized 
in neural networks to inhibit the co-adaptation of neu-
rons and enhance generalization performance. Dropout 
randomly deactivates a portion of neurons in each layer 
during training, which adds noise and redundancy to the 
network [54]. This randomness promotes the network to 
acquire more resilient characteristics and avoids over-
reliance on particular neurons or features, leading to 
enhanced generalization of novel inputs.

3) Data Augmentation: Data augmentation is a method 
that artificially enhances the variety of the training data-
set by implementing various modifications on the input 
data. Data augmentation involves applying transforma-
tions like rotations, translations, flips, and zooms to 
training samples [55]. This process exposes the model 
to a wider array of data variances, promoting the learn-
ing of more invariant and robust features. Augmentation 
may be especially advantageous in situations with little 
or unbalanced training data, allowing the model gener-
alize more effectively to novel instances and enhance its 
overall performance.

4) Early Stopping: Early stopping is a regularization 
method that prevents overfitting by evaluating the 
model’s performance on a separate validation set during 
training and interrupting the training process when per-
formance begins to deteriorate. Early stopping prevents 
overfitting by ending training before the model memo-
rizes noise or outliers in the data, ensuring better gen-
eralization to new samples [56]. This strategy promotes 
the model to acquire more generalizable characteristics 
and avoids it from becoming too intricate, thus enhanc-
ing its capacity to generalize to new data.
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accumulation of squared gradients might cause learning 
rates to decrease, leading to slower convergence during 
later stages of training.

5) Adadelta: Adadelta is a modification to Adagrad 
designed to resolve the problem of decreasing learning 
rate. Adadelta computes a moving average of squared 
gradients by using a sliding window of prior gradients 
instead of treating all historic gradients equally [64]. 
Adadelta adjusts learning rates depending on recent 
gradients to address the issue of declining learning 
rates. Adadelta is ideal for optimization problems that 
need a decreased sensitivity to the learning rate, such as 
in RNNs.

6) Nadam (Nesterov-accelerated Adaptive Moment 
Estimation): Nadam is an extension of Adam that inte-
grates Nesterov momentum into its update rule. Nest-
erov momentum calculates the gradient at a location 
slightly ahead in the direction of momentum, rather than 
at the present parameter values [65]. Nadam optimizes 
performance by using Nesterov momentum to predict 
parameter movements and modify update directions, 
resulting in quicker convergence and enhanced perfor-
mance, particularly when dealing with noisy gradients.

7) AdaMax: AdaMax is a variation of the Adam optimi-
zation algorithm that incorporates the infinity norm 
in the update rule, resulting in improved convergence 
stability under certain circumstances [66]. AdaMax cal-
culates the L-infinity norm of the exponential moving 
averages of the gradients, instead of the infinity norm of 
the gradient like Adam. AdaMax is modified to modify 
learning rates adaptively, independent of gradient mag-
nitude, enhancing its resilience to noisy gradients and 
sparse data.

8) AMSGrad: AMSGrad is a modification of the Adam 
optimization method designed to resolve the problem 
of non-convergence that might occur in certain sce-
narios with the original Adam algorithm [67]. AMS-
Grad adjusts Adam’s update algorithm to maintain the 
denominator term (squared gradients) as monotonically 
rising to avoid the learning rate from growing exces-
sively. AMSGrad maintains the highest historical 
squared gradients to improve stability and convergence 
compared to Adam, especially in situations with non-
convex optimization goals.

Gradient Descent and its variations in Fig. 1 provide a range 
of optimization methods designed to tackle various obsta-
cles in ML applications. By adjusting learning rates, adding 
momentum, and addressing challenges including decreasing 
learning rates and erratic gradients, these versions enhance 
the optimization of model parameters and expedite the 
attainment of optimum solutions.

[59]. Different versions of gradient descent provide various 
approaches for adjusting model parameters and are designed 
to tackle distinct obstacles faced during optimization. Here, 
we explore several notable variations:

1) Stochastic Gradient Descent (SGD): SGD improves 
the model assumptions by utilizing gradients calculated 
from a randomly chosen subset of training instances, 
known as mini-batches [60]. SGD provides random-
ness into the optimization process, resulting in quicker 
convergence and lower memory use compared to batch 
gradient descent. SGD rapidly navigates complicated 
optimization landscapes and handles large-scale data-
sets by updating parameters based on mini-batches. 
SGD’s convergence may vary more than batch gradi-
ent descent because of the stochastic nature of gradient 
estimation.

2) Adam (Adaptive Moment Estimation): Adam is a 
learning rate optimization technique that integrates prin-
ciples from momentum and RMSprop [61]. It adapts 
learning rates for individual parameters by consider-
ing previous gradients and squared gradients, which is 
effective for optimizing intricate, non-convex objec-
tive functions often seen in deep learning applications. 
Adam can efficiently manage sparse gradients, noisy 
data, and non-stationary targets by adjusting learning 
rates according to gradient magnitudes and variance. 
Adam’s adjustable learning rate approach allows for 
quicker convergence and improved performance across 
many optimization problems.

3) RMSprop (Root Mean Square Propagation): 
RMSprop is an optimization approach that tackles the 
issue of decreasing learning rates in AdaGrad by using 
a moving average of squared gradients to dynamically 
adjust learning rates for each parameter [62]. RMSprop 
stabilizes the optimization process by leveling learn-
ing rates and limiting rapid diminishment. RMSprop 
effectively manages non-stationary specifications and 
improves optimization stability and efficiency com-
pared to AdaGrad by using a leaky average of prior 
squared gradients. RMSprop is well-suited for training 
deep neural networks and other models with intricate, 
high-dimensional parameter spaces.

4) Adagrad (Adaptive Gradient Algorithm): Adagrad 
is an optimization technique that optimizes the learn-
ing rates of individual parameters according on recent 
gradients. The system assigns higher learning rates to 
parameters that are updated seldom and lower learning 
rates to parameters that are updated regularly. Adagrad 
is especially useful for sparse data or features with vary-
ing scales since it adapts the learning rates according 
to the gradient magnitudes [63]. Adagrad’s long-term 
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3.2.2 Evolutionary Algorithms

Evolutionary algorithms are optimization methods that use 
populations and are influenced by the concepts of natural 
selection and evolution. The algorithms work on a group 
of potential solutions (individuals) and gradually improve 
them over several generations to discover the best or nearly 
best answers. Let’s explore some instances of evolutionary 
algorithms as shown in Fig. 2 and details are also explained.

1) Genetic Algorithms (GA): Genetic Algorithms (GA) 
imitate natural selection by progressively developing 
a group of potential solutions via selection, crossover, 
and mutation operations. The procedure starts by creat-
ing a population of people that represent possible solu-
tions to the optimization issue [68–69]. Each generation 
involves selecting people based on their fitness, which 
is their capacity to solve the challenge, and then sub-
jecting them to genetic operations like crossover and 
mutation to create offspring. The children replace fewer 
fit people in the population, resulting in the progressive 
development of improved solutions over subsequent 

Fig. 2 Evolutionary algorithms of 
ML optimization techniques
 

Fig. 1 Gradient descent and its variants in ML optimization techniques
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generations. Genetic algorithms use selection, cross-
over, and mutation to navigate the solution space, 
directing the search towards favorable areas and even-
tually reaching optimum or nearly optimal solutions.

2) Evolutionary Strategies (ES): Evolutionary Strategies 
(ES) is a classification of evolutionary algorithms that 
concentrates on enhancing continuous parameters by 
using a Gaussian distribution to create offspring solu-
tions. Evolutionary strategy (ES) functions on a group 
of potential solutions, with each option being repre-
sented by an array of continuous variables. Each gen-
eration produces offspring solutions by adjusting the 
characteristics of parent solutions based on a predeter-
mined Gaussian distribution [70–71]. Offspring solu-
tions are assessed according to their fitness, and those 
with superior fitness levels are chosen to generate the 
next generation. Evolutionary techniques iteratively 
adjust candidate solutions’ characteristics according on 
their performance to explore the solution space and con-
verge towards optimum or near-optimal solutions.

3) Genetic Programming (GP): genetic Programming 
(GP) utilizes evolutionary algorithms to develop com-
puter programs or models represented as trees. Genetic 
programming initializes populations of program struc-
tures, with each program serving as a possible solution 
to the optimization issue [72–73]. Genetic operators 
like mutation, crossover, and reproduction are used to 
develop these program structures throughout many gen-
erations. Subtrees from parent programs are swapped 
during crossover to generate offspring programs that 
may have varied architectures. Mutation brings about 
random alterations in particular programs, whereas 
reproduction enables certain programs to be passed on 
without modifications to the following generation. Each 
program’s fitness is assessed according to its problem-
solving capabilities, and selection processes decide 
which programs will be kept for generating children in 
the next generation. Genetic programming generates 
program structures by applying genetic operators and 
selection processes iteratively, leading to solutions that 
maximize the specified aim.

4) Differential Evolution (DE): Differential Evolution 
(DE) is an optimization approach that enhances can-
didate solutions by modifying their parameter vectors 
via differential mutation and recombination operations 
within a population-based framework. DE maintains a 
population of possible solutions, each characterized by 
a vector of parameter values. DE creates trial solutions 
in each iteration by merging vectors from the current 
population via differential mutation and recombina-
tion [74–75]. The experimental solutions are evaluated 
against the current population, and individuals with 
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for optimizing positions involving high-dimensional 
parameter spaces and intricate, non-convex objective 
functions.

8) Memetic Algorithms (MA): Memetic Algorithms 
(MA) combines evolutionary algorithms with local 
search techniques to enhance solution quality. MA 
maintains a population of potential solutions that are 
subjected to genetic operations like mutation, cross-
over, and selection [82–83]. Also, each potential solu-
tion undergoes local search techniques to investigate the 
surrounding area and enhance its quality. By combining 
worldwide exploration with nearby exploitation, MA 
can efficiently manage the balance between exploration 
and exploitation, resulting in enhanced convergence 
and solution quality.

9) Estimation of Distribution Algorithms (EDA): Esti-
mation of Distribution Algorithms (EDA) is a type of 
evolutionary algorithms that use statistical techniques 
to represent the probability distribution of potential 
solutions. EDA develops and improves a probabilistic 
model of the solution space using the observed candi-
date solutions. The probabilistic model is used to gen-
erate fresh potential solutions, which are assessed and 
added to the existing population [84–85]. EDA may 
effectively direct the search process towards favorable 
areas by explicitly modeling the probability distribution 
of the solution space, resulting in quicker convergence 
and enhanced solution quality.

10) Hybrid Evolutionary Algorithms: Hybrid Evolution-
ary Algorithms combines evolutionary optimization 
approaches with other optimization methods to use their 
complimentary capabilities. Hybrid algorithms combine 
evolutionary algorithms with gradient-based optimiza-
tion methods, local search algorithms, or metaheuristic 
approaches to enhance convergence speed and solution 
quality [86]. Hybrid techniques combine evolutionary 
algorithms with other optimization methodologies to 
successfully solve complicated optimization problems 
with various features and constraints.

11) Self-Adaptive Evolutionary Algorithms: Self-Adap-
tive Evolutionary Algorithms modify their parameters 
and operations in response to the problem’s traits and 
the algorithm’s effectiveness. These algorithms adjust 
their mutation rates, crossover probabilities, popula-
tion sizes, or other parameters automatically as they 
enhance their performance for particular issue scenarios 
[87–88]. Self-adaptive evolutionary algorithms may 
provide resilient and efficient optimization in many 
problem domains and situations by adjusting to chang-
ing circumstances and needs.

12) Multi-Objective Evolutionary Algorithms (MOEA): 
Multi-Objective Evolutionary Algorithms (MOEA) are 

better fitness are selected for the following generation. 
DE’s differential mutation technique promotes effective 
exploration of the solution space, while its recombina-
tion operations support the exploitation of attractive 
areas, resulting in quick convergence to optimum or 
near-optimal solutions.

5) Particle Swarm Optimization (PSO): Particle Swarm 
Optimization (PSO) is an optimization technique based 
on the collective behaviour of bird flocks or fish schools. 
The PSO algorithm maintains a population of particles, 
with each particle representing a potential solution to 
the optimization problem. Particles travel around the 
solution space in each iteration depending on their indi-
vidual best-known location and the best-known posi-
tion of the overall population [76–77]. The movement 
is directed by velocity vectors that are adjusted accord-
ing to each particle’s past behaviour and the combined 
impact of nearby particles. The exploration-exploitation 
mechanism of PSO allows for effective investigation 
of the solution space while taking use of interesting 
locations discovered by the swarm. PSO uses repeated 
adjustments of particle locations and velocities to 
achieve convergence towards optimum or near-optimal 
solutions for various optimization problems.

6) Cultural Algorithms (CA): Cultural Algorithms (CA) 
are evolutionary algorithms that include cultural evolu-
tion ideas into the optimization process. CA maintains 
a population of candidate solutions and a belief space 
that represents cultural knowledge or norms [78–79]. 
Each iteration involves evaluating prospective solutions 
according to their fitness and updating cultural knowl-
edge depending on the population’s performance. Cul-
tural information impacts the development of potential 
solutions by favouring selection, crossover, and muta-
tion operations in areas of the solution space that align 
with existing norms. By integrating genetic evolution 
with cultural development, CA efficiently reach opti-
mum or almost optimal solutions while maintaining and 
spreading valuable information within the population.

7) Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES): Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) is an evolutionary strategy 
that aims to optimize continuous parameters by using 
a multivariate normal distribution. CMA-ES uses a 
group of potential solutions and modifies the covari-
ance matrix of the multivariate normal distribution to 
direct the search. CMA-ES efficiently explores and 
exploits the solution space by adapting the covariance 
matrix according to the success of prior candidate solu-
tions, resulting in quick convergence to optimum or 
near-optimal solutions [80–81]. CMA-ES is suitable 
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function’s suggestions, evaluating the objective func-
tion at these points, and updating the surrogate model 
with the observed data in an iterative manner [95]. The 
sequential sampling approach effectively navigates the 
objective function space and concentrates the search on 
favourable areas.

2) Advantages of Bayesian Optimization:

 ● Efficient Exploration: Bayesian optimization effective-
ly navigates the objective function space by iteratively 
updating a probabilistic surrogate model and concentrat-
ing the search on areas with high potential for improve-
ment [96]. This allows for efficient worldwide search 
even in complex or noisy optimization situations.

 ● Sample Efficiency: Bayesian optimization uses proba-
bilistic models and acquisition functions to efficiently 
optimize by needing fewer objective function evalua-
tions than standard approaches. This is especially ben-
eficial in situations when objective function evaluations 
are resource-intensive or time-consuming [97].

 ● Adaptive Trade-off: Bayesian optimization uses the ac-
quisition function to balance exploration and exploita-
tion, enabling it to adjust between exploring new parts 
of the objective function space and exploiting already 
promising locations. This adaptive behavior allows for 
strong and effective optimization in several issue areas 
[98].

3) Applications of Bayesian Optimization:

 ● Hyperparameter Tuning: Bayesian optimization has 
become popular for optimizing hyperparameters in ML 
models, with the objective function reflecting model 
performance indicators like accuracy or validation loss. 
Bayesian optimization effectively searches the hyperpa-
rameter space to find the best situations that optimize 
model performance and minimize computing resources 
[99].

 ● Experimental Design: Bayesian optimization is uti-
lized in experimental design to optimize parameters and 
situations, including medication dose in pharmaceuti-
cal research or experimental setup in scientific trials. 
Bayesian optimization speeds up the process of finding 
the best solutions by choosing trials that maximize pre-
dicted information gain in an iterative manner [100].

 ● Automated Machine Learning (AutoML): Bayesian 
optimization is a fundamental element of AutoML sys-
tems, streamlining the tasks of model selection, feature 
engineering, and hyperparameter optimization. AutoML 
frameworks effectively explore the range of potential 

specifically created to maximize many goals that are in 
competition with each other at the same time. MOEAs 
preserve groups of potential solutions, with each one 
embodying a balance between many goals [89–90]. 
The algorithms try to provide a collection of answers 
called the Pareto front, which represents the best pos-
sible compromises between competing goals. MOEAs 
use specific selection processes and tactics to maintain 
variety in order to effectively explore the Pareto front 
and find high-quality solutions that meet several opti-
mization requirements.

Evolutionary Algorithms consist of several optimization 
approaches that are influenced by ideas of natural selection 
and evolution. These algorithms manage groups of potential 
solutions and gradually improve them using evolutionary 
processes, social exchanges, or adaptive methods to dis-
cover the best or nearly best answers for intricate optimi-
zation issues. Evolutionary Algorithms use the combined 
knowledge of populations and adjust to different conditions 
to provide strong and efficient methods for tackling a variety 
of optimization problems in different fields.

3.2.3 Bayesian Optimization

Bayesian optimization is an approach of optimizing black-
box objective functions with prohibitive evaluations using 
a probabilistic framework [91–92]. Bayesian optimization 
represents the objective function as a Gaussian process, pro-
viding a flexible and probabilistic representation of uncer-
tainty without needing explicit gradients or derivatives of 
the objective function like classic optimization approaches.

1) Key Components of Bayesian Optimization:

 ● Surrogate Model: Bayesian optimization provides a 
predictive probabilistic model of the desired function 
by using the evaluations that have been observed [93]. 
The surrogate model, typically a Gaussian process, rep-
resents the fundamental patterns and uncertainties in the 
objective function space.

 ● Acquisition Function: The acquisition function pro-
motes the pursuit of optimum solutions by managing 
the trade-off between exploration and exploitation. The 
usefulness of picking a candidate point is determined by 
considering both the predictions of the surrogate model 
and the uncertainty estimations. Common acquisition 
functions include Expected Improvement (EI), Prob-
ability of Improvement (PI), and Upper Confidence 
Bound (UCB) [94].

 ● Sequential Sampling: Bayesian optimization in-
volves selecting potential sites based on the acquisition 
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3.3.3 Reinforcement Learning

Reinforcement learning utilizes optimization methods to 
discover an optimum policy that maximizes cumulative 
rewards in a changing environment. Reinforcement learning 
algorithms use different optimization techniques to adjust 
the policy parameters using rewards and states observed 
during exploration and exploitation phases. Q-learning 
is a widely used reinforcement learning technique that 
updates the Q-values of state-action pairs repeatedly to esti-
mate the ideal action-value function [104]. Policy gradient 
approaches, like REINFORCE, focus on optimizing policy 
parameters by calculating gradients of anticipated rewards 
in relation to the policy parameters and adjusting them via 
gradient ascent.

3.3.4 Semi-Supervised Learning

Semi-supervised learning is a ML approach that utilizes 
both labeled and unlabeled data to enhance model perfor-
mance [105]. This method is beneficial in situations when 
acquiring labeled data is costly or time-intensive, but there 
is an abundance of unlabeled data. Here is a comprehensive 
review of the optimization components of semi-supervised 
learning.

1) Joint Minimization of Loss Function: Semi-super-
vised learning optimizes by simultaneously reducing 
the loss function for labeled and unlabeled input. The 
loss function usually has two parts: one for labeled data 
with ground truth labels and another for unlabeled data 
where model predictions are compared with pseudo-
labels or inferred labels [106]. The goal is to determine 
model parameters that reduce the total loss for both 
identified and unlabeled occurrences.

2) Incorporation of Constraints or Regularization 
Terms: Semi-supervised learning approaches enhance 
the use of unlabeled data by integrating extra restrictions 
or regularization terms throughout the optimization 
phase. These constraints aim to enhance smoothness 
or consistency in predictions for comparable instances, 
use cluster structure or manifold shape in the data, 
and ensure agreement between labeled and unlabeled 
cases [107]. Regularization methods including entropy 
minimization, consistency regularization, and manifold 
regularization are often used to promote the model in 
generating more resilient and generalizable predictions.

3) Utilization of Semi-Supervised Learning Tech-
niques: Semi-supervised learning approaches may be 
used to efficiently use the intrinsic structure or correla-
tions present in the data. Self-training is the process of 
training a model on labeled data and then utilizing the 

models and settings using Bayesian optimization to find 
high-performing ML processes [101].

Bayesian optimization provides a systematic and effective 
method for optimizing black-box objective functions that 
need costly assessments. Bayesian optimization is a pow-
erful tool for optimizing ML models and other complex 
systems by efficiently exploring and exploiting the objec-
tive function space through probabilistic models, adaptive 
acquisition functions, and sequential sampling strategies.

3.3 Optimization Techniques for Various Machine 
Learning Technologies

Optimization strategies in ML are used in supervised learn-
ing, unsupervised learning, Semi-Supervised Learning, 
Transfer Learning, Metaheuristic Optimization, and rein-
forcement learning methodologies.

3.3.1 Supervised Learning

Supervised learning optimization strategies focus on mini-
mizing a predetermined loss function that measures the dif-
ference between predicted and real labels. The goal is to 
develop a model that can precisely correlate input properties 
with their respective labels. Gradient-based optimization 
methods like SGD, Adam, and RMSprop are often used to 
train supervised learning models [102]. The methods update 
model parameters repeatedly by calculating gradients of 
the loss function with respect to the model parameters and 
changing them to minimize the loss.

3.3.2 Unsupervised Learning

Unsupervised learning tasks including clustering and dimen-
sionality reduction involve maximizing objective functions 
using data structure and similarity measurements, without 
the use of labeled data. Clustering methods such as k-means 
and hierarchical clustering divide data into groups (clusters) 
where data points in the same cluster are more alike than 
those in other clusters [103]. Principal component analysis 
(PCA) is a dimensionality reduction approach that aims to 
decrease the number of variables in the data while retaining 
a significant portion of its variability. Optimization strate-
gies often use iterative algorithms to update cluster assign-
ments or alter data representations in order to minimize a 
given criteria, such as reducing intra-cluster variance or 
increasing between-cluster separation.
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effectively using the information stored in the pre-
trained model [112].

2) Fine-tuning: Fine-tuning is a prevalent method in 
transfer learning that involves adjusting pre-trained 
models to suit new tasks or domains. The pre-trained 
model’s parameters are adjusted by gradient-based opti-
mization methods like SGD or its variations through-
out the fine-tuning process. The optimization procedure 
includes calculating gradients of the loss function of the 
goal task in relation to the model parameters and then 
updating them gradually to reduce the loss. Fine-tuning 
enables the model to modify its representations and 
acquire task-specific characteristics while preserving 
important information from the original position [113].

3) Feature Extraction: Another method of transfer 
learning is feature extraction, in which the pre-trained 
model’s parameters remain unchanged, and only the 
top layers (classifier) are substituted or retrained for 
the new position. Optimization in this scenario entails 
training the classifier using characteristics derived from 
the pre-trained model while leaving the bottom layers 
fixed. Feature extraction is beneficial when the source 
and target activities have comparable low-level proper-
ties but vary in higher-level representations or output 
spaces [114].

4) Domain Adaptation: Domain adaption strategies are 
used in transfer learning when the source and destination 
domains have dissimilar distributions. Domain adapta-
tion optimization minimizes the distribution difference 
between the source and target domains to modify the 
model to the target domain. Methods like adversarial 
training, domain adversarial neural networks (DANN), 
and domain confusion loss can be used to harmonize 
feature distributions across domains during optimiza-
tion [115].

5) Partial Retraining: During some transfer learning situ-
ations, it might be advantageous to selectively retrain 
certain components of the pre-trained model while 
leaving the rest unmodified. Partial retraining enhances 
adaptability to the target task or domain by concentrat-
ing optimization on the most pertinent components of 
the model. In CNNs, only the remaining layers may 
be trained again for a new classification task, while 
the convolutional layers remain unchanged to preserve 
low-level feature representations [116].

Optimization in transfer learning involves adapting pre-
trained models or representations to new tasks or domains 
while reducing the difference between the source and tar-
get data distributions. Methods like fine-tuning, feature 
extraction, domain adaptation, and partial retraining have 
a tendency to effectively optimize model parameters for the 

model’s predictions to assign pseudo-labels to unlabeled 
occurrences in an iterative process [108]. Co-training 
involves training several models on distinct subsets of 
characteristics or representations and sharing reliable 
predictions between them. Graph-based regularization 
methods use graph structures derived from the data to 
transmit information and impose smoothness or consis-
tency restrictions on the predictions.

4) Combination of Supervised and Unsupervised 
Optimization Techniques: Optimization methods 
in semi-supervised learning combine supervised and 
unsupervised strategies to use labeled and unlabeled 
data efficiently. Gradient-based optimization methods 
like SGD and its variations are often used to train semi-
supervised learning models [109–110]. The techniques 
optimize model parameters by calculating gradients of 
the joint loss function with respect to the parameters 
and repeatedly updating them to minimize the total loss 
across labeled and unlabeled data.

Optimization in semi-supervised learning involves reduc-
ing the loss function for both labeled and unlabeled data 
simultaneously, while integrating constraints or regulariza-
tion terms to make use of the structure of unlabeled data 
efficiently. Methods like self-training, co-training, and 
graph-based regularization have a tendency to leverage 
the intrinsic structure or connections in the data to enhance 
model performance. Semi-supervised learning combines 
supervised and unsupervised optimization approaches to 
improve model generalization and performance by making 
more efficient use of existing data.

3.3.5 Transfer Learning

Transfer learning is a ML technique that uses information 
gained from a specific position or domain to improve per-
formance on a related but distinct task or area [111]. Trans-
fer learning optimization includes adjusting pre-trained 
models or representations for new tasks or domains while 
reducing the difference between the source and target data 
distributions. Here is an in-depth analysis of the optimiza-
tion components of transfer learning:

1) Adaptation of Pre-trained Models: Transfer learning 
usually starts with a pre-trained model that has been 
trained on a source task or domain using a substantial 
quantity of labeled data. The optimization phase entails 
customizing the pre-trained model for the particular 
position or area, especially when there is a scarcity of 
labeled data. The objective is to fine-tune model param-
eters to get high performance on the specific task by 
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appeal of nearby fireflies. The Firefly Algorithm (FA) 
tries to optimize solutions by repeatedly adjusting the 
placements of fireflies according to their attractiveness 
and the distance between them. Fireflies gather toward 
brighter sources, mimicking the synchronized flashing 
activity seen in nature.

 ● Harmony Search (HS): Harmony Search (HS) is based 
on performers improvising tunes that develop harmony, 
generating new melodies by blending components from 
current ones. In high school, potential solutions are 
shown as musical harmonies. The program creates fresh 
solutions by merging components from current harmo-
nies and modifies them to enhance harmony [124]. HS 
tries to identify the optimal solution by continuously 
improving potential harmonies according to their har-
mony values. The program navigates the solution space 
by modifying musical components and strives towards 
harmonic solutions.

 ● Bat Algorithm (BA): The Bat Algorithm (BA) is based 
on the echolocation behaviour of bats, in which bats 
use ultrasonic pulses for navigation and prey detection. 
Candidate solutions in the field of business analysis are 
presented as bats that generate sonar pulses inside the 
solution space [125]. Bats use echolocation to explore 
the solution space and modify their locations according 
to the strength of echoes, which indicate solution qual-
ity. BA seeks to determine the optimal solution by con-
tinuously adjusting the placements of bats according to 
their echolocation input. Bats are attracted to areas with 
increased echo intensity, mimicking their natural forag-
ing behaviour.

 ● Cuckoo Search (CS): Cuckoo Search (CS) is based on 
the brood parasitism behaviour of some cuckoo species, 
in which cuckoos deposit their eggs in the nests of other 
bird species. In the field of computing, proposed solu-
tions are symbolized as cuckoo eggs placed in the nests 
of host birds. Cuckoos deposit eggs in host nests ac-
cording on their quality and will substitute current eggs 
if they are superior [126]. Computer Science seeks to 
discover the optimal solution by continuously updating 
cuckoo eggs in host nests. Cuckoos search for optimal 
solutions by depositing eggs in nests with superior so-
lutions, mimicking the brood parasitism behaviour ob-
served in nature.

 ● Artificial Bee Colony (ABC) Algorithm: The ABC 
Algorithm is based on honeybees’ foraging behaviour, 
in which bees share information about food sources 
via waggle dances. In the Artificial Bee Colony (ABC) 
algorithm, proposed solutions are symbolized as food 
sources, and artificial bees navigate the solution space 
by inspecting these sources. Bees share details about 
food quality and choose better food sources by receiving 

specific task or domain. Transfer learning allows for more 
effective and efficient learning with limited labeled data 
by using knowledge transfer from pre-trained models and 
adjusting representations for new tasks.

3.3.6 Metaheuristic Optimization

Metaheuristic optimization methods are a variety of optimi-
zation algorithms that derive motivation from natural and 
social circumstances [117–118]. These algorithms provide 
potent resources for addressing intricate optimization issues 
in several fields. Here is an in-depth assessment of meta-
heuristic optimization:

1) Characteristics of Metaheuristic Optimization:

 ● Inspiration from Natural and Social Phenomena: Me-
taheuristic optimization is impacted by various natural 
and social phenomena such as evolutionary processes, 
swarm behaviour, and physical dynamics. Metaheuris-
tic algorithms strive to effectively explore the solution 
space and identify near-optimal solutions by imitating 
the processes found in these systems [119].

 ● Heuristic Search Strategies: Metaheuristic algorithms 
use heuristic search methods to efficiently explore intri-
cate solution spaces. The techniques manage the search 
process by systematically investigating exciting areas, 
using identified solutions, and maintaining a balance be-
tween exploration and exploitation to prevent premature 
reliance on impoverished responses [120].

 ● Iterative Improvement: Metaheuristic optimization 
techniques usually consist of iterative procedures that 
progressively enhance potential solutions over various 
generations or iterations. These algorithms improve po-
tential solutions, adjust search methods, and move to-
wards almost perfect solutions via repeated cycles [121].

 ● Adaptation and Flexibility: Metaheuristic algorithms 
demonstrate adaptability and flexibility by dynamically 
adjusting parameters, strategies, and search operators 
depending on issue features, solution quality, or conver-
gence progress. This flexibility improves their strength 
and efficiency in various optimization tasks [122].

2) Examples of Metaheuristic Optimization Algorithms:

 ● Firefly Algorithm (FA): The Firefly Algorithm (FA) is 
inspired by the bioluminescent flashing characteristic 
of fireflies, which they employ to attract mates or prey. 
Candidate solutions in Firefly Algorithm appear as fire-
flies throughout the solution space [123]. Fireflies are 
attracted to brighter ones, symbolizing superior solu-
tions, and navigate the solution space by considering the 
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most suitable for their particular application domains. Also, 
qualities such as interpretability and robustness are taken 
into account, offering significant perspectives on the real 
implications of implementing each optimization method. In 
general, this table behaves as a highly beneficial reference 
instrument for comprehending and contrasting the heteroge-
neous realm of ML optimization algorithms.

4 Challenges in Machine Learning 
Optimization

ML optimization experiences several challenges that affect 
the efficiency, efficacy, and resilience of learning algorithms 
is shown in Fig. 3. The challenges consist comprising the 
following:

1) Optimization Landscape: The optimization terrain 
is intricate, including non-convexity, multimodality, 
and irregular geometries [144]. Non-convex objective 
functions provide challenges in locating global optima, 
while multimodal functions include numerous local 
optima. Complex geometries hinder optimization due 
to abrupt peaks, valleys, and discontinuities, which pro-
vide challenges for optimization algorithms to get the 
correct responses.

2) Scalability Issues: ML activities involve manag-
ing extensive datasets and complex parameter spaces, 
which might result in scalability issues. Handling large 
datasets may place a heavy load on processing resources 
and memory limitations [145]. Also, studying param-
eter spaces with huge dimensions increases the compu-
tational workload of optimization algorithms, because 
they need to search across a large search space to locate 
the most suitable responses.

3) Optimization Convergence: Optimization algorithms 
may face convergence problems such as premature con-
vergence, local optima, and saddle points. Premature 
convergence is when the algorithm stops before find-
ing the best answer because it did not fully explore the 
search space [146]. Local optima are areas where the 
objective function approaches a minimum, although it 
may not be the overall minimum. Saddle points pro-
vide difficulties by causing gradients to either disappear 
or diminish, impeding advancement towards the most 
effective solution.

4) Robustness and Generalization: Ensuring resilience 
and adaptability is essential in optimizing ML. Over-
fitting happens when the model incorporates noise or 
irrelevant patterns from the training data, resulting in 
worse performance on data that is novel [147]. Under-
fitting happens when the model is too basic to capture 

comments [127]. ABC seeks to determine the optimal 
solution by continuously adjusting the locations of food 
sources. Bees navigate the solution space by locating 
potential sources with increased nectar levels, mimick-
ing the foraging behaviours of honeybees.

3) Applications of Metaheuristic Optimization:

 ● Engineering Design: Metaheuristic optimization meth-
ods tend to be utilized in engineering design tasks, in-
cluding structural optimization, aerodynamic design, 
and parameter tuning in engineering systems [128].

 ● Scheduling and Logistics: Metaheuristic optimization 
techniques are used in solving scheduling and logistics 
issues such as task scheduling, automobile routing, and 
resource allocation [129].

 ● Machine Learning: Metaheuristic optimization tech-
niques are used in a range of ML applications, includ-
ing hyperparameter optimization, feature selection, and 
neural network design optimization [130].

 ● Combinatorial Optimization: Metaheuristic optimiza-
tion is widely used in solving combinatorial optimiza-
tion issues which include that found in graph theory, 
network optimization, and combinatorial game theory 
[131].

Metaheuristic optimization techniques provide flexible 
and effective methods for addressing intricate optimization 
issues in several fields. By using heuristic search tactics 
inspired by natural and social events, these approaches facil-
itate effective exploration of solution spaces and discovery 
of near-optimal solutions in cases where standard optimi-
zation methods may struggle [132]. Optimization strategies 
are essential in a wide range of ML approaches, such as 
supervised learning, unsupervised learning, reinforcement 
learning, semi-supervised learning, transfer learning, and 
meta-learning. These methods assist models in efficiently 
acquiring knowledge from data, adjusting to different tasks 
or domains, and extrapolating to unfamiliar contexts or situ-
ations. Practitioners may choose and modify optimization 
approaches that align with their ML tasks and goals by com-
prehending the distinct aims and difficulties of each pattern.

A comprehensive overview of the optimization tech-
niques widely used in ML is presented in Table 3. The 
paper delineates essential attributes including but not lim-
ited to convergence speed, memory demands, scalability, 
and applicability for diverse problem domains. This review 
evaluates the merits and drawbacks of various optimiza-
tion algorithms, ranging from conventional techniques 
such as SGD to metaheuristic algorithms like genetic algo-
rithms and PSO [143]. The results support practitioners and 
researchers in determining which optimization approach is 
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real-time applications. Iterative optimization techniques 
may demand significant computer resources and time to 
reach optimum solutions, restricting their practical use 
in situations with severe time restrictions or restricted 
computational resources [148].

6) Data Efficiency: Optimization approaches require 
substantial data quantities to efficiently learn model 

the fundamental patterns in the data. Model selection 
involves identifying the suitable model structure and 
hyperparameters to achieve optimum performance 
while avoiding overfitting or underfitting.

5) Computational Complexity: Optimization tech-
niques encounter time and resource limits due to their 
computational complexity, especially in large-scale or 

Table 4 Challenges in machine learning optimization and associated optimization methods
Challenges in Machine Learning 
Optimization

Complex Parameters Optimization Methods

Optimization Landscape Non-convexity, Multimodality, Irregular Geometries Gradient Descent Variants, Evolution-
ary Algorithms, Bayesian Optimization

Scalability Issues Large Datasets, High-dimensional Parameter Spaces Mini-batch Processing, Distributed 
Computing, Dimensionality Reduction

Optimization Convergence Premature Convergence, Local Optima, Saddle Points Learning Rate Scheduling, Momentum 
Techniques, Adaptive Optimization

Robustness and Generalization Overfitting, Underfitting, Model Selection Regularization Techniques, Cross-
validation, Ensemble Learning

Computational Complexity Time Constraints, Resource Constraints Algorithmic Efficiency, Parallel Com-
puting, Hardware Acceleration

Data Efficiency Transfer Learning, Meta-learning, Active Learning Few-shot Learning, Data Augmenta-
tion, Semi-supervised Learning

Heterogeneity and Noise Robust Optimization Techniques, Data Preprocessing Noise Robustness, Outlier Detection, 
Data Imputation

Interpretability and Explainability Interpretable Model Structures, Explainable AI Model Interpretation Methods, Atten-
tion Mechanisms, Rule-based Models

Ethical and Fair Optimization Fairness-aware Algorithms, Bias Mitigation Fairness Metrics, Bias Detection, 
Counterfactual Fairness

Dynamic Environments Continuous Learning, Online Optimization Adaptive Learning Rates, Lifelong 
Learning, Concept Drift Detection

Fig. 3 Various challenges in 
machine learning optimization
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main challenges encountered in ML model optimization 
and the associated strategies used to overcome these diffi-
culties. This table’s objective is to make it easier for readers 
to comprehend the wide range of difficulties that come with 
improving ML algorithms as well as the numerous optimi-
zation techniques that may be used to address these difficul-
ties. Researchers, practitioners, and enthusiasts in the area 
of ML and optimization may benefit greatly from the table’s 
classification of issues and associated techniques.

5 Future Research Directions

Future prospects for ML optimization research include 
a broad spectrum of areas with the objective of resolving 
present challenges and expanding the potential of optimiza-
tion methods. Below are some essential recommendations:

An overview of the emerging approaches for ML opti-
mization research is presented in Table 5. In order over-
come problems, maximize the use of opportunities, and 
improve the state-of-the-art in ML model optimization for 
many applications and domains, it identifies important areas 
where more study needs to be conducted.

6 Conclusion

In summary, this paper explored a variety of aspects associ-
ated with ML optimization, from previous developments to 
present difficulties and future potential areas for research. 
The importance of optimization in ML and its critical role 
in training models to achieve high accuracy, efficiency, and 
generalization capabilities were one of the initial issues we 
discussed. We surveyed optimization strategies and clas-
sified them according to goals including speed, accuracy, 
and generalization. The result provided us knowledge about 
widely used algorithms and how they are used in various 
ML scenarios. Based on a review of the literature, we were 
able to identify important publications and contributions 
by well-known scholars that provided knowledge about 
algorithmic developments, theoretical underpinnings, and 
real-world optimization applications. We identified typi-
cal optimization obstacles, such as the non-convex nature 
of objective functions, convergence problems, scalability 
issues, and resilience, generalization, and computational 
complexity concerns. We concluded by presenting several 
of proposals for potential fields of research in ML optimiza-
tion. These involve studying novel optimization algorithms 
influenced by biological and social systems, integrating 
domain knowledge and priors into optimization processes, 
creating adaptive and self-tuning optimization techniques, 
addressing scalability challenges through parallel and 

parameters, posing difficulties in situations when data 
is limited or costly to get. Data efficiency deals to the 
capacity of optimization algorithms to learn well from 
a little amount of data samples while maintaining high 
performance levels. Transfer learning, meta-learning, 
and active learning are methods used to enhance data 
efficiency by using knowledge from similar activities, 
adjusting to new tasks with less data, and selecting 
obtaining valuable data points during training [149].

7) Heterogeneity and Noise: Real-world datasets can 
be varied and noisy, consisting of a variety of types, 
sources, and quality levels. Interacting with various 
data types and distributions poses issues when creat-
ing optimization algorithms due to heterogeneity. Data 
noise may conceal genuine patterns and correlations, 
resulting in subpar model performance. Utilizing robust 
optimization techniques, robust loss functions, and data 
pretreatment approaches is crucial for reducing the 
influence of heterogeneity and noise on optimization 
solutions [150].

8) Interpretability and Explainability: As ML models 
are becoming increasingly used in important fields like 
healthcare and finance, the simplicity and comprehen-
sibility of optimization results become crucial. Mod-
ern optimization methods may provide precise models 
but lack clarity in their decision-making process [151]. 
Comprehensible optimization algorithms and model 
frameworks enable stakeholders to comprehend and 
have confidence in model predictions, which aids in 
model deployment and decision-making in real-world 
situations.

9) Ethical and Fair Optimization: Optimization methods 
need to include ethical considerations and fairness issues 
in ML applications. Biases in data or optimization algo-
rithms may result in unjust treatment of individuals or 
communities, which can perpetuate social imbalances. 
Fair optimization strategies strive to reduce biases and 
achieve fair results across various demographic groups, 
emphasizing justice, transparency, and responsibility in 
ML systems [152].

10) Dynamic Environments: Optimization strategies need 
to adapt and develop in circumstances where data dis-
tributions, aims, or limitations vary over time [153]. 
Continuous learning, online optimization, and adaptive 
algorithms allow models to adapt and remain effective 
and relevant in dynamic environments by learning and 
adjusting to changing issues.

A methodical overview of the primary challenges in ML 
optimization is provided in Table 4, along with optimiza-
tion techniques that are aimed to solve these difficulties. It 
provides a methodical framework for comprehending the 
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and evaluation of a self-learning http adaptive video streaming cli-
ent. IEEE Commun Lett 18(4):716–719. https://doi.org/10.1109/
LCOMM.2014.020414.132649

22. Claeys M, Latré S, Famaey J, Wu T, Van Leekwijck W, and Filip 
De Turck (2014) Design and optimisation of a (FA)Q-Learning-
based HTTP adaptive streaming client. Connection Sci 26(1):25–
43. https://doi.org/10.1080/09540091.2014.885273

23. Randheer SK, Soni S, Kumar, and Rahul Priyadarshi (2020). 
Energy-Aware Clustering in Wireless Sensor Networks BT 
- Nanoelectronics, Circuits and Communication Systems. 
In, edited by Vijay Nath and J K, Mandal 453–61. Singapore: 
Springer Singapore

24. Dowling J, Curran E, Cunningham R, and Vinny Cahill (2005) 
Using feedback in collaborative reinforcement learning to 
adaptively optimize MANET Routing. IEEE Trans Syst Man 
Cybernetics Part A:Systems Hum 35(3):360–372. https://doi.
org/10.1109/TSMCA.2005.846390

25. Priyadarshi R, Gupta B (2023) 2-D Coverage optimiza-
tion in obstacle-based FOI in WSN using modified PSO. J 
Supercomputing 79(5):4847–4869. https://doi.org/10.1007/
s11227-022-04832-6

26. Edalat Y, Ahn JS, and Katia Obraczka (2016) Smart experts 
for Network State Estimation. IEEE Trans Netw Serv Manage 
13(3):622–635. https://doi.org/10.1109/TNSM.2016.2586506

27. Este A, Gringoli F, and Luca Salgarelli (2009) Support Vec-
tor machines for TCP Traffic classification. Comput Netw 
53(14):2476–2490. https://doi.org/10.1016/j.comnet.2009.05.003

28. Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous 
clustering protocol for lifetime maximization of Wireless Sensor 
Network. Wireless Pers Commun 117(2):825–841. https://doi.
org/10.1007/s11277-020-07898-8

29. García-Teodoro P, Díaz-Verdejo J, Maciá-Fernández G, and E. 
Vázquez (2009) Anomaly-based network intrusion detection: 
techniques, systems and challenges. Computers Secur 28(1–
2):18–28. https://doi.org/10.1016/j.cose.2008.08.003

distributed optimization, and improving the interpretabil-
ity and explainability of optimization results. In the final 
analysis, the research and invention reported in this work 
emphasize the significance of continuous research and 
development in ML optimization. Researchers may prog-
ress in the field and develop more effective, reliable, and 
accessible ML models that can successfully handle chal-
lenging real-world situations by tackling present issues and 
investigating novel optimization paths.
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