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Abstract
This article systematically identifies and comparatively analyzes state-of-the-art supply chain (SC) forecasting strategies 
and technologies within a specific timeframe, encompassing a comprehensive review of 152 papers spanning from 1969 to 
2023. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, 
data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, 
and optimization), forecasting effects on human workforce, inventory, and overall SC. Initially, the need to collect data 
according to SC strategy and how to collect them has been discussed. The article discusses the need for different types of 
forecasting according to the period or SC objective. The SC KPIs and the error-measurement systems have been recom-
mended to optimize the top-performing model. The adverse effects of phantom inventory on forecasting and the dependence 
of managerial decisions on the SC KPIs for determining model performance parameters and improving operations manage-
ment, transparency, and planning efficiency have been illustrated. The cyclic connection within the framework introduces 
preprocessing optimization based on the post-process KPIs, optimizing the overall control process (inventory management, 
workforce determination, cost, production and capacity planning). The contribution of this research lies in the standard SC 
process framework proposal, recommended forecasting data analysis, forecasting effects on SC performance, machine learn-
ing algorithms optimization followed, and in shedding light on future research.

1  Introduction

In the dynamic landscape of supply chain management 
(SCM), the relentless pursuit of efficiency and adaptabil-
ity has driven a continuous evolution in forecasting strate-
gies and technologies. This article embarks on a systematic 
exploration, aiming to identify and analyze the state-of-the-
art in supply chain (SC) forecasting, ultimately proposing a 
novel framework that integrates the power of big data analyt-
ics (BDA) into SCM. The increasing complexity and inter-
connectedness of global SCs have underscored the need for 
sophisticated forecasting strategies. Traditional approaches 
are being reevaluated in the wake of technological advance-
ments, leading to a paradigm shift in how we perceive and 
optimize SC forecasting. The integration of BDA emerges as 
a transformative force, promising enhanced predictive capa-
bilities and a holistic framework that spans problem identi-
fication, data sourcing, exploratory data analysis, machine 
learning (ML) model training, hyperparameter tuning, per-
formance evaluation, and optimization.

The SC has evolved sufficiently over the past years to 
discover new methods and techniques for solving SCM 
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problems. The SC can develop its configuration based on 
its control, coordination, and management [1]. The advent 
of big data (BD) brings one such change. Like other fields, 
BD can be utilized to improve decision-making reprocesses 
and alter business models through multiple resources, tools, 
and applications [2]. Therefore, SC and BD usages are con-
nected to help one another. Although the concepts for SCM 
are already well-developed, it is possible to improve further; 
recent research on enhancing efficiency through collabora-
tion [3], usage of RFID and intelligent goods [4] are two 
examples of such innovations that improved SCM processes. 
Newer technologies are further enabling the discovery of 
innovative strategies for solving SC problems. BDA is one 
such disruptive innovation. Although BD has been present 
for a long time, the approaches to making sense of BD are 
comparatively new, and such systems have not been wholly 
integrated into other branches of knowledge [5]. We identi-
fied the absence of data usage and relevant processes in SC 
directly as a major problem that needs to be addressed.

BD has similarly grown popular over the years. After 
academic and technical publications first mentioned such 
technological developments, it drew the attention of various 
people, including literary scholars, corporate leaders, and 
government officials [6, 7]. The most recognizable feature 
of BD is probably its size or the amount of data stored. The 
distinctive features of greater data variety, high velocity in 
collection and analysis, the necessity to navigate veracity 
challenges, and the inherent value growth with increasing 
data analysis [8] set the stage for a new era in SCM. Simply 
having access to BD is not helpful; data analytics is a must 
to create value or gather information out of the enormous 
collection of data. Where analytical methods are applied to 
BD, it is called BDA. While BDA has vast applications, its 
role in improving the SC process is notable.

The motivation behind this research stems from the rec-
ognition that the traditional forecasting paradigms may not 
be equipped to address the intricacies of modern SC dynam-
ics. Phantom inventory, varying time horizons, and diverse 
SCM objectives necessitate a more adaptive and data-driven 
approach. By introducing a comprehensive framework, this 
article seeks to bridge the gap between traditional fore-
casting methods and the demands of contemporary SC 
environments.

1.1 � Research gaps

We found potential research gaps combining the preproc-
essing for ML forecasting, control process (SC processes 
where BDA is helpful), and post-process (for evaluating the 
forecasting model). Although there is fragmented research 
on these particular topics (“SC forecasting model perfor-
mance,” “the application of BDA on SC,” or “ML forecast-
ing techniques with BDA implementation,” or “BD driven 

SC performance evaluation”), the necessity to form a cyclic 
connection among these three processes led us to the devel-
opment of this article. This paper identifies a critical gap 
in current SCM practices—the underutilization of data and 
relevant processes—and positions BDA as a powerful solu-
tion. The motivation behind this study lies in addressing 
the pivotal challenge of harnessing the full potential of BD 
within SCM, recognizing it not just as a technological evolu-
tion but as a strategic imperative for future competitiveness.

1.2 � Research Objectives

The primary objective of this article is to shed light on the 
potential BDA investigations on SCM studies, what signifi-
cant contributions BDA has made to the efficient use of ML 
forecasting in SC processes, what preprocessing and post-
processing SC forecasting techniques have been robustly 
developed so far, and are currently in use. The forecasting 
techniques in an SC setting have been discussed mainly from 
the perspective of BDA. This research aims to continually 
enhance the performance of a forecasting model incorporat-
ing a sustainable circular BDA-SCM framework that can 
drive future research using business intelligence and value 
theory as theoretical approaches. Systematic literature 
review (SLR) was used to perform this research, which is an 
approach used to locate, evaluate, and interpret what relevant 
research has been done on a specific issue or topic by sketch-
ing out and analyzing the current intellectual landscape [9]. 
The review paper attempts to combine the applications of 
BDA and ML forecasting in SCM by seeking the solutions 
to the following research questions (RQs) for guiding the 
study’s development to accomplish its overall objective:

•	 RQ1: What are the efficient steps to formulate an ML 
Forecasting model to predict the SC factors?

•	 RQ2: How can the forecasting, SC decision-making, 
and performance measurement processes be connected, 
tracked, and optimized in cyclic order?

•	 RQ3: How can forecasting affect SC performance, and 
which ML forecasting models are relevant to SC forecast-
ing?

The scope of this research extends beyond the technical intri-
cacies of forecasting algorithms. It delves into the broader 
implications of forecasting on the human workforce, inven-
tory management, and the overall performance of the SC. 
By addressing the adverse effects of phantom inventory and 
emphasizing the dependency of managerial decisions on SC 
key performance indicators (KPIs), this research contributes 
to the overarching goal of improving operations manage-
ment, transparency, and planning efficiency. The novelty of 
this paper lies in several key aspects:
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•	 The introduction of a comprehensive BDA-SCM frame-
work that provides a holistic view of SC forecasting and 
highlights interconnections between processes, offering 
a novel perspective.

•	 The integration of ML techniques within SCM for fore-
casting purposes presents novel approaches to enhance 
accuracy and effectiveness.

•	 Addressing the issue of phantom inventory, providing 
insights and potential solutions to improve inventory 
management practices and forecasting precision.

•	 Exploring the connection between accurate forecasting 
and SC performance, offering a novel perspective on lev-
eraging forecasting models for optimization.

•	 Conducting a comprehensive survey of 152 papers span-
ning several decades, providing a unique and valuable 
contribution to the field and consolidating a vast body of 
literature.

	   Including papers from such a broad timeframe allows 
for identifying trends, shifts in methodologies, and key 
milestones in the field. This comprehensive survey sets 
this paper apart from other SLR review papers that have 
not undertaken such an extensive examination of the lit-
erature. The insights gained from this extensive survey 
enhance the robustness and reliability of the conclusions 
drawn in the paper.

The forthcoming sections will comprehensively explore the 
“Research procedures,” and the proposed cyclic connection 
embedded within the framework will be elucidated in “BDA-
SCM framework". Moving forward, “Pre-process” section 
addresses critical components, including the imperative 
need for strategic data collection aligned with SC objectives, 
methodologies for data preprocessing, feature engineer-
ing (FE), exploratory data analysis, and the classification 
of forecasting types based on distinct time horizons. The 
“Control-process” section delves into optimizing preprocess-
ing methodologies. This optimization, rooted in post-process 
KPIs, aims to elevate overall control processes, encompass-
ing inventory management, workforce determination, cost 
optimization, and production and capacity planning. The 
discussion on SC KPIs and error-measurement systems for 
model optimization unfolds in the “Post-process” section. 
This section aims to provide insights into refining forecast-
ing models for superior performance. In the “Challenges” 
section, attention is directed toward acknowledging and 
addressing technological obstacles encountered during the 
extensive review of pertinent articles. This section highlights 
and discusses the challenges inherent in navigating the tech-
nological landscape within the scope of this research. In the 
“Practical Implications" section, we delve into actionable 
insights for SC practitioners, detailing the implementation of 
the proposed BDA-SCM framework in real-world scenarios 
and outlining the substantial benefits they can expect. By 

incorporating these novel aspects, the paper contributes to 
the existing body of knowledge in the field of BDA-SCM 
framework for forecasting, offering new insights, method-
ologies, and recommendations for future research and practi-
cal implementation.

2 � Research Procedures

2.1 � Planning the Review

In this article, the BDA-SCM cyclic framework was initially 
developed to incorporate pre-process, control process, and 
post-process phases. Each phase was illustrated utilizing the 
most relevant selected works of literature. For forecasting 
purposes, pre-process recommendations include a step-by-
step approach to forecasting and BDA best practices to facil-
itate comprehensive demand forecasting considering state-
of-the-art technologies and relevant research. In the control 
process, how SC factors and forecasting affect workforce 
efficiency have been discussed. The post-process portion of 
the managerial decision-making process explains how man-
agers use the KPI and optimization of the forecasting model 
to choose the appropriate metrics and insights.

2.2 � Conducting the Review

2.2.1 � Search Strategy

This SLR aimed to provide a comprehensive and objec-
tive evaluation of the existing research until 2023 on BDA-
SCM, including an investigation and analysis of various SC 
forecasting problems and BDA innovations, strategies, and 
techniques. Major academic databases, including Google 
Scholar and Science Direct, were searched to minimize 
bias and ensure the inclusion of a broad range of relevant 
sources and content. Only English articles published in 
peer-reviewed journals in the fields of Computer Science, 
Business, Management and Accounting, Engineering, 
and Decision Sciences were included. Figure 1 shows the 
PRISMA flow diagram for the systematic review process, 
which includes the number of articles identified, screened, 
and included in the analysis. A combination of keywords and 
subject headings related to the topic of interest was used to 
develop the search strategy. The search strings were limited 
to the title, abstract, and keywords fields and included the 
following terms:

•	 (“Data Analytics” OR “Big Data” OR “Data Analysis”) 
AND (“Supply Chain Management”) AND (“Forecast-
ing”)

•	 (“Data Preprocessing” OR “Data Wrangling” OR “Sup-
ply Chain Data Analysis”)
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•	 (“Supply Chain Forecasting” OR “Demand Forecasting”)
•	 (“Warehouse” OR “Inventory”) AND (“Workforce” OR 

“Human”) AND (“Forecasting”)
•	 (“Supply Chain Performance” OR “Supply Chain KPI” 

OR “Supply Chain Monitoring”)
•	 (“Forecasting KPI” OR “Forecasting Error Measure-

ment” OR “Forecasting Performance”)
•	 (“Forecasting Model” OR “Time-series Forecasting”)

2.2.2 � Selection Strategy

The relevance of each publication was assessed to ensure 
that the selected papers were empirically sound and con-
ceptually relevant to BDA-SCM-related research advances. 
Articles were considered more relevant if the search terms 
appeared in the title, abstract, keywords, and throughout the 
text. The identified papers were critically analyzed, particu-
larly regarding the relevant sections that mentioned BDA-
SCM. This approach drew from relevant views on SCM-
forecasting challenges and BDA techniques and helped to 
achieve the research review goals. The remaining articles 
were then assessed to verify that they provided the neces-
sary research perspective and empirical data to meet the 
review’s objectives. Finally, to ensure that the selected arti-
cles aligned with the review goals, we conducted a rigorous 
alignment process, comparing the articles to the research 
review objectives. Only articles that met all of the selection 
criteria were included in the final review.

3 � BDA‑SCM Framework

The proposed BDA-SCM framework, depicted in 
Figs. 2, 3 and 4, establishes a cyclic connection that facil-
itates continuous improvement in SC forecasting. This 
cyclic process seamlessly integrates three essential stages: 
Pre-process, Control-process, and Post-process, fostering 
a dynamic relationship that optimizes SC operations itera-
tively. Figure 2 mainly consists of the use and cyclic flow 
of data in SC. It only includes the SC parts where BDA 
may be involved. Figure 3 complements Fig. 2 by mention-
ing the methods for cleaning, exploring, and analyzing 
data properly. It includes FE techniques to select only the 
most relevant and unique features from which ML algo-
rithms can learn efficiently. Finally, Fig. 4 is a proposed 
method for data splitting, model training, hyperparameter 
optimization, cross-validation, testing, and evaluating 
errors to perfect the forecasting methods mentioned in 
Fig. 2.

In the Pre-process stage, the focus is on ensuring accu-
rate and relevant data aligned with SC objectives. The 
cyclic nature of this stage involves a continuous feedback 
loop. For example, after training an initial ML forecast-
ing model, the performance is evaluated using real-time 
data. Any discrepancies or deviations from expected out-
comes trigger a revisit to the Pre-process stage. This might 
involve reassessing data collection methods, exploring 
new data sources, or refining the preprocessing steps to 
enhance the quality of input data. The Control-process 
stage benefits from the cyclic connection, encompassing 
decision-making areas like production planning, work-
force determination, and inventory management. Suppose 
a decision made based on forecasted data results in sub-
optimal outcomes. In that case, this feedback loops back 
to the Pre-process stage. The system may reevaluate the 
forecasting model’s inputs, incorporating real-time data to 
enhance decision-making accuracy in subsequent cycles. 
In the Post-process stage, the cyclic connection enables 
continuous performance improvement. After the initial 
model predictions, performance metrics are analyzed, and 
any deviations from expected results trigger a reevaluation 
of the forecasting model. This feedback loop, integrated 
into the Post-process stage, ensures that the model evolves 
over time, adapting to changing SC dynamics and improv-
ing its predictive capabilities.

Consider a scenario in demand forecasting where the 
initial ML model predicts a surge in demand for a particu-
lar product. If the actual demand deviates from the fore-
cast, the cyclic connection triggers a reassessment in the 
Pre-process stage. Analysts may explore new data sources, 
refine data preprocessing methods, or adjust FE techniques 
to capture changing demand patterns more accurately. In 

Fig. 1   PRISMA flow diagram illustrating the article selection process 
for the SLR on BDA-SCM forecasting
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inventory management, the Control-process stage involves 
decisions on stock levels based on forecasted demand. If 
the actual inventory levels deviate significantly from the 

forecast, the cyclic connection prompts a revisit to the Pre-
process stage. This may involve refining the preprocess-
ing of inventory data, incorporating real-time data on SC 

Fig. 2   Big data analytics in supply chain processes (pre-process, control-process, post-process)

Fig. 3   Data preprocessing, feature engineering, exploratory data analysis, and data reduction
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disruptions, or adjusting the forecasting model to enhance 
inventory optimization. In production planning, the deci-
sion-making process relies on accurate product demand 
forecasts. If the actual production output falls short or 
exceeds the forecasted demand, the cyclic connection trig-
gers a reassessment in the Pre-process stage. This may 
involve refining data collection methods, exploring new 
features relevant to production efficiency, or adjusting the 
forecasting model to better align with dynamic production 
needs.

4 � Pre‑process

4.1 � Identifying Business Problems

At the outset, the type of data that needs to be collected, 
stored, analyzed, and interpreted is selected based on SC 
strategies. Reference [10] categorized SC strategies based 
on risk and impact, such as robustness for low-impact high-
risk, agility for low-risk high-impact, rigidity for low-impact 
low-risk, and resilience for high-impact high-risk decisions. 
Varying levels of responsiveness and efficiency can adopt 
the strategies. Responsiveness has been a critical factor in 
gaining a competitive advantage, and it depends on the devi-
ations in demands and a company’s capability to respond to 
such deviations. An increase in responsiveness decreases 
efficiency, and vice versa [11]. The responsiveness level 
affects product volume, order fulfillment rate, workforce, 
manufacturing capacity, warehouse capacity, transportation 
carriers, product mix, supplier’s product mix, inbound and 

outbound logistics, etc. [12]. Therefore, whether data needs 
to be collected should be decided based on responsiveness, 
as different data sets are required to boost the SC efficiency 
and responsiveness by allocating them. Furthermore, the 
frequency of data analyses would also depend on the com-
pany’s responsiveness level. In short, the factors that may 
dictate the sort of forecasting required for a business include 
the context of forecasting, the types of data available, the 
required level of accuracy, the length of the forecasting 
period, the time available for each forecast, and the value 
addition made through the forecast [13].

4.2 � Identifying Data Sources

Once the data that needs to be gathered is selected, iden-
tifying the sources is essential. Determining variables is 
required for timely forecasts to bring helpful informa-
tion [14]. Moreover, a conclusion may not be based on a 
single type of data; the initial conclusion can be validated 
based on multiple data types. Reference [15] mentioned 56 
different data sources for four main SCM levers, procure-
ment, warehouse operations, marketing, and transportation, 
as leveraging various data sources allows finding action-
able insights quickly; some of the more relevant data sources 
have been listed below: 

	 1.	 Transportation
	 2.	 Barcode systems
	 3.	 Demand chain
	 4.	 CRM transaction data
	 5.	 BOMs

Fig. 4   Machine learning model training, hyperparameter optimization, and model evaluation
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	 6.	 Customer surveys
	 7.	 Blogs and news
	 8.	 Demand forecasts
	 9.	 Procurement
	10.	 Delivery times and terms
	11.	 Invoice data
	12.	 ERP transaction data
	13.	 GPS-enabled BD telematics
	14.	 Product reviews
	15.	 Competitor pricing
	16.	 Inventory costs
	17.	 Customer location and channel
	18.	 Traffic density
	19.	 Email records
	20.	 Crowd-based pickup and delivery
	21.	 Equipment or asset data
	22.	 Intelligent Transport Systems
	23.	 EDI purchase orders
	24.	 Warehouse operations
	25.	 Logistics network topology
	26.	 In-transit inventory
	27.	 SRM transaction data
	28.	 Transportation costs
	29.	 Warehouse costs
	30.	 Pricing and margin data
	31.	 RFID
	32.	 Origination and destination (OND)
	33.	 Local and global events
	34.	 Supplier current capacity and customers
	35.	 Sales history
	36.	 Weather data
	37.	 SKU level
	38.	 Supplier financial performance information
	39.	 Raw material pricing volatility
	40.	 On-shelf-availability
	41.	 P2P (Procure-to-Pay)
	42.	 Product traceability and monitoring system

4.3 � Data Preprocessing and Feature Engineering 
(FE)

4.3.1 � Duplicates Removal

It is problematic to waste space and runtime with duplicate 
rows. Duplicate rows create incoherence, and the ML model 
fails to learn new information. Because of input mistakes, 
changes in some feature values (e.g., the identifier value) 
may generate duplicate rows that will be deemed distinct by 
the machine. It is easier to drop the duplicates or substitute 
them with relevant values using data preprocessing libraries 
in Python and R languages. Nevertheless, the main chal-
lenge is identifying factors on which the duplicates should 

be removed. Of the number of methods invented to remove 
duplicates, we review the following:

Bayesian: The Fellegi-Sunter-algorithm is the most com-
monly used model in probabilistic approaches because of 
its Bayesian nature [16, 17]. The Bayes Decision Rule is a 
common approach [18]. A Bayesian inference difficulty may 
develop when the probability density of a unique row differs 
from a duplicate record and the functions are known. Neu-
ral network (NN) algorithms are more accurate without the 
Fellegi-Sunter-algorithm if the data are adequately described 
or labeled [19].

Partitioning Methods: Clustering methods identify and 
drop duplicates utilizing graph partitioning approaches [20]. 
However, Reference [21] compared 12 clustering methods 
and found that the popular sophisticated algorithms provided 
lower accuracy, first suggesting that Markov Clustering is a 
more scalable, accurate, and efficient algorithm.

Aggregate fitting: CART [22] and SVM [23] aggregate 
fitting results for various row features. SVM is highly mem-
ory efficient and works well with lots of dimensions [24]. 
However, it does not work well with large datasets or data 
with overlapping classes. CART is intuitive and easily used. 
The problem is that data is classified based on the sample 
and may not apply to larger datasets.

Others: Bootstrapping clusters [25] or hierarchical graph 
structures encode the features as non-matchable binary fea-
tures creating dual probability densities rather than probabil-
istic distribution modeling for the inspected quantities [26]. 
Bootstrapping clusters are used for unsupervised data. Sim-
ple techniques have long been studied, such as utilizing dis-
tance measurements to identify duplication [27]. Weighted 
transformations also occur in literature [28]. Additional 
methods, like ranking the most same-type weighted rows 
comparable to those provided, are also utilized to identify 
the least duplicated rows [29].

4.3.2 � Dealing with Categorical Features

One-hot, ordinal, Helmert, polynomial, and binary encod-
ers are outperformed with a 95% accuracy by Sum, and 
Backward Difference encoders are preferred for predic-
tion jobs [30]. Reference [31] presented a generic Infor-
mation-based encoder that transforms mixed-type features 
into numeric ones while maintaining the dataset’s original 
dimension, with better accuracy than One-Hot and Feature-
Hashing. Reference [32] demonstrated that Ordinal-encoder 
(straightforward and convenient to execute but incorpo-
rates a sequence of features) outperformed Hashing (intro-
duces limited features and moderately ignores the feature 
sequence); One-hot-encoding generates a massive number 
of features and forces the use of a very simplified regres-
sion analysis. To train residual features from time categori-
cal variables derived from variable time stamps, a DeepGB 
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neural network with embedding layers may be used, which 
are necessary to learn multiple time series at once to encode 
categorical features in a lower dimension or by embedding 
their IDs and retrieve helpful information [33].

4.3.3 � Data Scaling

Normalization is valuable when using ANN, clustering tech-
niques, or classification software. The learning phase may 
be accelerated by normalizing the data features in tanning 
faces for backpropagation NN methods.

Min-max normalization: The scaling of b values of 
a numerical feature F to a defined range represented by 
[new-minF, new-maxF] is termed min-max normalization. 
To acquire the new value, the following equation is applied 
in b to produce a changed value b′:

where maxF and minF mean the maximum and mini-
mum feature values, respectively. In normalization, 
[new − minF, new − maxF] = [0, 1] or [−1, 1] are the usual 
intervals [34].

Datasets prepared for use with distance-based learning 
methods commonly use this normalization technique. The 
features having a significant maxF − minF difference will 
be prevented from dominating the distance computation 
by applying a normalization to rescale the data to the same 
value ranges, and it will not be able to distort the learn-
ing process by assigning the older features much weight. 
It is also known to help ANNs learn faster by allowing the 
weights to converge more quickly.

Z-score normalization: Min-max normalization is not 
practicable if the minimum and maximum values are not 
provided. Even when these values are known, the existence 
of outliers might cause the min-max normalization to be 
skewed by clustering the values and restricting the compu-
tational accuracy available to represent them.

where x̄ is the sample mean.

Moreover, sx is the mean absolute deviation of x [35].

(1)

b� =
(b − minF)

maxF − minF
⋅ (new − maxF − new − minF) + new − minF

(2)b� =
(b − x̄)

sx

(3)x̄ =
1

n

n∑

i=1

bi

(4)sx =
1

n

n∑

i=1

(bi − x̄)

Decimal scaling normalization: Normalising the numerical 
feature values by relocating the decimal-point by 10th power 
divisions so that the highest absolute value < 1 after trans-
formation is a simple method for minimizing the absolute 
feature values.

where k is an integer (the lowest), such that new − maxF < 1.

4.3.4 � Data Transformation

Data transformation can create new features, also known 
as changing features, where mathematical formulae derived 
from business models or pure mathematical formulae are 
used to integrate the raw input features. Linear, quadratic, 
polynomial, non-polynomial, rank, and Box-Cox transfor-
mations are a few of the different existing transformation 
techniques.

Normalizations may not be sufficient in research experi-
ments, and full automation to fit the data and optimize the 
resulting model. Combining the data embedded in several 
features may be advantageous in some circumstances. Lin-
ear transformation based on simple algebraic operations is a 
basic approach that may be utilized for this goal. A quadratic 
transformation can occur when a newly introduced feature is 
formed using the expressions in quadratic form. Using the 
fundamental features of the dataset, quadratic modifications 
can assist us in uncovering information that is not directly 
there. Transformation approximation using polynomials 
could be implemented by brute force exploration with one 
unit at a time when no expert assistance can tell us which 
transformation and features to employ. The transformation of 
the rank approach is recommended for identical training and 
test data or a complete dataset for DA and cluster analysis 
model development [36].

Nonparametric approaches using rank transformation are 
not recommended to be introduced into traditional statistics 
courses because they inhibit how widely the nonparametric 
technique may be used, which is unnecessary. Another mis-
perception is that the nonparametric technique is utilized 
chiefly for hypothesis testing. This entirely obscures the 
superior theoretical and conceptual flexibility of many non-
parametric methods.

Reference [37] studied the limited sample aspects of the 
estimated parameters using the Box-Cox transformation. 
Under the premise of approximating normalcy, the technique 
worked well. The outputs were utterly impartial for forecast-
ing, and their differences were surprisingly small. Asymp-
totic variances and stability features of Box-Cox estimates 
in the linear model were examined by [38]. In the case of 
unknown transformation parameters, linear regression mod-
els with minor to intermediate error variances showed much 

(5)b� =
b

10k
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higher asymptotic variances than known ones. Furthermore, 
they observed that Box-Cox approaches perform inconsist-
ently in models with minor to intermediate residual variance.

4.3.5 � Filtering Extreme Outliers

The most often recommended approach in the literature of 
outlier identification and repair is via filtering.

Outlier detection: Statistical methods for detecting outli-
ers include box plots, scatter plots, z-scores, and IQR (Inter-
quartile Range) scores. Normal distribution empirical rela-
tions should be followed for outliers where the values are 
< 𝜇 – 3� or > 𝜇 + 3𝜎 for normal distribution, where � and � 
are the standard deviation and mean of a particular feature. 
IQR proximity rule should be used in which outliers are 
< (Q1 – 1.5 × IQR) or > (Q1 + 1.5 × IQR) for skewed distri-
bution. For other distributions, a percentile-based approach 
should be used in which values that are distant from the 99 
percentile and < 1 percentile are regarded as outliers.

Outlier Treatment: Various techniques can be employed 
to address outliers within a dataset. Trimming, the first 
method, involves the removal of outliers, but it is gener-
ally not recommended due to potential information loss. As 
the second approach, capping identifies outliers based on a 
predefined threshold, either greater or less than the estab-
lished limit. The number of outliers in the dataset influences 
the determination of this capping threshold. Alternatively, 
outliers may be treated similarly to missing values (MVs). 
Lastly, outlier removal clustering (ORC), a modification of 
K-Means Clustering, eliminates outliers in iterative loops. 
ORC effectively removes outliers from clusters, and careful 
parameter adjustments are essential as the dataset influences 
model precision. Importantly, ORC ensures that the com-
putation of centroids remains unbiased, particularly when 
dealing with distant locations from the k-clusters.

4.3.6 � Dealing with Missing Values (MVs)

In SC Data Analysis, one of the preprocessing techniques, 
Imputation, is adopted to overcome the drawbacks of MVs. 
The most straightforward approach to drop the rows having 
MVs is if a comparatively small fraction of observations 
is present and the analysis of all rows is not substantially 
skewed in interpretation [39]. Reference [40] showed that 
MVs are generally connected with three sorts of issues: 

1.	 Inefficiency.
2.	 Difficulties in managing and interpreting data.
3.	 Skewness because of discrepancies between perfect and 

missing data.

When it comes to MV therapy, there are generally three 
options [41]: 

1.	 First, eliminate all instances that have MVs in their fea-
tures. Thus, removing features with higher-than-normal 
MV levels falls within this area.

2.	 When estimating the model parameters for a whole data-
set, another way is to employ maximum likelihood pro-
cesses, using the obtained model parameters for imputa-
tion via sampling.

3.	 Finally, MV imputation is a group of processes focused 
on substituting predicted MVs for existing ones. Most 
of the time, the features in a data set are interdependent. 
As a result, MVs may be calculated by identifying cor-
relations among features.

Common approaches: To keep the MVs unchanged, known 
as Do Not Impute (DNI), is the most straightforward 
approach where if the baseline MVs strategies are avail-
able, the algorithm must employ them. When many rows 
include MVs and using DNI would lead to an irrelevant, 
inaccurate, and small dataset, then MVs are commonly 
substituted by the universal-most-frequent feature value 
for nominal features and the universal mean value for 
quantitative features [42]. Reference [43] showed another 
process utilizing Hot Deck that partitions the complete 
dataset into clusters, links each row with a cluster, and 
fills up the MVs, where any complete row from the cluster 
can be utilized. The imputation of Cold Deck is identical 
to the hot deck, except the dataset cannot be the existing 
dataset. They demonstrated that the MVs imputation based 
on the KNN might beat the internal techniques assessing 
C4.5 and CN2 to handle MVs and exceed the imputation 
method of mean or mode, which is widely intended to 
treat MVs.

Maximum likelihood imputation methods: Assume for 
n independent rows (i = 1,… , n) , there are k variables 
(yi1, yi2,… , yik) with no missing data. The maximum like-
lihood function is [44]:

Assume that y1 and y2 have MVs that fulfill the Missing 
at Random (MAR)-assumption for a specific row i. The 
combined probability for that observation is the chance of 
witnessing the remaining features, yi3 through yik . If y1 and 
y2 are two discrete features, this is the aforementioned com-
bined probability multiplied by all potential values of the 
two features with MVs:

For continuous MVs,

(6)L =

n∏

i=1

fi(yi1, yi2,… , yik;�)

(7)f ∗
i
(yi3,… , yik;�) =

∏

y1

∏

y2

fi(yi1,… , yik;�)
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The multiplication of probabilities for all the rows is the 
overall likelihood. If there are q rows with full data and 
p − q rows with MVs on y1 and y2 features, then the ML 
function becomes:

Reference [45] narrowed down the following imputation 
options using non-parametric statistical testing:

•	 Row elimination (IM) and no imputation (DNI) methods 
are outperformed by imputation techniques that fill in the 
MVs.

•	 No single-size/generic imputation method works for all 
regressors or classifiers.

CMC and EC methods are proposed to yield a lower noise 
ratio for Wilson and balance the mean MI difference. The 
proposed imputation approaches focused on classification 
techniques, including Rule Induction Learning Models: 
FKMI, Black Boxes Methods: EC, and lazy learning (LL) 
models: MC.

4.3.7 � Binning

In this method, a continuous variable is converted into a 
group of intervals. Each interval can then be treated as a 
‘bin,’ with the option of enforcing an order dependent on the 
data’s subsequent processing. While smoothing, each bin’s 
min and max values are calculated as bin borders. Then, for 
each value, the nearest border value is substituted. Typically, 
the smoothing effect increases with bin width. If the bin 
widths are identical, binning may be used as a discretization 
method by substituting mean or median for bin value. It is 
possible to create hierarchical ideas by iterating over this 
procedure indefinitely. It’s unsupervised since class labels 
are not used, and the user specifies bin numbers.

4.3.8 � Deep Learning (DL) Based FE

A multi-filter NN (MFNN) end-to-end model was developed 
for multivariate financial time-series FE and classification-
based forecasting utilizing DL techniques [46]. Their pro-
posal MFNN was 15.41% higher than the best result (Logis-
tic Regression) of traditional ML models and 22.41% higher 
than the statistical approach (Linear Regression) in terms 
of returns.

(8)f ∗
i
(yi3,… , yik;�) = ∫y1

∫y2

(yi1, yi2,… , yik) dy2 dy1

(9)L =

q∏

i=1

fi(yi1, yi2,… , yik;�)

p∏

i=q+1

f ∗
i
(yi3,… , yik;�)

4.4 � Exploratory Data analysis (EDA) and Data 
Reduction (DR)

In this process, the target or dependent column and inde-
pendent features are obtained. The DR, EDA, and cluster-
ing techniques reduce runtime and space during the deep-
learning modeling phase. DR can be employed to decrease 
the size of a dataset while still keeping the data’s original 
integrity. In our framework, we suggest performing Feature 
Selection and Feature Extraction simultaneously after select-
ing the target column and finding redundant features; then, 
Discretization may be performed if necessary. Then, the 
dataset will be ready for further analysis and model training.

4.4.1 � Identifying Redundant Features

Feature Redundancy lengthens the modeling time of ML 
algorithms and leads to model overfitting. Feature redun-
dancy arises from the possibility of derivation from another 
feature or set of features. The following techniques may be 
adopted to handle redundancy:

Covariance and correlation: In statistics, covariance refers 
to the amount that two features or factors change in tandem 
whose value lies in the (−∞,+∞) range. Positive covariance 
indicates they move in the same direction. Negative covari-
ance means that any features are greater than the mean, and 
others are less than the mean, and vice-versa. Zero covari-
ance means features may be independent under a certain 
hypothesis. On the other hand, correlation analysis is a 
widely used dimensionless measurement ranging from −1 to 
+1 to discover redundancies in numerical features that evalu-
ate and quantify the relationship intensity. The features are 
positively correlated for correlation values greater than zero 
(0); for zero, they are independent; for less than zero, they 
are negatively correlated [34]. Covariance and correlation 
are directly proportional to each other. In numeric feature 
selection, correlation is better to use, as correlation analy-
sis is scaled [− 1, 1], but the covariance range is indefinite 
(−∞,+∞) . We should choose correlation for better interpre-
tation. Changes in location, size, or scale have no effect on 
correlation. However, both of them are limited to only being 
able to identify linearity.

�2 correlation: The �2 (Chi-Square) test is often used 
when dealing with nominal features and finite value sets. We 
can use the �2 test to see whether there is any link between 
the values of two nominal features, where a probability table 
with joint events is established. If � (significance level) is 
less than the estimated one (or the �2-value (calculated) > 
table value), the null hypothesis gets discarded, and the two 
features can be said to be correlated statistically [34]. SC 
Analysts must remember that the �2-test does not tell much 
about the strength of the relationship between two features. 
The �2-test offers advantages such as resilience regarding 
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data distribution, computational simplicity, extensive infor-
mation produced from the test, utilization for investigations 
where parametric criteria cannot be satisfied, and scalability 
in processing data from two and multiple-group research. 
The drawbacks are sample size constraints and difficulty in 
comprehension when there are many ( > 20 ) features.

4.4.2 � Feature Selection (FS)

The reasons for conducting FS may include removing unnec-
essary data, enhancing forecasting accuracy, reducing data 
cost and model complexity, and improving training efficien-
cies such as reductions in space needs and computational 
costs [47]. FS approaches, despite their widespread use, have 
several drawbacks [48, 49, 50, 51, 52]:

•	 Training data size significantly impacts the subsets pro-
duced by many FS models (particularly those created 
using wrapper-based techniques). If the training data is 
limited, then the feature subsets retrieved will be limited, 
resulting in the loss of key variables.

•	 Because the target feature is connected with many inde-
pendent features, and their removal would adversely 
influence learning accuracy, reducing high-dimensional 
data to a limited range of features is not always possible.

•	 When dealing with huge datasets, a reverse elimination 
approach takes too long since the algorithm must make 
judgments based on enormous amounts of data in the 
early stages.

•	 In certain circumstances, FS results will still include sig-
nificant important features that may obstruct the use of 
complicated training strategies.

Leading methods: In order to create FS techniques by com-
bining a feature evaluation score and a cutting criterion, Ref-
erence [53] recommended that functions based on informa-
tion principle produce better accuracy, not suggesting any 
universal cutting condition. However, those independent of 
the metric perform best, and outcomes differ across models. 
For each kind of model, wrapper techniques were recom-
mended to avoid this effect.

Reference [54] investigated nine feature selectors running 
across 11 simulated datasets to examine the methodologies 
in the context of a growing number of unnecessary features, 
noise in the data, redundancy, correlation between attributes, 
and the ratio of observations to features. ReliefF proved to 
be the best alternative regardless of the specifics of the data, 
and it is a filter with a cheap computational expense. Wrap-
per techniques have proven to be an intriguing choice in 
specific disciplines if they can be used with the same clas-
sifiers and consider the greater computing costs. Extensive 
theoretical research has been conducted on the Relief and its 

variants, showing that they are resilient, noise-resistant, and 
can decrease their space-time complexity in parallel [55].

Since the emergence of rough sets in pattern recognition, 
several FS techniques have based their criteria for assess-
ing reductions and approximations based on this idea [56]. 
Because total searches of substantial datasets are impos-
sible, stochastic methods based on meta-heuristics and 
approximate assessment criteria have also been explored. 
Reference [57] utilized particle swarm optimization for this 
job. Features are discontinuous, making it challenging to 
pick approximately set-based characteristics in the litera-
ture. Rough set-based FS’s key drawback is the constraining 
condition that all values be discrete, for which issue, a fuzzy 
rough FS method (FRFS) was suggested [58, 59].

When data is vast, messy, blended with categorical and 
numerical variables, and may have dynamic effects requiring 
sophisticated models, the synthesis of forecasting analytics 
in the form of ensembles can create a compressed sample 
of non-redundant features [60]. There are four phases to 
the technique suggested here: identifying relevant features, 
computing masking scores, removing the masked factors, 
and generating residuals for progressive modification. The 
Random Forest ensemble is considered in all four stages.

Two problems arose simultaneously with the growth of 
highly-dimensional data: FS is essential in every training, 
and the accuracy and robustness of the FS algorithms may 
be ignored. Reference [61] discussed the FS reduction job 
introducing the Quadratic Programming FS (QPFS), which 
utilizes the Nyströn-approximation-matrix diagonalization 
method for large datasets. mRMR and ReliefF were out-
performed using Pearson’s correlation coefficient and MI. 
A local learning-based approach may be beneficial when 
assessing many irrelevant attributes and complicated data 
ranges [62]. The impacts of high-dimensional datasets may 
be mitigated by pre-processing the feature ranking procedure 
to exclude class-dependent density-based features [63]. To 
scale any method in significant data issues demands cutting-
edge distributed-computing frameworks like MapReduce 
and Message Passing Interface (MPI) [64].

We can use supervised FS if the data has class labels; 
otherwise, unsupervised FS is the best option. This approach 
generally maximizes clustering efficiency or the FS based on 
correlation, feature dependency, and priority. The primary 
premise is to eliminate features that bring almost no value 
beyond what is already provided by the existing features in 
the system. Reference [65] suggested using feature depend-
ency/similarity to reduce redundancy without needing a 
search procedure. An information compression metric called 
the maximum information compression index governs the 
clustering partitioning process, which uses features as the 
measure of similarity. Forward orthogonal search (FOS) is 
another unsupervised FS approach that aims to maximize 
the total reliance on the data to find relevant features [66]. 



3630	 M. A. Jahin et al.

Without compromising performance in clustering, the unsu-
pervised FS used the Random Cluster Ensemble framework 
to compress the set of features by roughly 1/100 of its initial 
dimensions [67]. When compared to well-known classifica-
tions, precision/recall analyses revealed that feature weight-
ing was highly successful in discovering the most suitable 
clusters [68].

4.4.3 � Feature Extraction

Feature extraction accelerates the ML algorithm’s execution, 
optimizes raw data quality, boosts the algorithm’s efficiency, 
and simplifies the interpretation of the findings.

Principal component analysis (PCA): It aims to ana-
lyze a collection of features’ variance-covariance patterns 
employing a few linear combinations and seeks the optimal 
k number of n − dimensional orthogonal vectors for data 
description, where k ≥ n . Accounting for the most critical 
percentage of the discrepancy in the original dataset, the 
principal component (the first derived feature) is produced 
in decreasing order of contribution. Typically, for containing 
≥ 95% variance, just the top few principal components are 
retained. PCA is beneficial when many independent vari-
ables correlate with one another [69]. The principal compo-
nent is quick and comprehensive and ensures a solution is 
found for all datasets [70].

Factor analysis: The fundamental concept underlying 
component analysis identifies a collection of influencing 
factors to restore the current features through a series of 
linear adjustments on the components. It is a method that 
finds out the range of factors along with their associated 
loadings, providing the features as well as the mean of the 
features [69]. The factor models can be solved by (1) the 
Maximum-likelihood method and (2) the Principal-com-
ponent method. Maximum likelihood presupposes actual 
data following a normal distribution and is computationally 
costly. The comparative differences between PCA and factor 
analysis are: 

1.	 Factor analysis, unlike PCA, implies a basic structure 
that connects the factors to the empirical observations.

2.	 A three-factor system is substantially different from a 
two-factor system in factor analysis; however, in PCA, 
the two initial principal components stay the same when 
employing a third component.

3.	 PCA is simple and quick. There are several methods 
for doing the computations in factor analyses, some of 
which are complex and tedious.

4.	 Using a sequence of linear transformations, PCA 
attempts to spin the original features’ axis. Again, fac-
tor analysis generates a new range of features to demon-
strate the observed covariances and correlations.

Multidimensional scaling (MDS): MDS may be used in 
SCM to estimate the map depicting transportation distances 
between or within inventories using the distance matrix. The 
result is skewed owing to the disparity between calculated 
distances and the actual distances between inventories lying 
in a straight line. The map is typically centered on the origin 
and expanded to cover considerable distances. However, the 
answer may be found in any rotation. Locally linear embed-
ding (LLE): With LLE, local linear fits are used to restore 
universal nonlinear configuration [71]. All points are a linear 
weighted sum of their neighbors if adequate data is availa-
ble. It is the basic notion behind the manifold approximation 
algorithm. For the LLE algorithm, the geometric principle is 
all that is required. LLE’s advantages are that local minima 
are not involved in optimizations and have only two param-
eters. The embedded space has a universal coordinate sys-
tem and preserves the local geometry of high-dimensional 
data. LLE also has several inherent shortcomings, which are 
stated as follows:

•	 LLE generates folds and nonhomogeneous warps when 
the dataset is small or the points are irregularly meas-
ured.

•	 Noise significantly affects LLE, which causes embedding 
derivation errors.

•	 Short circuits may develop during the neighbors since the 
query typically uses Euclidean distance.

•	 Poor eigenproblems may arise.
•	 If two high-dimensional space observations differ, LLE 

cannot assure that their corresponding low-dimensional 
space instances also differ.

•	 LLE’s embedding findings are extremely susceptible to 
its two system parameters: the number of clusters of each 
instance and regularisation.

•	 LLE presupposes that complete data exists on a unified 
surface and is unsupervised, but that does not happen for 
multi-labeled classification tasks.

•	 It is unclear how to assess the new sample data points 
because LLE does not provide a parameterized function 
that reflects between high-dimensional space and low-
dimensional manifold.

4.4.4 � Cardinality Reduction

The merging of two or more nominal or ordinal variables 
into a single unique category is called cardinality reduc-
tion. It is challenging to manage nominal features with a 
large number of groups. Converting high cardinal variables 
into binary variables provides many new variables, mostly 
zeroes. However, if utilized without conversion with mod-
els like Decision Tree that can accept them, there are risks 
of model over-fitting. So, decreasing the number of groups 
should be considered [70].
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4.4.5 � Discretization

The discretization method turns the numerical data into 
qualitative data, i.e., quantitative features, into discontinu-
ous or nominal features that provide a non-overlapping seg-
mentation of a linear system. Discretization can decrease 
data since it converts data to a much smaller sub-ensemble 
of discrete values from an enormous range of numerical val-
ues. Numerical features should be discretized as real-world 
dataset features are generally continuous, whereas most of 
the current ML algorithms can only be trained by utilizing 
nominal features in categorical data [72].

Discretization generally involves four steps: (1) Continu-
ous feature values to be discretized need sorting, (2) identi-
fying a breakpoint or nearby intervals for joining, (3) divid-
ing or combining continuous value ranges based on specific 
criteria, and (4) stopping this process at definite value.

MVD and UCP are promising approaches that are not 
supervised and helpful to apply to various ML issues other 
than the classification under adverse circumstances. They 
generalized a subset of the top global discretizers based on 
a compromise between UCPD, FUSInter, Distance, MDLP, 
and Chi2 as the ranges and accuracy [72]. The possibility of 
utilizing multivariate discretization features may be inves-
tigated since parallel computers are becoming strong. Chi2 
may delete redundant features, and Contrast or ID3 (dynamic 
discretization methods) may be addressed to integrate dis-
cretization into a learning process [73].

4.5 � Forecasting

Forecasting can be called predicting or estimating a value 
from the future [74]. Forecasting in a business-like SC per-
formance is vital for suppliers that do forecast more than 
those that do not [75]. Mainly three types of forecasting 
are done based on the length of the forecast: operational 
forecasting for short-term operational activities that range 
from hours to a few weeks, tactical forecasting for a moder-
ate duration to support tactical planning that ranges from 
months to a few years, and strategic forecasting which 
is aligned with long-term goals to make strategic deci-
sions [76]. Furthermore, the frequency of a type of forecast-
ing that is done is dependent on the length of the forecast. 
Long-term forecasts are rarely done, whereas operational 
forecasts may be required frequently. The different fore-
casts deal with different uncertainties. Long-term forecasts 
deal with raw material cost fluctuations, final product price 
changes, seasonal variations in demand, and changes in pro-
duction rate in the long term. In contrast, short-term uncer-
tainties are concerned with variations in daily processes, 
order cancellations, random failures in production, etc. [77].

While forecasting is practical, forecasting correctly with 
more accuracy is even more helpful. Demand forecasting 

that allows anticipating sales in the forecasted period helps 
minimize overproduction and overstock [13].

4.5.1 � Types

Although forecasting techniques have evolved, forecast-
ing techniques may be divided into three main categories: 
qualitative techniques, which deal with qualitative data or 
information to forecast; time series analysis and projection, 
which are related to historical data and patterns arising from 
them; causal models, where along with the historical data, 
special events and their relation with system elements are 
also considered [13]. The qualitative technique is not related 
to BD and data analytics much; the other two are. Even so, 
qualitative data can be used to adjust forecasting models 
toward incredible accuracy. Reference [78] displayed one 
such example: Qualitative data can be used through fuzzy 
NNs combined with quantitative data for training the model. 
Nevertheless, accurate forecasts cannot be made based only 
on qualitative data. Time-series analysis is pretty straightfor-
ward, especially with the recent advancement of statistical 
tools. However, the role of such forecasts is to reduce errors 
in the forecast by minimizing the deviations at each point. 
Therefore, they do not consider special occasions such as 
promotions where sales are more remarkable than usual [79]. 
This flaw brings us to causal models or models that consist 
of probabilities of forecasting accuracy, the effect of outside 
interventions, and the interrelation of different types of vari-
ables in the model [80].

With the evolution of knowledge, different techniques for 
forecasting have emerged, and new classifications to under-
stand them. Reference [81] classified the different techniques 
into two broad groups of Intuitive and Formalized methods 
and divided Formalized methods further into Mathematical, 
System-structural, Associated, and Advanced information 
methods.

4.5.2 � Model Fit and Train

The dataset can be randomly split into the train, validation, 
and test sets for unbiased evaluation with new data to evalu-
ate predictive performance with data different from training 
data. The best approach would be to split a dataset by a date 
feature. The most recent samples can be utilized for valida-
tion and testing. The primary concept is to choose a sample 
subset that accurately reflects the model data.

Two factors determine the proportions of these three 
sets: the number of data samples and training models. Some 
models require significant training data; therefore, the model 
should be tuned for more extensive training sets in this sce-
nario. Models with fewer hyperparameters will be easier to 
validate and tune, allowing a small validation set size. An 
extensive validation set will benefit if the model contains 
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more significant hyperparameters. There will be no require-
ment for a validation set if the model has no hyper-parame-
ters or is challenging to adjust.

When using k-fold CV, the train-test dataset splitting is 
repeated for k-times, with each new set being given a shot 
at becoming the hold-out set. Time-series data cannot be 
used with k-fold CV directly since they believe there is no 
connection between the rows and that they are all separate 
instances. For time-series data, instances’ time horizon pre-
vents arbitrarily dividing them into clusters. Instead, data 
should be segmented, and the chronological sequence of 
instances maintained. The term backtesting is used in time-
series forecasting to describe the technique of evaluating 
models using past data. In meteorology, this is regarded as 
’hindcasting’ rather than ’forecasting.’

4.5.3 � Hyperparameter Tuning

Optimizing performance requires tuning hyperparameters 
automatically by Automated ML (AutoML). Hyperparam-
eters are available in most ML systems. Hyperparameter 
adjustment has the most influence in optimizing, regularis-
ing, and architecting NNs. Common use cases of automatic 
hyperparameter optimization (HPO) include:

•	 ML, specially AutoML, will require less manual effort.
•	 ML algorithms’ efficiency (by customizing them to the 

task at hand) has improved, resulting in the new high 
state-of-the-art for significant ML standards in research 
findings [82].

•	 It enhances the opportunity to reproduce the ML process.
•	 It allows the fair comparison of methods with the same 

type of tuning.

One issue with HPO is that a particular configuration does 
not work well for all datasets [83]. These days, optimizing 
hyperparameters above the default parameters supplied by 
standard ML packages is increasingly acknowledged.

To assess a lower-cost optimization model, the authors 
proposed Bayesian optimization and hyperband (BOHB) 
as an efficient, flexible, stable, and parallelizable default 
HPO technique [84]. However, if all hyperparameters are 
valid and just a few function evaluations are available, the 
(Spearmint) Gaussian technique is recommended [82]. To 
solve restricted optimization issues in vast areas, they sug-
gested RandomForest-based Tree Parzen Estimator (TPE) 
or sequential model-based algorithm configuration (SMAC) 
and covariance matrix adaptation-evolution strategy (CMA-
ES). Genetic approaches were initially used for adjusting 
two hyperparameters of RBF-SVM C and � faster than Grid-
Search for better forecasting accuracy [85]. CMA-ES was 
initially utilized for the optimization of hyperparameters to 
optimize hyperparameters of SVM C and � , (for all input 

sizes) the kernel scale of length li , and the whole matrix of 
spin and scaling [86]. CMA-ES has lately proved a perfect 
solution for Parallelized HPO, superior to current Bayes-
ian heuristics while optimizing 19 deep-NN hyperparam-
eters on parallel 30 GPUs [87]. A Gaussian online approach 
incorporated EI to tune the SVM hyperparameters, attain-
ing factor 100 (regression, three hyperparameters) and 10 
(classification, two hyperparameters) speedups against Grid-
Search [88]. A robust, adaptable, and analogous combination 
of Hyperband and Bayesian optimization was introduced 
that significantly surpassed both BlackBox and Hyperband 
optimization for a broad variety of issues, along with SVM 
adjustment, different types of NNs, and reinforced ML algo-
rithms [89]. As early as 2002, ancient ML models offered 
GridSearch for hyperparameter optimization [90, 91]. Pat-
ternSearch and GDFS (Greedy Depth-First Search) were the 
first dynamic optimization techniques for HPO, with GDFS 
outperforming GridSearch. Particle Swarm Model Selection 
(PSMS) handles conditional configuration space with a cus-
tomized particle swarm optimizer. Modified Ensembling was 
added to PSMS to prevent overfitting and integrate the better 
methods from many generations [92]. In addition, to maxi-
mize pipeline architecture and solely utilize Particle Swarm 
Optimization for every pipeline hyperparameter, PSMS was 
modified to utilize a genetic optimization algorithm [93]. For 
the hyperparameter adjustment of deep neural, Reference 
[94] utilized Bayesian optimization, outperforming random 
searching and manual. In addition, TPE generated better out-
put than a Gaussian approach considering the mechanism. 
Random forest TPE and Bayesian optimization have also 
succeeded in searching for combined neural and HPO [95]. 
We suggest a unique manual approach that might be helpful 
in general cases:

•	 If there are many hyperparameters, the CV score can be 
evaluated for the first hyperparameter. After that, such a 
hyperparameter value should be selected to avoid overfit-
ting and lower accuracy. After setting that hyperparam-
eter, the next hyperparameter should be evaluated by iter-
ating a similar process one by one. The HPO algorithm 
should be chosen based on the hyperparameter type.

•	 If there are less than or equal to two hyperparameters, the 
desired HPO approach can be used directly.

4.5.4 � Model Evaluation

In our framework, we suggest model fitting and training on 
our analysis-ready training data using default parameters, 
and then we move to the next step of tuning the hyperpa-
rameters. If the model accuracy deteriorates, it is not the 
feature’s fault; instead, we should focus on the HPO of 
the models. After HPO, the top-performing models can 
be easily chosen based on the elimination process, but the 
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model-overfitting issue should be considered. The model can 
be evaluated with the predicted sales against the actual sales 
after at least one month in the initial operating period.

4.5.5 � Top Forecasting Models

Table 1 provides a list of time-series demand forecast-
ing models that have been used in our reviewed literature. 
Table 2 provides a comprehensive overview of the most 
recently proposed ML models in different forecasting appli-
cations and the corresponding performance metrics evalu-
ated in each literature. Considering accuracy and precision 

in forecasting the future time-series lags, the ARIMA model 
outperformed the AR (AutoRegressive), MA (moving aver-
age), and SES (Simple Exponential Smoothing) models. The 
empirical research reported that long short-term memory 
(LSTM) enhanced forecasting by 85% when evaluated by 
comparison to ARIMA (traditional-based model). Further-
more, the number of epochs (training times) did not influ-
ence the forecasting model’s performance, which showed 
genuinely random behavior [96].

For the demand forecasting procedure, [97] evaluated 
statistical models, RBFNN (Radial Basis Function NNs), 
and winter models with SVM. According to their conclu-
sion, the efficiency of SVM outperforms other algorithms by 
about a mean MAPE outcomes threshold of 7.7%. Reference 
[99] demonstrated a new AI-utilized forecasting approach 
evaluating a fuzzy reasoning strategy and ANN based on the 
Adaptive Network to handle the demand containing inad-
equate knowledge. During testing, they obtained MAPE 18% 
on average for some products. For unpredictable customer 
demands, neural methods have provided a robust forecasting 
strategy in a multi-level SC framework. A greedy aggrega-
tion decomposition (GAD) approach is a generic approach 
to self-development in a discontinuous time-series forecast-
ing method that considers double-based causes of variation, 
addressing a practical discontinuous issue of forecasting 
demand [100]. With a limited dataset, they outperformed 
SBA, Croston’s method, TSB, MA-7, SES, MAPA, MA-3, 
ADIDA, iADIDA, and N-7 with a MAPE accuracy rate of 
5.9%. Reference [101] offered the SHEnSVM (Selective and 
Heterogeneous Ensemble of SVMs) model for sales fore-
casts. Individual SVMs were trained using samples produced 
by the bootstrap method, and grid search parameters were 
created, as stated by the specified model. The optimum spe-
cific combo strategy was found using a genetic algorithm. 
They claimed a 10% increment using the SVM algorithm & 
a 64% on average enhancement in MAPE. The authors used 
beer data from three product variants in their tests. Reference 
[102] integrated DL technique, the SVR algorithm, and best-
performing time-series analytic models utilizing the boost-
ing ensemble approach to demand forecasting systems. Their 
DL implementation in the new integration strategy (MAPE: 
24.7%) lowers mean forecasting error in the SC, outperform-
ing both the conventional best-performing forecasting model 
(MAPE: 42.4%) and the unique integration strategy without 
DL (MAPE: 25.8%). XGBoost, ARIMA, and Snaive STL 
decomposition have outperformed solo and hybrid models 
and the modeling mix and have provided the best forecasting 
accuracy [105].

Reference [98] used Facebook Prophet (FB-Prophet) 
and ANNs to forecast lithium mineral resource prices in 
China. Quality and quantity of lithium data, network archi-
tecture, and activation functions significantly impacted the 
performance of an ANN forecasting model. Overfitting can 

Table 1   List of time-series demand forecasting models used in litera-
ture review

Model name Citation

ARIMA [97]
LSTM [97, 98]
RBFNN [97]
Winter models with SVM [97]
Adaptive network [99]
Fuzzy reasoning strategy and ANN [99]
GAD [100]
SHEnSVM [101]
Deep-learning (DL) technique [102]
SVR [103]
RF [103, 104]
XGBoost [103, 105]
Ada boost [104, 106]
Random forest [104, 106, 107]
MLP [106, 108]
CNN-LSTM [109, 110]
GRU​ [111]
EGD-SNet [112]
LSTM, BiLSTM, GRU​ [113]
Temporal convolutional network [113]
Swish activation [109]
Shallow NN [114]
DNN [114]
Extreme learning machine (ELM) [115]
Adaptive neuro-fuzzy inference system (ANFIS) [107]
SARIMAX [107]
Prophet [104, 107]
RF-XGBoost-LR [104]
RNN [110]
GRU​ [110]
XGBoost-LSTM [116]
FB-Prophet [117]
XGBoost-LightGBM [118]
M-GAN-XGBoost [119]
AUG-NN [120]
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occur when an ANN model is too closely tailored to the 
training dataset, and regularization and early halting strate-
gies can enhance the model’s performance. The FB-Prophet 
model, which uses a decomposable time-series model, can 
effectively forecast data with fewer value matrices, handle 
missing values, and practice adjustments. Reference [111] 
created recurrent NN (RNN), LSTM, and gated recurrent 
unit (GRU) models to forecast the demand for U.S. influ-
enza vaccinations, with data from 1980 to 2011 serving as 
the training set and data from 2012 to 2020 serving as the 
testing set. The prediction models may be scalable because 
there was no overfitting between the expected and actual 
numbers. The error comparisons demonstrated that GRU is 
more precise than LSTM and RNN in predicting vaccination 
demand. Energy generation and demand forecasting search 
net (EGD-SNet), a framework that can anticipate energy pro-
duction, demand, and temperature across various areas, was 
reported in the study of [112].

The 10 most popular ML regressors in the EGD-SNet 
framework include 11 dimensionality reduction techniques 
and 13 alternative FS algorithms. It employs a particle 
swarm optimizer (PSO) to train regressors intelligently by 
locating the best hyperparameters. Also, it can create an end-
to-end pipeline by selecting the right regressor, feature, and 
dimensionality reduction methodologies to accurately antici-
pate energy generation or demand for a specific geographical 
data set, depending on the features of the data. References 

[113] implemented many DL methods, including data col-
lecting, de-noising or pre-processing, feature extraction, 
and classification stages. Two primary DL models deter-
mine feature extraction. The first variation used three RNN 
structures: LSTM, BiLSTM, and GRU. The second variant 
used the temporal convolutional network (TCN). They used 
SoftMax, RT, RF, KNN, ANN, and SVM classifiers for an 
online dataset. TCN predicts COVID-19-restricted shipping 
risk almost 100% accurately.

As the daily fish demand forecasting models for grocery 
merchants to reduce food waste and enhance sustainable 
SCs, References [121] investigated LSTM, Feedforward 
NNs, Support Vector Regression, RF, and a Holt-Winters 
statistical model. The findings showed that the LSTM model 
provided the best outcomes in terms of root mean squared 
error (27.82), mean absolute error (20.63), and mean posi-
tive error (17.86). References [122] forecasted solar Global 
Horizontal Irradiance using statistical and Deep Learning 
architectures, which aids grid management and power dis-
tribution and highlights Pakistan’s solar power potential in 
addressing global climate change. They employed SARI-
MAX, Prophet, LSTM, convolutional NN (CNN), and ANN 
statistical approaches. Error measures like R2 , MAE, MSE, 
and RMSE were used to evaluate each model’s performance. 
They concluded that SARIMAX and Prophet are ideal for 
long-term forecasts, whereas ANN, CNN, and LSTM are 
best for short-term forecasts. References [106] found that 

Table 2   The most recent (2022–2023) ML models for forecasting applications in SCM

Study ML models Performance metrics Application/domain

[113] EGD-SNet framework: 10 ML regressors Accuracy, RMSE, MAE Energy generation and demand forecasting
[121] LSTM, Feedforward NNs, Support Vector 

Regression, RF, Holt-Winters model
RMSE, MAE, Mean positive error Daily fish demand forecasting for grocery 

merchants
[122] SARIMAX, Prophet, LSTM, CNN, ANN R

2 , MAE, MSE, RMSE Solar Global Horizontal Irradiance forecasting
[106] Stacked ensemble model (XG Boost, Ada Boost, 

Random Forest)
Not specified SC inventory replenishment

[123] MLP, CNN, LSTM, CNN–LSTM Not specified Forecasting method comparison
[124] ARIMA, LSTM Not specified Dairy product demand forecasting
[103] SVR, RF, XGBoost, RNNs, LSTM, GRU, 

ARIMA
Not specified Daily energy use forecasting

[125] Smart platform utilizing ML models Not specified Blood bank management and demand forecasting
[109] CNN-LSTM model with Swish activation RMSE Store supply forecasting based on prior sale
[114] Shallow NN, DNN, ARIMA Not specified Pharmaceutical demand forecasting
[115] Extreme Learning Machine (ELM) with Harris 

Hawks optimization (HHO)
Not specified E-commerce product demand forecasting

[107] Adaptive neuro-fuzzy inference system (ANFIS) Not specified Real-time e-order arrivals forecasting
[108] ELM, GB, KNN, MLP, DT MSE, MAE, R2 Business demand forecasting based on Black 

Friday customer information
[104] RF, XGBoost, Gradient boosting, AdaBoost, 

ANN, Hybrid RF-XGBoost-LR
Not specified Retail chain sales forecasting

[110] RNN, LSTM Not specified Stock price prediction
[126] QAmplifyNet Accuracy SC Backorder prediction
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the optimum model for every participant in the SC across 
all three inventory replenishment strategies is a stacked 
ensemble model consisting of XG Boost, Ada Boost, and 
Random Forest. According to a methodology for comparing 
forecasting methods developed by [123], the MLP method 
has a little edge over the CNN, LSTM, and CNN-LSTM 
approaches. References [124] utilized data from the last five 
years to estimate demand for eight dairy products from five 
dairy production facilities using a direct multistep predic-
tion method. ARIMA works effectively on a narrow subset 
of unpredictable series, whereas LSTMs excel at anticipat-
ing seasonal patterns. It outperforms ARIMA for trends. 
Monthly data decreased model training error.

For the purpose of forecasting daily energy use, Ref-
erences [103] investigated the effectiveness of three ML 
models, SVR, RF, and XGBoost; three deep learning mod-
els, RNNs, LSTM, and GRU; and ARIMA. For both very 
short-term load forecasting (VSTLF) and short-term load 
forecasting (STLF), the suggested XGBoost models beat 
competing models; the ARIMA model did the worst. Refer-
ences [125] presented a smart platform for data-driven blood 
bank management that forecasts blood demand and balances 
blood collection and distribution based on optimal blood 
inventory management to avoid blood wastage and short-
age. This improves blood quality and quantity, increasing 
blood collection by 11% and reducing blood waste by 20%. 
Balancing blood collection and distribution based on good 
blood inventory management and arranging blood donation 
sessions to avoid cancellations may lower inventory levels. 
References [109] proposed a CNN-LSTM model with Swish 
Activation to estimate a store’s supply based on prior sales. 
This outperforms Rectified Linear Unit (ReLU), the most 
effective activation function. They forecasted sales using 
Multilayer Perceptron, LSTM cells, and CNNs. CNN-LSTM 
Model has a reduced RMSE, according to the experiment. 
Pharmaceutical businesses can use Shallow NN and DNN 
demand forecasting models for eight anatomical treatment 
chemical thematic drug groups [114]. Shallow NN models 
performed well for five of eight medication categories, while 
the ARIMA model performed best for the other three.

References [115] introduced an extreme learning machine 
(ELM) model using the Harris Hawks optimization (HHO) 
method to estimate e-commerce product demand. In fore-
casting product demand for the next three months, the ELM-
HHO model outperformed the statistical ARIMA (7,1,0) 
model by 62.73%, the NN-based GRU model by 40.73%, the 
LSTM model by 34.05%, the traditional non-optimized ELM 
model with 100 hidden nodes by 27.16%, and the ELM-BO 
model by 11.63%. References [107] developed a novel ML 
forecasting approach by merging adaptive neuro-fuzzy infer-
ence system (ANFIS) and time-series data features to fore-
cast real-time e-order arrivals in distribution hubs, helping 
third-party logistics providers better manage hourly-based 

e-order arrival rates. ELM, GB, KNN, MLP, and DT were 
five ML algorithms used by [108] to forecast demand in 
a business based on Black Friday customer information. 
According to the results, MLP, ELM, GB, KNN, and DT 
were the top algorithms in terms of MSE, while ELM, MLP, 
GB, DT, and KNN had the greatest performances in terms 
of MAE. Moreover, ELM had a higher R2 value of 0.6365, 
whereas DT had a lower value (0.4877). References [104] 
compared RF, XGBoost, gradient boosting, AdaBoost, and 
ANN algorithms to a hybrid (RF-XGBoost-LR) model for 
retail chain sales forecasting. A US retail company’s weekly 
sales data was used to analyze estimates based on factors like 
temperature and shop size. The hybrid RF-XGBoost-LR out-
performed other models in many criteria. RNN and LSTM 
were used by [110] to improve stock price prediction. The 
memory cell, a computer that replaces artificial neurons, is 
buried in the network. The study increased epochs and load 
sizes to improve precision. Time and lot size boost predic-
tion accuracy in this work. The test data predicts the speci-
fied technique, which yields more accurate outcomes. The 
proposed method forecasts stock markets more accurately. 
The study by [126] presents QAmplifyNet, a novel hybrid 
quantum-classical neural network, revolutionizing SC back-
order prediction. Achieving 90% accuracy, it outperforms 
traditional models on short, imbalanced datasets, demon-
strating superior interpretability and predictive capabilities. 
QAmplifyNet’s integration into real-world systems offers 
transformative potential for enhancing inventory control and 
operational efficiency, marking a breakthrough in SC opti-
mization through quantum-inspired techniques.

Based on the mentioned studies, we suggest considering 
the following recently best-performing hybrid time-series 
demand forecasting ML models: 1. XGBoost-LSTM [116] 2. 
FB-Prophet [117] 3. XGBoost-LightGBM [118] 4. M-GAN-
XGBoost [119] 5. SARIMA integrated AttConvLSTM, and 
FB-Prophet [127] 6. AUG-NN [120].

When selecting the primary top-forecasting model, it is 
recommended to consider the best cross-validation (CV) 
score, minimum runtime, and space consumption as crite-
ria for evaluation.

5 � Control‑Process

Actual processes do not always go as predicted. There are 
variabilities in performances emerging from changing lev-
els of efficiency. In ideal cases, the workforce and exist-
ing capacity can achieve the goal as planned. However, 
performance levels are inconsistent with humans [128] and 
vary with other factors such as WIP inventory, machine 
utilization, product mix, and queueing system [129]. Such 
fluctuations in efficiency cannot be predicted accurately. 
Hence, they must be recognized in time, and appropriate 
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measures must be taken to meet the requirements. Respon-
sive to the SC process’s randomness may consist of three 
steps: capturing or recording data simultaneously with the 
SC activity, comparing the recorded data with the standard, 
and adjusting capacity to meet the short-term goal. Data can 
be used to determine the optimal decision for the changing 
suppliers, changing price levels, the competitiveness of the 
competitors, and monitoring performance during the pro-
cess [130]. Furthermore, during a discrepancy in planned 
and actual output levels, the root cause can be identified 
using BDA [131]. References [132] mentioned other ben-
efits of BD on workforce scheduling, production efficiency, 
employee productivity, capacity utilization, flexibility, and 
lead time reduction.

5.1 � Information Flow

Forecasting decisions affect further SC planning. As such, 
information flows across multiple phases of the SC process. 
Logistics superiority and better stock level synchronization 
are possible through a flow of demand information from 
downstream members to the upstream ones and the flow of 
production plan and delivery information from the upstream 
members to the downstream ones [133]. Like the three types 
of forecasting, there are three types of decisions in SC: stra-
tegic, operational, and tactical [134]. Recent studies have 
shown how the findings from one level can affect other 
decisions and limit the number of options for subsequent 
decisions [135].

It is possible to attain efficiency through forecasting by 
properly allocating resources in different areas such as work-
force, capacity, inventory management, etc. There are need-
based, supply-based, and demand-based models for forecast-
ing and planning in such areas of SCM [136]. Each method 
requires some sort of information flow. The forecasted 
amount can be used to estimate the number of dependent 
inventory demands. The final product’s demand indirectly 
affects the required workforce, capacity, warehouse plan-
ning, and lower costs through optimization.

5.2 � Production Efficiency

Having real-time data on production boosts production effi-
ciency. Firms can manage order processing across SCs and 
companies while decreasing errors and waste inside manufac-
turing facilities by incorporating real-time data into SC opera-
tions [2]. This efficiency is further enhanced when data from 
suppliers and distributors are available. Through close connec-
tions and sharing information with SC partners, data-driven 
SCs may also affect manufacturing and operations processes 
through increased efficiency in product development, product 
design, quality improvement, and balance between capacity 
and demand [137]. Additionally, data integration in the SC has 

been found to aid in developing production strategies and the 
timely delivery of products and services [138].

5.3 � Employee Productivity

In general, there is either an excess of the workforce or a short-
age in the production process; the question is how to reduce the 
inefficiency. Under variable output requirements, workforce 
scheduling without data analysis entails investing in cross-job 
training to enable workers to be more productive and efficient 
in their work. However, this reduces performance as time is 
spent on upskilling or reskilling.

Data-driven decision-making, or the forecasting of required 
outputs to estimate the required workforce, is an excellent way 
to minimize such costs of hiring and laying off by adequately 
scheduling the workforce [132]. Through proper scheduling, 
the workforce from idle time can be shifted for workdays 
requiring extra hours and thereby balanced. References [139] 
showed that work pressure could be balanced with reduced 
slack time and workforce through different heuristic algo-
rithms, with each algorithm performing well in different areas 
of efficiency.

5.4 � Inventory Management

Reducing costs from inventory can cut the overall cost of the 
business. Different models have been created to minimize 
costs and maximize profits that aid with material planning 
mechanisms, stock-out predictions, inventory level predictions, 
and many more [140]. Inventory costs can be lowered at sourc-
ing, transportation, and holding levels, optimizing inventory 
decisions [137].

5.5 � Role of Data by Time Frame

Although BDA can make SC processes efficient, it cannot be 
done with the same forecast. Capacity planning or storage size 
falls under long-term strategic decisions requiring long-term 
forecasts or aggregated short-term forecasts. Contrarily, pro-
duction plans may be short-term operational decisions requir-
ing short-term predictions. References [141] stated how pre-
dictions could be derived from the aggregation of short-term, 
disaggregation of long-term, or a co-integration of both kinds 
of forecasts. Hence, on the one hand, separate forecasts can 
be produced. Conversely, forecasts can be derived from other 
forecasts to maintain relevance.
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6 � Post‑process

6.1 � SC Performance

Once an SC process is completed, the performance needs 
to be reviewed to identify the gaps in planning models. 
Performance measurement is defined as quantifying 
actions across two fundamental dimensions: effectiveness 
and efficiency [142]. Performance measurement is essen-
tial to control the output; without it, no person or machine 
can be held liable for subpar performance, and problems 
will be harder to identify and solve. Performance measure-
ment helps with information for management feedback, 
decision-making, monitoring performance, diagnosing 
problems, motivating people, identifying potentials of 
a decision, measuring success or failure, reviewing and 
adjusting business strategies, specifying company goals, 
and much more [143]. Reference [144] offered a compre-
hensive methodology considering all three SC system 
stages, including ERP-based SC performance. To com-
prehend whether network scanning and embeddedness are 
linked to SC performance, Bernardes and Zsidisin ([145], 
p. 209) studied the correlation between SCM strategy and 
network scanning and embeddedness concepts.

Immediately after the tasks are completed, the per-
formance data must be recorded. For data collection, the 
performance metrics are first to be identified, just as those 
found for business evaluations [146]. References [147] 
mentioned plan success, source optimization, production 
efficiency, delivery performance, and customer support-
relation and satisfaction, each having multiple perfor-
mance metrics under them. The performance level found 
afterward can be of three types: below average, average, 
and above-average [148]. The actions followed after such 
a finding are different in each case. When a below-average 
performance is observed, managers can either look for 
anomalies in the system or review whether the goals set 
were too high to achieve.

Conversely, an above-average performance requires 
rechecking the goals so that optimization of resources is 
possible. In order to meet the goals-setting theory stated 
by [149], these changes may be adjusted to suit. Opera-
tional benefits such as performance monitoring, objective 
setting, management, transparency, and planning func-
tions can be improved with the assistance of BDA and 
performance metrics derived from them through the use 
of predictive KPIs, dashboards, and scorecards by the SC 
operational managers within the organization [130].

Besides managerial decision-making, the performance 
data are crucial to modifying existing forecasting mod-
els. Under a considerable deviation of performance, the 
data received from this level needs to be sent back to the 

forecasting stage to tweak the forecasting model to higher 
perfection. The performance metrics can thus act as an 
indicator of forecasting model errors.

6.2 � Forecasting Error Measurement

Our proposed cyclic framework is evaluated against pre-
dicted sales when the actual sales data is available or when 
the hold-out set is used. Nevertheless, the hold-out set might 
not be perfect for real-world scenarios, so we encourage a 
cyclic and continuous development process from real-sales 
data evaluation insights. We encourage a cyclic and con-
tinuous development process from real-sales data evalua-
tion insights. A few evaluation metrics can be used for the 
post-process evaluation to fine-tune the forecasting model in 
the preprocessing phase. Assume test data with m periods, 
t = 1,… ,m . The difference between forecasted sales ft and 
actual sales yt at a period t can be referred to as the forecast-
ing error et = yt − ft.

6.2.1 � Mean Absolute Error

MAE is very straightforward and relatively simple to 
explain, and scale dependence is its disadvantage.

6.2.2 � Mean Absolute Percentage Error

MAPE is perhaps the most often utilized error indicator 
for business forecasting because of its comprehensiveness. 
However, despite the term ‘Percentage,’ the MAPE value 
may be higher than 100%. The rows equal to 0 causes prob-
lems since the fraction’s denominator cannot be filled in. 
MAPE is an appropriate metric when dealing with intermit-
tent demand. Asymmetry is its major drawback as it penal-
izes overfitting more than underfitting, leading to probable 
skewness.

6.2.3 � Mean Squared Error

Compared to RMSE, MSE takes less runtime and is more 
flexible. However, we might not interpret MSE as the actual 
sales because the error is squared.
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6.2.4 � Root Mean Squared Error

Two consequences occur by performing the dual transforma-
tion in RMSE: more weight is placed on more significant 
errors, and positive and negative errors cannot cancel one 
another out since they are all transformed into positives.

6.2.5 � Mean Absolute Scaled Error

For non-seasonal time-series,

For seasonal time-series,

With MAE, outliers are protected; with RMSE, we are 
assured of an impartial prediction. SC Analysts need to ana-
lyze MAE and see whether it results in a significant bias; 
therefore, they should utilize RMSE. In situations when 
there are many outliers in the dataset, MAE may help cor-
rect the skewed prediction.

6.2.6 � Tracking Signal

The tracking signal is the way to verify if the current fore-
casting method is correct. A tracking signal that changes 
according to the forecast bias shows bias in the prediction 
model. It is often employed when the forecasting model’s 
validity is questionable.

A rule of thumb holds that the technique employed for fore-
casting is accurate when the tracking signal is within −4 to 
+4.

6.3 � Phantom Inventory

Research has shown that imprecise perpetual inventories 
(PIs) are overestimated approximately 50% of the time; 
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that is, PI displays higher stock than that is present in the 
shop, called a phantom inventory. The most severe issue 
in a phantom inventory is unavailability—the system con-
siders it has an adequate inventory and does not order a 
replenishment. The recognized reasons for phantom inven-
tory are [150]:

•	 Stolen goods, defective products that are not reported.
•	 Cashier mistakes.
•	 A shop may get deliveries from the distribution center 

(products that should have but were not received).
•	 Returned goods that should update the system are 

sometimes wrong.

To resolve the stock inconsistency, businesses may per-
form a bunch of tasks [151]:

•	 The supply of safety may be raised. The enhanced secu-
rity inventory aims to mitigate inventory problems by 
having ‘excess’ inventories at hand. RFID may reduce 
the costs of storing this additional and redundant inven-
tory.

•	 The business may often conduct manual inventory num-
bers. Physical inventory audits may interrupt storage, are 
extremely expensive, and differ in precision – improved 
RFID precision may be an affordable option.

•	 The business may construct a continuous decrease equiv-
alent to the total inventory loss that one believes takes 
place to balance the phantom inventory. The issue is that 
the precise inventory loss is not known. The visibility 
provided by RFID may be more accurate than conven-
tional stock loss techniques.

•	 The business may attempt to minimize mistakes by 
improving inventory management, decreasing fraud, etc.

Inventory precision determines forecasting, procurement, 
and replenishment quality, where inventory records are 
used as input. Inaccurate demand forecasting due to phan-
tom inventory (overstated PI) may be improved by including 
RFID in the process [152].

7 � Challenges

This section aims to provide a comprehensive overview of 
the challenges encountered during the review of 152 articles 
from 1969 to 2023 in BDA-SCM for forecasting, with a spe-
cific focus on data preprocessing and ML techniques. The 
challenges identified herein will serve as a valuable resource 
for future researchers, enabling them to address and over-
come these obstacles, ultimately advancing the domain and 
contributing to its growth and development.
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7.1 � Data Quality and Reliability

One of the critical challenges observed in the reviewed 
literature is the issue of data quality and reliability. Many 
studies acknowledged the presence of incomplete, incon-
sistent, and erroneous data within SC datasets. Future 
research efforts should focus on developing robust data 
cleansing, integration, and quality assurance techniques 
to enhance the reliability and accuracy of the forecasting 
models.

7.2 � Scalability and Performance

With the exponential data growth in SCM, scalability 
and performance have become significant challenges. 
The reviewed articles often lacked details on how their 
proposed techniques would scale up to handle large-scale 
datasets or real-time processing requirements. Future 
researchers should explore scalable algorithms, distributed 
computing frameworks, and parallel processing techniques 
to ensure the effectiveness and efficiency of forecasting 
models.

7.3 � Variety and Complexity of Data Sources

The diverse range of data sources, such as structured, 
unstructured, and semi-structured data, presents challenges 
in data preprocessing and feature extraction. The reviewed 
literature indicated limited exploration of techniques for 
effectively handling data variety and complexity. Future 
research should focus on developing innovative methods 
for integrating and analyzing heterogeneous data sources 
to extract meaningful insights for accurate forecasting.

7.4 � Feature Engineering and Selection

Effective FE and to improve forecasting accuracy, includ-
ing automated FS, dimensionality reduction, and feature 
representation approaches to identify the most relevant 
features for forecasting within the SC context. Future 
researchers should investigate advanced FE techniques to 
improve forecasting accuracy, including automated FS, 
dimensionality reduction, and feature representation.

7.5 � Model Interpretability and Explainability

The black-box nature of some ML models limits their 
interpretability and hampers decision-making processes. 
The surveyed literature revealed a lack of emphasis on 
model interpretability, hindering the wider adoption of 
forecasting techniques in SCM. Future research should 

focus on developing transparent and interpretable mod-
els that explain their predictions, enabling practitioners to 
understand and trust the results.

7.6 � Real‑Time Data Processing and Analysis

SCM requires real-time monitoring and decision-making 
capabilities. However, the surveyed literature demonstrated a 
limited exploration of real-time data processing and analysis 
techniques for forecasting purposes. Future research efforts 
should concentrate on developing real-time forecasting 
frameworks that leverage stream processing, online learn-
ing, and adaptive algorithms to handle dynamic and time-
sensitive SC scenarios.

7.7 � Privacy and Security Concerns

Integrating big data in SCM raises concerns regarding data 
privacy and security. The surveyed articles paid limited 
attention to these challenges, and there is a lack of com-
prehensive approaches to ensure the privacy and security 
of sensitive SC data. Future researchers should focus on 
developing robust privacy-preserving and secure ML tech-
niques to safeguard data while maintaining the accuracy and 
efficiency of forecasting models.

7.8 � Integration of Domain Knowledge

SCM involves complex domain-specific knowledge, includ-
ing industry-specific constraints, regulations, and contextual 
factors. The reviewed literature showed a limited integra-
tion of such domain knowledge into the forecasting frame-
works. Future research should emphasize the incorporation 
of domain expertise and contextual information to enhance 
the relevance and accuracy of forecasting models within the 
SC domain.

7.9 � Lack of Benchmark Datasets and Evaluation 
Metrics

The absence of standardized benchmark datasets and evalu-
ation metrics hinders the comparison and reproducibility of 
forecasting techniques. The reviewed articles often utilized 
different datasets and evaluation metrics, making it chal-
lenging to assess the performance of various models. Future 
researchers should strive to establish benchmark datasets 
and evaluation protocols specific to SC forecasting, enabling 
fair comparisons and facilitating advancements in the field.

By overcoming these challenges through innovative tech-
niques and methodologies, researchers can contribute to the 
advancement of this field, leading to more accurate, scalable, 
and interpretable forecasting models for SCM.
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8 � Practical Implications

The findings of this research offer substantial practical impli-
cations for SC practitioners, providing actionable insights that 
can be effectively implemented in real-world scenarios. The 
proposed BDA-SCM framework serves as a strategic guide, 
and its practical application holds the potential for significant 
benefits in enhancing overall SC operations.

SC practitioners can implement the BDA-SCM framework 
by initially aligning data collection methodologies with spe-
cific SC objectives. This involves systematically gathering 
data directly relevant to the SC ecosystem’s unique dynamics 
and challenges. By integrating the framework into their opera-
tional processes, practitioners can leverage the power of BDA 
at various stages, from problem identification to performance 
evaluation.

The implementation of the BDA-SCM framework prom-
ises several tangible benefits for SC practitioners. Firstly, the 
framework enhances the accuracy of forecasting models, pro-
viding practitioners with more reliable insights into demand 
patterns, inventory needs, and workforce requirements. This, 
in turn, enables optimized decision-making across various 
facets of SCM. Secondly, the cyclic connection within the 
framework ensures adaptability to dynamic SC conditions. 
SC practitioners can continuously refine and optimize their 
forecasting models based on real-time data, staying responsive 
to changing market dynamics and mitigating potential disrup-
tions. Furthermore, the framework’s emphasis on KPIs and 
error-measurement systems enables practitioners to evaluate 
and improve their forecasting models’ performance systemati-
cally. This enhances operational transparency and contributes 
to the SC’s overall efficiency and planning effectiveness.

In practical terms, the BDA-SCM framework supports 
inventory management by providing accurate demand fore-
casts, aids in determining workforce needs, optimizes cost 
factors, and facilitates efficient production and capacity plan-
ning. By fostering a holistic approach to SCM, the frame-
work equips practitioners with a systematic and data-driven 
strategy to address the intricacies of modern SC dynamics. In 
essence, the practical implementation of the BDA-SCM frame-
work empowers SC practitioners to navigate the complexi-
ties of their operational environments with greater precision 
and foresight, ultimately contributing to enhanced resilience, 
efficiency, and competitiveness in the ever-evolving SCM 
landscape.

9 � Conclusions

This systematic review diligently identified and com-
pared state-of-the-art SC forecasting strategies and tech-
nologies within the defined temporal scope, conducting a 

comprehensive review of 152 papers from 1969 to 2023. 
This study has made significant strides in addressing the 
challenges inherent in SC forecasting, offering cutting-edge 
technological solutions within a comprehensive BDA-SCM 
framework. The key findings and contributions of this study 
can be summarized as follows: 

1.	 Pre-process: In the pre-processing stage of SC forecast-
ing, the significance of accurate data aligned with SC 
objectives was emphasized. The study provided recom-
mendations for SC analysts, including using EDA, FE, 
hyperparameter tuning, and recent ML model training 
approaches to improve forecasting accuracy. However, 
it is essential to note that further research is needed to 
explore advanced techniques for data cleansing, integra-
tion, and quality assurance to ensure reliable and high-
quality input data.

2.	 Control-process: The study discussed how BD could 
facilitate efficient managerial decision-making in vari-
ous areas of SCM, such as production and capacity plan-
ning, workforce requirements, and inventory manage-
ment. Leveraging insights from forecasted data allows 
decision-makers to optimize SC operations and resource 
allocation. However, future research should focus on 
developing real-time decision support systems that can 
integrate and analyze large-scale data streams to enable 
timely and effective decision-making.

3.	 Post-process: The post-process section emphasized SC 
performance measurement and the role of BDA in opti-
mizing model predictions. By analyzing performance 
metrics and leveraging BDA techniques, SC practition-
ers can identify areas for improvement and refine their 
forecasting models accordingly. Future research efforts 
should focus on developing comprehensive performance 
measurement frameworks specific to SC forecasting, 
including quantitative and qualitative metrics, to enable 
more accurate evaluation and comparison of forecasting 
models. Additionally, the study addresses the accuracy 
of inventory records as a crucial determinant for fore-
casting, procurement, and replenishment quality. Miti-
gating inaccuracies resulting from phantom inventory is 
highlighted, with the inclusion of RFID technology in 
inventory management processes as a viable solution. 
Future research should explore advanced techniques and 
methodologies to address phantom inventory, incorpo-
rating emerging technologies and developing compre-
hensive inventory management and forecasting frame-
works to enhance overall SC performance.

This study has successfully addressed the research questions 
posed:

RQ1: The study has identified and outlined efficient steps 
to formulate an ML forecasting model for predicting SC 
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factors. Recommendations for accurate data preprocessing, 
FE, hyperparameter tuning, and advanced ML model train-
ing approaches have been provided to enhance the accuracy 
of SC forecasting models.

RQ2: The study has emphasized the importance of con-
necting, tracking, and optimizing the forecasting, SC deci-
sion-making, and performance measurement processes in a 
cyclic order. The proposed BDA-SCM framework encom-
passes the Pre-process, Control-process, and Post-process 
stages, providing guidance on integrating these processes to 
optimize SC operations and resource allocation.

RQ3: The study has explored the impact of forecasting 
on SC performance and identified relevant ML forecast-
ing models for SC forecasting. The connection between 
accurate forecasting and improved SC performance has 
been highlighted, with recommendations for performance 
measurement and using BDA techniques to optimize model 
predictions.

By successfully addressing these RQs, this study contrib-
utes to advancing the field by providing insights into efficient 
ML modeling steps, the integration of forecasting and SC 
decision-making processes, and the relevance of ML fore-
casting models for SC forecasting. Future research should 
build upon these findings to further enhance the understand-
ing and implementation of BDA in SCM.

While this systematic literature review (SLR) followed a 
rigorous and objective evaluation approach, acknowledging 
its limitations is crucial. These limitations include the avail-
ability of relevant literature, potential publication bias, and 
the dynamic nature of the BDA-SCM field. Future research 
endeavors should aim to address these gaps by conducting 
further empirical studies, developing benchmark datasets, 
and exploring emerging technologies and methodologies to 
advance the understanding and implementation of BDA in 
SCM.

By considering and addressing the challenges and limita-
tions outlined in this study, future researchers can build upon 
its findings and contribute meaningfully to the continued 
advancement of the BDA-SCM domain.
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