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Abstract
This article is a state-of-art review on static structural computations for pin-jointed structures, revising the last forty years of scientific 
research on the subject matter through the introduction of static modal analysis. This novel paradigm is inspired by the so-called 
singular value decomposition (SVD) of the equilibrium matrix and by dynamic modal analysis. In dynamics, modal analysis requires 
the solution of an eigenvalue problem, which returns the natural frequencies of the structure and the corresponding mode shapes of 
vibration, the eigenvectors. The application of the static modal analysis to the four types of linear trusses—determinate or indeter-
minate from the static and kinematic viewpoints—allows re-interpreting the well-known force method and displacement method of 
structural analysis. Central to this proposal is the solution of static equilibrium and compatibility equations in a modal space where 
the relations between the extensional, inextensional, and self-stress modes are unequivocally identified. Their physical interpretation, 
also at the equilibrium and compatibility levels, is discussed and illustrated by key accompanying examples of structures subjected 
to external loads. Several original diagrammatic representations of the static modal analysis contribute to the overall understanding 
and implementation of the mathematical relations. This approach brings out new aspects of the interrelationship between the force 
and displacement methods, which strengthen their complementarity.

1  Introduction

Tensegrity structures are a special type of pin-jointed 
assemblies where the struts in compression visually appear 
to “float inside an ocean” of cables in tension [1–3]. Their 
aesthetic appeal has inspired artists and architects for sev-
eral decades [4, 5], while their complex structural behavior 
[6–10] has challenged many engineers and scientists for 
more than forty years of intensive research [11–17]. This 
is justified by the fact that fundamental laws of physics and 

structural engineering principles (e.g. the Hooke’s Law of 
linear elasticity [18, 19] and the degree of static indetermi-
nacy of trusses [20]) must be employed and revised carefully 
to take into account phenomena arising from the existence of 
prestressing forces [21–27] and mechanisms [28–37].

Pellegrino [28] proposed in 1990 to classify pin-jointed 
structures into four types1 of trusses depending on the num-
ber “s” of self-stress modes and number “m” of mecha-
nisms that they possess intrinsically (Fig. 1). A self-stress 
mode is a particular pattern of internal forces that can exist 
without external loads (Fig. 1b and b′). The associated pre-
stress level (i.e. a scalar that multiplies the self-stress mode 
in Fig. 1b) can be increased by shortening the cables or 
lengthening the struts through mechanical devices such as 
turnbuckles, hydraulic jacks, etc. [38–59]. Trusses possess-
ing one or more self-stress modes are said to be statically 
indeterminate of degree “s” [11, 14, 20].

A mechanism is defined as a particular pattern of incre-
mental displacements which generates no elongations 
of the elements (Fig. 1c and c′). The mechanism is said 

 *	 Jonas Feron 
	 jonas.feron@gmail.com

	 Pierre Latteur 
	 pierre.latteur@uclouvain.be

	 João Pacheco de Almeida 
	 joao.almeida@uclouvain.be

1	 Department of Civil and Environmental Engineering 
(GCE), Institute of Mechanics, Materials and Civil 
Engineering (IMMC), Université catholique de Louvain 
(UCLouvain), Place du Levant, 1 (Vinci), bte L5.05.01, 
1348 Louvain‑la‑Neuve, Belgium

2	 Engineering Department, BESIX, Avenue des communautés, 
100, 1200 Brussels, Belgium

1  The attentive reader may notice the intentional swapping of denom-
inations between the types II and III compared to ref. [28]. Such 
switch was also made in ref. [36].

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-024-10082-x&domain=pdf
http://orcid.org/0000-0002-8754-0098


3410	 J. Feron et al.

infinitesimal if the condition of no elongation is limited to 
the occurrence of infinitesimal displacements (Fig. 1d and 
d′). Trusses with one or more mechanisms are said to be 
kinematically indeterminate of degree “m” [14].

Tensegrity structures belong to the type IV (Fig. 1d′) 
or to type II [47, 60, 61] because the presence of cables 
requires the introduction of self-stress forces.2 The latter can 
only be introduced into statically indeterminate structures. 
For instance, shortening both legs of the truss in Fig. 1a 
will not generate any force, but only displacements. The 
shortening of both legs can be continued until the geometry 
reaches Fig. 1d. At this point, a geometrical degeneracy 
appears in the equilibrium conditions [10, 63] and the two-
legs truss (type I) becomes a tightrope (type IV), i.e. the 
structure now possesses a mechanism and it can be self-
stressed. In a similar manner, lengthening the three diagonals 
in Fig. 1a′ will displace the upper nodes and increase the 
angle of rotation between the two triangles in the bottom 
and top horizontal planes. The lengthening of the three 

diagonals can be continued until the angle reaches 30◦ 
(Fig. 1d′) [64]. Any further lengthening will induce self-
stress forces in the system [56, 57], which then allows to 
replace the tensioned elements by cables (Fig. 1d′). This 
search of geometry in equilibrium with self-stress forces is 
generally called form-finding [65–95]. The large imposed 
variations of the elements’ manufacturing lengths (from 
Fig. 1a′ to d′) require thus to revise Hooke’s Law [26, 27] 
because the elements’ stiffness cannot be assumed constant 
through the form-finding process. Large lengths variations 
also allow the deployment [96–109] and the control [41, 42, 
45, 110–122] of tensegrity structures, which are of interest 
in many different applications. One concludes that the above-
mentioned form-finding problems, nonlinear prestressing 
problems, deployment problems and control problems 
are different perspective viewpoints on the same reality, 
i.e. the computation of the final nodal coordinates and the 
internal forces of the elements for a given topology (i.e. fixed 
connectivities between elements and nodes).

One may note that (1) form-finding with given nodal 
coordinates may be called force-finding problems [123] or 
linear prestressing problems [124]; (2) topology-finding 
problems [94, 125–130] start from a ground-structure with an 
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Fig. 1   Simple 2D (or 3D if specified) examples of the four types of trusses. In these simple examples, the degrees of static indeterminacy “s” are 
either equal to 0 or 1 (but not higher). Similarly, the degrees of kinematic indeterminacy “m” are either equal to 0 or 1 (but not higher)

2  Note that some authors [62] may require the existence of a mech-
anism in the definition of tensegrity. According to this definition, 
tensegrity structures can only be of type IV (not II).
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extremely high number of elements, and search for a topology 
by identifying each element as a cable, a strut, or inexistent 
while ensuring the stable equilibrium of the self-stress forces. 
Topology-finding refers thus to the inverse problem than form-
finding, i.e. the computation of the topology for a given set of 
nodal coordinates. It is noted finally that (3) shape optimization 
[131, 132] and topology optimization [133–145] are special 
cases of form-finding and topology-finding respectively, where 
the nodal coordinates or the topology are searched, as well as 
the internal forces and the elements cross-sections (sizes), to 
best minimize the optimization objective (e.g. the mass, the 
embodied carbon, etc), and (4) the literature investigation 
led by the authors found very few references dealing with 
simultaneous shape and topology optimization problems 
[146–148]. For a larger discussion on structural optimization 
problems, the reader is referred to [141].

The present investigation considers that the form-finding 
and topology-finding of the tensegrity structures has already 
been performed and that prestress forces have already been 
implemented, i.e. the topology, the nodal coordinates 
and the manufacturing lengths are fixed. The focus of the 
current work is hence on the application of external loads 
to the structural nodes assuming small elastic strains in 
the elements. The limitations of the basic linear equations 
of equilibrium and compatibility when loads are added to 
trusses of type III and IV will be highlighted.

For structural engineering practitioners, it is well known 
that commercial software based on the Displacement Method 
fail to analyze structures that possess mechanisms, due to 
the singularity of the linear structural stiffness matrix. 
Scholars also recognize that this singularity is due to the 
inextensional modes that can be computed by singular 
value decomposition (SVD) of the equilibrium matrix [14, 
15]. The SVD is thus established in the scientific literature 
because it provides fundamental insights into the behavior 
of any type of trusses, namely their self-stress modes, their 
extensional modes, and their inextensional modes. The 
introduction of the SVD in structural analysis [15] was thus 
a major breakthrough that greatly enhanced, among other 
aspects, the use of the computational version of the Force 
Method [36, 48, 149–152]. It is noted that (1) the mechanism 
pattern in Fig. 1c′ is valid for small displacements only, and 
(2) if the vertically-aligned element in Fig. 1b′ is a cable 
(i.e., withstanding only tension), then there exists a unilateral 
mechanism [153, 154], i.e. the center node can move upwards 
but not downwards. Therefore, the SVD has two known 
limitations, namely: (1) its results are valid at first order, and 
(2) it does not recognize the unilateral material properties of 
the elements. These limitations will not be further detailed.

Today, tensegrity structures are becoming increasingly 
popular for their various applications in different fields of 
engineering practice [9, 155, 156]. There is a crucial need 
for a state-of-the-art review that assembles and structures 

scientific advances spread among a multitude of investigation 
works, proposing an accessible entry point to new researchers. 
Furthermore, different experienced authors are still investing 
considerable efforts on the fundamental understanding of the 
behavior of tensegrity structures [36, 49, 50]. The latter have 
developed a purely mathematical approach to the structural 
analysis problem, often overlooking its physical interpretation. 
Recent findings conclude for instance that the mathematical 
expressions obtained using the Force Method are redundant 
with the ones obtained using the Displacement Method [50]. 
Such fundamental aspects of the interrelationship between both 
methods, which still seem to elude the bulk of the engineering 
and scientific communities, led the authors to undertake the 
current investigation. In addition to the state-of-the-art, this 
article also proposes novel mathematical relations, as well as 
physical and diagrammatic interpretations. A systematic and 
formal approach to the analysis of the four types of trusses is 
performed, enabled by the application of the principle of static 
modal analysis. This novel concept is applied to the four truss 
types (Fig. 1) in a growing order of complexity. Importantly, 
it is accompanied by physical explanations associated to a 
graphical illustration of the mathematical developments, leading 
to the emergence of new links between the Force Method and 
Displacement Method of linear analysis. Since it corresponds to 
a first application of the static modal analysis, no geometric or 
material non-linearities are considered here.

The present article is structured as follows. Section 2, Back-
ground and Objectives, starts by introducing the basic equations 
of linear analysis and the proposed graphical interpretation of 
the Force and Displacement Methods in Sect. 2.1. Section 2.2 
details the Singular Value Decomposition of the equilibrium 
matrix and summarizes its known physical interpretations. The 
novel concept of static modal analysis is introduced at the end 
of Sect. 2, which also specifies in more detail the objectives. In 
Sect. 3, the linear Force and Displacement Methods are rigor-
ously detailed for the four types of trusses using the static modal 
analysis, unveiling novel interrelationships between both meth-
ods. These mathematical demonstrations are graphically sum-
marized in explicit roadmaps, and then physically interpreted 
through straightforward examples. Finally, some assumptions 
and perspectives are discussed in Sect. 4, Discussion.

2 � Background and Objectives

2.1 � Basic Equations of the Linear Displacement 
and Force Methods

2.1.1 � Basic Equations

Consider a general three-dimensional (3D) pin-jointed 
structure with “n” nodes, “b” elements, connected to the 
exterior by “c” reactions, and having ndof = 3 ⋅ n − c degrees 
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of freedom (DoF). Assuming small displacements, the 
linearized equations of static equilibrium, elastic constitutive 
relations (Hooke), and linearized compatibility, can be 
respectively written in the next matrix forms [14, 28]:

where the vectors are as follows: {f} (size ndof × 1 ) are the 
resisting or internal forces, {t} (size b × 1 ) are the axial inter-
nal forces in the elements (considered positive in tension), 
{e} (size b × 1 ) are the element axial elongations, and {d} 
(size ndof × 1 ) are the nodal displacements. The equilibrium 
matrix [A] (size ndof × b ) and the compatibility matrix [B] 
(size b × ndof  ) contain the direction cosines of the elements, 
and [Ke] (size b × b ) is the elements’ stiffness matrix, which 
is diagonal (each Ke

kk
 contains the stiffness EkAk∕l

0

k
 of the 

element k, where Ek , Ak , and l0
k
 stand for the Young’s modu-

lus, the element’s cross-sectional area, and the elements’ 
manufacturing length, respectively). Note that:

•	 Equation (1) is physically interpreted in Appendix A and 
a systematic way to compute the equilibrium matrix [A] 
is presented in “Appendix A.4”.

•	 The equilibrium matrix presented in ref. [14] differs 
from the one in Eq. (1). It contained the differences of 
nodal coordinates between both element’s ends rather 
than the direction cosines. The differences between both 
equilibrium matrix formulations is detailed in “Appendix 
A.3” and our choice for Eq. (1) is justified in the first 
subsection of the Discussion.

•	 The principle of virtual work [157, 158] shows that 
the compatibility matrix [B] is the transpose of the 
equilibrium matrix [A] : 

•	 The flexibility matrix [F] is usually preferred in the Force 
Method. It is a diagonal matrix where each component 
Fkk contains the flexibility l0

k
∕EkAk of the element k such 

that: 

The above equations assume small displacements {d} , small 
elastic length variations {e} , and constant direction cosines 
of the elements (i.e. constant equilibrium matrix [A] , or 
small reorientations of the elements’ axes).

This article concerns one of the most common structural 
analysis problems, which consists in finding the axial forces 
{t} , and possibly the elongations {e} and displacements {d} , 

(1){f} = [A]{t}

(2){t} = [Ke]{e}

(3){e} = [B]{d}

(4)[B] = [A]T

(5)[F] =
[
Ke

]−1

given a set of external loads {f ext} applied to the structural 
nodes.

In a static problem, the resisting forces {f} must equili-
brate the external loads 

{
f ext

}
 that act on the DoF of the 

structure, i.e. {f} =
{
f ext

}
 . In nonlinear problems, this is 

often expressed in terms of a residual, {f res} =
{
f ext

}
− {f} , 

which is minimized iteratively until it falls below a speci-
fied tolerance, when convergence is accepted. Since in the 
literature it can be found that the vector {f} in equation 
(1) corresponds to the applied loads, the nuance between 
loads and resisting forces is further illustrated in “Appen-
dix A.1”. In the following of this article, it is assumed 
that the structure is in equilibrium with the external loads, 
i.e. {f} = [A]{t} =

{
f ext

}
 , and therefore the vector {f} is 

referred to as “loads”, although rigorously it corresponds 
to the internal or resisting forces; the objective of using the 
term “loads” is to avoid confusion with the vector of axial 
internal forces {t}.

In the context of linear behavior, assumed in this work, 
the principle of superposition applies. In other words, the 
effect ( {t} , {e} , {d} ) of a combination of sets of applied loads 
{f} is the sum of the individual effect of each set of loads 
taken separately3 (without change in the equilibrium matrix).

In all generality, trusses may thus be initially self-
stressed. In other words, there may exist initial elongations {
eini

}
 and axial forces 

{
tini

}
 in self-equilibrium, i.e. without 

initial external loads 
{
f ini

}
= {0} . In this case, the forces {

tini
}
 lie in the null-space [14] of the equilibrium matrix [A] 

in such way that [A]
{
tini

}
= {0} . In their initial configura-

tion, trusses may hence be self-stressed, pre-loaded, or both. 
In the following, we will refer without distinction to pre-
stressed trusses [28]. The structural behavior of type III and 
type IV trusses (Fig. 1) depends on these pre-stress forces {
tini

}
 , which will be discussed later.

This work does not address the self-stressing phase 
[38–40, 45, 47, 48, 51–58], i.e. it considers no variation 
( 
{
�l0

}
= {0} ) of the manufacturing lengths 

{
l0
}
 imposed 

by mechanical devices, which will be addressed in a future 
work. As mentioned, it instead focus on the linear super-
position of external loads on pin-jointed structures using 
Eqs. (1)–(3).

2.1.2 � Linear Mappings Viewpoint and Proposed Graphical 
Interpretation

The Eqs. (1)–(3) can be seen from the mathematic linear 
mappings viewpoint, where the matrices are employed as 
transformation operators from one vector space to another. 

3  The symbols {�d} , {�e} , {�t} and {�f } should have been used to 
express the finite variation � to be summed up. However, the symbols 
� have been disregarded for visual lightness.
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For instance, in Eq. (1), the axial forces {t} in the elements 
can be easily transformed into the resisting forces {f} 
through the equilibrium matrix [A] . However, the reverse 
operation, i.e. finding the forces {t} given the external loads 
{f} , is often more cumbersome since the rectangular matrix 
[A] (size ndof × b ) cannot be inverted. This common struc-
tural analysis problem is generally solved through the Force 
Method (FM) or the Displacement Method (DM) as detailed 
in the next paragraphs.

In order to clarify and support the mathematical opera-
tions, graphical interpretations will be proposed throughout 
this paper. For instance, Fig. 2 provides a first graphical inter-
pretation of the DM (Fig. 2a) and of the FM (Fig. 2b). The 
arrows illustrate the transformation of one vector space into 
another, expressed by a matrix premultiplication.

2.1.3 � The Displacement Method (DM)

The displacement method (Fig. 2a) is widely used in engi-
neering practice and can be summarized as follows. Given 
the loads {f} , the DM finds first the displacements {d} by 
solving:

where 
[
KL

]
= [A][Ke][A]T  (size ndof × ndof  ) is the stiff-

ness matrix of the structure obtained from assembling 
Eqs. (1)–(3). In traditional pin-jointed structures (i.e. trusses 
of type I and type II in Fig. 1), the system of Eq. (6) can be 
solved to find the ndof  unknown displacements {d} because 
matrix 

[
KL

]
 is square (size ndof × ndof  ) and can be inverted.4 

The elastic elongations {e} and corresponding forces {t} can 

(6){f} =
[
KL

]
{d}

The Displacement Method (DM) The Force Method (FM)

a b
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Fig. 2   Graphical interpretations of, a the Displacement Method, b the Force Method. Linear mappings are represented as arrows. Blue arrows 
stand for premultiplications (e.g. {f} = [A]{t} or {f} =

[
KL

]
{d} ), while the dashed black arrows correspond to mathematically more complex 

operations
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and easily determined
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by a unit force
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elements’ stiffnesses
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Fig. 3   Reminder of the force method used by scholars for teaching purposes applied to a simple type II truss with s = 1

4  NB: it is recalled that solving a linear system is computationally 
less expensive than inverting a matrix.
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then be obtained by post-processing through, respectively, 
the compatibility equation (3) and Hooke’s law (2).

However, in pin-jointed structures of type III and type IV, 
the linear stiffness matrix 

[
KL

]
 is singular (i.e. not invertible) 

for reasons that will be later clarified. To face these limita-
tions of the well-known Displacement Method, the Force 
Method started arousing again the interest of the scientific 
community, as described next. Novel interrelationships with 
the DM will follow.

2.1.4 � The Force Method (FM)

The Force Method exists in two versions. The “manual” 
one is shown in Fig. 3, briefly reminding how scholars usu-
ally teach it. The forces in the three-legs truss (Fig. 3, left) 
depend on (1) the forces due to the loads in a statically deter-
minate truss resulting from the removal of the redundant leg 
(Fig. 3, center), (2) an hyperstatic unknown � determined by 
restoring the compatibility associated to the removed leg, 
and (3) self-stress forces, not considered in Fig. 3, but that 
could be added by arbitrarily choosing a prestress level �ini 
multiplying the self-stress mode (

√
2

2
,−1,

√
2

2
 ). In practice, 

self-stress forces can thus only be introduced into statically 
indeterminate trusses and the level �ini can be practically 
increased by arbitrarily shortening the cables or lengthen-
ing the bars through mechanical devices. It is again recalled 
that such self-stressing phase is not detailed in this article, 
apart from some considerations in the discussion section. 
The focus is thus limited to the application of external loads 
as shown in Fig. 3.

The second version of the Force Method, aiming at 
computational implementation, is summarized as follows 
(Fig. 2b). Given the loads {f} , the FM finds first the forces 
{t} by solving equation {f}=[A]{t} as detailed later. Then, 
once the forces {t} are determined, the elastic elongations {e} 
and corresponding displacements {d} are found, respectively, 
by solving Eqs. (2) and (3) as shown in Fig. 2b. Solving 
Eq. (3) (i.e. {e}=[A]T{d} ) to find the displacements from 
the elongations is also not straightforward, as discussed later.

The challenge of the Force Method lies thus in solving 
the equilibrium equations {f}=[A]{t} and the compatibility 
equations {e}=[A]T{d} . The solutions depend on the degree 
“s” of static indeterminacy and on the degree “m” of kin-
ematic indeterminacy5 [14].

In typical kinematically-determinate 3D structures (type I 
and type II), there are b unknown axial forces {t} in the ele-
ments for only ndof  equilibrium equations (one for each row 
of the equilibrium matrix [A] of size ndof × b with ndof ≤ b ) 

as further detailed in “Appendix A.2”. From Maxwell [20], 
the degree of static indeterminacy “s” can be defined as the 
number of missing equilibrium equations to uniquely deter-
mine the unknown axial forces:

In the case of a planar (2D) structure, Eq. (7) still holds by 
considering that all nodes are fixed in one direction of the 
3D system i.e. the number “c” of reactions is larger than the 
number “n” of nodes.

For statically determinate trusses (type I) with s = 0 and 
as many elements as degrees of freedom ( b = ndof  ), the 
equilibrium matrix [A] (size ndof × b ) and the compatibil-
ity matrix [A]T are square. For these trusses, the inverse of 
matrix [A] exists and the FM can be summarized (Fig. 2b):

Assembling Eqs. (8)–(10) brings out the first straightfor-
ward interrelation between the FM and the DM. Given that 
[A]T

−1
= [A]−1

T , one obtains:

that the relation 
[
KL

]−1
= [A]−1

T
[F][A]−1 is only valid for 

type I trusses. For the other types of trusses the interrelation-
ships between the FM and the DM will take different forms, 
as obtained throughout this paper.

In statically indeterminate structures with s > 0 (i.e. 
b > ndof  ), the matrix [A] is rectangular and cannot be 
inverted, i.e. there are more unknown forces {t} than equilib-
rium equations. The forces {t} depend thus on s hyperstatic 
unknowns {�} that must be determined through compatibil-
ity equations.

In the computational FM, the problem of inverting the 
equilibrium matrix was originally solved by Gaussian elimi-
nation [14, 28, 149, 150], which is the way to “remove any 
redundant bar” and obtain the self-stress modes (Fig. 3). 
Another invaluable tool to deal with rectangular or singu-
lar square matrices is the Moore-Penrose pseudo-inverse 
or generalized inverse [160]. It can be computed using the 
singular value decomposition (SVD), whose application to 
the equilibrium matrix was introduced in structural analysis 
in 1993 by Pellegrino [15]. The current article makes an 
extensive use of the SVD of matrix [A] and formulates the 

(7)
s = b − (3 ⋅ n − c)

⏟⏞⏞⏟⏞⏞⏟
ndof

(8){t} = [A]−1{f}

(9){e} = [F]{t}

(10){d} = [A]T
−1
{e}

(11)
{d} = [A]−1

T
[F][A]−1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
[
KL

]−1

{f}

5  Note that for other authors [159], and often in engineering practice, 
the degree of kinematic indeterminacy corresponds to the number of 
degrees of freedom “ ndof  ”, and not “m”.
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computational Force Method to deal with the four types of 
pin-jointed structures (see Fig. 1).

2.2 � Singular Value Decomposition (SVD) 
of the Equilibrium and Compatibility Matrices

2.2.1 � Mathematical SVD of Any Matrix [A]

The SVD of any matrix [A] allows to decompose it into three 
matrices [U] , [�] , and [V] , as follows:

Pellegrino introduced the SVD in structural analysis [15] by 
applying Eq. (12) to the equilibrium matrix [A] as illustrated 
in Fig. 4. It can be observed that:

•	 The square matrix [U] contains ndof  singular vectors 
{
Ui

}
 

(size ndof × 1 ) which are orthonormal (i.e. [U]T [U] = [I]

).
•	 The square matrix [V] contains b singular vectors 

{
Vi

}
 

(size b × 1 ) which are orthonormal (i.e. [V]T [V] = [I]).
•	 The rectangular matrix [�] (size ndof × b , similar to 

matrix [A] ) contains ndof  singular values �ii on its diago-
nal and zeros elsewhere.

•	 The mathematical rank r of the equilibrium matrix [A] 
corresponds to the number of non-null singular values 
�ii within a certain zero threshold.6 Note that Quirant 
[160, Appendix B] proposed an interpretation concerning 
singular values close to zero and that before 1993, the 
mathematical rank r of the equilibrium matrix [A] was 
obtained as the number of nonzero rows after performing 
a gaussian elimination [14].

(12)[A] = [U][�][V]T

2.2.2 � Definitions of the Degrees of Static and Kinematic 
Indeterminacy

Given the rank r of the equilibrium matrix [A] , Pellegrino 
and Calladine stated [14] that the degree of static indeter-
minacy “s” and the degree of kinematic indeterminacy “m” 
are defined as:

For type I and type II trusses, the equilibrium matrix is full 
rank (i.e. r = ndof  ), the degree of kinematic indeterminacy 
is null (i.e. m = 0 in Eq. (14)) and Eq. (7) is equivalent to 
Eq. (13). For type III and type IV trusses however, the equi-
librium matrix is not full rank (i.e. r < ndof  ) and the degree 
of kinematic indeterminacy is non-null (i.e. m ≠ 0 in Eq. 
(14)). Therefore, two definitions of the degree of static inde-
terminacy “s” exist. The first (i.e. s = b − ndof  ) in Eq. (7) is 
derived from the well-known Maxwell’s rules [20] whereas 
the second in Eq. (13) was introduced by Pellegrino and 
Calladine in 1986 [14] to face the limitations of Maxwell’s 
rules noticed by Calladine in 1978 [11].

For instance, the two-legs truss in Fig. 1a and the tight-
rope in Fig. 1d both have b = 2 elements and ndof = 2 free 
DoF. According to Eq. (7), both trusses are thus statically 
determinate with s = 0 . However, the tightrope is actually 
statically indeterminate with s = 1 , because self-stress forces 
{t} = {1, 1}T ⋅ � can be introduced by choosing arbitrarily a 
single ( s = 1 ) parameter � . Therefore, the forces cannot be 
directly computed via equilibrium alone, i.e. the tightrope 
is statically indeterminate and Eq. (7) does not hold. Similar 
conclusions can be obtained for the 3D truss in Fig. 1a′ and 
the tensegrity simplex in Fig. 1d′, both having b = 12 ele-
ments and ndof = 12 free DoF.

Therefore, for type III and type IV trusses, Eq. (7) does 
not hold and Eq. (13) must be used instead.

(13)s = b − r

(14)m = ndof − r

=

Fig. 4   Graphical illustration of the SVD of the equilibrium matrix [A] = [U][�][V]T . Note that the number of mechanisms is m = ndof − r , the 
number of self-stress modes is s = b − r given the rank r of the equilibrium matrix. Figure adapted from Fig. 1 of ref. [15]

6  Singular values less than ( �× the largest singular value �11 ) are set 
to zero, where the arbitrary scalar � is close to zero.
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2.2.3 � The Four Fundamental Bases 
[
U
r
]
,
[
U
m
]
,
[
V
r
]
,
[
V
s
]

In the general case of statically and kinematically inde-
terminate structures ( s > 0,m > 0 ), the singular vectors 
can be sorted in two categories with [U] =

[[
Ur

] [
Um

]]
 

and [V] =
[[
Vr

] [
Vs

]]
 as shown in Fig.  4. The SVD of 

[A](= [U][�][V]T ) can thus be rewritten:

The SVD of the compatibility matrix [B] can also be 
obtained recalling that [B] = [A]T:

Both the equilibrium and the compatibility matrices can thus 
be divided in four fundamental bases ( 

[
Ur

]
,
[
Um

]
,
[
Vr

]
,
[
Vs

]
 ) 

as introduced by Pellegrino and Calladine in 1986 [14], 
who obtained them by Gaussian elimination before the 
introduction of the SVD in structural analysis in 1993 [15]. 
These bases will be interpreted in the next subsection.

Several research studies have used the SVD of the 
equilibrium and compatibility matrices for structural 
analysis methods. The introduction of SVD was thus a major 
breakthrough, which greatly enhanced in particular the use 
of the FM [36, 48, 122, 149–152]. Some of these recent 
contributions developed a purely mathematical approach 
to the structural analysis problem [36] but overlooked 
the physical interpretation of the expressions developed. 
Moreover, a complete graphical roadmap on how they 
associate in a holistic manner has not yet been proposed. 
The literature review performed by the authors also did 
not find a physical interpretations of the SVD other than 
the ones described in the following paragraph. The present 
investigation will try to address the above shortcomings, 
and present additionally a new physical interpretation of 
the SVD.

2.2.4 � Existing Interpretations of the SVD Results

According to Pellegrino [15], “the rather abstract physical 
meaning of the reduced variables produced by a full use 
of SVD was thought to be a drawback of the method...”. 
Therefore, he proposed a physical interpretation of the SVD 
results at the equilibrium and compatibility levels (Fig. 5a 
and b) using Eqs. (17) and (18):

(15)[A] =

[[
Ur

] [
Um

]] [[
�r

]
[0]

[0] [0]

][[
Vr

]T
[
Vs

]T
]

(16)[B] = [V][�]T [U]T

(17)

The above equations were obtained from Eqs.  (12) and 
(16) by using the orthonormality properties of the singular 
vectors ( [U]T [U] = [I] and [V]T [V] = [I] ) and the fact that 
�ii = 0 for i > r . Their comparison with Eqs. (1) and (3) 
allowed to draw the physical interpretation of the SVD rep-
resented in Fig. 5. A few remarks can be made with respect 
to this latter figure:

•	 The last s singular vectors 
{
Vs

i

}
 can be interpreted as a 

pattern of forces in self-equilibrium, i.e. without external 
loads (see Eq. (17)), the so-called self-stress modes.

•	 The last m singular vectors 
{
Um

i

}
 can be interpreted as a 

pattern7 of displacements that generate no elongations. 
These inextensional modes of displacements are “strain 
free, or zero energy” [15], and can be called mechanisms 
[28–37].

Despite the pioneering contributions of Pellegrino in 
1993 [15], the following points remain to be clarified in 
Fig. 5:

•	 The main issue is the lack of an apparent relation between 
Fig. 5a, b. The link, if any, between the modes 

{
Vs

i

}
 in 

Fig. 5a, b is unclear.
•	 Pellegrino [15] stated correctly that the last m singular 

vector 
{
Um

i

}
 in Fig. 5a can be interpreted as a pattern of 

loads “which the assembly cannot equilibrate in its cur-
rent configuration”. However, Eq. (17) does not allow to 
confirm this intuitive assertion.

•	 The last s singular vectors 
{
Vs

i

}
 in Fig. 5b have been 

interpreted as a pattern of “incompatible strains” in [15]. 
However, Eq. (18) does not allow to confirm this asser-
tion. Incompatible strains are translated here as elonga-
tions that may exist requiring no displacements (together 
with the development of internal self-equilibrated forces 
in the truss elements).

•	 Each mode 
{
Ui

}
 was referred to as a set of displacements 

and a set of loads which are usually length-dimensional 
(e.g. in millimeters, inches, etc) and force-dimensional 
(e.g. in Newton, pound-force, etc), respectively. Hence 
the dimension of the modes was ambiguous. It is clarified 
later that the modes 

{
Ui

}
 are a dimensionless pattern.

(18)

7  The original version of Fig.  5 used the word “set”, but “pattern” 
is herein used because it is felt to better convey the proportionality 
between the components of the vector.
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•	 Each mode 
{
Vi

}
 was referred to as a set of (length-

dimensional) elongations and a set of (force-dimen-
sional) forces. It is clarified later that the modes 

{
Vi

}
 are 

a dimensionless pattern.

In response to the first main limitation above, different 
authors have proposed simple tentative graphical illus-
trations [14, 22, 28], which are not described here, to 
represent the links between the four fundamental bases 
( 
[
Ur

]
,
[
Um

]
,
[
Vr

]
,
[
Vs

]
 ) both at equilibrium and compatibil-

ity levels. This article proposes novel physical and graphical 
interpretations of the SVD.

2.2.5 � Existing Structural Computations Using the SVD

After a brief description of the use of the SVD for the Force 
Method in ref. [15], the next evidence of its application 
can be found in [151]; however, the latter is included in 
the scope of a geometrically nonlinear procedure. There-
fore, both the linear Force Method [149, 150] and the linear 

Displacement Method have never been fully detailed using 
the SVD. Simultaneously, major references older than the 
introduction of the SVD in structural analysis, such as [12, 
28], have never been reviewed using the SVD. The current 
work addresses this gap.

The main existing structural computations using the SVD 
are described next. Luo and Lu [151] proposed a review 
of Pellegrino’s structural computations [15] and stated, 
without derivation—which will be included later, that the 
SVD allows to write:

According to ref. [28, 15], the “s” hyperstatic unknowns 
{�} =

{
�1,… , �s

}T  are determined using “s” exceeding 
compatibility equations, namely 

[
Vs

]T
{e} = {0} . On the 

other hand, the vector {�} =
{
�1,… , �m

}T corresponds to 
the “m” kinematic unknowns, which will be discussed later.

(19){t} =
[
Vr

][
�r

]−1[
Ur

]T
{f} +

[
Vs

]
{�}

(20){d} =
[
Ur

][
�r

]−1[
Vr

]T
{e} +

[
Um

]
{�}

a

b

in equilibrium with 

a pattern of loads 
which cannot be carried
in the initial geometry 

a pattern of forces in self-equilibrium 

compatible with 

a pattern of displacements 
without elongations (i.e. a mechanism)

a pattern of elongations 
without displacements 

Fig. 5   Physical interpretation of the SVD results, a at the equilibrium level, b at the compatibility level. Figure adapted from Fig. 2 of ref. [15]
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Note that more recent references, including [54], rewrite 
Eqs. (19) and (20) as:

where the generalized inverse of the equilibrium matrix 
[A]+ is equal to 

[
Vr

][
�r

]−1[
Ur

]T  and the generalized 
inverse of the compatibility matrix [B]+ = [A]T

+ is equal to [
Ur

][
�r

]−1[
Vr

]T . Such equalities are confirmed by NumPy 
Developers [162]. In other words, the generalized inverse of 
a singular square or rectangular matrix is computed by SVD, 
then the zero singular values are removed and, finally, the 
nonzero singular values 

[
�r

]
 are inverted and reassembled 

with their associated singular vectors 
[
Ur

]
 and 

[
Vr

]
 . However, 

our literature review did not reveal a physical interpretation 
for the generalized inverses [A]+ and [B]+.

Finally, although the linear force method (Fig. 2b) may 
be completely solved today for the four types of pin-jointed 
structures (Fig.  1), the solution is spread among many 
references, which is a challenge for researchers. This article 
proposes a unified solution of the linear Force Method and 
Displacement Method by fully detailing the procedure and 
its physical interpretation.

2.3 � Proposed Approach

2.3.1 � Static Modal Analysis

The previous section concludes the state-of-the-art on static 
structural computations of pin-jointed structures. In the 
following, a review of the computational aspects under a 
new paradigm called Static modal analysis is performed.

In dynamics, modal analysis consists in determining the 
natural frequencies and mode shapes of vibration of the 
structure by solving the eigenvalue problem with the mass 
and stiffness matrices [163]. The eigenvalues correspond 
to the natural frequencies and the eigenvectors correspond 
to the mode shapes. This article introduces the concept of 
static modal analysis by taking inspiration from dynamic 
modal analysis and the singular value decomposition of the 
equilibrium matrix as discussed above [15].

In dynamic modal analysis, the displacements of the 
structure can be expressed as a linear combination of the 
mode shapes multiplied by their respective modal coordi-
nates. Conversely, the modal coordinates can be found by 
orthogonal projection of the displacements on the mode 
shapes. The same principle is herein proposed for static 
modal analysis. As shown in Fig. 6 and detailed below, 
there are four spaces to be considered: (1) the structural or 

(19')({t} = [A]+{f} +
[
Vs

]
{�}

(20'){d} = [B]+{e} +
[
Um

]
{�}

the Degrees of Freedom’s (DoF) space; (2) the static modal 
structural space; (3) the static modal elemental space, and 
(4) the local or elemental space.

Loads and displacements expressed in the DoF space can 
be transformed into modal coordinates through the singular 
vector matrix [U] , and conversely through its transpose [U]T . 
From the structural (DoF) space to the modal structural 
space, one defines the static modal coordinates as follows:

where {f r} and {dr} are subvectors with size (r × 1 ) and {fm} 
and {dm} are subvectors with size (m × 1 ). Conversely, loads 
and displacements in modal coordinates can be expressed in 
the structural (DoF) space coordinates:

Similarly, forces and elongations can be alternatively 
expressed in the elemental space and in the static modal 
elemental space through the singular vector matrix [V] and 
its transpose [V]T . From the elemental space to the modal 
space, one defines:

Conversely, the passages to the elemental space are 
expressed as:

In summary:

•	 Equations (21)–(24) describe the passage between the 
DoF or elemental spaces to the corresponding modal 
spaces through a novel mathematical change of variables. 
This mathematic formalization, the subsequent revised 
developments, and the physical interpretations, which 

(21)

{
f r

fm

}
=

[[
Ur

]T
[
Um

]T
]
{f}

{
dr

dm

}
=

[[
Ur

]T
[
Um

]T
]
{d}

(22)

{f} =
[[
Ur

] [
Um

]]{ f r

fm

}
⇔ {f} =

[
Ur

]
{f r} +

[
Um

]
{fm}

{d} =
[[
Ur

] [
Um

]]{dr

dm

}
⇔ {d} =

[
Ur

]
{dr} +

[
Um

]
{dm}

(23)

{
tr

ts

}
=

[[
Vr

]T
[
Vs

]T
]
{t}

{
er

es

}
=

[[
Vr

]T
[
Vs

]T
]
{e}

(24)

{t} =
[[
Vr

] [
Vs

]]{tr

ts

}
⇔ {t} =

[
Vr

]
{tr} +

[
Vs

]
{ts}

{e} =
[[
Vr

] [
Vs

]]{er

es

}
⇔ {e} =

[
Vr

]
{er} +

[
Vs

]
{es}
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were inspired by dynamic modal analysis, represent some 
contributions of this study.

•	 Since [U] and [V] appear both in Eqs. (12) and (16), the 
modal spaces can be physically interpreted both at the 
equilibrium or at the compatibility levels (Fig. 6).

•	 The orthonormality properties ( [U]T [U] = [I] and 
[V]T [V] = [I] ) of the singular vectors allow straightfor-
ward back-and-forth passages between spaces through 
simple transpositions instead of inversions.

•	 The modal spaces can be arranged in three categories 
[28]: the (structural and elemental) extensional modes 
of bases 

[
Ur

]
 and 

[
Vr

]
 , the self-stress modes of basis 

[
Vs

]
 , 

and the inextensional modes of basis 
[
Um

]
.

•	 The above equations clarify that the four fundamental 
bases are dimensionless patterns whereas their modal 
coordinates are not.

•	 In this article, the symbol {dm} is equivalent to 
the symbol {�} generaly used in the literature (see 
Eq.  (20)). However, the symbol {dm} is prefered 
here because this physical quantity corresponds to 
(length-dimensional) modal displacements, and in 
order to differentiate it from the physical quantity {fm} 
corresponding to (force-dimensional) modal loads.

•	 Similarly, the symbol {ts} is equivalent to the symbol 
{�} generaly used in the literature (see Eq. (19) and 
Fig.  3). However, the symbol {ts} is prefered here 
because this physical quantity corresponds to (force-
dimensional) modal forces.

•	 The term 
[
Vs

]
{�} seemed to appear without explanation 

in Eq. (19). Equation (24) explains its origin.

All the points above will be further clarified throughout 
the paper.

2.3.2 � Summary of the Objectives

The second goal of this article, in addition to the previous 
state-of-the-art, is to review the existing literature on the 
Force Method and Displacement Method from the viewpoint 
of static modal analysis, making extensive use of the singular 
value decomposition, in order to unify both methods of 
linear analysis for the four types of pin-jointed structures 
(Fig. 1). This is attained through the following objectives:

•	 Perform the mathematical derivation of the solution pro-
cedure for the four types of structures with the linear FM 
and DM, together with explicit physical explanations.

•	 Clarify the derivations through a novel graphical 
interpretation, with explicit indication of the links between 
the four fundamental bases, through simple diagrams that 
use arrows as visualization of the linear mappings; Fig. 7 
corresponds to the general graphical roadmap of the linear 
DM (Fig. 7a) and FM (Fig. 7b) that will be built and 
referred to throughout the current article.

•	 Illustrate the solution procedure for each structural type 
with straightforward examples.

3 � The Linear Force and Displacement 
Methods by Static Modal Analysis

This chapter describes the linear force and displacement 
method (Fig. 2) for the four types of pin-jointed struc-
tures. The static modal analysis, i.e. the passages through 
the modal spaces, will be used extensively in order to solve 
the basic Eqs. (1), (2) and (3). In other words, this chapter 
explains the transformation of Fig. 6 into Fig. 7. Finally, note 
that the Force Method will always be detailed before the Dis-
placement Method since the SVD was originally intended 
for the FM in order to invert Eq. (1).

Fig. 6   Proposed concept of 
static modal analysis: formal 
passage from the structural 
and elemental spaces to the 
associated static modal spaces, 
and conversely. Each arrow cor-
responds to a premultiplication 
by the neighbouring matrix

ElementalStructural (DoF)

Compatibility

Equilibrium

Modal 
structural

Modal
elementalSpace:
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Using the SVD of the equilibrium matrix [A] , expressed 
in Eq. (15), and the orthonormality of the singulars vectors, 
the basic Eqs. (1), (2) and (3) are rewritten:

In the modal spaces, using Eqs. (21) to (24) one finds for 
the first time that:

(25)
[[
�r

]
[0]

[0] [0]

][[
Vr

]T
[
Vs

]T
]
{t} =

[[
Ur

]T
[
Um

]T
]
{f}

(9){e} = [F]{t}

(26)
[[
�r

]
[0]

[0] [0]

][[
Ur

]T
[
Um

]T
]
{d} =

[[
Vr

]T
[
Vs

]T
]
{e}

(27)
[[
�r

]
[0]

[0] [0]

]{
tr

ts

}
=

{
f r

fm

}

(28)
[
Vr

]
{er} +

[
Vs

]
{es} = [F]

([
Vr

]
{tr} +

[
Vs

]
{ts}

)

(29)
[[
�r

]
[0]

[0] [0]

]{
dr

dm

}
=

{
er

es

}

In the two (structural and elemental) static modal spaces, the 
linear FM intends to address the structural problem as: from 
known modal loads {f r}, {fm} , determine the modal forces 
{tr}, {ts} , followed by the associated modal elongations 
{er}, {es} and finally the modal displacements {dr}, {dm} . 
After solving the structural problem through the FM, the 
interrelationship existing between the FM and the DM will 
be unveiled. Subsequently, the solution procedure will be 
physically interpreted for each structural type with simple 
examples.

This chapter is structured as follows:

•	 Section 3.1 details type I trusses, which are statically 
determinate ( s = 0 ) and kinematically determinate 
( m = 0)

•	 Section 3.2 details type II trusses, which are statically 
indeterminate ( s > 0 ) and kinematically determinate 
( m = 0)

•	 Section 3.3 details types III and IV trusses, which are 
respectively statically determinate and indeterminate 
( s ≥ 0 ), and both kinematically indeterminate ( m > 0)

Fig. 7   New graphical roadmaps 
for the computation of stati-
cally/kinematically determinate/
indeterminate trusses by the 
linear: a DM, b FM
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3.1 � Type I: Statically Determinate ( s = 0 ) 
and Kinematically Determinate ( m = 0)

3.1.1 � Force Method

Figure 8 summarizes graphically the linear force method for 
type I trusses. The relations expressed in this figure, which 
corresponds to a particular version of Fig. 7b, are derived 
mathematically below.

Since the structure is statically and kinematically determi-
nate, i.e. s = 0 and m = 0 , from Fig. 4 one finds that the equi-
librium matrix [A] is square and full rank ( r = b = ndof  ) and 
that the SVD of [A] gives 

[
Vs

]
= ∅ , [V] =

[
Vr

]
 , 
[
Um

]
= ∅, 

[U] =
[
Ur

]
 and [�] =

[
�r

]
 . Equations (27)–(29) are thus 

rewritten:

Since matrix 
[
�r

]
 is square and diagonal with all �ii non 

null, it can be easily inverted under the diagonal form 
[
�r

]−1 
(containing the values 1∕�ii ). Therefore, one finds for the 
first time the solution in the modal spaces:

(30)
[
�r

]
{tr} = {f r}

(31)
[
Vr

]
{er} = [F]

[
Vr

]
{tr}

(32)
[
�r

]
{dr} = {er}

(33){tr} =
[
�r

]−1
{f r}

 Or, by back substitution into {d} =
[
Ur

]
{dr} (i.e. Eq. (22)) 

of equations (35) (34), (33), and {f r} =
[
Ur

]T
{f} (i.e. Eq 

(21)), one finds the relation between loads and displace-
ments in the DoF space:

where the definitions [164] of generalized inverses of the 
equilibrium matrix [A]+ =

[
Vr

][
�r

]−1[
Ur

]T and of the com-
patibility matrix [B]+ = [A]T

+
= [A]+

T
=
[
Ur

][
�r

]−1[
Vr

]T 
have been used. This ends the explanation of the passages 
indicated in Fig. 8, which the reader is invited to follow.

It is noted that, by comparison of Eq. (36) with Eq. (11), 
and in the particular case of type I trusses, one finds 
[A]−1 = [A]+ and [B]−1 = [B]+.

3.1.2 � Interrelationship with the Displacement Method

The interrelationship between the FM and the DM methods 
for type I trusses was obtained in Eq. (11), to which the 
reader is invited to refer to.

(34){er} =
[
Vr

]T
[F]

[
Vr

]
{tr}

(35){dr} =
[
�r

]−1
{er}

(36)
{d} =

[
Ur

][
�r

]−1[
Vr

]T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

[A]+
T

[F]
[
Vr

][
�r

]−1[
Ur

]T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

[A]+

{f}

Fig. 8   Graphical roadmap 
for the computation of type 
I trusses by the linear force 
method
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3.1.3 � Physical Interpretation

Figure 9 provides a physical interpretation of the extensional 
modes of equilibrium and compatibility of a simple truss 
with b = 2 elements and ndof = 2 free degrees of freedom. 
First the equilibrium matrix [A] is computed according to 
“Appendix A.4” from the nodal coordinates. It is noted that 
matrix [A] has no unit and does not depend on the dimen-
sion L of the structure, i.e. it is dimensionless. The SVD of 
[A] is then computed, leading to the matrices of singular 
vectors [U] and [V] , and the singular values �ii . There are 
two non-null singular values. Hence the rank of the equilib-
rium matrix is r = 2 . The degree of static indeterminacy is 
thus obviously s = 0 , i.e. there are no self-stress modes [Vs] . 

Similarly, since the degree of kinematic indeterminacy is 
m = 0 , there are also no mechanisms 

[
Um

]
.

Finally, the two extensional modes are illustrated:

•	 At the equilibrium level, any (force-dimensional) load {f} 
can be expressed in terms of (force-dimensional) modal 
coordinates {f r} through {f r} =

[
Ur

]T
{f}—see Eq. (21). 

The loads are thus expressed in the modal space of basis 
[
Ur

]
 

(dimensionless). Similarly, any (force-dimensional) force 
{t} can be expressed in terms of (force-dimensional) modal 
coordinates {tr} through {tr} =

[
Vr

]T
{t}—see Eq. (23). The 

forces are thus expressed in the modal space of basis 
[
Vr

]
 

(dimensionless). In the modal spaces, the loads f r
1
 and f r

2
 

are respectively in equilibrium with the forces tr
1
= f r

1
∕�11 

and tr
2
= f r

2
∕�22—see Eq. (33). Finally, since the structure 

Nodal coordinates

an underscore stands for fixed DoF

           Extensional mode 1 with Λ11 = 1 Extensional mode 2 with Λ22 =1 

Equilibrium:

Compatibility:

Loads for Elongations for 

Forces for 

Fig. 9   Physical interpretation at the equilibrium and compatibility levels of the static modal analysis of a Type I truss
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is statically determinate, the forces {t} are easily determined 
given any load {f} through a simple inversion of the equi-
librium matrix [A]−1 = [A]+ , i.e. {t} = [A]+{f}.

•	 At the compatibility level, any (length-dimensional) 
displacement {d} can be expressed in terms of 
(length-dimensional) modal coordinates {dr} through 
{dr} =

[
Ur

]T
{d}—see Eq. (21). The displacements are 

thus expressed in the modal space of basis 
[
Ur

]
 (dimen-

sionless). Similarly, any (length-dimensional) elongation 
{e} can be expressed in terms of (length-dimensional) 
modal coordinates {er} through {er} =

[
Vr

]T
{e}—see 

Eq. (23). The elongations are thus expressed in the modal 
space of basis 

[
Vr

]
 (dimensionless). In the modal spaces, 

the elongations er
1
 and er

2
 are respectively compatible with 

the displacements dr
1
= er

1
∕�11 and dr

2
= er

2
∕�22—see Eq. 

(35). Finally, since the structure is kinematically determi-
nate, the displacements {d} are easily determined given 
any elongation {e} through a simple inversion of the com-
patiblity matrix [B]−1 = [B]+ = [A]+

T.

3.2 � Type II: Statically Indeterminate ( s > 0 ) 
and Kinematically Determinate ( m = 0)

3.2.1 � Force Method

Figure 10 summarizes graphically the linear force method 
for type II trusses. The relations expressed in this figure, 
which corresponds to another particular version of Fig. 7b, 
are derived below.

Assuming that the structure is statically indetermi-
nate, i.e. s > 0 , and kinematically determinate, i.e. m = 0 , 
from Fig. 4 one finds that the equilibrium matrix [A] is 
rectangular and full rank (i.e. r = ndof  ) and that the SVD 
of [A] gives [V] =

[[
Vr

]
,
[
Vs

]]
 , 
[
Um

]
= ∅, [U] =

[
Ur

]
 and 

[�] =
[[
�r

]
, [0]

]
 . Equations (27)–(29) thus become:

Equation (37) can be rewritten:

which illustrates that statically indeterminate trusses have 
more unknowns ( {tr},{ts}) than equilibrium equations. 
Hence, there are still s hyperstatic unknowns {ts} (often 
called {�} in the literature, as mentioned before) that need 
to be determined. This will be accomplished by using the s 
exceeding compatibility equations of statically indeterminate 
trusses, expressed at the bottom of Eq. (39). In fact, Eq. (39) 
can be split into r + s equations:

(37)
[[
�r

]
[0]

] {
tr

ts

}
= {f r}

(38)
[
Vr

]
{er} +

[
Vs

]
{es} = [F]

([
Vr

]
{tr} +

[
Vs

]
{ts}

)

(39)
[[
�r

]
[0]

]
{dr} =

{
er

es

}

(40)
[
�r

]
{tr} = {f r} ⇔ {tr} =

[
�r

]−1
{f r}

(41)
[
�r

]
{dr} = {er} ⇔ {dr} =

[
�r

]−1
{er}

Fig. 10   Graphical roadmap 
for the computation of type 
II trusses by the linear force 
method
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Substituting Eq. (42) into the material law (38) leads to the 
modal elongations {er}:

To determine {ts} in equation (43), the s exceeding compat-
ibility equations {es} = {0} are re-expressed in the elements’ 
space according to Eq. (23):

G i ve n  E q s .   ( 9 )  a n d  ( 2 4 ) ,  o n e  o b t a i n s 
{e} = [F]{t} = [F]

([
Vr

]
{tr} +

[
Vs

]
{ts}

)
 . The hyperstatic 

unknowns {ts} can be obtained by substituting the latter 
expression in Eq. (44) and solving it with respect to {ts} , 
which gives rise to:

The linear mapping [R] describes for the first time the redis-
tribution due to the static indeterminacy of the forces {tr} (in 
equilibrium with the extensional loads {f r} ) into the coordi-
nates {ts} activating the self-stress modes8.

Finally, given the coordinates {ts} , the modal elongations 
{er} are obtained with Eq. (43) and the extensional displace-
ments {dr} are found with equation (41). This ends the com-
putation of the linear force method by static modal analysis 
for statically indeterminate and kinematically determinate 
trusses. The reader is invited to follow graphically all the 
above operations in Fig. 10.

Remark 1  This paragraph shows for the first time that, 
instead of Eqs. (40) and (45), it is possible to obtain the 
modal forces {tr} and {ts} simultaneously from the exten-
sional loads {f r} by completing the equilibrium Eq. (37) with 
the s compatibility equations (42), as follows:

(42){es} = {0}

(43){er} =
[
Vr

]T
[F]

[
Vr

]
{tr} +

[
Vr

]T
[F]

[
Vs

]
{ts}

(44)
[
Vs

]T
{e} = {0}

(45)
{ts} = −

([
Vs

]T
[F]

[
Vs

])−1[
Vs

]T
[F]

[
Vr

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[R]

{tr}

Solving this system of r + s equations allows to deter-
mine uniquely the forces {tr} and {ts} . The forces 
{t} =

[
Vr

]
{tr} +

[
Vs

]
{ts} in the elements can thus be 

expressed as a function of the loads {f} according to:

A more compact notation can be obtained using the defi-
nition of the force sensitivity matrix 

[
SMt

]
 [40, 50, 56, 

58]. The latter is usually associated to the linear map-
pings {t} =

[
SMt

]{
�l0

}
 (see Eq. (67) in discussion) which 

describes the increase of self-stress forces for arbitrarily cho-
sen variations of the manufacturing lengths 

{
�l0

}
 through 

mechanical devices. In the current context without self-
stressing phase (i.e. 

{
�l0

}
= {0} ), the presence of 

[
SMt

]
 is 

justified with similar arguments to the redistribution matrix 
[R] (detailed in footnote8 ). The interested reader is invited 
to follow the full chain (i.e. Eq. (47)) of linear mappings 
on Fig. 10. Using the force sensitivity matrix, the previous 
expression can be recast as:

[A]+ is the linear mapping turning the loads into a set 
of forces in equilibrium without considering the static 
indeterminacy, whereas [I] +

[
SMt

]
[F] is the linear mapping 

redistributing the forces accounting additionally for the 
static indeterminacy and the compatibility of elongations. 
Finally, Eq. (48) provides a direct link from the loads to the 
forces which fill the gap in Fig. 2b for type II trusses.

Remark 2  This paragraph demonstrates for the first time that 
if all elements have the same stiffness Ke

kk
 , then the hyperstatic 

unknowns are null, i.e. {ts} = {0} . One should start by noting 
that if 

[
Vs

]T
[F]

[
Vr

]
= [0] in Eq. (46), it is obtained {ts} = {0} . 

This happens when the flexibility matrix takes the form 
[F] =

1

Ke
kk

⋅ [I] , because in such case one obtains 
[
Vs

]T
[F]

[
Vr

]
=

1

Ke
kk

⋅

[
Vs

]T[
Vr

]
 , which is equal to zero by the 

orthonormality property ( 
[
Vs

]T[
Vr

]
= [0] ) of the singular 

vectors. Therefore one concludes that when all elements have 

(46)
[

[�r] [0][
Vs

]T
[F]

[
Vr

] [
Vs

]T
[F]

[
Vs

]
]{

tr

ts

}
=

{
f r

0

}

(47)

{t} =
[
Vr

][
�r

]−1[
Ur

]T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

[A]+

{f}+

−
[
Vs

]([
Vs

]T
[F]

[
Vs

])−1[
Vs

]T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[SMt]

[F]

[
Vr

][
�r

]−1[
Ur

]T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

[A]+

{f}

(48){t} =
(
[I] +

[
SMt

]
[F]

)
[A]+{f}

8  The interested reader is invited to follow the chain of linear map-
pings by reading from right to left the definition of 

[R] = −
([
Vs

]T
[F]

[
Vs

])−1[
Vs

]T
[F]

[
Vr

]
 . Starting from the exten-

sional forces {tr} , this chain can also be followed visually on Fig. 10. 
One notices that the extensional forces {tr} alone are responsible for 
the non-null contributions {es,extens.} =

[
Vs

]T
[F]

[
Vr

]
{tr} to the total 

modal elongations, which must be null from the compatibility condi-
tions {es} = {0} . Therefore, the hyperstatic redistributions of forces 

{ts} must be such that {ts} = −
([
Vs

]T
[F]

[
Vs

])−1

{es,extens.} lead to the 
verification of {es} = {0}.
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the same stiffness, the forces can be readily expressed 
{t} = [A]+{f} , similarly to Type I trusses. This leads to the 
following alternative physical meaning of [A]+ : in a statically 
indeterminate truss, the linear mapping [A]+ provides the 
internal forces {t} in equilibrium with the loads {f} under the 
assumption that all elements have the same stiffness.

3.2.2 � Interrelationship with the Displacement Method

This subsection establishes for the first time a direct inter-
relationship between the displacement method and the force 
method for statically indeterminate trusses (type II). From 
{d} = [A]+

T
{e} , {e} = [F]{t} and equation (48), one obtains:

(49){d} = [A]+
T
[F][A]+{f} + [A]+

T
[F]

[
SMt

]
[F][A]+{f}

which expresses the displacements as a function of the loads 
following the force method in Fig. 10. By comparison with 
the displacement method, {d} =

[
KL

]−1
{f} (Fig. 2a), which 

uses the linear stiffness matrix 
[
KL

]
= [A][F]−1[A]T , one 

arrives to the equality:

3.2.3 � Physical Interpretation

Figure 11 provides a physical interpretation of the self-stress 
mode and of the extensional modes at the equilibrium and 
compatibility levels of a simple truss with b = 3 elements 
and ndof = 2 free degrees of freedom. Similarly to type I 
trusses, the equilibrium matrix [A] and its SVD are computed 

(50)
[
KL

]−1
= [A]+

T
[F][A]+ + [A]+

T
[F]

[
SMt

]
[F][A]+

Nodal coordinates

 

 an underscore stands for fixed DoF

Extensional mode 1 with Λ11 = 2 Extensional mode 2 with Λ22 = 1 Self-stress mode 1

Loads for Elongations for

0

0

= 

Fig. 11   Physical interpretation at the equilibrium and compatibility levels of the static modal analysis of a type II truss
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first. The degree of static indeterminacy is seen to be s = 1 , 
i.e. there is one self-stress mode 

{
Vs

1

}
 . The degree of kin-

ematic indeterminacy is m = 0 , i.e. there is no mechanism [
Um

]
 . The two extensional modes can be interpretated in 

a similar way to the statically determinate case, with the 
adjustment that �11 =

√
2 in this example.

Finally, the self-stress mode 
{
Vs

1

}
 can be interpreted9:

•	 At the equilibrium level, if the elements have different 
stiffnesses, the internal forces {t} = [A]+{f} +

{
Vs

1

}
⋅ ts

1
 

in equilibrium with the loads {f} will depend on an 
hyperstatic unknown ts

1
 to be determined through Eq. (45) 

or (46). The value of ts
1
 is thus not arbitrary and relies on 

the resolution of a system of equilibrium and compatibil-
ity equations. If all the elements have the same stiffness, 
however, the hyperstatic unknown is null and the internal 
forces are simply given by {t} = [A]+{f}.

•	 At the compatibility level, the modal elongation es
1
 must 

be equal to 0 according to Eq. (42). One must however 
be aware that there exist situations wherein the modal 
elongation es

1
 is different than zero. This happens when 

the structure is self-stressed through mechanical devices 
that shorten the cables or lengthen the struts as shortly 
addressed in the discussion section. The self-stress mode {
Vs

1

}
 is thus interpreted for the first time at the compat-

ibility level as elongations that may exist and generate no 
displacements.

3.3 � Types III and IV with Kinematic Indeterminacy 
( m > 0 ): Limitations of the linear equations 
(1)–(3)

3.3.1 � Force Method

Figure 7b summarizes graphically the linear force method 
for type III and type IV trusses, which are kinematically 
indeterminate ( m > 0 ). The relations expressed in that fig-
ure are derived mathematically below. It is also formalized 
below for the first time that there exists no relations between 
the modal coordinates {dm} and {fm} . A solution to this issue 
will also be discussed later.

Consider again the basic equations (1)–(3), the SVD of 
the equilibrium matrix [A] in Eq. (15), and the definitions 
(21)–(24) of the modal coordinates. In the most general case 
of a structure which is statically indeterminate, i.e. s > 0 , 
and kinematically indeterminate, i.e. m > 0 , from Fig. 4 one 
finds that the equilibrium matrix [A] is not full rank 
(  r = ndof − m  )  and that  the SVD of [A] gives 

[V] =
[[
Vr

]
,
[
Vs

]]
 , [U] =

[[
Ur

]
,
[
Um

]]
 and [�] =

[[
�r

]
[0]

[0] [0]

]
 

as shown in Eqs. (27)–(29). The latter equations can be 
respectively rewritten:

The modal loads {f r} and {fm} can be directly obtained 
from {f} and are considered as the only known parameters, 
whereas all the other (sub)vectors are unknown. Firstly, the 
modal axial forces {tr} are obtained from the upper part of 
Eq. (51), which leads to {tr} =

[
�r

]−1
{f r} . Then, the lower 

part of Eq. (52) leads to {es} = {0} , which can be solved sim-
ilarly to Sect. 3.2 for type II trusses. This leads to the modal 
elongation {er} =

[
Vr

]T
[F]

[
Vr

]
{tr} +

[
Vr

]T
[F]

[
Vs

]
{ts} 

in Eq. (43) and to the determination of the hyperstatic 
unknowns {ts} = [R]{tr} in Eq. (45). In the case of type III 
trusses with s = 0 , consider that the lower part of Eq. (52) 
does not exist, and {ts} vanishes from Eq. (51). Whether 
the truss is statically determinate, i.e. s = 0 (type III), or 
indeterminate, i.e. s > 0 (type IV), the equations above can 
be rewritten:

The form above shows that the problem of kinematic 
indeterminacy can be solved independently of the degree 
of static indeterminacy because the modal coordinates 
{ts} and {es} do not appear. The solution of kinematically 
indeterminate trusses is detailed as follows.

Equation (52)’ can be rewritten:

which illustrates that kinematically indeterminate trusses 
have more unknowns ( {dr} , {dm}) than compatibility 
equations, in Eq. (52)’. Therefore, there are still m kin-
ematic unknowns {dm} (often called {�} in the literature, 
as mentioned in a previous section) to be determined. The 
difficulty is that the m exceeding equilibrium equations 
( [0]{tr} = {fm} ) are useless. They only show that the inex-
tensional loads {fm} cannot be equilibrated by the truss in 
the initial geometry (as already intuitively stated in Fig. 5). 
In summary, m equations are missing to determine the m 

(51)
[[
�r

]
[0]

]
{tr} +

[
[0]

[0]

]
{ts} =

{
f r

fm

}

(52)
[[
�r

]
[0]

]
{dr} +

[
[0]

[0]

]
{dm} =

{
er

es

}

(51')
[[
�r

]
[0]

]
{tr} =

{
f r

fm

}

(52')
[[
�r

]
[0]

] {
dr

dm

}
=

{er}

(53)
[
�r

]
{dr} = {er} ⇔ {dr} =

[
�r

]−1
{er}

9  Note that the self-stress mode in Fig. 3 was rescaled (for clarity of 
the introduction) by a factor −

√
2 compared to the self-stress mode {

Vs

1

}
 in Fig. 11.
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unknowns {dm} . The solution to this lack will be presented 
in the last sub-section of the Discussion.

3.3.2 � Displacement Method: Proof of the Singularity 
of the Linear Stiffness Matrix

Similarly, the displacement method also fails to analyze kin-
ematically indeterminate trusses because the linear stiffness 
matrix 

[
KL

]
= [A]

[
Ke

]
[A]T is singular. This fact is well known 

in engineering practice, where structural analysis software fail 
at solving trusses of type III and IV. However, since our lit-
erature review did not find the mathematical proof of this fact, 
the demonstration of the singularity of matrix 

[
KL

]
 for these 

cases is presented. Starting from {f} =
[
KL

]
{d} , see Eq. (6), 

and using the SVD of the equilibrium matrix [A] , one obtains:

Then, using the definitions (21) of static modal analysis, 
one gets:

The latter equation is equivalent to:

Or to:

where the matrix 
[
KL,r

]
=
[
�r

] [
Vr

]T[
Ke

] [
Vr

][
�r

]
 cor-

responds to the stiffness of the extensional displacements 
such that {f r} =

[
KL,r

]
{dr} . Once again, Eq. (57) shows that 

m equations are missing to determine the m unknowns {dm} 
because m rows of the matrix 

[
KL,mod

]
 are null, i.e. 

[
KL,mod

]
 is 

singular, i.e. it cannot be inverted. Back in the DoF space, 
one has finally:

Equation (58) demonstrates that the linear stiffness matrix [
KL

]
 of type III and IV trusses is singular because it is built 

(54)
{f} = [U][�][V]T

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
[A]

[
Ke

]
[V][�]T [U]T

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
[A]T

{d}

(55)

{
f r

fm

}
=

[[
�r

]
[0]

[0] [0]

][[
Vr

]T
[
Vs

]T
] [

Ke
] [[

Vr
]
,
[
Vs

]] [[
�r

]
[0]

[0] [0]

]{
dr

dm

}

(56)

{
f r

fm

}
=

[[
�r

]
[0]

[0] [0]

]
⋅

[[
Vr

]T[
Ke

][
Vr

] [
Vr

]T[
Ke

][
Vs

]
[
Vs

]T[
Ke

][
Vr

] [
Vs

]T[
Ke

][
Vs

]
]

⋅

[[
�r

]
[0]

[0] [0]

]{
dr

dm

}

(57)

{
f r

fm

}
=

[[
KL,r

]
[0]

[0] [0]

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟[
KL,mod

]

{
dr

dm

}

(58)
{f} = [U]

[
KL,mod

]
[U]T

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟[
KL

]
{d}

upon the modal linear stiffness matrix 
[
KL,mod

]
 which in turn 

is also singular. One may note that:

•	 The form 
[
KL

]
= [U]

[
KL,mod

]
[U]T in Eq. (58) appears to 

suggest that it corresponds to the SVD of 
[
KL

]
 . However, 

this is not true as demonstrated in the Discussion. In fact, 
the SVD of 

[
KL

]
 does not produce the same extensional 

modes 
[
Ur

]
 and the same inextensional modes 

[
Um

]
 as the 

SVD of the equilibrium matrix [A] . The reason is that [
KL,r

]
 may not be diagonal, and hence Eq. (58) does not 

correspond to the results of the SVD of matrix 
[
KL

]
.

•	 To avert the singularity of the linear stiffness matrix 
[
KL

]
 , 

the so-called geometric stiffness matrix 
[
KG

]
 must be 

included, which shows up when nonlinear equilibrium is 
considered. This aspect is also addressed in the Discussion.

•	 For type I and II trusses (with m = 0 ), one obtains [
KL,mod

]
=
[
KL,r

]
 in Eq. (57) because there are no inex-

tensional modes (i.e. {dm} = ∅ , {fm} = ∅ ). Therefore, 
the linear stiffness matrix can be inverted in type I and II 
trusses.

In short, it is concluded that the linear Displacement Method 
works only for types I and II trusses but not for types III and 
IV. This consideration and Eq. (57) allowed to sketch Fig. 7a 
which summarizes the procedure of the linear Displacement 
Method using static modal analysis.

3.3.3 � Physical Interpretation

Consider the type III truss of Fig. 12a, which has been stud-
ied extensively in the literature [28, 36]. After computing 
the equilibrium matrix, its SVD is performed and the results 
are shown in Fig. 12b. Note that the extensional modes are 
not provided nor illustrated for conciseness. Only the inex-
tensional mode 

{
Um

1

}
 shown in Fig. 12c is here of interest.

The meaning of the single inextensional mode is the fol-
lowing. Its basis is 

�
Um

1

�
=

{−0.5,−1,−0.5,1}T√
2.5

 (dimensionless), 

where the factor 1√
2.5

 is justified by the orthonormality 

( 
{
Um

1

}T{
Um

1

}
= 1 ). According to Fig. 5c, the inextensional 

mode 
{
Um

1

}
 can be interpreted both:

•	 At the equilibrium level, as loads {f} =
{
Um

1

}
⋅ f m

1
 which 

cannot be carried by the structure in its initial geometry, 
no matter the value of the (force-dimensional) modal 
coordinate f m

1
.

•	 At the compatibility level, as displacements 
{d} =

{
Um

1

}
⋅ dm

1
 that generate no elongation (i.e. a 

mechanism). Note that such interpretation is only valid at 
first order, i.e. if the modal coordinate dm

1
 remains small, 
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because the SVD is computed in the initial geometry. 
Therefore, a mechanism may be called infinitesimal.

The approach of static modal analysis allows adding, 
through Eq. (21), that:

•	 The orthogonal projection of any load {f} on an 
inextensional mode gives a (force-dimensional) modal 
coordinate f m

1
=
{
Um

1

}T
{f} that illustrates the loads’ 

ability to activate the mechanism, which is suggested 
without formalization in ref. [28] and which is fully 
detailed for the first time in ref. [56]. For instance, the 
initial loads 

{
f ini

}
 in Fig. 12d do not activate the mecha-

nism because f m
1
=
{
Um

1

}T{
f ini

}
= 0 , whereas the addi-

t ional  load {f} in  Fig.   12e does because 
f m
1
=
�
Um

1

�T
{f} =

p√
2.5

.

As aforementioned, inextensional loads {fm} cannot be 
equilibrated in this initial geometry. Therefore, the addi-
tional load {f} of Fig. 12e can only be equilibrated in a 
deformed geometry after large displacements.

4 � Discussion

This section addresses four aspects that are judged relevant 
to be clarified, either with respect to other past works, the 
current one, or future endeavors. The first addresses the 
fact that Pellegrino and Calladine [14] used an alternative 
formulation for the equilibrium matrix, rather than the one 
presented in Eq. (1) adopted in the current work. The second 

compares the results of the SVD performed on the equilib-
rium matrix and on the linear stiffness matrix, which was 
discussed earlier in this document. Finally, with a view to 
future research developments, the third and fourth discus-
sions briefly introduce other structural analysis problems, 
respectively related with the introduction of self-stress forces 
and the consideration of geometric stiffness, for which static 
modal analysis could be applied to provide new physical 
interpretations and fundamental insights.

4.1 � About the Force Density Method Formulation {
f
}
=

[
AFDM

]{
q
}

Many different authors [14, 94] prefer to state the basic 
equations (1) and (3) in the following alternative form:

where 
[
AFDM

]
 is a distinct formulation of the equilibrium 

matrix with respect to the equilibrium matrix [A] used in this 
article. This section justifies the assumed authors’ choice for 
the latter. The equilibrium matrix 

[
AFDM

]
 is described in 

detail in “Appendix A.3”. It contains the differences of nodal 
coordinates between each element’s ends (rather than the 
direction cosines in matrix [A] ). The equilibrium matrix [
AFDM

]
 provides a linear mapping between the Force 

Densities {q} [65] and the external loads {f} . A force density 
in one element k is defined as the ratio between the axial 
force and the current length, i.e. qk =

tk

lk
 for element k, or 

(59){f} =
[
AFDM

]
{q}

(60)[l]{e} =
[
AFDM

]T
{d}

Fig. 12   a Type III truss, a Geometry and characterization, b SVD results, c Physical interpretation of the SVD results, d Initial loads stiffening 
the mechanism, e Additional loads activating the mechanism
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{q} = [l]−1{t} for all the elements (where the diagonal 
matrix [l] contains the current lengths lk of each element k). 
The Force Density Method (FDM) has demonstrated its very 
interesting mathematical properties by linearizing the form-
finding problems [65–95].

It is important to clarify that:

•	 The equilibrium matrix 
[
AFDM

]
 was introduced by 

Pellegrino and Calladine [14]. In the compatibility 
equation (60), the displacements are thus compatible 
with an “elongation coefficient defined as elongation × 
length” [14].

•	 In 1993, Pellegrino [15] discussed the relations between 
“generalized strains and stresses” when he introduced 
the SVD method in structural analysis for the sake of 
generality. This raises some potential for confusion 
because, in engineering, strains refer to elongation / 
length.

•	 It is here made clear that in ref. [15], the SVD 
was introduced using the equilibrium matrix [A] 
(dimensionless) and not its reformulation 

[
AFDM

]
 (length-

dimensional) as illustrated by the example in Pellegrino 
[15] where the generalized stresses correspond in this 
case to force-dimensional forces and the generalized 
strains correspond to length-dimensional elongations.

In 1993, Pellegrino [15] used the same unit than in the pre-
sent article but not in ref. [14]. The units and interpreta-
tions of the SVD of 

[
AFDM

]
 (length-dimensional) are hence 

a somewhat unclear aspect:

Given Eqs. (59) and (60), the only possible explanation for 
the units is that the singular values 

[
�FDM

]
 are now length-

dimensional (i.e. no more dimensionless) whereas the sin-
gulars vectors 

[
UFDM

]
 and 

[
VFDM

]
 remain dimensionless. The 

definitions of modal coordinates in Eq. (23) become:

where the modal elongation coefficients 
[
VFDM

]T
[l]{e} (of 

dimension length squared) have a rather poor physical mean-
ing and definitely do not correspond to strains (as it may be 
believed from the fact that 

[
VFDM

]
 is dimensionless). This 

reason justifies our choice of basic equations (1)–(3) in this 
article.

(61)
[
AFDM

]
=
[
UFDM

][
�FDM

][
VFDM

]T

(62)

{
qr

qs

}
=

[[
Vr,FDM

]T
[
Vs,FDM

]T
]
{q}

{
er,FDM

es,FDM

}
=

[[
Vr,FDM

]T
[
Vs,FDM

]T
]
[l]{e}

4.2 � About the Eigen Value Decomposition 
of the Linear Stiffness Matrix 

[
KL
]

The Singular Value Decomposition can be applied to any 
rectangular matrix [A] and leads to [A] = [U][�][V]T , see 
Eq. (12). This section discusses the case where the SVD is 
applied to the linear stiffness matrix 

[
KL

]
 , which is square 

(size ndof × ndof  ). In particular, it demonstrates that the equi-
librium matrix and the linear stiffness matrix do not have 
the same fundamental bases [U] =

[[
Ur

]
,
[
Um

]]
 , as it may 

be suggested by Eq. (58).
For square matrices 

[
KL

]
 , the Eigenvalue Decomposition 

(EVD) is more widely employed in structural engineering. 
The difference between the SVD and the EVD is first clari-
fied. The latter allows to write10:

where matrix [� ] is diagonal and contains the eigenvalues 
�ii of matrix 

[
KL

]
 and matrix [W] contains the eigenvec-

tors 
{
Wi

}
 . If furthermore the matrix 

[
KL

]
 is normal, i.e. [

KL
]T[

KL
]
=
[
KL

][
KL

]T , then its EVD can be rewritten:

which is called the spectral theorem in linear algebra. In 
this case, the eigenvectors are orthonormal [W]T [W] = [I] . 
In engineering practice, it is well known that the linear stiff-
ness matrix 

[
KL

]
 is symmetric, i.e. 

[
KL

]
=
[
KL

]T , therefore it 
is also a normal matrix11. To sum up, performing the EVD 
on the linear stiffness matrix leads to Eq. (64). Furthermore, 
performing the SVD on the linear stiffness matrix 

[
KL

]
 also 

leads to Eq. (64) where the left singular vectors are the same 
than the right singular vectors. In other words, the EVD is a 
special case of the SVD.

Based on the fact that the SVD and EVD of the linear 
stiffness matrix 

[
KL

]
 both leads to Eq. (64), the following 

development demonstrates that Eqs. (58) and (64) differ, 
except in a particular case. Wherein fact, when all the ele-
ments have the same stiffness 

[
Ke

]
= [I] ⋅ Ke

kk
 , Eq.  (58) 

becomes:

(63)

[
KL

]{
Wi

}
=
{
Wi

}
⋅ �ii

⇔

[
KL

]
= [W][� ][W]−1

(64)
[
KL

]
= [W][� ][W]T

10  If the matrix 
[
KL

]
 is diagonalizable, which is the case for the linear 

stiffness matrix as shown latter.
11  It can be readily demonstrated that the linear stiffness matrix 
is normal (i.e. 

[
KL

]T[
KL

]
=
[
KL

][
KL

]T ) using its definition [
KL

]
= [A]

[
Ke

]
[A]T.
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In this particular case, the eigenvalues [� ] are equal to [
KL,mod

]
 , which is diagonal, and the eigenvectors [W] of the 

linear stiffness matrix are equal to the singular vectors [U] of 
the equilibrium matrix. However, for the majority of struc-
tures, Eqs. (58) and (64) are different because the matrix [
KL,r

]
 may not be diagonal12. Therefore, one concludes that 

the eigenvectors [W] of the linear stiffness matrix are not 
equal to the singular vectors [U] of the equilibrium matrix. 
The implications include:

•	 In Eq. (58), since 
[
KL,r

]
 may not be diagonal, one single 

extensional load ( {f r} =
{
0,… , 0, f r

i
, 0,… , 0

}T  ) may 
generate extensional displacements {dr} =

[
KL,r

]−1
{f r} 

not only in the associated mode i but also in other modes.
•	 In Eq.  (64), the eigenvectors [W] can be split into [[

Wr
] [

Wm
]]

 . The eigenvectors 
[
Wr

]
 are associated to 

nonzero eigenvalues 
[
� r

]
 while 

[
Wm

]
 are associated with 

zero eigenvalues.
•	 New modal coordinates (e.g. 

{
f r

�
}
= 
[
Wr

]T
{f} ) could be 

defined in a similar manner than in Eq. (21). This would 
allow to establish a one-to-one relation between the new 
extensional load f r′

i
 and displacement dr′

i
 because 

[
� r

]
 is 

always diagonal.
•	 The fact that the vectors 

[
Wm

]
 of the linear stiffness 

matrix and the vectors 
[
Um

]
 of the equilibrium matrix 

are both associated to null eigen/singular values suggests 
that the vectors 

[
Wm

]
 and 

[
Um

]
 are, if not equal, at least a 

linear combination of each others. This means that the 
mechanisms computed from matrix 

[
KL

]
 and matrix [A] 

may not the same but they are related.
•	 Equation (58) demonstrated the singularity of the linear 

stiffness matrix 
[
KL

]
 , i.e. the fact that it cannot be inverted 

for type III and IV trusses. The same conclusion can of 
course be drawn from Eq. (64) by counting the number of 
non-null eigen values �ii . However, the unclear relation-
ships between the (eigen and singular) values �ii and �ii 
(respectively computed from matrix 

[
KL

]
 and matrix [A] ), 

as well as the fact that 
[
Wr

]
≠
[
Ur

]
 was observed in the 

example of Fig. 12, led the authors to try to shed some 
light on this issue.

(65)

[
KL

]
= [U]

[[
�r

][
�r

]
⋅ Ke

kk
[0]

[0] [0]

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟[
KL,mod

]

[U]T
•	 The pseudo-inverse of the linear stiffness matrix [KL

]+
corresponds to 

[
Wr

][
� r

]−1[
Wr

]T which will be used in 
Eq. (68) in another discussion.

4.3 � About the Self‑Stressing Phase

Although this article considered only the application of 
external loads, one may also consider the introduction of 
self-stress forces 

{
tini

}
 through imposed variations 

{
�l0

}
 

of the manufacturing lengths 
{
l0
}
 . The latter can be imple-

mented using mechanical devices that shorten the cables or 
lengthen the struts. The analysis of this self-stressing phase 
provides another application where static modal analysis 
could be used. This is briefly introduced in the following.

According to Pellegrino (1990) [28], the material 
constitutive relation (9) can be rewritten:

where the vector 
{
�ltot

}
 contains the total length variations 

of the elements which add up the imposed length variations {
�l0

}
 and the elastic elongations {e} as illustrated in Fig. 13 

for a single element.
When several elements are assembled and form a stati-

cally indeterminate truss, imposing a length variation in a 
single element generates self-stress forces {t} not only in the 
element itself but also in the others. In other words, self-
stress forces propagate among the truss elements [56, 58]. 
Analyzing the effects of imposed length variations on the 
structure may be performed either with the Force Method 
or with the Displacement Method. The application of the 
former [38–42, 45, 48, 50–58] resorts to the force sensitivity 
matrix 

[
SMt

]
 as briefly introduced in Eq (47):

The Displacement Method [47], on the other hand, makes 
use of external loads equivalent to the imposed lengths’ 
variations:

Where 
[
KL

]+ is the pseudo-inverse of the linear stiffness 
matrix introduced in the precedent subsection. For more 
details on Eqs. (67) and (68), the reader is invited to refer to 
the concerned references. The following remarks complete 
this brief review:

•	 Equation (66) assumes that the variations of the manu-
facturing lengths 

{
�l0

}
 are small and do not affect the 

(66)

{
�ltot

}
=

{
�l0

}
+ [F]{t}
⏟⏟⏟

{e}

(67){t} =
[
SMt

]{
�l0

}

(68)
{d} =

[
KL

]+
[A]

[
Ke

]{
�l0

}
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

{f}

12  It is impossible to prove that 
[
Vr

]T[
Ke

] [
Vr

]
 is always diagonal in 

the definition of 
[
KL,r

]
 =

[
�r

] [
Vr

]T[
Ke

] [
Vr

][
�r

]
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stiffness 
[
Ke

]
(or flexibility [F] ) of the elements. Refer to 

[26, 27] for a reformulation of Eq. (66) which considers 
this effect, called modified axial stiffness.

•	 In statically indeterminate trusses, the modal elastic elon-
gation es

1
 may be different than zero in Fig. 11 due to the 

variations of the manufacturing lengths 
{
�l0

}
 which is 

a way to increase the self-stress level ts
1
 . However, the s 

exceeding compatibility conditions remain that the total 
modal elongations must be null 

[
Vs

]T{
�ltot

}
={0} [40].

•	 In kinematically indeterminate trusses (type III and 
IV), variations of the manufacturing lengths { �l0 } can 
activate the mechanisms, i.e. produce inextensional 
displacements {dm}. For instance, shortening one cable 
in the type III truss of Fig. 12 produces an inexten-
sional displacement d1

m, as measured by Pellegrino in 
1990 [28]. One notes that this type III example is often 
used as a benchmark for numerical comparison [36]. In 
type IV trusses however, manufacturing lengths vari-
ations may both activate the mechanisms and increase 
the self-stress-levels. This phenomenon was recently 
measured [56, 57] on the type IV structure of Fig. 1d’, 
which may serve as another benchmark for numerical 
comparison.

One concludes that both the Force Method and the Dis-
placement Method could be reviewed and interpreted from 
the static modal analysis viewpoint for the incorporation 
of the self-stressing phase. This is an outlook for future 
investigation.

4.4 � About Existing Structural Computations 
to Determine the Kinematic Unknowns 

{
d
m}

It has been showed that additional loads {�f} activating the 
mechanisms 

[
Um

]
 by the non-null factors {fm} =

[
Um

]T
{�f} 

cannot be equilibrated in the initial geometry, but only in 
a deformed geometry after large displacements. It may be 
assumed that these large displacements follow the mech-
anisms directions, i.e. {d} =

[
Um

]
{dm} where the “m” 

kinematic unknowns {dm} =
{
dm
1
,… , dm

m

}T need to be deter-
mined. This consideration led Pellegrino [28] to rewrite in 
1990 Eq. (1) as:

where [G] is the so-called geometric loads (also called 
product forces) matrix (size ndof × m ) defined in ref. [13]. 
Note that, 

[
Ar

]
 (size ndof × r ) and {�tr} were originally com-

puted in 1990 [28] through Gaussian elimination whereas, 
in Eq. (69) presented here, they are reviewed according to 
the SVD results of 1993 [15]. Equation (69) expresses thus 
ndof  equilibrium equations as a function of the “m” kinematic 
unknowns {dm} =

{
dm
1
,… , dm

m

}T . Eq. (69) can be rewritten 
(see Eq. (16) in [28]):

This equation can be solved by inversion of the square 
matrix 

[[
Ar

]
[G]

]
 to determine the “m” kinematic unknowns 

{dm} , as required. However, some clarifications are needed 
about the origin and the derivation of Eq. (69). For instance, 
the correlation between inextensional loads {fm} and dis-
placements {dm} is not explicit in Eq. (70). In response to 
the unclear origin of Eq. (69), other authors [36, 47, 50] 
have preferred to restart from the variational form of Eq. (1), 
written as:

This expression deserves a short explanation. If large dis-
placements occur, the equilibrium matrix in the deformed 
geometry 

[
Adef

]
 may be different than in the initial geometry 

[A] . Geometric nonlinear effects occur and the equilibrium 
matrix must be recomputed several times during an iterative 
nonlinear procedure. Consider in Eq. (71) only an infinitesi-
mal displacement {�d} and an infinitesimal variation [�A] 
of the equilibrium matrix [A] which correspond to the first 
infinitesimal linear step of this full nonlinear procedure. In 
Eq. (71) the increase in resisting forces {�f} now depends on 
the axial forces 

{
tini

}
 (already existing in the initial configu-

ration, see Fig. 12d) and it takes into account their reorienta-
tions (i.e. the variation [�A] of the direction cosines).

In the Displacement Method, this phenomenon is often 
expressed [165, 166] via the so-called geometric stiffness 
matrix 

[
KG

]
 . Equations (71), (2) and (3) can be assembled 

into:

(69)
{�f}=

[
Ur

][
�r

]
⏟⏞⏟⏞⏟

[Ar]

[
Vr

]T
{�t}

⏟⏞⏞⏟⏞⏞⏟
{�tr}

+[G]{dm}

(70){�f}=
[[
Ar

]
[G]

]{�tr

dm

}

(71){�f}=[A]{�t}+[�A]
{
tini

}

(72)
{�f} =

[
KL

]
{�d} +

[
KG

]
{�d}

⏟⏞⏞⏟⏞⏞⏟
[�A]{tini}

Imposed length variation

Elastic length variation
(elongation positive)Same rigidity

Manufacturing length

Fig. 13   A single element equipped with a mechanical device. Both 
are assumed to have the same rigidity EA. The flexibility F =

l0

EA
  is 

considered constant since both the imposed and elastic length varia-
tions are assumed small



3432	 J. Feron et al.

Ref. [36] stated that the terms 
[
KG

]
{d} and [�A]

{
tini

}
 are 

equivalent. Furthermore, it is clear that there is also a strong 
link between the geometric loads matrix [G] and the geo-
metric stiffness matrix 

[
KG

]
 . Ref. [36] stated this link as 

[G]=
[
KG

][
Um

]
 . Finally, it may be pointed out that structures 

possessing inextensional modes, i.e. types III and IV trusses, 
are still difficult to analyze using the DM and Eq. (72). In 
fact, at the very beginning of the analysis, trusses of types III 
and IV are never pre-stressed ( 

{
tini

}
= {0} ). Hence, the geo-

metric stiffness matrix is also singular and Eq. (72) cannot 
be inverted to find the displacements. This important note 
justifies why structural analysis software using the DM will 
fail at analyzing tensegrity structures (such as in Fig. 1d’), 
even when geometric nonlinearity is taken into account. For-
tunately, numerical artifices exist to overcome this phenom-
enon and launch the first calculation step, but they require 
to proceed to the SVD of the equilibrium matrix in an effort 
to eliminate the singularity (of at least one of both matrices [
KL

]
 or 

[
KG

]
 ) through imposed arbitrary incremental dis-

placement ( {�d} =
[
Um

]
{dm} ≠ {0} ) or imposed pre-stress 

forces ( 
{
tini

}
= [A]+

{
f ini

}
+
[
Vs

]{
ts,ini

}
≠ {0} ). After this 

cumbersome very first calculation step, the nonlinear proce-
dure of the DM with iterative updates of matrices 

[
KL

]
 and [

KG
]
 can be continued without further inconvenience.

This discussion is concluded by the well-known fact that 
the geometric stiffness must be considered to solve type III 
and type IV trusses. However, as shown in this subsection, 
the geometric stiffness exists under different formulations 
in the literature: reviewing, unifying, and interpreting them 
from the static modal analysis viewpoint may be addressed 
in a future work.

5 � Conclusion

This article established the first of its kind state-of-the-art 
on static structural computations for all types of pin-jointed 
structures. It was followed by the introduction of the prin-
ciple of static modal analysis by taking inspiration from the 
dynamic modal analysis and the singular value decomposi-
tion (SVD) of the equilibrium matrix. It allowed to review 
the Force Method (FM) and Displacement Method (DM), 
which are commonly used for the analysis of linear trusses 
subjected to external loading. Both methods of linear analy-
sis were derived for the four types of trusses together with 
explicit graphical and physical explanations of the SVD 
results. The latter provides valuable insights into the struc-
tural behavior of self-stressed mechanisms such as the self-
stress mode distributions and the mechanisms’ coordinates. 
The static modal analysis allows, through a mathematical 
change of variables and subsequent paradigm shift, an easy 
back-and-forth passage from the structural and elemental 

spaces to the associated static modal spaces, which are com-
posed of extensional, self-stress, and inextensional modes. 
Their interpretation at the equilibrium and compatibility lev-
els was performed, together with novel graphical interpreta-
tions using arrows as visualization of linear mappings. These 
graphical roadmaps of the linear FM and DM bring out new 
links between the fundamental static modes. The solution 
procedure for the four types of pin-jointed structures were 
illustrated with straightforward examples. Eventually, it has 
been rigorously formalized that the basic equations of linear 
analysis fail at solving kinematically indeterminate trusses 
(type III or IV). The approach presented herein enabled a 
comprehensive review of the existing literature on the Force 
Method and Displacement Method, highlighting novel uni-
fying and complementary principles for both approaches. 
The introduction of self-stress forces and the consideration 
of geometric nonlinearities will be addressed in a future 
work.

Appendix A: Physical Interpretation of Basic 
Equation {f} = [A]{t}

Appendix A.1: Nuance Between Resisting Forces 
{
f
}

 

and External Loads 
{
f
ext
}

Consider an element k connecting node (1) to node (j) in 
Fig. 14. The element is subjected to an internal axial force tk 
whereas bending moments and shear forces are neglected. It 
has a current length lk (which is different than the manufactur-
ing length l0

k
 ), a cross-sectional area Ak and a Young’s modulus 

Ek . The axial force tk (positive in tension) can be decomposed 
into its components {f} at each element end in the three direc-
tions X, Y , Z as follow:

With the notations cx,k =
(xj−x1)

lk
 ,  cy,k =

(yj−y1)
lk

 and 

cz,k =
(zj−z1)

lk
 expressing the direction cosines of element k as 

shown in Fig. 14b where a direction has been defined for the 
element k in a similar manner to vectors. Defining a direc-
tion to each element will reveal useful in Appendix 
A.4. Whether element k is defined from node (1) to node (j), 
or from node (j) to node (1), has no influence since in both 

(73)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1x
f1y
f1z
fjx
fjy
fjz

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−cx,k
−cy,k
−cz,k
cx,k
cy,k
cz,k

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

⋅ tk
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cases one obtains for instance fjx =
(xj−x1)⋅tk

lk
 . Note in Fig. 14a 

that:

•	 The forces {f} are drawn in their physical directions (i.e. 
f1x is drawn to the left because it is negative).

•	 The resisting forces {f} are historically defined in the 
same direction as external loads 

{
f ext

}
 . Therefore, the 

Newton’s first law of motion (i.e. 
{
f ext

}
+ {f} = {0}) 

becomes here the condition for static equilib-
rium 

{
f ext

}
= {f}.

The nuance between resisting forces {f} and external loads {
f ext

}
 is that all the entries in the external loads vector 

{
f ext

}
 

are arbitrary whereas the resisting forces {f} follow Eq. (73), 
i.e. they are a multiple of the direction cosines.

Appendix A.2: Equilibrium of a General Pin‑Jointed 
Structure

Consider a pin-jointed structure composed of b elements, 
n nodes and connected to exterior by c reactions as shown 
in Fig. 15a. For conciseness and without loss of generality, 
consider that the 3D structure in Fig. 15a is fixed in the Y 
direction at all nodes. The vector 

{
f fix

}
 of c reactions also 

includes, for instance, a fixation on node (1) in the X direc-
tion as well as some other reactions elsewhere. External 
loads 

{
f ext

}
 may be applied on the three directions of all 

nodes. There are thus ndof = 3 ⋅ n − c free Degree of Free-
dom and c fixed DoF.

One static equilibrium equation can be written for each 
node and direction (i.e. for each DoF). Using Eq. (73), one 
obtains 3 ⋅ n static equilibrium equations as follow:

(74)

(75)

Resisting forces { } Form

a b

Fig. 14   Plane view in a 3D reference system of element k connected to nodes (1) and (j). a: axial force tk in the element and its decomposition 
{f} on the end nodes, b: the direction cosines cx,k and cz,k in the X and Z directions for element k
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The ndof  Eq. (75) contain b unknown axial forces {t} whereas 
the c Eq. (74) contain moreover c unknown reaction forces {
f fix

}
. Eq. (74) can only be solved once the b axial forces {t} 

have been determined. Hence Eq. (74) are disregarded for 
the moment and one focuses on Eq. (75). According to ref. 
[14], the equilibrium matrix [A] is defined in such a way that:

Fig. 15b illustrates the matrix form (76) and Fig. 15a illus-
trates that vector {f} contains the sum of the resisting forces 
from the different elements. One notes that each column k 
of matrix [A]:

•	 Contains the direction cosines of element k.
•	 Can be interpreted physically as the external loads in 

equilibrium with a unit axial forces tk = 1 in element k 
(and zero forces in all the others elements).

By backsubstitution of Eq. (76) into Eq. (75),  one obtains 
the following condition of static equilibrium:

However, given that the axial forces {t} are unknown, the 
structure may not be in equilibrium. In this case, one obtains 
the residual (out-of-balance) forces:

(76){f} = [A]{t}

(77)

{
f ext

}
− [A]{t}
⏟⏟⏟

{f}

= {0}

(78)
{f res} =

{
f ext

}
− [A]{t}
⏟⏟⏟

{f}

which will produce, by second Newton’s law, the motion and 
the acceleration of the nodes until an equilibrium is achieved 
or until collapse. Note that the Dynamic Relaxation Method 
[67, 164] tracks this movement due to the residual forces 
{f res} until the structure comes at rest (with {f res} = {0} for 
all free DoF) through damping.

Assuming the b axial forces {t} have been obtained, 
the c reaction forces 

{
f fix

}
 at the supports can be 

obtained through Eq.  (74) which can be rewritten {
f fix

}
= −{f} +

[
Afix

]
{t}. This ends the computation and 

interpretation of the equilibrium conditions in a general 
pin-jointed structure.

Appendix A.3: Force Density Formulation

The equilibrium matrix [A] (which was redeveloped here 
above) differs from the one introduced in ref. [14] which is 
called here 

[
AFDM

]
 . The matrix 

[
AFDM

]
 is a distinct formulation 

of the equilibrium matrix which is based on the so-called 
Force Density Method (FDM) [65, 68, 94]. FDM relies on the 
definition of a force density qk =

tk

lk
 in each element k . Restart-

ing the derivation from equation (73) using this time the defini-
tion of a force density, one obtains:

Where:

•	 The vector {q} contains the force densities qk =
tk

lk
 of each 

element k.

(79)
[
AFDM

]
{q} = {f}

a b

>

>

>

Equilibrium of a node

fre
e
Do

F

elements

Fig. 15   a A general pin-jointed structure with b elements, n nodes and c reactions 
{
f fix

}
 . All nodes are fixed by supports in the Y direction and 

are subjected to external loads 
{
f ext

}
 in the three directions. The axial forces {t} in the elements are responsible for the resisting forces {f} on 

their end nodes. b the equilibrium matrix [A] of this structure. Figure adapted from [14]
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•	 The matrix 
[
AFDM

]
 contains the differences of (length-

dimensional) coordinates �xk =
(
x2 − x1

)
 , �yk =

(
y2 − y1

)
 

and �zk =
(
z2 − z1

)
 of the elements (whereas [A] contains 

the dimensionless direction cosines cx,k =
�xk
lk

 , cy,k =
�yk
lk

 

and cz,k =
�zk
lk

).

Using the diagonal matrix [l] (that contains the current lengths 
lk of the elements on the diagonal), one obtains the relations 
between both equilibrium matrices [A] and 

[
AFDM

]
:

This ends the reinterpretation of the static equilibrium con-
ditions from the Force Density Method viewpoint. This is 
further discussed in section 4.1.

Appendix A.4: Systematic Way to Compute 
the Equilibrium Matrix

Filling in the entries of the equilibrium matrix [A] is a rather 
cumbersome process because it requires several nested “for 
loops” with tricky referencing to the correct indexes (see 
Fig. 16). Therefore, ref. [71, 77] proposed a systematic way 
to compute the equilibrium matrix following the formulation [
AFDM

]
 introduced in ref. [14]. This systematic way is here 

redeveloped for the computation of matrix [A] (rather than [
AFDM

]
 ) and physically interpreted.

The procedure starts with the computation of the con-
nectivity matrix 

[
��⃗C
]
 [65, 68] which reflects that elements are 

defined with a direction from a start node to an end node (cfr 
“Appendix A.1”). Fig. 16 shows that each entry kj of the 
connectivity matrix 

[
��⃗C
]
 (size b × n ) is equal to 0 if node (j) 

[
AFDM

]
[l]−1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
[A]

{t} = {f} ⇔

[
AFDM

]
[l]−1{t}
⏟⏟⏟

{q}

= {f}

do not belong to element k , −1 if node (j) is the start node of 
element k and 1 if it is the end node.

Then, given the vectors (size n × 1 ) of the node coordi-
nates {x} , {y} , {z} , one finds the differences of coordinates 
{�x} , {�y} , {�z} (size b × 1 ) between the element ends by:

The current length of each element k can then be easily com-
puted by lk =

√
�x2

k
+ �y2

k
+ �z2

k
 and stored in the vector {l} 

or in the diagonal matrix [l] . The vectors of the direction 
cosines 

{
cx
}
, 
{
cy
}
 and 

{
cz
}
 of the elements are then obtained 

by:

After reshaping under diagonal matrix forms 
[
cx
]
 , 
[
cy
]
 , 
[
cz
]
 , 

the equilibrium matrices 
[
Ax

]
 , 
[
Ay

]
 , 
[
Az

]
 (sizes n × b) are 

finally obtained and contain the direction cosines for each 
element end as follow :

Repeating Eq. (82) in the two other directions {y} and {z} 
leads to 

[
Ay

]
 , 
[
Az

]
 . Then the three matrices 

[
Ax

]
 , 
[
Ay

]
 , 
[
Az

]
 are 

grouped in a single matrix [A] and the rows are rearranged 
arbitrarily according to the arbitrarily chosen order of the 
DoF (see Fig. 16). Finally, the DoF fixed by a support are 
removed from matrix [A] and stored in a matrix 

[
Afix

]
.

This ends the systematic computation of the equilibrium 
matrix [A] as well as its physical interpretation. This article 
aims at solving the equilibrium and compatibility conditions 
(1) and (3), to which the reader is invited to refer.

(80){𝛥x}=
[
��⃗C
]
{x}

(81)
{
cx
}
=[l]−1{�x}

(82)
[
Ax

]
=
[
��⃗C
]T[

cx
]
⇔

[
Ax

]
=
[
��⃗C
]T
diag

(
[l]−1

[
��⃗C
]
{x}

)

>

>

>

>

nodes

elem.

Fig. 16   Systematic computation of the equilibrium matrix [A] using the connectivity matrix 
[
��⃗C
]
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