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Abstract
Lightweight deep convolutional neural networks (LDCNNs) are vital components of mobile intelligence, particularly in 
mobile vision. Although various heavy networks with increasingly deeper and wider have continuously broken accuracy 
records since 2012, with the spring of terminals and mobile devices, neural networks that can match them have become a 
core role in practical applications. In this review, we focus on several representative lightweight Deep Convolutional Neural 
Networks (DCNN) technologies that hold significant potential for advancing the field. More than 190 references screened 
out in terms of architecture design and model compression, in which over 50 representative ones are emphasized from the 
perspectives of methods, performance, advantages, and drawbacks, as well as underlying framework support and benchmark 
datasets. With a comprehensive analysis, we put forward some existing problems and offer prospects of lightweight DCNN 
for future development.

1  Introduction

DCNNs are preferred in mobile intelligence more than ever. 
Since 2012, deep learning techniques have prompted CNNs 
to flourish as the mainstream status of the computer vision 
field [1]. The powerful local modeling ability of deep con-
volution neural networks endows it dazzling in computer 
vision tasks such as image classification, object detection, 
segmentation, recognition, etc. As we witnessed, to pursue 
better performance, the shape of the deep networks becomes 
increasingly deeper and wider. Thus, the data-driven DNN 
has massive parameters to ensure performance on highly 
parallel hardware devices, which requires an awful amount 
of hardware resources to train the parameter deluge. Inevi-
tably, most deep CNN models are large-scale and compu-
tation-intensive. Specifically, AlexNet [1] consumes more 
than 200MB of memory, VGGNet [2] takes up more than 
500MB, and ResNet50 [3] is about 95MB. Due to the high 
resource demands, most models with excellent performance 

suffer from many limitations in real-world scenarios, espe-
cially for edge intelligence (EI) with widespread application 
demands.

At present, deep learning primarily adopts the cloud-end 
paradigm in practical applications. This approach entails 
exchanging information between cloud computing servers 
and mobile devices, employing deep learning algorithms to 
address real-world issues. In this process, the edge terminal 
devices send requests to the cloud computing center through 
the network, and the computing center then returns the pro-
cessed results to each corresponding terminal device. How-
ever, the paradigm heavily relies on network coverage and 
stability, making it time-consuming, tedious, error-prone, 
and pose potential security risks. Edge terminal scenarios, 
such as smartphones, autopilot systems, and drones, have 
a superior demand in real-time and security performance 
for visual applications. Traditional cloud-based models may 
not meet the performance demands of these edge terminal 
scenarios. In fact, there are many redundancy connections in 
different layers of a DNN. Lightweight CNNs are potential 
candidates for such edge scenarios to solve vision tasks, but 
pruning a large-scale network to fit a resource-constrained 
terminal device is full of challenges. The lightweight tech-
nology aims to explore and eliminate those idle neurons 
without significantly decreasing the performance. It gen-
erally refers to lightweight model design or model com-
pression. Indeed, some optimization is selective in specific 
mobile application scenarios as essential, such as machine 
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learning libraries selection, hardware platforms deploy-
ment, etc. In recent years, more and more industries and 
computer vision communities have ventured into this area. 
This wave of interest has spurred a flood of impactful studies 
and breakthroughs.

Table 1 lists the surveys [4–19] that refer to light-weight 
strategy within the past 5 years. The works [4–11] con-
centrate on light-weight methods from the viewpoint of 
structural models and compression technologies. Others 
[12–19] deem lightweight technology an essential part of 
EI. [4] reviews those lightweight networks maturely applied 
in object detection, a branch of computer vision tasks. [5, 
7, 11] only present some classical lightweight models while 
lacking a comprehensive overview of lightweight techniques 
as well as recent improvements. [6] just pecked at light-
weight technologies in terms of artificial design, model com-
pression, and architecture search. [8] mainly reviewed those 
convolution variants with high computational efficiency, and 
did not cover other promising lightweight within the scope 
of CNNs. [9, 10] emphasized model compression while 
neglecting its peer technologies like model design. And in 
[12–19] focuses on the techniques of compacting and accel-
erating DNN models. However, it does not cover the under-
lying support framework and lacks the latest technology due 

to obsolescence. [13, 14, 16] mainly emphasized EI and the 
relationship between edge computing and intelligent applica-
tions. [15, 17–19] start from the perspective of deep learn-
ing, which encompasses a broad range of technologies and 
applications to provide specific guidance.

Although there are many works that try to elaborate the 
lightweight paradigm, they either don’t cover comprehen-
sive key technologies or fully consider the characteristics 
within lightweight CNN architectures. Additionally, recent 
improvements and trends for future directions are vague 
in those works. Therefore, this paper aims to bridge the 
gaps by comprehensively analyzing the state-of-the-art 
techniques adopted in lightweight DCNNs, incorporating 
underlying supports. To establish a more complete and up-
to-date resource regarding this pivotal topic for researchers 
and practitioners alike, we carefully retrieve articles that are 
technically representative for summarizing. We will elabo-
rate on the evolution of lightweight DCNNs. It has been 
driven by the deployment to edge terminals. The concept 
of ‘lightweight’ is evaluated from aspects such as the num-
ber of parameters, computation complexity, memory con-
sumption, etc. All involved literatures are categorized into 
two classes respectively on algorithms and libraries—one 
focusing on algorithms designed specifically for DCNNs 

Table 1   Relative surveys and their focus

References Published year Focus

[4] 2018 Focus on lightweight networks in object detection
[5] 2020 Introduced and discussed six early lightweight CNNs
[6] 2020 A detailed introduction to constructing lightweight neural networks by three methods: artificial design, model 

compression, and automatic architecture search
[7] 2022 Comparison on mainstream lightweight neural network models
[8] 2022 Focus on the convolution part of CNNs and elaborate on the main design idea by analyzing various compositions 

of the convolutional part of the model
[9] 2022 Focus on the model compression methods: pruning, quantization, knowledge distillation, and neural architecture 

search
[10] 2023 Focus on the mechanism of DNN compression technology and divide existing methods into pruning, sparse repre-

sentation, bits precision, knowledge distillation, and miscellaneous based on this
[11] 2023 Review a few prevalent lightweight CNNs along their architecture, design features, performance metrics, advan-

tages, etc
[12] 2018 Compression and acceleration technology
[13] 2019 Focus on reviewing and discussing the development, motivation, architecture, and theories of EI
[14] 2020 To distinguish EI into artificial intelligence (AI) for edge and AI on edge
[15] 2020 Reviewing the methods of model compression and their principles. Explaining how to use associate methods in 

accelerator design
[16] 2021 Focus on how to realize EI in a systematic way,including edge caching, edge training, edge inference, edge off-

loading
[17] 2022 Focus on DL optimization for mobile applications and devices. Summarize DL-based approaches in different 

mobile applications
[18] 2022 Enablers of efficient model compression approaches, and the AutoML framework for these methods, relative 

applications and task-specific accelerations
[19] 2022 Focus on lightweight DL models, different compression techniques, application areas, algorithm-hardware code-

sign approaches, available hardware and software tools, and use cases of EI
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on resource-constrained edge devices, the other on librar-
ies optimized for hardware components of DCNN inference 
pipelines in such environments. Thereinto, in the process of 
pursuing light-weight, the relative software algorithms are 
further divided into two categories: the design from scratch, 
and the compression method widely used in large-scale 
DCNNs. Underlying difficulties, limitations, merits, and 
disadvantages are discussed in applying these algorithms. 
Based on the review and analysis, some potential and prom-
ising directions associated with lightweight DCNNs are 
proposed.

Figure 1 describes the overall structure of this survey, 
which is organized as follows: 2 introduces the motivation of 
lightweight CNNs, as well as the taxonomic perspective. The 
representative technical works of lightweight networks are 
reviewed in 3. Underlying frameworks support and common 
benchmark datasets are depicted in 4 and 5, respectively. The 
perspective of lightweight techniques is given in 6. Finally, 
conclusions are drawn in 7.

2 � Motivation and Category

This section first discusses the motivation for utilizing light-
weight CNNs and then classifies the corresponding light-
weight methods.

2.1 � The Motivation of Utilizing Lightweight CNNs

For a long time, artificial neural networks (ANNs) have 
been seriously hampered by insufficient samples of the 
data set and low hardware performance. Up until 2009, the 
ImageNet database was released [20] and there was also 
sufficient computing power of the hardware, the ImageNet 
large-scale visual recognition challenge (ILSVRC) [21] was 

held spanning the period from 2010 to 2017. The AlexNet 
[1] in 2012 was a milestone that promoted the great suc-
cess of deep NNs in the field of image recognition. During 
the period of ILSVRC, DNNs are capable of identifying 
objects accurately by executing large-scale computing, the 
cost is “deep”, i.e., high computational complexity and high 
memory consumption. However, those large-scale models 
are not friendly for edge computing which is the mainstream 
of future general intelligence. Accuracy and real-time prop-
erty are two main requirements for edge intelligence, which 
requires both intelligent algorithms and hardware to work 
in concert. Conventional large-scale intelligent algorithms 
with high accuracy are hardly deployed on edge devices, 
while those tiny algorithms are under-powered for the accu-
racy demands. Moreover, studies have shown that there is 
a certain degree of redundancies in deep models, whether 
for edge devices or cloud data centers, the extra costs are 
unnecessary. And finally, with the failure of Moore’s Law, it 
is becoming more and more difficult to elevate hardware per-
formance. Neural networks’ lightweight design is a promis-
ing solution for these issues. The lightweight network model 
significantly reduces the number of parameters and compu-
tational complexity. Certainly, to achieve fair performance in 
practical applications requires corresponding support from 
the underlying libraries and hardware. Currently, the hand-
written digit recognition network proposed by LeCun et al. 
[22] is a paradigm used for exploring technology.

2.2 � Category of Lightweight DCNNs Methods

As shown in Fig. 2, the CNNs extract characteristics of the 
inputs via convolution and pooling operations and put them 
forward to fully connected (FC) layers to yield outputs. The 
loss function is then used as an optimization criterion to 
update the weights of each layer, aiming to minimize the loss 

Fig. 1   Overview of this survey
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and match the expected output. With the learned weights, 
CNNs are capable of inferring those unencountered tasks.

Large-scale DCNNs may benefit particular visual tasks 
but certainly require vast hardware resources, and time 
consuming. In addition, relevant research has shown that 
there is a lot of redundancy when modeling a large amount 
of data using deep neural networks [23]. The computa-
tional complexity mainly originates from the convolution 
operation, the number of parameters mainly determined 
by the full connection layer [24]. To slim the network 
and reduce its computational complexity, the model itself 
and the underlying framework need to be optimized to 
fit particular hardware. Therefore, we classify the light-
weight network technology into two categories refer to 
model correlation and hardware correlation as shown in 
Fig. 3, where the model correlation involves design and 
compression. The former mainly includes manual design 
and automatic model search to obtain an initial lightweight 
neural network. The latter is tailoring a bulky neural net-
work to a lightweight one, which mainly includes four 
ways: model pruning, low-rank decomposition, weight 
quantization, and knowledge distillation. Hardware cor-
relation mainly refers to the accelerated optimization of 

convolution operation and the underlying framework-level 
support when lightweight CNN models are deployed on 
mobile or embedded devices, such as TensorFlow Lite and 
TensorRT, as well as related technologies that guide hard-
ware design. The item amount statistics of references for 
each subcategory are shown in Fig. 4.

3 � Methods for Lightweight Convolutional 
Neural Networks

3.1 � Architecture Design

Exploring the sparse hierarchical structure of CNNs with-
out significantly reducing the accuracy of the network is the 
purpose of designing lightweight CNNs. Two ways towards 
this destination.

Fig. 2   CNNs propagation pipe-
line CNNs training (also known 
as learning) is a process of both 
forward and backward propaga-
tion iteratively. The inference is 
a forward propagation to calcu-
late the output for unseen data 
with the learned parameters 
during training. Here, yi denotes 
activation output of every layer 
and serves as the input to the 
next layer, which is equivalent 
to xi . � is weight and b is bias. 
L is loss function, ȳ is output

Fig. 3   Taxonomy of lightweight CNNs methods

Fig. 4   The item amount statistic within each lightweight strategy and 
relative supports
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3.1.1 � Manual Design

Manual design reduces the parameters amount and computa-
tional complexity by introducing some specific convolution 
paradigms, such as group convolution, separable convolu-
tion, dilated convolution, etc. The Inception series started 
from GoogLeNet has made continuous progress in improv-
ing accuracy and decreasing the computational complexity 
of the network [25–28]. Especially, in [28], the decoupling 
of 3D convolution kernels into a separable 2D paradigm 
along the direction of the channel, i.e., depthwise convolu-
tion (DWConv) or single intra-channel convolution [29, 30], 
has had a far-reaching impact on the subsequent lightweight 
schemes.

Via sparse structure designing, a large number of impres-
sive works have emerged. Forrest Iandola et al. [31] pro-
posed the SqueezeNet, in which a sparse convolution module 
called Fire (Fig. 5a) is represented. The fire model consists 
of two stages named squeeze and expand, respectively, 
the former used 1 × 1 convolution filters [32] to reduce the 
dimension of characteristic channels, while the latter com-
bined 1 × 1 and 3 × 3 convolution filters to support multiple 
resolutions. SqueezeNet has 50 times fewer parameters than 
the AlexNet but achieves a competitive level of accuracy on 
ImageNet as AlexNet. In the improved SqueezeNet [33], 
a two-stage bottleneck structure is proposed to reduce the 
number of channels (Fig. 5b), and the separable convolution 
is utilized to further reduce the parameters. The author also 
used hardware simulation to determine the best design of the 
baseline model. The MobileNets series [34, 35] are designed 
for mobile or embedded devices. MobileNets [34] makes full 
use of the depthwise separable convolution (DSConv) which 
involves depthwise con-volution to filter each input channel, 
and a 1 × 1 pointwise convolution (PWConv) to combine the 
outputs of the depthwise convolution (Fig. 6), and control-
ling the network size by super parameters. MobibleNetV2 
[35] co-opted ResNets [3]’s bottleneck module, which com-
bines depth separable convolution with residual connection. 

The author adopted linear transformation in bottleneck to 
reserve complete information and shortcuts directly between 
the bottlenecks (Fig. 7) which enables the module to per-
form inference with higher memory efficiency than stand-
ard ones in various neural architectures. ShuffleNet [36], 
as shown in Fig. 8, is an improvement of MobibleNet, and 
also inherits the merit of group convolutions of AlexNet to 
compromise representation ability and computational cost. 

Fig. 5   The fire module and SqueezeNext block. Here, M and N repre-
sent the number of channels, while W and H represent the size of the 
feature map, respectively

Fig. 6   Standard convolution and depthwise separable convolution

Fig. 7   The inverted residual block. This block expands a compressed 
input, filters it with a DWConv, and then projects the features back to 
a lower-dimensional representation using a linear convolution

Fig. 8   Channel shuffle with two stacked group convolutions. GConv 
indicates group convolution. The information between the layers 
GConv1 and GConv2 is fully communicated through channel shuffle
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In addition, the shuffle operation is introduced to facilitate 
information flow exchange for multiple group convolution 
layers. In ShuffleNetV2 [37], the author claimed that the 
numerous 1 × 1 group convolutions and the shuffle opera-
tions actually increase the frequency of memory accesses. 
Therefore, to solve the above problem, channel splitting is 
employed instead of group-wise convolutions. In the work 
of [38], the author pointed out that the inverted residual 
block would induce information loss and gradient fusion. 
Thus, they add depthwise convolutions at the ends of the 
residual path (Fig. 9), which can extract richer features. 
[39] utilized the correlation along the depth direction in DS 
convolution and proposed the blueprint separable convolu-
tion (BSConv) (Fig. 10). The BSConv consistently verified 
improvement based on DSConv models without introduc-
ing any further complexity. ChannelNets [40] believe that 
the fully-connected pattern is the main cause of excessive 
computational consumption. So three channel-wise convolu-
tion operations are proposed, which significantly reduce the 
number of parameters and computational complexity with-
out accuracy loss. The aforementioned strategy has also been 
incorporated into 3DCNNs [41] for video applications that 
typically require higher computational resources.     

Other lightweight CNNs concentrate on specific visual 
tasks [42–46] or dedicated hardware applications [47, 
48], such as object detection [42], segmentation [43], 

and recognition [45, 49]. In [50, 51] (Fig. 11), the dilated 
convolution is used to enlarge the receptive field without 
increasing the computational load, memory, and power, 
which dramatically benefits the semantic segmentation of 
high-resolution images. What is meaningful are the tech-
niques that leverage visualization to provide design insights. 
In [52], visualization revealed redundant feature maps as 
important for effective CNNs. The insight inspired the 
GhostNet module (Fig. 12) to generate more redundant 
feature maps through linear transformations for revealing 
intrinsic information while maintaining compatibility with 
existing CNNs. The authors also put forward C-GhostNet 
and G-GhostNet respectively for GPU-like and CPU-like 

Fig. 9   The sandglass block. This block reverses the inverted residual 
block between bottlenecks and adds DWConvs (i.e., separated blocks) 
at both ends of the residual path, both of which are crucial for perfor-
mance improvement

Fig. 10   The blueprint separable convolution. BSConv exploits cor-
relations between CNN filter kernels along the depth dimension. It 
represents each filter using a single 2D blueprint kernel distributed 
across depth via a weight vector

Fig. 11   The block diagram of the efficient spatial pyramid (ESP) 
module. It consists of a pointwise convolution followed by a spatial 
pyramid convolution. The former of the module reduces the computa-
tion while the latter enlarges the receptive field and removes gridding 
artifacts through hierarchical feature fusion (HFF)

Fig. 12   The Ghost module. It consists of a lightweight “ghost” 
branch and a heavier “feature” branch in parallel. The former gen-
erates feature maps via a series of cheap operations while the latter 
generates more complex ones. The output is obtained via a concat-
enation operator, balancing representational power and computational 
efficiency
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devices in their subsequent works [47]. In VGNetG [53], the 
visual analysis enabled utilizing edge operators to substitute 
for learnable operations in the lower layers, resulting in a 
parameter-efficient CNN architecture. More recently, works 
like MobileOne [54] and FalconNet [55] have developed 
the reparameterization technique [56] into module design. 
It allows linear branches present during training to be re-
parameterized as simpler blocks for inference. Concretely, 
the MobileOne block (Fig. 13) introduces over-parameter-
ized branches to enhance representation capacity during 

training, which is then reparameterized into a slimmed-down 
form for inference, yielding improvements in both accuracy 
and latency.

In [55], the authors abstracted the Meta Light Block based 
(Fig. 14) on different lightweight modules. They introduced 
Reparameterized Spatial Operator (RepSO) and Reparam-
eterized factorized Channel Operator (RefCO) methods to 
increase the sparsity of the spatial and channel dimensions, 
respectively. Both strategies leverage structural reparameter-
ization to convert the diverse connections employed during 
training into equivalent inference units.

We summarize those impressive lightweight works as 
shown in Table 2. It is clear that besides depthwise convo-
lution and pointwise convolution, the residual connections, 
rectified linear unit (ReLU) [57] or its variants (i.e. ReLU6 
and PReLU) [35, 58], and linear operations are the most 
commonly involved operations. Furthermore, Squeeze and 
Excitation (SE) modules [59] (Fig. 15) are often inserted 
into the blocks as an attention mechanism to elevate the 
perception abilities of depthwise convolution. In prac-
tice, depthwise convolution has lower arithmetic intensity 
(Fig. 16), making it less efficient than expected [28, 36]. 
Other works circumvent this problem with different designs 
to achieve lightweight goals. The ShiftNet [60] proposes a 
shift operation (Fig. 17) requiring no extra floating point 
operations (FLOPs) and parameters, readily implemented 

Fig. 13   The MobileOne Block. It has two different structures at train 
time and test time. Left: Train time MobileOne block with reparam-
eterizable branches. Right: MobileOne block at inference where the 
branches are reparameterized. Either ReLU or SEReLU is used as 
activation. The trivial over-parameterization factor k is a hyperparam-
eter which is tuned for every variant

Fig. 14   Meta Light Block with 
RepSO. The block consists of 
two 1 × 1 Conv layers (with 
an expansion ratio � ) and a 
single spatial operator layer 
in between. Left: Train time 
block with reparameterizable 
branches. Right: Inference time 
block where the branches are 
reparameterized through RepSO

Fig. 15   Illustration of the SE module. It involves a two-step process: 
squeezing global information by reducing spatial dimensions, and 
then excitation by learning channel-wise weights to amplify impor-
tant features
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under the current environments. The DiCE unit [61] uti-
lizes dimension-wise convolutions and fusion, applying 
light-weight convolutions across input dimensions and fus-
ing dimension-wise representations compactly (Fig. 18). 
PeleeNet [44] utilizes conventional convolutions to achieve 
efficient and real-time object detection.

Overall, the crafted design of blocks aimed to improve 
the overall performance of the network, and also benefits the 

definition of search space for automated machine learning 
(AutoML) design.

3.1.2 � AutoML Design

The manual design has what appears to be a drawback; it 
heavily relies on the knowledge and experience of specialists 
to make a compromise between various factors like accu-
racy, efficiency, computing consumption, and more. As a 
result, a sub-optimal scheme tends to be obtained instead of 
an optimal one. Automatic methods typically utilize search 
algorithms to create an optimal network model that mini-
mizes the need for human labor.

The automatic search approach primarily involves three 
aspects: search space, search strategy, and evaluation strat-
egy. To achieve a lightweight design for deep networks, the 
focus on lightweight with limited search space is crucial, 
and it encompasses three stages: cell-level, stage-level, and 
layer-level. 

1.	 Cell-level, which explores a one-shot way of the net-
work design. Specifically, it only searches cell-level 
operations and extends them to the entire network lay-
ers. Some early works [65–67] provide certifications of 
competitive accuracy and low FLOPs of neural network 
design with this strategy. However, the homogeneity 
of different layers significantly reduces the accuracy 
and increases the delay of the neural network. As shuf-
fleNetV2 [37] pointed out, the cell-level operation is 
fragmented, resulting in frequent memory access, and 
may not be hardware-friendly. In addition, this strategy 
merely uses FLOPs as an approximate metric for meas-
uring the latency, which does not meet the requirements 
of real-time response.

2.	 Stage-level aims to obtain a hierarchical search space 
with different blocks distributed in different stages 
of a network. MnasNet [68] searched through neural 
structures composed of multiple stages and connected 
sequentially, each structure with a variable number of 

Fig. 16   Throughput variation with number of MACs per output for 
different types of NN operations [62]

Fig. 17   Shift operation. The operation shifts the pixel values of the 
input feature map by a specified distance, altering their spatial posi-
tions. In the given example with a 3 × 3 shift matrix, the illuminated 
cell denotes 1 at that position and the white cells represent 0

Fig. 18   DiCE Unit. The unit 
efficiently encodes the spatial 
and channel-wise information 
in the input tensor X using 
dimension-wise convolutions 
(DimConv) and dimension-wise 
fusion (DimFuse) to produce 
an output tensor Y. In practice, 
these three-dimensional kernels 
are executed simultaneously
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repeated identical layers, and is optimized on the target 
mobile devices with the external latency considered. 
Subsequently, MobileNetV3 [69] adopted a similar 
search algorithm with MnasNet except the search algo-
rithm is a hardware-aware neural architecture search 
(NAS) complemented by NetAdapt [70]. [71] is also 
a stage-level search work, and the GPU attribute is 
considered in its search algorithm. Yet blocks within a 
stage are identical, there is still potential room for per-
formance elevating.

3.	 Compared with Stage-Level, Layer-Level takes a fur-
ther hierarchical step to the search space. [72] applied 
modular search space to retrieve the predefined supernet 
middle layer, and the key is to fit the search granularity 
to the supernet layer level. Nine candidate modules are 
given in each search space to generate FBNets series 
networks, and the latency and accuracy are deemed as 
the contributions of each candidate to the search archi-
tecture. In [73], the authors thought that the search space 
of the aforementioned modular search algorithm is lim-
ited, thus, they proposed a memory-efficient algorithm, 
which can greatly expand the search space in spatial and 
channel dimensions within the layer.

Furthermore, there are ways to automatically search for 
lightweight CNN, which take into account finer-grained 
attributes in search space [71, 74–79]. [74] built ChamNet, 
considered traits of the hardware platform, and adjusted 
computing resources in the search algorithm to fit latency 
and energy constraints. The first mobile GPU-awareness 
(MOGA) NAS was proposed by Chu et al. [71] for mobile 
applications. [75, 77] also take into account the traits of 

the platform in search space. The convolution kernel size 
dramatically affects the neural networks performance, thus, 
MixNets [76] proposed a mixed-depth convolution (Mix-
Conv), which mixes multiple kernel sizes into one convolu-
tion and integrates them within the AutoML search space to 
obtain better performance than the previous mobile light-
weight models. In addition to the structured search, [78] 
expands the search space by introducing the previously 
neglected hyperparametric into it, which makes it more 
flexible to obtain lightweight networks. [79] believes that 
the task types should also be considered in the search space.

3.1.3 � Analysis and Summary

We summarize the manual design and automatic design 
of lightweight CNNs, as shown in Table 3. To compare 
benchmarks, all these works are evaluated on the Ima-
geNet and are measured by the number of parameters and 
FLOPs as well as mainly concerned with the accuracy of 
the top one. However, these models are focused on image 
classification on the ImageNet, and taken for granted that 
appropriate for other tasks. [50, 79] adopted manual and 
automatic search, respectively, and take the specific task 
categories into account simultaneously, high-level tasks 
such as object detection, semantic segmentation, and fine-
grained face recognition, etc., those application properties 
are crucial for model design [42–46, 79]. Moreover, plat-
form attribution [47, 48, 71, 72, 77] is another critical fac-
tor. Many works have reported their inference latency on 
hardware platforms, as shown in Table 3, column 6, but 
objective assessment of the performance of these models 

Table 2   The comparison of 
lightweight modular operations

The ‘activation’ column specifies the activation functions used in each corresponding module. ✓ indicates 
that the module adopts the operation corresponding to the column header, while × indicates the opposite
† The operation commonly employed within BSConv-S refer to [39]

Building block Residual con-
nection

Depthwise 
conv

Pointwise 
conv

SE module Activation

Fire module [31] × × ✓ × ReLU
SqueezeNext block [33] ✓ × ✓ × ReLU
DSConv [28, 34] × ✓ ✓ × ReLU
MBConv [35, 63] ✓ ✓ ✓ × ReLU6 & Linear
Fused-MBConv [64] ✓ ✓ ✓ ✓ ReLU6 & Linear
ShuffleNetV1 unit [36] ✓ ✓ ✓ ✓ ReLU
ShuffleNetV2 unit [37] ✓ ✓ ✓ ✓ ReLU & Linear
Sandglass block [38] ✓ ✓ ✓ ✓ ReLU6 & Linear
Ghost block [47, 52] ✓ ✓ ✓ ✓ ReLU & Linear
ESP module [50] ✓ × ✓ × PReLU & Linear
EESP unit [51] ✓ ✓ ✓ × PReLU & Linear
BSConv [39] ✓† ✓ ✓ ✓ Linear
MobileOne block [54] ✓ ✓ ✓ ✓ ReLU & SEReLU
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is difficult. The most popular measurement indicators of 
FLOPs and parameters do not entirely reflect the actual 
model efficiency [62]. In addition, most of the automatic 
methods rely on structural search with fixed hyperparam-
eters [78], and the whole network still requires manual 
optimization [69].

3.2 � Model Compression

Model compression is to explore the inherent over param-
eterized and structural redundancy of the network and 
remove them, thus obtaining a lightweight form. Accord-
ing to different processing views, the model compression 
is divided into network pruning, low-rank decomposition, 
low-bit quantization, and knowledge distillation.

3.2.1 � Network Pruning

Network pruning is to eliminate the non-critical redundancy 
in a pre-trained model without significant performance 
impairments.

1.	 Network pruning granularity

According to the redundant paradigm of the pre-trained 
models, pruning techniques can be classified as coarse-
grained pruning (i.e., structured pruning), strip-wise/group-
wise pruning, pattern pruning, and fine-grained pruning (i.e., 
unstructured pruning), as shown in Fig. 19.

–	 Fine-grained pruning, the pruning granularity of which 
is a sole neuron or connection. As the sparsity of a model 

Table 3   The comparison of lightweight models on ImageNet

Type Model #Parameter (M) #FLOPs (M) ImageNets Inference latency (ms) Published year

Top-1 Acc. (%) Top-2 Acc. (%)

Manual SqueezeNet [31] 4.8 837 57.5 80.30 – 2017
SqueezeNext [33] 

(2.0-SqNxt-23v5)
3.2 708 67.5 88.2 – 2018

MobileNetV1 [34] 4.2 575 70.6 89.5 113 (Google Pixel 1) 2017
MobileNetV2 [35] 3.4 300 72.0 91.0 75 (Google Pixel 1) 2018
ShuffleNetV1 [36] 3.46 140 72.6 – – 2018
ShuffleNetV2 [37] 2.3 146 71.8 – – 2018
PeleeNet [44] 2.8 508 72.6 90.6 26.1 (IPhone 8) 2018
ChannelNet-v1 [40] 3.7 407 70.5 – – 2018
GhostNet [47, 52] 5.2 141 73.9 94.1 – 2020
MobileNeXt [38] 3.4 300 74.0 – 211 (Google Pixel 4XL) 2020
ESPNetV1 [50] 1.46 – – – – 2018
ESPNetV2 [51] 3.49 284 72.1 – – 2019
PP-LCNet [48] 3.0 161 71.32 90.03 2.46 (Intel Xeon Gold 

6148)
2021

VGNetG-1.0MP [80] 0.997 – 67.7 87.9 226 (RTX6000 GPU) 2022
DiCENet-E150-B512 

[61]
5.1 297 75.7 – – 2022

MobileOne-S0 [54] 2.1 275 71.4 – 0.79 2023
Falconnet [55] 2.39 333.1 75.7 – – 2023

Auto MnasNet-A1 [68] 3.9 312 74 91.8 76 (Google Pixel 1) 2018
Proxylessnas [81] 4.0 320 74.6 92.2 78 (Google Pixel 1) 2019
ChamNet-A [74] – – 75.4 – 29.8 (Snapdragon 835) 2018
MobileNetV3-Large 

1.0 [69]
5.4 219 75.2 – 51 (Google Pixel 1) 2019

FBNetV1-C [72] 5.5 375 74.9 – 28.1 (Snapdragon 835) 2019
FBNetV2-L2 [73] – 423 78.1 – – 2020
FBNetV3-A [78] 5.3 357 79.1 94.5 – 2020
MixNet-S [76] 4.1 256 75.8 92.8 – 2019
MoGA-A [71] 5.1 304 75.9 92.8 11.8 (Qualcomm 2019) 2019
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usually needs to be determined layer by layer, the practi-
cal compression is inconsistent with the theoretical one 
[82]. In addition, the pruning requires customized hard-
ware to support [83].

–	 Strip-wise/Group-wise pruning is to prune along some 
vector of the input/output dimension in the parameter 
tensor. And the pruned results are irregular, which also 
requires a customized hardware support system [84, 85].

–	 Pattern-based pruning is executed on one layer or the 
whole of the model according to a set of fixed patterns 
[86, 87].

–	 Connectivity pruning sets the weight values of the pruned 
filters to 0 thus cutting off the connection between the 
input and output of certain channels, which enables the 
model to be accelerated with the existing hardware rather 
than the customized [88].

–	 Structured pruning removes unimportant convolution 
kernels in a set of channels and directly changes the 
width of the model. This approach can be accelerated 
directly using Off-the-Shelf machine learning libraries 
[89].

2.	 Pruning methods

Pruning can start from both model structure and the pro-
cessing of training. In terms of the structure pruning, the 
weight, the activation function, the gradient in backpropaga-
tion, and the batch-normalization all have the possibility to 
be tailored. From the perspective of model training, pruning 
approaches include reconstruction error training and regular-
ity training.

Li et al. [89] adopted the L1 norm to prune the weight 
kernel of the current layer and then removed the features 
map connected to this weight filter and the corresponding 
weight channel of the next layer. It is usually conditional 
to preserve large-norm coefficient features based on the 
Smaller-Norm-Less Informative hypothesis [90]. He et al. 
[91] consider the mutual relations between filters and based 
on the geometric median prune the most redundant filters 
rather than those relatively less important ones, which still 
works efficiently even if the norm-based criterion fails. Luo 
et al. [92] used reconstruction error to minimize the output 

deviations of the next layer and pruned the current layer 
according to the statistics information of its next layer. Dep-
Graph [93] explicitly models the dependency between lay-
ers by automatically grouping tightly coupled parameters. 
It enables efficient generalization to diverse neural architec-
tures without tedious individual analysis.

Most of the above works adopt structured pruning tech-
niques and require fine-tuning methods to remedy degenera-
tion in accuracy, the processing of which is tedious, and the 
generated sub-models are usually sub-optimal. Therefore, 
[94] adopted a continuous compression proportional control 
strategy for learning and designed a reinforcement learning 
reward mechanism according to different scenarios. [95] 
proposed adaptive batch normalization (BN), whose param-
eters are updated via several batches rather than fine-tuning. 
The absence of standardized benchmarks and metrics has 
confused researchers for a long time [96, 97]. [98] resorted 
to random search to optimize channel configurations when 
pruning. It could serve as a baseline to properly evaluate 
different pruning methods.

3.2.2 � Low‑Rank Decomposition

The tensor is the fundamental component of CNNs. Low-
rank decomposition attempts to reduce the hidden redun-
dancy in tensors, thus decreasing the complexity of convo-
lutional/fully connected layers in CNNs, and speeding up the 
model inference. One of the most commonly used low-rank 
decompositions is singular value decomposition (SVD). Let 
tensor A ∈ Rm×n , and re-write

where U ∈ Rm×r and VT ∈ Rr×n are orthogonal to each other, 
S ∈ Rr×r is a diagonal matrix containing singular values of 
the original matrix A. If there exists k << r can replacer, 
and the decomposition complexity is reduced from O(mn) to 
O(k(m + n + 1)) , then the original tensor can be compressed.

In [99, 100], the author decomposed the convolution 
kernel of w × h into the convolution kernel form of w × 1 
and 1 × h . In [101], Tucker is used to decompose the model 
weight, then the pruned model is deployed on the mobile 
phone for the experiment. Chen et al. [102] proposed a 

(1)A = USVT
,

Fig. 19   Pruning granularity
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decomposition method by using the combination of Tucker 
and classical prolongation (CP) and improved the efficiency 
of parameter utilization in the network.

The higher the tensor dimension, the better the decom-
position results may be, but the space complexity increases. 
Therefore, [103] removed the high-order kernel tensor to 
avoid the aforementioned deficiency, but this method ignores 
the key part of convolution layer modeling and merely 
works effectively for the fully connected layer. In [104], the 
tensor-train method is extended to the convolution layers. 
Since the convolution structure is already a compact fourth-
order tensor compared with the fully connected layer, the 
final compression level is very limited, and the subsequent 
extracted features may not be ideal. The prevalent DSConvs 
in lightweight CNNs make the situation more complex as 
their more compact tensor maps. [105] proposes an approach 
that integrates low-rank tensor decomposition with sparse 
pruning, fully leveraging both coarse and fine structures. 
This allows for efficient model compression of architectures 
that utilize DSConvs.

In fact, the low-rank decomposition is similar to design-
ing a lightweight compact structure, the difference is that 
the latter uses a compact lightweight topology structure to 
find the basic model, and the former aims to compress a 
given basic neural network model. At present, the low-rank 
decomposition is more mature than other methods. And 
most works require layer-by-layer decomposition and com-
pression. Despite [106] considering the global optimization 
of all layers during the model compression to avoid trivial 
layer-wise decomposition issues, it still requires additional 
retraining processing. In view of the fact that its high cost 
and limited compression capacity for the convolution layers, 
this approach does not earn much attention as imagination.

3.2.3 � Low‑Bit Quantization

Low-bit quantization attempts to analyze the numerical 
representation of the models, and then map the weights, 

activations, and even gradients of the networks to a set of 
fixed values to compress the numerical representation of the 
model and improve the inference efficiency. Without sig-
nificantly impair the accuracy of the network, the original 
32-bit (or 16-bit) single-precision floating-point number is 
projected to a lower-bit representation, such as 8-bit, 4-bit, 
2-bit, or even 1-bit. Low-bit representation is one of the most 
common model compression technologies used in industry, 
which can not only alleviate the amount of data transmis-
sion in hardware, but also reduce multiply-and-accumulate 
(MAC) operations and energy consumption.

Let x be the input, xq is the quantization,

Equation 2 denotes that the real number x is projected into 
the integer range [�, �] , where s is the quantization factor, 
and q is the quantized bit width.

Equation 2 depicts an affine quantization. When Z=0, this 
quantization is the so-called scale quantization. Through the 
inverse operation of Eq. 2, the quantized parameter value is 
reconstructed as “real value”, but usually the recovered real 
value is approximate to the original value rather than equal.

1.	 Quantization regimes

 The quantization mechanism represented by R in Eq. 2 
mainly includes uniform quantization and nonuniform one, 
as shown in Fig. 20. Among them, nonuniform quantiza-
tion distributes input to different step sizes by using variable 
quantization factor s (Eq. 3) [107, 108]. The quantization 
result matches the reality better but tends to bring greater 
overhead costs which is unfriendly to hardware implemen-
tation. In practice, binarization quantization is also very 
commonly utilized. In [109], quantization is taken as an 

(2)xq = clip(R(
x

s
+ Z), �, �),

(3)s =
� − �

2b − 1
,

Fig. 20   Two forms of discrete 
distribution for quantization. By 
adjusting s, the distribution of 
quantization levels is changed to 
two modes: (1 )uniform quanti-
zation with the same step sizes, 
and (2) nonuniform quantization 
with different step sizes
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optimization problem to minimize the difference between 
the input tensor and the binary expansion part. Uniform 
quantization is represented by linear quantization which 
allows the effective implementation of fixed-point operations 
on hardware. For uniform quantization, it is vital to choose 
the projecting range [�, �] , which determines the setting of 
quantization factor s. There are symmetric quantization and 
asymmetric quantization, the former is easier to implement, 
but the imbalance of the actual range may lead to a sub-
optimal solution.

2.	 Quantization granularity

 CNN has a hierarchical structure, and different components 
contribute inconsistently to the model. Different levels of 
quantization correspond to different granularity. For layer-
wise quantization, all elements in this layer share the same 
quantization parameters [110]. However, different con-
secutive layers interact with each other, so module-based 
quantization is proposed to alleviate this problem [111]. For 
channel-wise quantization, per-channel quantization [112] 
works on intermediate dimensions of the tensor. Further, 
one can explore per-row/per-column quantization, but this 
may lead to the huge burden of inference time, so it is more 
commonly adopted at the channel level [113].

3.	 Performance recovery methods

 Compressing a huge network to a compact one usually 
endows degradation of accuracy, thus performance perse-
vering strategy must be involved. The two most utilized 
methods include post-training quantization (PTQ) and 
quantization-aware-training (QAT) [114].

The PTQ method is popular among the community and 
industry since it can restore the performance of the model 
without requiring the original training pipeline. The method 
converts the pre-trained network into a fixed-point network 
and then retrains it offline to restore accuracy [111, 112, 
115–119]. However, its commonly used rounding-to-nearest 
mechanism ignores the contribution of non-diagonal ele-
ments in the Hessian matrix, resulting in a sub-optimal solu-
tion. Therefore, an improved approximation mechanism for 
per-layer was proposed [115], and remarkable works have 
been made by limiting the weights precision of networks 
such as Resnet18 and Resnet50 to 4-bit, while keeping the 
accuracy reduction within 1 % . [111] quantified the inter-
layer correlation which is ignored by AdaRound [115] to 
restrict the weight bit width of the quantized networks to 
2-bit. In [119], the author pointed out that the order of 
weights and activations is crucial to the network perfor-
mance, they randomly drop the quantization of activations 
during PTQ, thus the 2-bit activation for PTQ is realized for 
the first time.

PTQ has many merits, such as high efficiency and speed 
in applications. However, it is not as effective in restoring 
full-precision representation as expected. QAT, on the other 
hand, performs better in lower bits, such as 4-bit represen-
tations, although it takes more training costs and data sup-
port. Many works published about this method [120–125]. 
Since QAT introduced quantization during training, the gra-
dients update may cause accumulating quantization errors, 
especially in low-precision representation. Therefore, the 
straight-through estimator (SET) is required [123, 126]. In 
[121, 122], only the weights are binarized, and the gradients 
are still presented in full precision without using low bits, 
which endows much computing cost to backpropagation. In 
[123], both weights and activations are of low bit width and 
are quantified definitely, while the gradients are randomly 
quantized, thus, the CNNs training is accelerated as well 
as the inference. PACT [127] learns the clipping ranges of 
activations during training rather than the fixed ranges as 
in [123]. [128] proposed a so-called quantization interval 
learning (QIT) which quantizes the network weights and 
activations to obtain the optimal quantizer. In [129], the 
quantization step is deemed as a training parameter to bet-
ter adapt to the quantization distribution, while its improved 
version [130] can learn to accommodate the negative activa-
tions with asymmetric quantization. [131] proposes the CSQ 
(centered symmetric quantization) quantizer for extreme 
low-bit quantization ( ≤ 3-bit), which is trainable using QAT 
methods and shows that a simple change of quantization 
levels can result in significant performance improvement.

Despite the current quantization methods have made great 
progress in theory, there are still many limitations. On the 
one hand, most of the unified quantization methods tend 
to induce accuracy degradation due to the non-uniformed 
contributions of layers in a hierarchical network. There are 
mixed-precision quantization methods designed to cope with 
this problem, but their cost is prohibitive since it requires 
traversing the mixed quantization space to solve the optimi-
zation problem [132, 133]. On the other hand, most of the 
quantization methods are based on redundant baseline model 
testing and lack related tests for lightweight design models, 
let alone on real mobile devices. The quantization is more 
closely associated with the underlying hardware support, and 
the customized hardware may be more appropriate for it, but 
at a higher cost. So does the hardware-aware quantization 
[134]. Therefore, more corresponding baseline testing and 
hardware testing may benefit the design of quantization.

3.2.4 � Knowledge Distillation

Knowledge distillation (KD) [135, 136] is to acquire and 
transfer knowledge from the original large teacher model 
to the lightweight student model, as shown in Fig. 21. It is 
considered that the “softmax” output of the teacher model 



1928	 F. Chen et al.

1 3

contains more information, which is ignored in the form of 
one-hot [136], i.e., the highest probability is taken as the 
correct output while other probabilities as wrong. However, 
these incorrect outputs actually contain more information 
which is vital for the learning process. Therefore, a “tem-
perature” strategy is proposed to control the soft probability 
distribution of the outputs, as depicted in Eq. 4.

where T is the temperature, the zi calculated for each cat-
egory is converted as probability pi by comparing the zi with 
other logits. In general, T = 1 , and when T increases, it pro-
duces a soft probability distribution in the class.

The knowledge distillation can be roughly classified as 
feature-based knowledge and logits-based one according to 
the distillation location.

–	 The knowledge transferred by the logits-based method 
was initially considered as the conditional distribution 
of the output for a given input sample. From this point 
of view, the predictions or soft targets from the pre-
training teacher model play an important role in the 
guidance of the student model [137–144]. [139] can be 
viewed as a supplement to the principle of KD [136]. It 
decomposes the gradient caused by KD into two items: 
dark knowledge items and a ground-truth component, 
and quantifies the contribution of dark knowledge to 
KD. [138] transfers knowledge through collaborative 
learning between a group of student models rather 
than directly transferring with the one-way knowledge 
between the predefined teacher model and the student 
model. [141] claimed that the large model is not nec-
essarily a good teacher model for the guidance of the 

(4)pi =
exp(zi∕T)

∑

j
exp(zi∕T)

,

student model training. They proposed terminating the 
teacher model training early to alleviate the mismatch 
between the teacher and student models. [144] pointed 
out that a good teacher model can train a student model 
well as long as the teacher and the student always with 
the same input, radical data enhancement, and suffi-
cient training times. It is found in [142] that when there 
is a significant capacity difference between the teacher 
model and the student model, the performance of the 
student model will be degraded greatly. To alleviate 
the above problems, multi-level knowledge extraction 
is introduced as a medium-scale network to bridge the 
gap between them.

–	 Feature-based methods may outperform logits-based at 
the expense of extra computation and memory consump-
tion for distilling deep features during training [145–
154]. [145] defined the transferred knowledge according 
to the information flow between layers, and obtained the 
extracted knowledge by computing the inner product of 
features between two layers. [146] added a feature atten-
tion mechanism into the network, which helps the stu-
dent model learn better from the teacher model. [147] 
proposed to align the distribution i.e., the matching dis-
tribution of neuron selectivity patterns between teacher 
and student models, to improve the performance of the 
student network. Heo et al. [148] found that the trans-
ferring of activation boundaries can greatly improve the 
transferred efficiency and proposed a knowledge transfer 
method by transferring the activation boundaries of hid-
den neurons. [149] put forward a factors-based knowl-
edge transfer method, which can inherit paraphrased 
information from the teachers’ network. [154] pointed 
out that students should maintain similarity in pairs in 
their representation space, rather than imitate the teach-
er’s representation space. [153] has developed contrastive 
learning which enables the teacher and student to project 
the same input to adjacent representations, and different 
input to apart representations.

It is noted that feature-based distillation requires extra super-
parameters adjustment to lever the effects of losses in dif-
ferent layers. Although there is a supervised approach to 
explore the feature representation of the middle layer in a 
teacher model, it is unclear which layers and how the lay-
ers impact the student model. Compared with feature-based 
distillation, the logits-based method has a lower cost of 
training, but its performance compares unfavorably with 
the former. It is generally agreed that larger models may not 
necessarily make better teacher models, feature-based distil-
lation is better than soft-label distillation, and the deep-level 
students model outperforms shallow-level students. Inter-
estingly, soft label distillation in [155] with higher-level 
semantic features is better than feature-based distillation. 

Fig. 21   Knowledge distillation framework
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The knowledge distillation field is still in its infancy, requir-
ing further establishment of theories and experiments.

4 � Underlying Frameworks Support

The approaches reviewed previously are top-down solutions 
to develop lightweight network models. However, practical 
applications require support from the underlying framework 
to truly obtain improvements in accuracy, speed, and energy 
efficiency. This underlying framework can be categorized 
into general learning libraries and hardware-based support.

–	 General learning libraries [167] can be used for CNNs 
training and inference, such as in Caffe [163], MXNet 
[164], Tensorflow [156], TensorRT [166], PyTorch [157], 
etc., as shown in Table 4. Most of these learning librar-
ies are open source and improved continuously. Among 
them, PyTorch and Tensorflow are two representative 
frameworks with strong community and excellent docu-
mentation support, and they are also the two most popu-
lar frameworks in academic and industrial circles, both 
have visual tools (Visdom, Tensorboard) support to facil-
itate the development. They are popular in model training 
via GPU parallel computing speedup but are not widely 
available for the inference of edge devices. The librar-
ies’ optimization mainly focuses on pipelining, resource 
management, as well as efficient compiler design [168]. 
TensorFlow Lite (TF-Lite) and TensorFlow Micro are 
two extensions of Tensorflow for edge inference.

–	 To accelerate the processing of deep network models in 
specific applications, numerous specialized hardware 
platforms have been developed. As discussed earlier, 
the reduction in the number of network parameters and 
multiply-and-accumulate (MAC) may not induce perfor-
mance improvement or energy consumption reduction 

as expected. The core of hardware development is in 
terms of appropriate throughput and energy efficiency. 
The MAC operations are easily implemented in parallel 
and optimized in both spatial and temporal architectures 
[169]. Temporal architecture is usually implemented in 
CPUs or GPUs and enhances parallelism via SIMD or 
SIMT to increase throughput [169, 170].   Representa-
tive embedded GPUs involve NVIDIA Jetson TX2 [171], 
and Intel Edison Kit [172]. In addition, data transmis-
sion contributes much to the energy consumption. Spa-
tial architectures are usually designed and implemented 
based on specific integrated circuits (ASIC) and field 
programmable gate arrays (FPGA). These designs tend to 
enhance data reuse and reduce data transmission as much 
as possible to ensure energy efficiency. Typical works 
on ASIC include EIE [83] and Eyeriss [173, 174]. EIE 
is specially designed for pruned lightweight networks. 
In Eyeriss [173], the authors adopted two methods to 
improve energy efficiency. One is to reduce transmission 
through data reuse, and the other is to avoid unneces-
sary reading and calculation via data statistics [174]. The 
main difference between them is in structure, while the 
latter performs better in lightweight applications. More 
related works refer to FPGAs and ASICs are detailed in 
[16, 168, 169, 175].

5 � Benchmark Datasets

The dataset is the driver for a neural network as well as the 
requisite of performance verification for it.

CIFAR [176] is a commonly used image classification 
dataset, with an image pixel of 32 × 32. The training and 
verification set consists of 50 k and 10 k images. CIFAR-10 
is composed of 10 mutually exclusive classes, and CIFAR-
100 is composed of 100 mutually exclusive classes.

Table 4   Comparison of some learning libraries

Library name Developers Languages Characteristics

TensorFlow [156] Google’s AI Python Phe function of data integration
PyTorch [157] Facebook Python Easy-to-use, flexible
Keras [158] Google Python Easy to integrate, efficient, portable
PyTorch Lightening [159] Facebook Python Easy-to-use, reproducibility, readability
Theano [160] The University of Montreal Python, C++ Speed and stable optimization
CNTK [161] Microsoft C++ Easily realize and combine popular model types
Deeplearning4j [162] Skymind Java, Scala General-purpose, easy-to-use, flexible
Caffe [163] The Berkeley Vision, Learning 

Center (BVLC), community
C++ Lightweight, modular, scalable

MXNet [164, 165] Apache C++ Flexible and efficient
TensorRT [166] NVIDIA C++, Python Flexible and efficient, update quickly
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ImageNet [20] contains large-scale colored images with 
pixels of 256 × 256, which is composed of 1000 no-overlap 
categories. There are 1.3 M training images, 100 thousand 
testing images (100 per class), and 50,000 validation images 
(50 per class) in ImageNet.

Stanford Dogs dataset [177] contains 20,580 images, 
which is built for the task of fine-grained image categori-
zation, and composed of 120 breeds of dogs from around 
the world. The training set contains 14,580 images and the 
validation contains 6000 images.

There are other public datasets for different types of 
tasks (e.g., object detection [178] and semantic segmenta-
tion [179]). However, current public data sets can not satisfy 
specific application requirements, more private datasets are 
available as semi-opened or unopened in academics, com-
panies, or individuals.

6 � Future Research Directions

Based on the above analysis, current lightweight technolo-
gies have limitations for widespread applications to some 
extent. Future research should focus on the following prom-
ising directions:

–	 Collaborative design and optimization. As described 
earlier, lightweight techniques require top-to-bottom 
cooperation, which requires the involvement of the spe-
cific task to explore lightweight ways from all possible 
perspectives [180]. For example, when designing a light-
weight network model, the task complexity and the plat-
form attributes should be considered for tuning. Various 
compression methods are orthogonal to model design 
methods [181, 182], i.e., they can cooperate during the 
design. The progress in lightweight network algorithms 
also benefits the development of the underlying learn-
ing library and hardware. It is worth further focusing on 
developing the combination [54, 55] of emerging tech-
nologies like structural reparameterization with existing 
lightweight technologies.

–	 Establishment of evaluation standards. On the one 
hand, to objectively depict the properties of a light-
weight CNN model, the following metrics should be 
emphasized: the accuracy of the model based on a pub-
lic dataset, the number of parameters and FLOPs of the 
model as well as the architecture-related parameters. 
Moreover, the deployment or development of a light-
weight network model should pay attention to the hard-
ware metrics [62], such as latency, power consump-
tion, etc. On the other hand, the scarcity of high-quality 
datasets is another important hindrance to lightweight 
network development. In current circumstances, one 
feasible method is to gradually establish the standard 

datasets for specific applications, the other is to adopt 
alternative strategies to remedy the lack of datasets, 
such as transfer learning [183], active learning [184], 
and incremental learning, etc.

–	 Explainability and visualization. Model visualization 
technology has emerged recently, which has significant 
potential to help the researcher understand and improve 
the models, such as in the design of GhostNet [47, 
52] and VGNet [80]. In the future, more fine-grained 
downstream vision tasks still require fully mining and 
exploiting the redundancy of the feature maps via visu-
alization technology.

–	 Activation functions and attention modules. Currently, 
ReLU is favored by many researchers, and future works 
on activation function may have space to improve. In 
addition, lightweight CNNs with the plug-in attention 
mechanism are full of promising [185–189]. Particu-
larly, lightweight CNNs leveraging multi-head attention 
mechanisms of Transformers to overcome CNNs’ limi-
tations on long-range modeling are gaining momentum 
[190–194].

7 � Conclusions

DCNNs have gained remarkable attention in the field of 
computer vision, whose performance even have outper-
formed humans in many applications. It will continue to help 
drive the artificial intelligence algorithm trend. Although the 
current technological development has made much progress 
to some extent, the high computational complexity hinders 
its portability and performance in various mobile scenarios. 
Therefore, lightweight network technology naturally appears 
to match the growing mobile intelligence.

In this paper, the vital technologies of lightweight CNNs 
in recent years are reviewed, which include but are not lim-
ited to manual structured design, automatic architecture 
search, compression from structure to representation, and 
abstract knowledge distillation. In addition, we emphasize 
the significance of dataset and hardware support for light-
weight network deployment and prospect several promising 
future trends corresponding to this field. We try to comb 
these marvelous works as clearly as possible, thus provid-
ing valuable guidance for researchers engaged in this field.
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