
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2024) 31:1915–1937
https://doi.org/10.1007/s11831-023-10032-z

REVIEW ARTICLE

Review of Lightweight Deep Convolutional Neural Networks

Fanghui Chen1 · Shouliang Li1 · Jiale Han1 · Fengyuan Ren1 · Zhen Yang1

Received: 25 August 2023 / Accepted: 30 October 2023 / Published online: 28 November 2023
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023

Abstract
Lightweight deep convolutional neural networks (LDCNNs) are vital components of mobile intelligence, particularly in
mobile vision. Although various heavy networks with increasingly deeper and wider have continuously broken accuracy
records since 2012, with the spring of terminals and mobile devices, neural networks that can match them have become a
core role in practical applications. In this review, we focus on several representative lightweight Deep Convolutional Neural
Networks (DCNN) technologies that hold significant potential for advancing the field. More than 190 references screened
out in terms of architecture design and model compression, in which over 50 representative ones are emphasized from the
perspectives of methods, performance, advantages, and drawbacks, as well as underlying framework support and benchmark
datasets. With a comprehensive analysis, we put forward some existing problems and offer prospects of lightweight DCNN
for future development.

1 Introduction

DCNNs are preferred in mobile intelligence more than ever.
Since 2012, deep learning techniques have prompted CNNs
to flourish as the mainstream status of the computer vision
field [1]. The powerful local modeling ability of deep con-
volution neural networks endows it dazzling in computer
vision tasks such as image classification, object detection,
segmentation, recognition, etc. As we witnessed, to pursue
better performance, the shape of the deep networks becomes
increasingly deeper and wider. Thus, the data-driven DNN
has massive parameters to ensure performance on highly
parallel hardware devices, which requires an awful amount
of hardware resources to train the parameter deluge. Inevi-
tably, most deep CNN models are large-scale and compu-
tation-intensive. Specifically, AlexNet [1] consumes more
than 200MB of memory, VGGNet [2] takes up more than
500MB, and ResNet50 [3] is about 95MB. Due to the high
resource demands, most models with excellent performance

suffer from many limitations in real-world scenarios, espe-
cially for edge intelligence (EI) with widespread application
demands.

At present, deep learning primarily adopts the cloud-end
paradigm in practical applications. This approach entails
exchanging information between cloud computing servers
and mobile devices, employing deep learning algorithms to
address real-world issues. In this process, the edge terminal
devices send requests to the cloud computing center through
the network, and the computing center then returns the pro-
cessed results to each corresponding terminal device. How-
ever, the paradigm heavily relies on network coverage and
stability, making it time-consuming, tedious, error-prone,
and pose potential security risks. Edge terminal scenarios,
such as smartphones, autopilot systems, and drones, have
a superior demand in real-time and security performance
for visual applications. Traditional cloud-based models may
not meet the performance demands of these edge terminal
scenarios. In fact, there are many redundancy connections in
different layers of a DNN. Lightweight CNNs are potential
candidates for such edge scenarios to solve vision tasks, but
pruning a large-scale network to fit a resource-constrained
terminal device is full of challenges. The lightweight tech-
nology aims to explore and eliminate those idle neurons
without significantly decreasing the performance. It gen-
erally refers to lightweight model design or model com-
pression. Indeed, some optimization is selective in specific
mobile application scenarios as essential, such as machine

 * Fengyuan Ren
 rfy@lzu.edu.cn

 * Zhen Yang
 zhenyang@lzu.edu.cn

1 School of Information Science and Engineering, Lanzhou
University, Lanzhou 730000, China

http://orcid.org/0000-0001-7244-0521
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-023-10032-z&domain=pdf

1916 F. Chen et al.

1 3

learning libraries selection, hardware platforms deploy-
ment, etc. In recent years, more and more industries and
computer vision communities have ventured into this area.
This wave of interest has spurred a flood of impactful studies
and breakthroughs.

Table 1 lists the surveys [4–19] that refer to light-weight
strategy within the past 5 years. The works [4–11] con-
centrate on light-weight methods from the viewpoint of
structural models and compression technologies. Others
[12–19] deem lightweight technology an essential part of
EI. [4] reviews those lightweight networks maturely applied
in object detection, a branch of computer vision tasks. [5,
7, 11] only present some classical lightweight models while
lacking a comprehensive overview of lightweight techniques
as well as recent improvements. [6] just pecked at light-
weight technologies in terms of artificial design, model com-
pression, and architecture search. [8] mainly reviewed those
convolution variants with high computational efficiency, and
did not cover other promising lightweight within the scope
of CNNs. [9, 10] emphasized model compression while
neglecting its peer technologies like model design. And in
[12–19] focuses on the techniques of compacting and accel-
erating DNN models. However, it does not cover the under-
lying support framework and lacks the latest technology due

to obsolescence. [13, 14, 16] mainly emphasized EI and the
relationship between edge computing and intelligent applica-
tions. [15, 17–19] start from the perspective of deep learn-
ing, which encompasses a broad range of technologies and
applications to provide specific guidance.

Although there are many works that try to elaborate the
lightweight paradigm, they either don’t cover comprehen-
sive key technologies or fully consider the characteristics
within lightweight CNN architectures. Additionally, recent
improvements and trends for future directions are vague
in those works. Therefore, this paper aims to bridge the
gaps by comprehensively analyzing the state-of-the-art
techniques adopted in lightweight DCNNs, incorporating
underlying supports. To establish a more complete and up-
to-date resource regarding this pivotal topic for researchers
and practitioners alike, we carefully retrieve articles that are
technically representative for summarizing. We will elabo-
rate on the evolution of lightweight DCNNs. It has been
driven by the deployment to edge terminals. The concept
of ‘lightweight’ is evaluated from aspects such as the num-
ber of parameters, computation complexity, memory con-
sumption, etc. All involved literatures are categorized into
two classes respectively on algorithms and libraries—one
focusing on algorithms designed specifically for DCNNs

Table 1 Relative surveys and their focus

References Published year Focus

[4] 2018 Focus on lightweight networks in object detection
[5] 2020 Introduced and discussed six early lightweight CNNs
[6] 2020 A detailed introduction to constructing lightweight neural networks by three methods: artificial design, model

compression, and automatic architecture search
[7] 2022 Comparison on mainstream lightweight neural network models
[8] 2022 Focus on the convolution part of CNNs and elaborate on the main design idea by analyzing various compositions

of the convolutional part of the model
[9] 2022 Focus on the model compression methods: pruning, quantization, knowledge distillation, and neural architecture

search
[10] 2023 Focus on the mechanism of DNN compression technology and divide existing methods into pruning, sparse repre-

sentation, bits precision, knowledge distillation, and miscellaneous based on this
[11] 2023 Review a few prevalent lightweight CNNs along their architecture, design features, performance metrics, advan-

tages, etc
[12] 2018 Compression and acceleration technology
[13] 2019 Focus on reviewing and discussing the development, motivation, architecture, and theories of EI
[14] 2020 To distinguish EI into artificial intelligence (AI) for edge and AI on edge
[15] 2020 Reviewing the methods of model compression and their principles. Explaining how to use associate methods in

accelerator design
[16] 2021 Focus on how to realize EI in a systematic way,including edge caching, edge training, edge inference, edge off-

loading
[17] 2022 Focus on DL optimization for mobile applications and devices. Summarize DL-based approaches in different

mobile applications
[18] 2022 Enablers of efficient model compression approaches, and the AutoML framework for these methods, relative

applications and task-specific accelerations
[19] 2022 Focus on lightweight DL models, different compression techniques, application areas, algorithm-hardware code-

sign approaches, available hardware and software tools, and use cases of EI

1917Review of Lightweight Deep Convolutional Neural Networks

1 3

on resource-constrained edge devices, the other on librar-
ies optimized for hardware components of DCNN inference
pipelines in such environments. Thereinto, in the process of
pursuing light-weight, the relative software algorithms are
further divided into two categories: the design from scratch,
and the compression method widely used in large-scale
DCNNs. Underlying difficulties, limitations, merits, and
disadvantages are discussed in applying these algorithms.
Based on the review and analysis, some potential and prom-
ising directions associated with lightweight DCNNs are
proposed.

Figure 1 describes the overall structure of this survey,
which is organized as follows: 2 introduces the motivation of
lightweight CNNs, as well as the taxonomic perspective. The
representative technical works of lightweight networks are
reviewed in 3. Underlying frameworks support and common
benchmark datasets are depicted in 4 and 5, respectively. The
perspective of lightweight techniques is given in 6. Finally,
conclusions are drawn in 7.

2 Motivation and Category

This section first discusses the motivation for utilizing light-
weight CNNs and then classifies the corresponding light-
weight methods.

2.1 The Motivation of Utilizing Lightweight CNNs

For a long time, artificial neural networks (ANNs) have
been seriously hampered by insufficient samples of the
data set and low hardware performance. Up until 2009, the
ImageNet database was released [20] and there was also
sufficient computing power of the hardware, the ImageNet
large-scale visual recognition challenge (ILSVRC) [21] was

held spanning the period from 2010 to 2017. The AlexNet
[1] in 2012 was a milestone that promoted the great suc-
cess of deep NNs in the field of image recognition. During
the period of ILSVRC, DNNs are capable of identifying
objects accurately by executing large-scale computing, the
cost is “deep”, i.e., high computational complexity and high
memory consumption. However, those large-scale models
are not friendly for edge computing which is the mainstream
of future general intelligence. Accuracy and real-time prop-
erty are two main requirements for edge intelligence, which
requires both intelligent algorithms and hardware to work
in concert. Conventional large-scale intelligent algorithms
with high accuracy are hardly deployed on edge devices,
while those tiny algorithms are under-powered for the accu-
racy demands. Moreover, studies have shown that there is
a certain degree of redundancies in deep models, whether
for edge devices or cloud data centers, the extra costs are
unnecessary. And finally, with the failure of Moore’s Law, it
is becoming more and more difficult to elevate hardware per-
formance. Neural networks’ lightweight design is a promis-
ing solution for these issues. The lightweight network model
significantly reduces the number of parameters and compu-
tational complexity. Certainly, to achieve fair performance in
practical applications requires corresponding support from
the underlying libraries and hardware. Currently, the hand-
written digit recognition network proposed by LeCun et al.
[22] is a paradigm used for exploring technology.

2.2 Category of Lightweight DCNNs Methods

As shown in Fig. 2, the CNNs extract characteristics of the
inputs via convolution and pooling operations and put them
forward to fully connected (FC) layers to yield outputs. The
loss function is then used as an optimization criterion to
update the weights of each layer, aiming to minimize the loss

Fig. 1 Overview of this survey

1918 F. Chen et al.

1 3

and match the expected output. With the learned weights,
CNNs are capable of inferring those unencountered tasks.

Large-scale DCNNs may benefit particular visual tasks
but certainly require vast hardware resources, and time
consuming. In addition, relevant research has shown that
there is a lot of redundancy when modeling a large amount
of data using deep neural networks [23]. The computa-
tional complexity mainly originates from the convolution
operation, the number of parameters mainly determined
by the full connection layer [24]. To slim the network
and reduce its computational complexity, the model itself
and the underlying framework need to be optimized to
fit particular hardware. Therefore, we classify the light-
weight network technology into two categories refer to
model correlation and hardware correlation as shown in
Fig. 3, where the model correlation involves design and
compression. The former mainly includes manual design
and automatic model search to obtain an initial lightweight
neural network. The latter is tailoring a bulky neural net-
work to a lightweight one, which mainly includes four
ways: model pruning, low-rank decomposition, weight
quantization, and knowledge distillation. Hardware cor-
relation mainly refers to the accelerated optimization of

convolution operation and the underlying framework-level
support when lightweight CNN models are deployed on
mobile or embedded devices, such as TensorFlow Lite and
TensorRT, as well as related technologies that guide hard-
ware design. The item amount statistics of references for
each subcategory are shown in Fig. 4.

3 Methods for Lightweight Convolutional
Neural Networks

3.1 Architecture Design

Exploring the sparse hierarchical structure of CNNs with-
out significantly reducing the accuracy of the network is the
purpose of designing lightweight CNNs. Two ways towards
this destination.

Fig. 2 CNNs propagation pipe-
line CNNs training (also known
as learning) is a process of both
forward and backward propaga-
tion iteratively. The inference is
a forward propagation to calcu-
late the output for unseen data
with the learned parameters
during training. Here, yi denotes
activation output of every layer
and serves as the input to the
next layer, which is equivalent
to xi . � is weight and b is bias.
L is loss function, ȳ is output

Fig. 3 Taxonomy of lightweight CNNs methods

Fig. 4 The item amount statistic within each lightweight strategy and
relative supports

1919Review of Lightweight Deep Convolutional Neural Networks

1 3

3.1.1 Manual Design

Manual design reduces the parameters amount and computa-
tional complexity by introducing some specific convolution
paradigms, such as group convolution, separable convolu-
tion, dilated convolution, etc. The Inception series started
from GoogLeNet has made continuous progress in improv-
ing accuracy and decreasing the computational complexity
of the network [25–28]. Especially, in [28], the decoupling
of 3D convolution kernels into a separable 2D paradigm
along the direction of the channel, i.e., depthwise convolu-
tion (DWConv) or single intra-channel convolution [29, 30],
has had a far-reaching impact on the subsequent lightweight
schemes.

Via sparse structure designing, a large number of impres-
sive works have emerged. Forrest Iandola et al. [31] pro-
posed the SqueezeNet, in which a sparse convolution module
called Fire (Fig. 5a) is represented. The fire model consists
of two stages named squeeze and expand, respectively,
the former used 1 × 1 convolution filters [32] to reduce the
dimension of characteristic channels, while the latter com-
bined 1 × 1 and 3 × 3 convolution filters to support multiple
resolutions. SqueezeNet has 50 times fewer parameters than
the AlexNet but achieves a competitive level of accuracy on
ImageNet as AlexNet. In the improved SqueezeNet [33],
a two-stage bottleneck structure is proposed to reduce the
number of channels (Fig. 5b), and the separable convolution
is utilized to further reduce the parameters. The author also
used hardware simulation to determine the best design of the
baseline model. The MobileNets series [34, 35] are designed
for mobile or embedded devices. MobileNets [34] makes full
use of the depthwise separable convolution (DSConv) which
involves depthwise con-volution to filter each input channel,
and a 1 × 1 pointwise convolution (PWConv) to combine the
outputs of the depthwise convolution (Fig. 6), and control-
ling the network size by super parameters. MobibleNetV2
[35] co-opted ResNets [3]’s bottleneck module, which com-
bines depth separable convolution with residual connection.

The author adopted linear transformation in bottleneck to
reserve complete information and shortcuts directly between
the bottlenecks (Fig. 7) which enables the module to per-
form inference with higher memory efficiency than stand-
ard ones in various neural architectures. ShuffleNet [36],
as shown in Fig. 8, is an improvement of MobibleNet, and
also inherits the merit of group convolutions of AlexNet to
compromise representation ability and computational cost.

Fig. 5 The fire module and SqueezeNext block. Here, M and N repre-
sent the number of channels, while W and H represent the size of the
feature map, respectively

Fig. 6 Standard convolution and depthwise separable convolution

Fig. 7 The inverted residual block. This block expands a compressed
input, filters it with a DWConv, and then projects the features back to
a lower-dimensional representation using a linear convolution

Fig. 8 Channel shuffle with two stacked group convolutions. GConv
indicates group convolution. The information between the layers
GConv1 and GConv2 is fully communicated through channel shuffle

1920 F. Chen et al.

1 3

In addition, the shuffle operation is introduced to facilitate
information flow exchange for multiple group convolution
layers. In ShuffleNetV2 [37], the author claimed that the
numerous 1 × 1 group convolutions and the shuffle opera-
tions actually increase the frequency of memory accesses.
Therefore, to solve the above problem, channel splitting is
employed instead of group-wise convolutions. In the work
of [38], the author pointed out that the inverted residual
block would induce information loss and gradient fusion.
Thus, they add depthwise convolutions at the ends of the
residual path (Fig. 9), which can extract richer features.
[39] utilized the correlation along the depth direction in DS
convolution and proposed the blueprint separable convolu-
tion (BSConv) (Fig. 10). The BSConv consistently verified
improvement based on DSConv models without introduc-
ing any further complexity. ChannelNets [40] believe that
the fully-connected pattern is the main cause of excessive
computational consumption. So three channel-wise convolu-
tion operations are proposed, which significantly reduce the
number of parameters and computational complexity with-
out accuracy loss. The aforementioned strategy has also been
incorporated into 3DCNNs [41] for video applications that
typically require higher computational resources.

Other lightweight CNNs concentrate on specific visual
tasks [42–46] or dedicated hardware applications [47,
48], such as object detection [42], segmentation [43],

and recognition [45, 49]. In [50, 51] (Fig. 11), the dilated
convolution is used to enlarge the receptive field without
increasing the computational load, memory, and power,
which dramatically benefits the semantic segmentation of
high-resolution images. What is meaningful are the tech-
niques that leverage visualization to provide design insights.
In [52], visualization revealed redundant feature maps as
important for effective CNNs. The insight inspired the
GhostNet module (Fig. 12) to generate more redundant
feature maps through linear transformations for revealing
intrinsic information while maintaining compatibility with
existing CNNs. The authors also put forward C-GhostNet
and G-GhostNet respectively for GPU-like and CPU-like

Fig. 9 The sandglass block. This block reverses the inverted residual
block between bottlenecks and adds DWConvs (i.e., separated blocks)
at both ends of the residual path, both of which are crucial for perfor-
mance improvement

Fig. 10 The blueprint separable convolution. BSConv exploits cor-
relations between CNN filter kernels along the depth dimension. It
represents each filter using a single 2D blueprint kernel distributed
across depth via a weight vector

Fig. 11 The block diagram of the efficient spatial pyramid (ESP)
module. It consists of a pointwise convolution followed by a spatial
pyramid convolution. The former of the module reduces the computa-
tion while the latter enlarges the receptive field and removes gridding
artifacts through hierarchical feature fusion (HFF)

Fig. 12 The Ghost module. It consists of a lightweight “ghost”
branch and a heavier “feature” branch in parallel. The former gen-
erates feature maps via a series of cheap operations while the latter
generates more complex ones. The output is obtained via a concat-
enation operator, balancing representational power and computational
efficiency

1921Review of Lightweight Deep Convolutional Neural Networks

1 3

devices in their subsequent works [47]. In VGNetG [53], the
visual analysis enabled utilizing edge operators to substitute
for learnable operations in the lower layers, resulting in a
parameter-efficient CNN architecture. More recently, works
like MobileOne [54] and FalconNet [55] have developed
the reparameterization technique [56] into module design.
It allows linear branches present during training to be re-
parameterized as simpler blocks for inference. Concretely,
the MobileOne block (Fig. 13) introduces over-parameter-
ized branches to enhance representation capacity during

training, which is then reparameterized into a slimmed-down
form for inference, yielding improvements in both accuracy
and latency.

In [55], the authors abstracted the Meta Light Block based
(Fig. 14) on different lightweight modules. They introduced
Reparameterized Spatial Operator (RepSO) and Reparam-
eterized factorized Channel Operator (RefCO) methods to
increase the sparsity of the spatial and channel dimensions,
respectively. Both strategies leverage structural reparameter-
ization to convert the diverse connections employed during
training into equivalent inference units.

We summarize those impressive lightweight works as
shown in Table 2. It is clear that besides depthwise convo-
lution and pointwise convolution, the residual connections,
rectified linear unit (ReLU) [57] or its variants (i.e. ReLU6
and PReLU) [35, 58], and linear operations are the most
commonly involved operations. Furthermore, Squeeze and
Excitation (SE) modules [59] (Fig. 15) are often inserted
into the blocks as an attention mechanism to elevate the
perception abilities of depthwise convolution. In prac-
tice, depthwise convolution has lower arithmetic intensity
(Fig. 16), making it less efficient than expected [28, 36].
Other works circumvent this problem with different designs
to achieve lightweight goals. The ShiftNet [60] proposes a
shift operation (Fig. 17) requiring no extra floating point
operations (FLOPs) and parameters, readily implemented

Fig. 13 The MobileOne Block. It has two different structures at train
time and test time. Left: Train time MobileOne block with reparam-
eterizable branches. Right: MobileOne block at inference where the
branches are reparameterized. Either ReLU or SEReLU is used as
activation. The trivial over-parameterization factor k is a hyperparam-
eter which is tuned for every variant

Fig. 14 Meta Light Block with
RepSO. The block consists of
two 1 × 1 Conv layers (with
an expansion ratio �) and a
single spatial operator layer
in between. Left: Train time
block with reparameterizable
branches. Right: Inference time
block where the branches are
reparameterized through RepSO

Fig. 15 Illustration of the SE module. It involves a two-step process:
squeezing global information by reducing spatial dimensions, and
then excitation by learning channel-wise weights to amplify impor-
tant features

1922 F. Chen et al.

1 3

under the current environments. The DiCE unit [61] uti-
lizes dimension-wise convolutions and fusion, applying
light-weight convolutions across input dimensions and fus-
ing dimension-wise representations compactly (Fig. 18).
PeleeNet [44] utilizes conventional convolutions to achieve
efficient and real-time object detection.

Overall, the crafted design of blocks aimed to improve
the overall performance of the network, and also benefits the

definition of search space for automated machine learning
(AutoML) design.

3.1.2 AutoML Design

The manual design has what appears to be a drawback; it
heavily relies on the knowledge and experience of specialists
to make a compromise between various factors like accu-
racy, efficiency, computing consumption, and more. As a
result, a sub-optimal scheme tends to be obtained instead of
an optimal one. Automatic methods typically utilize search
algorithms to create an optimal network model that mini-
mizes the need for human labor.

The automatic search approach primarily involves three
aspects: search space, search strategy, and evaluation strat-
egy. To achieve a lightweight design for deep networks, the
focus on lightweight with limited search space is crucial,
and it encompasses three stages: cell-level, stage-level, and
layer-level.

1. Cell-level, which explores a one-shot way of the net-
work design. Specifically, it only searches cell-level
operations and extends them to the entire network lay-
ers. Some early works [65–67] provide certifications of
competitive accuracy and low FLOPs of neural network
design with this strategy. However, the homogeneity
of different layers significantly reduces the accuracy
and increases the delay of the neural network. As shuf-
fleNetV2 [37] pointed out, the cell-level operation is
fragmented, resulting in frequent memory access, and
may not be hardware-friendly. In addition, this strategy
merely uses FLOPs as an approximate metric for meas-
uring the latency, which does not meet the requirements
of real-time response.

2. Stage-level aims to obtain a hierarchical search space
with different blocks distributed in different stages
of a network. MnasNet [68] searched through neural
structures composed of multiple stages and connected
sequentially, each structure with a variable number of

Fig. 16 Throughput variation with number of MACs per output for
different types of NN operations [62]

Fig. 17 Shift operation. The operation shifts the pixel values of the
input feature map by a specified distance, altering their spatial posi-
tions. In the given example with a 3 × 3 shift matrix, the illuminated
cell denotes 1 at that position and the white cells represent 0

Fig. 18 DiCE Unit. The unit
efficiently encodes the spatial
and channel-wise information
in the input tensor X using
dimension-wise convolutions
(DimConv) and dimension-wise
fusion (DimFuse) to produce
an output tensor Y. In practice,
these three-dimensional kernels
are executed simultaneously

1923Review of Lightweight Deep Convolutional Neural Networks

1 3

repeated identical layers, and is optimized on the target
mobile devices with the external latency considered.
Subsequently, MobileNetV3 [69] adopted a similar
search algorithm with MnasNet except the search algo-
rithm is a hardware-aware neural architecture search
(NAS) complemented by NetAdapt [70]. [71] is also
a stage-level search work, and the GPU attribute is
considered in its search algorithm. Yet blocks within a
stage are identical, there is still potential room for per-
formance elevating.

3. Compared with Stage-Level, Layer-Level takes a fur-
ther hierarchical step to the search space. [72] applied
modular search space to retrieve the predefined supernet
middle layer, and the key is to fit the search granularity
to the supernet layer level. Nine candidate modules are
given in each search space to generate FBNets series
networks, and the latency and accuracy are deemed as
the contributions of each candidate to the search archi-
tecture. In [73], the authors thought that the search space
of the aforementioned modular search algorithm is lim-
ited, thus, they proposed a memory-efficient algorithm,
which can greatly expand the search space in spatial and
channel dimensions within the layer.

Furthermore, there are ways to automatically search for
lightweight CNN, which take into account finer-grained
attributes in search space [71, 74–79]. [74] built ChamNet,
considered traits of the hardware platform, and adjusted
computing resources in the search algorithm to fit latency
and energy constraints. The first mobile GPU-awareness
(MOGA) NAS was proposed by Chu et al. [71] for mobile
applications. [75, 77] also take into account the traits of

the platform in search space. The convolution kernel size
dramatically affects the neural networks performance, thus,
MixNets [76] proposed a mixed-depth convolution (Mix-
Conv), which mixes multiple kernel sizes into one convolu-
tion and integrates them within the AutoML search space to
obtain better performance than the previous mobile light-
weight models. In addition to the structured search, [78]
expands the search space by introducing the previously
neglected hyperparametric into it, which makes it more
flexible to obtain lightweight networks. [79] believes that
the task types should also be considered in the search space.

3.1.3 Analysis and Summary

We summarize the manual design and automatic design
of lightweight CNNs, as shown in Table 3. To compare
benchmarks, all these works are evaluated on the Ima-
geNet and are measured by the number of parameters and
FLOPs as well as mainly concerned with the accuracy of
the top one. However, these models are focused on image
classification on the ImageNet, and taken for granted that
appropriate for other tasks. [50, 79] adopted manual and
automatic search, respectively, and take the specific task
categories into account simultaneously, high-level tasks
such as object detection, semantic segmentation, and fine-
grained face recognition, etc., those application properties
are crucial for model design [42–46, 79]. Moreover, plat-
form attribution [47, 48, 71, 72, 77] is another critical fac-
tor. Many works have reported their inference latency on
hardware platforms, as shown in Table 3, column 6, but
objective assessment of the performance of these models

Table 2 The comparison of
lightweight modular operations

The ‘activation’ column specifies the activation functions used in each corresponding module. ✓ indicates
that the module adopts the operation corresponding to the column header, while × indicates the opposite
† The operation commonly employed within BSConv-S refer to [39]

Building block Residual con-
nection

Depthwise
conv

Pointwise
conv

SE module Activation

Fire module [31] × × ✓ × ReLU
SqueezeNext block [33] ✓ × ✓ × ReLU
DSConv [28, 34] × ✓ ✓ × ReLU
MBConv [35, 63] ✓ ✓ ✓ × ReLU6 & Linear
Fused-MBConv [64] ✓ ✓ ✓ ✓ ReLU6 & Linear
ShuffleNetV1 unit [36] ✓ ✓ ✓ ✓ ReLU
ShuffleNetV2 unit [37] ✓ ✓ ✓ ✓ ReLU & Linear
Sandglass block [38] ✓ ✓ ✓ ✓ ReLU6 & Linear
Ghost block [47, 52] ✓ ✓ ✓ ✓ ReLU & Linear
ESP module [50] ✓ × ✓ × PReLU & Linear
EESP unit [51] ✓ ✓ ✓ × PReLU & Linear
BSConv [39] ✓† ✓ ✓ ✓ Linear
MobileOne block [54] ✓ ✓ ✓ ✓ ReLU & SEReLU

1924 F. Chen et al.

1 3

is difficult. The most popular measurement indicators of
FLOPs and parameters do not entirely reflect the actual
model efficiency [62]. In addition, most of the automatic
methods rely on structural search with fixed hyperparam-
eters [78], and the whole network still requires manual
optimization [69].

3.2 Model Compression

Model compression is to explore the inherent over param-
eterized and structural redundancy of the network and
remove them, thus obtaining a lightweight form. Accord-
ing to different processing views, the model compression
is divided into network pruning, low-rank decomposition,
low-bit quantization, and knowledge distillation.

3.2.1 Network Pruning

Network pruning is to eliminate the non-critical redundancy
in a pre-trained model without significant performance
impairments.

1. Network pruning granularity

According to the redundant paradigm of the pre-trained
models, pruning techniques can be classified as coarse-
grained pruning (i.e., structured pruning), strip-wise/group-
wise pruning, pattern pruning, and fine-grained pruning (i.e.,
unstructured pruning), as shown in Fig. 19.

– Fine-grained pruning, the pruning granularity of which
is a sole neuron or connection. As the sparsity of a model

Table 3 The comparison of lightweight models on ImageNet

Type Model #Parameter (M) #FLOPs (M) ImageNets Inference latency (ms) Published year

Top-1 Acc. (%) Top-2 Acc. (%)

Manual SqueezeNet [31] 4.8 837 57.5 80.30 – 2017
SqueezeNext [33]

(2.0-SqNxt-23v5)
3.2 708 67.5 88.2 – 2018

MobileNetV1 [34] 4.2 575 70.6 89.5 113 (Google Pixel 1) 2017
MobileNetV2 [35] 3.4 300 72.0 91.0 75 (Google Pixel 1) 2018
ShuffleNetV1 [36] 3.46 140 72.6 – – 2018
ShuffleNetV2 [37] 2.3 146 71.8 – – 2018
PeleeNet [44] 2.8 508 72.6 90.6 26.1 (IPhone 8) 2018
ChannelNet-v1 [40] 3.7 407 70.5 – – 2018
GhostNet [47, 52] 5.2 141 73.9 94.1 – 2020
MobileNeXt [38] 3.4 300 74.0 – 211 (Google Pixel 4XL) 2020
ESPNetV1 [50] 1.46 – – – – 2018
ESPNetV2 [51] 3.49 284 72.1 – – 2019
PP-LCNet [48] 3.0 161 71.32 90.03 2.46 (Intel Xeon Gold

6148)
2021

VGNetG-1.0MP [80] 0.997 – 67.7 87.9 226 (RTX6000 GPU) 2022
DiCENet-E150-B512

[61]
5.1 297 75.7 – – 2022

MobileOne-S0 [54] 2.1 275 71.4 – 0.79 2023
Falconnet [55] 2.39 333.1 75.7 – – 2023

Auto MnasNet-A1 [68] 3.9 312 74 91.8 76 (Google Pixel 1) 2018
Proxylessnas [81] 4.0 320 74.6 92.2 78 (Google Pixel 1) 2019
ChamNet-A [74] – – 75.4 – 29.8 (Snapdragon 835) 2018
MobileNetV3-Large

1.0 [69]
5.4 219 75.2 – 51 (Google Pixel 1) 2019

FBNetV1-C [72] 5.5 375 74.9 – 28.1 (Snapdragon 835) 2019
FBNetV2-L2 [73] – 423 78.1 – – 2020
FBNetV3-A [78] 5.3 357 79.1 94.5 – 2020
MixNet-S [76] 4.1 256 75.8 92.8 – 2019
MoGA-A [71] 5.1 304 75.9 92.8 11.8 (Qualcomm 2019) 2019

1925Review of Lightweight Deep Convolutional Neural Networks

1 3

usually needs to be determined layer by layer, the practi-
cal compression is inconsistent with the theoretical one
[82]. In addition, the pruning requires customized hard-
ware to support [83].

– Strip-wise/Group-wise pruning is to prune along some
vector of the input/output dimension in the parameter
tensor. And the pruned results are irregular, which also
requires a customized hardware support system [84, 85].

– Pattern-based pruning is executed on one layer or the
whole of the model according to a set of fixed patterns
[86, 87].

– Connectivity pruning sets the weight values of the pruned
filters to 0 thus cutting off the connection between the
input and output of certain channels, which enables the
model to be accelerated with the existing hardware rather
than the customized [88].

– Structured pruning removes unimportant convolution
kernels in a set of channels and directly changes the
width of the model. This approach can be accelerated
directly using Off-the-Shelf machine learning libraries
[89].

2. Pruning methods

Pruning can start from both model structure and the pro-
cessing of training. In terms of the structure pruning, the
weight, the activation function, the gradient in backpropaga-
tion, and the batch-normalization all have the possibility to
be tailored. From the perspective of model training, pruning
approaches include reconstruction error training and regular-
ity training.

Li et al. [89] adopted the L1 norm to prune the weight
kernel of the current layer and then removed the features
map connected to this weight filter and the corresponding
weight channel of the next layer. It is usually conditional
to preserve large-norm coefficient features based on the
Smaller-Norm-Less Informative hypothesis [90]. He et al.
[91] consider the mutual relations between filters and based
on the geometric median prune the most redundant filters
rather than those relatively less important ones, which still
works efficiently even if the norm-based criterion fails. Luo
et al. [92] used reconstruction error to minimize the output

deviations of the next layer and pruned the current layer
according to the statistics information of its next layer. Dep-
Graph [93] explicitly models the dependency between lay-
ers by automatically grouping tightly coupled parameters.
It enables efficient generalization to diverse neural architec-
tures without tedious individual analysis.

Most of the above works adopt structured pruning tech-
niques and require fine-tuning methods to remedy degenera-
tion in accuracy, the processing of which is tedious, and the
generated sub-models are usually sub-optimal. Therefore,
[94] adopted a continuous compression proportional control
strategy for learning and designed a reinforcement learning
reward mechanism according to different scenarios. [95]
proposed adaptive batch normalization (BN), whose param-
eters are updated via several batches rather than fine-tuning.
The absence of standardized benchmarks and metrics has
confused researchers for a long time [96, 97]. [98] resorted
to random search to optimize channel configurations when
pruning. It could serve as a baseline to properly evaluate
different pruning methods.

3.2.2 Low‑Rank Decomposition

The tensor is the fundamental component of CNNs. Low-
rank decomposition attempts to reduce the hidden redun-
dancy in tensors, thus decreasing the complexity of convo-
lutional/fully connected layers in CNNs, and speeding up the
model inference. One of the most commonly used low-rank
decompositions is singular value decomposition (SVD). Let
tensor A ∈ Rm×n , and re-write

where U ∈ Rm×r and VT ∈ Rr×n are orthogonal to each other,
S ∈ Rr×r is a diagonal matrix containing singular values of
the original matrix A. If there exists k << r can replacer,
and the decomposition complexity is reduced from O(mn) to
O(k(m + n + 1)) , then the original tensor can be compressed.

In [99, 100], the author decomposed the convolution
kernel of w × h into the convolution kernel form of w × 1
and 1 × h . In [101], Tucker is used to decompose the model
weight, then the pruned model is deployed on the mobile
phone for the experiment. Chen et al. [102] proposed a

(1)A = USVT
,

Fig. 19 Pruning granularity

1926 F. Chen et al.

1 3

decomposition method by using the combination of Tucker
and classical prolongation (CP) and improved the efficiency
of parameter utilization in the network.

The higher the tensor dimension, the better the decom-
position results may be, but the space complexity increases.
Therefore, [103] removed the high-order kernel tensor to
avoid the aforementioned deficiency, but this method ignores
the key part of convolution layer modeling and merely
works effectively for the fully connected layer. In [104], the
tensor-train method is extended to the convolution layers.
Since the convolution structure is already a compact fourth-
order tensor compared with the fully connected layer, the
final compression level is very limited, and the subsequent
extracted features may not be ideal. The prevalent DSConvs
in lightweight CNNs make the situation more complex as
their more compact tensor maps. [105] proposes an approach
that integrates low-rank tensor decomposition with sparse
pruning, fully leveraging both coarse and fine structures.
This allows for efficient model compression of architectures
that utilize DSConvs.

In fact, the low-rank decomposition is similar to design-
ing a lightweight compact structure, the difference is that
the latter uses a compact lightweight topology structure to
find the basic model, and the former aims to compress a
given basic neural network model. At present, the low-rank
decomposition is more mature than other methods. And
most works require layer-by-layer decomposition and com-
pression. Despite [106] considering the global optimization
of all layers during the model compression to avoid trivial
layer-wise decomposition issues, it still requires additional
retraining processing. In view of the fact that its high cost
and limited compression capacity for the convolution layers,
this approach does not earn much attention as imagination.

3.2.3 Low‑Bit Quantization

Low-bit quantization attempts to analyze the numerical
representation of the models, and then map the weights,

activations, and even gradients of the networks to a set of
fixed values to compress the numerical representation of the
model and improve the inference efficiency. Without sig-
nificantly impair the accuracy of the network, the original
32-bit (or 16-bit) single-precision floating-point number is
projected to a lower-bit representation, such as 8-bit, 4-bit,
2-bit, or even 1-bit. Low-bit representation is one of the most
common model compression technologies used in industry,
which can not only alleviate the amount of data transmis-
sion in hardware, but also reduce multiply-and-accumulate
(MAC) operations and energy consumption.

Let x be the input, xq is the quantization,

Equation 2 denotes that the real number x is projected into
the integer range [�, �] , where s is the quantization factor,
and q is the quantized bit width.

Equation 2 depicts an affine quantization. When Z=0, this
quantization is the so-called scale quantization. Through the
inverse operation of Eq. 2, the quantized parameter value is
reconstructed as “real value”, but usually the recovered real
value is approximate to the original value rather than equal.

1. Quantization regimes

 The quantization mechanism represented by R in Eq. 2
mainly includes uniform quantization and nonuniform one,
as shown in Fig. 20. Among them, nonuniform quantiza-
tion distributes input to different step sizes by using variable
quantization factor s (Eq. 3) [107, 108]. The quantization
result matches the reality better but tends to bring greater
overhead costs which is unfriendly to hardware implemen-
tation. In practice, binarization quantization is also very
commonly utilized. In [109], quantization is taken as an

(2)xq = clip(R(
x

s
+ Z), �, �),

(3)s =
� − �

2b − 1
,

Fig. 20 Two forms of discrete
distribution for quantization. By
adjusting s, the distribution of
quantization levels is changed to
two modes: (1)uniform quanti-
zation with the same step sizes,
and (2) nonuniform quantization
with different step sizes

1927Review of Lightweight Deep Convolutional Neural Networks

1 3

optimization problem to minimize the difference between
the input tensor and the binary expansion part. Uniform
quantization is represented by linear quantization which
allows the effective implementation of fixed-point operations
on hardware. For uniform quantization, it is vital to choose
the projecting range [�, �] , which determines the setting of
quantization factor s. There are symmetric quantization and
asymmetric quantization, the former is easier to implement,
but the imbalance of the actual range may lead to a sub-
optimal solution.

2. Quantization granularity

 CNN has a hierarchical structure, and different components
contribute inconsistently to the model. Different levels of
quantization correspond to different granularity. For layer-
wise quantization, all elements in this layer share the same
quantization parameters [110]. However, different con-
secutive layers interact with each other, so module-based
quantization is proposed to alleviate this problem [111]. For
channel-wise quantization, per-channel quantization [112]
works on intermediate dimensions of the tensor. Further,
one can explore per-row/per-column quantization, but this
may lead to the huge burden of inference time, so it is more
commonly adopted at the channel level [113].

3. Performance recovery methods

 Compressing a huge network to a compact one usually
endows degradation of accuracy, thus performance perse-
vering strategy must be involved. The two most utilized
methods include post-training quantization (PTQ) and
quantization-aware-training (QAT) [114].

The PTQ method is popular among the community and
industry since it can restore the performance of the model
without requiring the original training pipeline. The method
converts the pre-trained network into a fixed-point network
and then retrains it offline to restore accuracy [111, 112,
115–119]. However, its commonly used rounding-to-nearest
mechanism ignores the contribution of non-diagonal ele-
ments in the Hessian matrix, resulting in a sub-optimal solu-
tion. Therefore, an improved approximation mechanism for
per-layer was proposed [115], and remarkable works have
been made by limiting the weights precision of networks
such as Resnet18 and Resnet50 to 4-bit, while keeping the
accuracy reduction within 1 % . [111] quantified the inter-
layer correlation which is ignored by AdaRound [115] to
restrict the weight bit width of the quantized networks to
2-bit. In [119], the author pointed out that the order of
weights and activations is crucial to the network perfor-
mance, they randomly drop the quantization of activations
during PTQ, thus the 2-bit activation for PTQ is realized for
the first time.

PTQ has many merits, such as high efficiency and speed
in applications. However, it is not as effective in restoring
full-precision representation as expected. QAT, on the other
hand, performs better in lower bits, such as 4-bit represen-
tations, although it takes more training costs and data sup-
port. Many works published about this method [120–125].
Since QAT introduced quantization during training, the gra-
dients update may cause accumulating quantization errors,
especially in low-precision representation. Therefore, the
straight-through estimator (SET) is required [123, 126]. In
[121, 122], only the weights are binarized, and the gradients
are still presented in full precision without using low bits,
which endows much computing cost to backpropagation. In
[123], both weights and activations are of low bit width and
are quantified definitely, while the gradients are randomly
quantized, thus, the CNNs training is accelerated as well
as the inference. PACT [127] learns the clipping ranges of
activations during training rather than the fixed ranges as
in [123]. [128] proposed a so-called quantization interval
learning (QIT) which quantizes the network weights and
activations to obtain the optimal quantizer. In [129], the
quantization step is deemed as a training parameter to bet-
ter adapt to the quantization distribution, while its improved
version [130] can learn to accommodate the negative activa-
tions with asymmetric quantization. [131] proposes the CSQ
(centered symmetric quantization) quantizer for extreme
low-bit quantization (≤ 3-bit), which is trainable using QAT
methods and shows that a simple change of quantization
levels can result in significant performance improvement.

Despite the current quantization methods have made great
progress in theory, there are still many limitations. On the
one hand, most of the unified quantization methods tend
to induce accuracy degradation due to the non-uniformed
contributions of layers in a hierarchical network. There are
mixed-precision quantization methods designed to cope with
this problem, but their cost is prohibitive since it requires
traversing the mixed quantization space to solve the optimi-
zation problem [132, 133]. On the other hand, most of the
quantization methods are based on redundant baseline model
testing and lack related tests for lightweight design models,
let alone on real mobile devices. The quantization is more
closely associated with the underlying hardware support, and
the customized hardware may be more appropriate for it, but
at a higher cost. So does the hardware-aware quantization
[134]. Therefore, more corresponding baseline testing and
hardware testing may benefit the design of quantization.

3.2.4 Knowledge Distillation

Knowledge distillation (KD) [135, 136] is to acquire and
transfer knowledge from the original large teacher model
to the lightweight student model, as shown in Fig. 21. It is
considered that the “softmax” output of the teacher model

1928 F. Chen et al.

1 3

contains more information, which is ignored in the form of
one-hot [136], i.e., the highest probability is taken as the
correct output while other probabilities as wrong. However,
these incorrect outputs actually contain more information
which is vital for the learning process. Therefore, a “tem-
perature” strategy is proposed to control the soft probability
distribution of the outputs, as depicted in Eq. 4.

where T is the temperature, the zi calculated for each cat-
egory is converted as probability pi by comparing the zi with
other logits. In general, T = 1 , and when T increases, it pro-
duces a soft probability distribution in the class.

The knowledge distillation can be roughly classified as
feature-based knowledge and logits-based one according to
the distillation location.

– The knowledge transferred by the logits-based method
was initially considered as the conditional distribution
of the output for a given input sample. From this point
of view, the predictions or soft targets from the pre-
training teacher model play an important role in the
guidance of the student model [137–144]. [139] can be
viewed as a supplement to the principle of KD [136]. It
decomposes the gradient caused by KD into two items:
dark knowledge items and a ground-truth component,
and quantifies the contribution of dark knowledge to
KD. [138] transfers knowledge through collaborative
learning between a group of student models rather
than directly transferring with the one-way knowledge
between the predefined teacher model and the student
model. [141] claimed that the large model is not nec-
essarily a good teacher model for the guidance of the

(4)pi =
exp(zi∕T)

∑

j
exp(zi∕T)

,

student model training. They proposed terminating the
teacher model training early to alleviate the mismatch
between the teacher and student models. [144] pointed
out that a good teacher model can train a student model
well as long as the teacher and the student always with
the same input, radical data enhancement, and suffi-
cient training times. It is found in [142] that when there
is a significant capacity difference between the teacher
model and the student model, the performance of the
student model will be degraded greatly. To alleviate
the above problems, multi-level knowledge extraction
is introduced as a medium-scale network to bridge the
gap between them.

– Feature-based methods may outperform logits-based at
the expense of extra computation and memory consump-
tion for distilling deep features during training [145–
154]. [145] defined the transferred knowledge according
to the information flow between layers, and obtained the
extracted knowledge by computing the inner product of
features between two layers. [146] added a feature atten-
tion mechanism into the network, which helps the stu-
dent model learn better from the teacher model. [147]
proposed to align the distribution i.e., the matching dis-
tribution of neuron selectivity patterns between teacher
and student models, to improve the performance of the
student network. Heo et al. [148] found that the trans-
ferring of activation boundaries can greatly improve the
transferred efficiency and proposed a knowledge transfer
method by transferring the activation boundaries of hid-
den neurons. [149] put forward a factors-based knowl-
edge transfer method, which can inherit paraphrased
information from the teachers’ network. [154] pointed
out that students should maintain similarity in pairs in
their representation space, rather than imitate the teach-
er’s representation space. [153] has developed contrastive
learning which enables the teacher and student to project
the same input to adjacent representations, and different
input to apart representations.

It is noted that feature-based distillation requires extra super-
parameters adjustment to lever the effects of losses in dif-
ferent layers. Although there is a supervised approach to
explore the feature representation of the middle layer in a
teacher model, it is unclear which layers and how the lay-
ers impact the student model. Compared with feature-based
distillation, the logits-based method has a lower cost of
training, but its performance compares unfavorably with
the former. It is generally agreed that larger models may not
necessarily make better teacher models, feature-based distil-
lation is better than soft-label distillation, and the deep-level
students model outperforms shallow-level students. Inter-
estingly, soft label distillation in [155] with higher-level
semantic features is better than feature-based distillation.

Fig. 21 Knowledge distillation framework

1929Review of Lightweight Deep Convolutional Neural Networks

1 3

The knowledge distillation field is still in its infancy, requir-
ing further establishment of theories and experiments.

4 Underlying Frameworks Support

The approaches reviewed previously are top-down solutions
to develop lightweight network models. However, practical
applications require support from the underlying framework
to truly obtain improvements in accuracy, speed, and energy
efficiency. This underlying framework can be categorized
into general learning libraries and hardware-based support.

– General learning libraries [167] can be used for CNNs
training and inference, such as in Caffe [163], MXNet
[164], Tensorflow [156], TensorRT [166], PyTorch [157],
etc., as shown in Table 4. Most of these learning librar-
ies are open source and improved continuously. Among
them, PyTorch and Tensorflow are two representative
frameworks with strong community and excellent docu-
mentation support, and they are also the two most popu-
lar frameworks in academic and industrial circles, both
have visual tools (Visdom, Tensorboard) support to facil-
itate the development. They are popular in model training
via GPU parallel computing speedup but are not widely
available for the inference of edge devices. The librar-
ies’ optimization mainly focuses on pipelining, resource
management, as well as efficient compiler design [168].
TensorFlow Lite (TF-Lite) and TensorFlow Micro are
two extensions of Tensorflow for edge inference.

– To accelerate the processing of deep network models in
specific applications, numerous specialized hardware
platforms have been developed. As discussed earlier,
the reduction in the number of network parameters and
multiply-and-accumulate (MAC) may not induce perfor-
mance improvement or energy consumption reduction

as expected. The core of hardware development is in
terms of appropriate throughput and energy efficiency.
The MAC operations are easily implemented in parallel
and optimized in both spatial and temporal architectures
[169]. Temporal architecture is usually implemented in
CPUs or GPUs and enhances parallelism via SIMD or
SIMT to increase throughput [169, 170]. Representa-
tive embedded GPUs involve NVIDIA Jetson TX2 [171],
and Intel Edison Kit [172]. In addition, data transmis-
sion contributes much to the energy consumption. Spa-
tial architectures are usually designed and implemented
based on specific integrated circuits (ASIC) and field
programmable gate arrays (FPGA). These designs tend to
enhance data reuse and reduce data transmission as much
as possible to ensure energy efficiency. Typical works
on ASIC include EIE [83] and Eyeriss [173, 174]. EIE
is specially designed for pruned lightweight networks.
In Eyeriss [173], the authors adopted two methods to
improve energy efficiency. One is to reduce transmission
through data reuse, and the other is to avoid unneces-
sary reading and calculation via data statistics [174]. The
main difference between them is in structure, while the
latter performs better in lightweight applications. More
related works refer to FPGAs and ASICs are detailed in
[16, 168, 169, 175].

5 Benchmark Datasets

The dataset is the driver for a neural network as well as the
requisite of performance verification for it.

CIFAR [176] is a commonly used image classification
dataset, with an image pixel of 32 × 32. The training and
verification set consists of 50 k and 10 k images. CIFAR-10
is composed of 10 mutually exclusive classes, and CIFAR-
100 is composed of 100 mutually exclusive classes.

Table 4 Comparison of some learning libraries

Library name Developers Languages Characteristics

TensorFlow [156] Google’s AI Python Phe function of data integration
PyTorch [157] Facebook Python Easy-to-use, flexible
Keras [158] Google Python Easy to integrate, efficient, portable
PyTorch Lightening [159] Facebook Python Easy-to-use, reproducibility, readability
Theano [160] The University of Montreal Python, C++ Speed and stable optimization
CNTK [161] Microsoft C++ Easily realize and combine popular model types
Deeplearning4j [162] Skymind Java, Scala General-purpose, easy-to-use, flexible
Caffe [163] The Berkeley Vision, Learning

Center (BVLC), community
C++ Lightweight, modular, scalable

MXNet [164, 165] Apache C++ Flexible and efficient
TensorRT [166] NVIDIA C++, Python Flexible and efficient, update quickly

1930 F. Chen et al.

1 3

ImageNet [20] contains large-scale colored images with
pixels of 256 × 256, which is composed of 1000 no-overlap
categories. There are 1.3 M training images, 100 thousand
testing images (100 per class), and 50,000 validation images
(50 per class) in ImageNet.

Stanford Dogs dataset [177] contains 20,580 images,
which is built for the task of fine-grained image categori-
zation, and composed of 120 breeds of dogs from around
the world. The training set contains 14,580 images and the
validation contains 6000 images.

There are other public datasets for different types of
tasks (e.g., object detection [178] and semantic segmenta-
tion [179]). However, current public data sets can not satisfy
specific application requirements, more private datasets are
available as semi-opened or unopened in academics, com-
panies, or individuals.

6 Future Research Directions

Based on the above analysis, current lightweight technolo-
gies have limitations for widespread applications to some
extent. Future research should focus on the following prom-
ising directions:

– Collaborative design and optimization. As described
earlier, lightweight techniques require top-to-bottom
cooperation, which requires the involvement of the spe-
cific task to explore lightweight ways from all possible
perspectives [180]. For example, when designing a light-
weight network model, the task complexity and the plat-
form attributes should be considered for tuning. Various
compression methods are orthogonal to model design
methods [181, 182], i.e., they can cooperate during the
design. The progress in lightweight network algorithms
also benefits the development of the underlying learn-
ing library and hardware. It is worth further focusing on
developing the combination [54, 55] of emerging tech-
nologies like structural reparameterization with existing
lightweight technologies.

– Establishment of evaluation standards. On the one
hand, to objectively depict the properties of a light-
weight CNN model, the following metrics should be
emphasized: the accuracy of the model based on a pub-
lic dataset, the number of parameters and FLOPs of the
model as well as the architecture-related parameters.
Moreover, the deployment or development of a light-
weight network model should pay attention to the hard-
ware metrics [62], such as latency, power consump-
tion, etc. On the other hand, the scarcity of high-quality
datasets is another important hindrance to lightweight
network development. In current circumstances, one
feasible method is to gradually establish the standard

datasets for specific applications, the other is to adopt
alternative strategies to remedy the lack of datasets,
such as transfer learning [183], active learning [184],
and incremental learning, etc.

– Explainability and visualization. Model visualization
technology has emerged recently, which has significant
potential to help the researcher understand and improve
the models, such as in the design of GhostNet [47,
52] and VGNet [80]. In the future, more fine-grained
downstream vision tasks still require fully mining and
exploiting the redundancy of the feature maps via visu-
alization technology.

– Activation functions and attention modules. Currently,
ReLU is favored by many researchers, and future works
on activation function may have space to improve. In
addition, lightweight CNNs with the plug-in attention
mechanism are full of promising [185–189]. Particu-
larly, lightweight CNNs leveraging multi-head attention
mechanisms of Transformers to overcome CNNs’ limi-
tations on long-range modeling are gaining momentum
[190–194].

7 Conclusions

DCNNs have gained remarkable attention in the field of
computer vision, whose performance even have outper-
formed humans in many applications. It will continue to help
drive the artificial intelligence algorithm trend. Although the
current technological development has made much progress
to some extent, the high computational complexity hinders
its portability and performance in various mobile scenarios.
Therefore, lightweight network technology naturally appears
to match the growing mobile intelligence.

In this paper, the vital technologies of lightweight CNNs
in recent years are reviewed, which include but are not lim-
ited to manual structured design, automatic architecture
search, compression from structure to representation, and
abstract knowledge distillation. In addition, we emphasize
the significance of dataset and hardware support for light-
weight network deployment and prospect several promising
future trends corresponding to this field. We try to comb
these marvelous works as clearly as possible, thus provid-
ing valuable guidance for researchers engaged in this field.

Acknowledgements The authors gratefully acknowledge the anony-
mous reviewers for their constructive comments. This work is sup-
ported in part by the National Natural Science Foundation of China
(No. 62132007 and 20210424), the Fundamental Research Funds
for the Central Universities of China (No. lzujbky-2022-pd12), and
by the Natural Science Foundation of Gansu Province, China (No.
22JR5RA492). All authors have read and agreed to the published ver-
sion of the manuscript.

1931Review of Lightweight Deep Convolutional Neural Networks

1 3

Declarations

Conflict of interest The authors intend no competing interest.

References

 1. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet clas-
sification with deep convolutional neural networks. In: Bartlett
PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ (eds)
Advances in neural information processing systems 25: 26th
annual conference on neural information processing systems
2012. Proceedings of a meeting held December 3–6, 2012, Lake
Tahoe, NV, USA, pp 1106–1114

 2. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: Bengio Y, LeCun Y
(eds) 3rd international conference on learning representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, conference
track proceedings

 3. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: 2016 IEEE conference on computer vision
and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June
27–30, 2016. IEEE Computer Society, pp 770–778

 4. Li Y, Liu J, Wang L (2018) Lightweight network research based
on deep learning: a review. In: 2018 37th Chinese control confer-
ence (CCC). IEEE, pp 9021–9026

 5. Zhou Y, Chen S, Wang Y, Huan W (2020) Review of research
on lightweight convolutional neural networks. In 2020 IEEE 5th
information technology and mechatronics engineering confer-
ence (ITOEC). IEEE, pp 1713–1720

 6. Ge D-H, Li H-S, Zhang L, Liu R, Shen P, Miao Q-G (2020)
Survey of lightweight neural network. J. Softw 31:2627–2653

 7. Zheng M, Tian Y, Chen H, Yang S, Song F, Gao X (2022) Light-
weight network research based on deep learning. In: International
conference on computer graphics, artificial intelligence, and data
processing (ICCAID 2021), vol 12168. SPIE, pp 333–338

 8. Ma J, Zhang Y, Ma Z, Mao K (2022) Research progress of light-
weight neural network convolution design. J Front Comput Sci
Technol 16(3):512–528

 9. Wang CH, Huang KY, Yao Y, Chen JC, Shuai HH, Cheng WH
(2022) Lightweight deep learning: an overview. In IEEE con-
sumer electronics magazine, pp 1–12

 10. Mishra R, Gupta H (2023) Transforming large-size to lightweight
deep neural networks for IoT applications. ACM Comput Surv
55(11):1–35

 11. Hafiz AM (2023) A survey on light-weight convolutional neu-
ral networks: trends, issues and future scope. J Mob Multimed
19:1277–1298

 12. Cheng Y, Wang D, Zhou P, Zhang T (2018) Model compression
and acceleration for deep neural networks: the principles, pro-
gress, and challenges. IEEE Signal Process Mag 35(1):126–136

 13. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge
intelligence: paving the last mile of artificial intelligence with
edge computing. Proc IEEE 107(8):1738–1762

 14. Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY (2020)
Edge intelligence: the confluence of edge computing and artifi-
cial intelligence. IEEE Internet Things J 7(8):7457–7469

 15. Deng L, Li G, Han S, Shi L, Xie Y (2020) Model compression
and hardware acceleration for neural networks: a comprehensive
survey. Proc IEEE 108(4):485–532

 16. Dianlei X, Li T, Li Y, Xiang S, Tarkoma S, Jiang T, Crowcroft J,
Hui P (2021) Edge intelligence: empowering intelligence to the
edge of network. Proc IEEE 109(11):1778–1837

 17. Zhao T, Xie Y, Wang Y, Cheng J, Guo X, Bin H, Chen Y (2022)
A survey of deep learning on mobile devices: applications,

optimizations, challenges, and research opportunities. Proc IEEE
110(3):334–354

 18. Han Cai, Ji Lin, Song Han (2022) Efficient methods for deep
learning, In: Proceedings of computer vision and pattern recog-
nition (CVPR), Advanced Methods and Deep Learning in Com-
puter Vision, pp 159–190

 19. Shuvo MH, Islam SK, Cheng J, Morshed BI (2022) Efficient
acceleration of deep learning inference on resource-constrained
edge devices: a review. Proc IEEE 111(1): 42–91

 20. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Ima-
geNet: a large-scale hierarchical image database. In: 2009 IEEE
computer society conference on computer vision and pattern
recognition (CVPR 2009), 20–25 June 2009, Miami, FL, USA.
IEEE Computer Society, pp 248–255

 21. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,
Huang Z, Karpathy A, Khosla A, Bernstein MS, Berg AC, Fei-
Fei L (2014) ImageNet large scale visual recognition challenge.
Int J Comput Vis 115:211–252

 22. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

 23. Denil M, Shakibi B, Dinh L, Ranzato MA, de Freitas N (2013)
Predicting parameters in deep learning. In: Burges CJC, Bot-
tou L, Ghahramani Z, Weinberger KQ (eds) Advances in neural
information processing systems 26: 27th annual conference on
neural information processing systems 2013. Proceedings of a
meeting held December 5–8, 2013, Lake Tahoe, NV, USA, pp
2148–2156

 24. Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014)
Exploiting linear structure within convolutional networks for effi-
cient evaluation. In: Ghahramani Z, Welling M, Cortes C, Law-
rence ND, Weinberger KQ (eds) Advances in neural information
processing systems 27: annual conference on neural information
processing systems 2014, December 8–13 2014, Montreal, QC,
Canada, pp 1269–1277

 25. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D,
Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with
convolutions. In: IEEE conference on computer vision and pat-
tern recognition, CVPR 2015, Boston, MA, USA, June 7–12,
2015. IEEE Computer Society, pp 1–9

 26. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016)
Rethinking the inception architecture for computer vision. In:
2016 IEEE conference on computer vision and pattern recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016. IEEE
Computer Society, pp 2818–2826

 27. Szegedy C, Ioffe S, Vanhoucke V (2016) Inception-V4, incep-
tion-ResNet and the impact of residual connections on learning.
CoRR. https:// arxiv. org/ abs/ 1602. 07261

 28. Chollet F (2017) Xception: deep learning with depthwise separa-
ble convolutions. In: 2017 IEEE conference on computer vision
and pattern recognition, CVPR 2017, Honolulu, HI, USA, July
21–26, 2017. IEEE Computer Society, pp 1800–1807

 29. Wang M, Liu B, Foroosh H (2016) Design of efficient convolu-
tional layers using single intra-channel convolution, topological
subdivisioning and spatial “bottleneck” structure. arXiv: Com-
puter Vision and Pattern Recognition

 30. Wang M, Liu B, Foroosh H (2017) Factorized convolutional neu-
ral networks. In: 2017 IEEE international conference on com-
puter vision workshops, ICCV Workshops 2017, Venice, Italy,
October 22–29, 2017. IEEE Computer Society, pp 545–553

 31. Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ,
Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <1mb model size. CoRR. https:// arxiv. org/
abs/ 1602. 07360

 32. Lin M, Chen Q, Yan S (2014) Network in network. In: Bengio
Y, LeCun Y (eds) 2nd international conference on learning

https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1602.07360

1932 F. Chen et al.

1 3

representations, ICLR 2014, Banff, AB, Canada, April 14–16,
2014, conference track proceedings

 33. Gholami A, Kwon K, Wu B, Tai Z, Yue X, Jin PH, Zhao S,
Keutzer K (2018) SqueezeNext: hardware-aware neural net-
work design. In: 2018 IEEE conference on computer vision
and pattern recognition workshops, CVPR Workshops 2018,
Salt Lake City, UT, USA, June 18–22, 2018. Computer Vision
Foundation/IEEE Computer Society, pp 1638–1647

 34. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Wey-
and T, Andreetto M, Adam H (2017) MobileNets: efficient
convolutional neural networks for mobile vision applications.
CoRR. https:// arxiv. org/ abs/ 1704. 04861

 35. Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen L-C
(2018) MobileNetV2: inverted residuals and linear bottlenecks.
In: 2018 IEEE conference on computer vision and pattern rec-
ognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22,
2018. Computer Vision Foundation/IEEE Computer Society,
pp 4510–4520

 36. Zhang X, Zhou X, Lin M, Sun J (2018) ShuffleNet: an extremely
efficient convolutional neural network for mobile devices. In:
2018 IEEE conference on computer vision and pattern rec-
ognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22,
2018. Computer Vision Foundation/IEEE Computer Society, pp
6848–6856

 37. Ma N, Zhang X, Zheng H-T, Sun J (2018) ShuffleNet V2: practi-
cal guidelines for efficient CNN architecture design. In: Proceed-
ings of the European conference on computer vision (ECCV), pp
116–131

 38. Zhou D, Hou Q, Chen Y, Feng J, Yan S (2020) Rethinking bottle-
neck structure for efficient mobile network design. In: Vedaldi A,
Bischof H, Brox T, Frahm J-M (eds) Computer vision—ECCV
2020—16th European conference, Glasgow, UK, August 23–28,
2020, proceedings, part III, volume 12348 of lecture notes in
computer science. Springer, pp 680–697

 39. Haase D, Amthor M (2020) Rethinking depthwise separable
convolutions: how intra-kernel correlations lead to improved
MobileNets. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp 14600–14609

 40. Gao H, Wang Z, Cai L, Ji S (2018) ChannelNets: compact and
efficient convolutional neural networks via channel-wise con-
volutions. IEEE transactions on pattern analysis and machine
intelligence, pp 2570–2581

 41. Kopuklu O, Kose N, Gunduz A, Rigoll G (2019) Resource effi-
cient 3D convolutional neural networks. In: Proceedings of the
IEEE/CVF international conference on computer vision work-
shops, pp 1910–1919

 42. Wu B, Iandola F, Jin PH, Keutzer K (2017) SqueezeDet: unified,
small, low power fully convolutional neural networks for real-
time object detection for autonomous driving. In: Proceedings of
the IEEE conference on computer vision and pattern recognition
workshops, pp 129–137

 43. Wu B, Wan A, Yue X, Keutzer K (2018) SqueezeSeg: convolu-
tional neural nets with recurrent CRF for real-time road-object
segmentation from 3D LiDAR point cloud. In: 2018 IEEE inter-
national conference on robotics and automation (ICRA). IEEE,
pp 1887–1893

 44. Wang RJ, Li X, Ling CX (2018) Pelee: a real-time object detec-
tion system on mobile devices. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems
(NIPS'18). Curran Associates Inc., Red Hook, NY, USA, pp
1967–1976

 45. Chen S, Liu Y, Gao X, Han Z (2018) MobileFaceNets: efficient
CNNs for accurate real-time face verification on mobile devices.
In: Biometric recognition: 13th Chinese conference, CCBR 2018,
Urumqi, China, August 11–12, 2018, proceedings 13. Springer,
pp 428–438

 46. Duong CN, Quach KG, Jalata I, Le N, Luu K (2019) MobiFace:
a lightweight deep learning face recognition on mobile devices.
In 2019 IEEE 10th international conference on biometrics theory,
applications and systems (BTAS). IEEE, pp 1–6

 47. Han K, Wang Y, Chang X, Guo J, Chunjing X, Enhua W, Tian
Q (2022) GhostNets on heterogeneous devices via cheap opera-
tions. Int J Comput Vis 130(4):1050–1069

 48. Cui C, Gao T, Wei S, Du Y, Guo R, Dong S, Lu B, Zhou Y, Lv X,
Liu Q et al (2021) PP-LCNet: a lightweight CPU convolutional
neural network. arXiv Preprint. http:// arxiv. org/ abs/ 2109. 15099

 49. Duong CN, Quach KG, Jalata I, Le N, Luu K (2019) MobiFace: a
lightweight deep learning face recognition on mobile devices. In:
2019 IEEE 10th international conference on biometrics theory,
applications and systems (BTAS). IEEE, pp 1–6

 50. Mehta S, Rastegari M, Caspi A, Shapiro L, Hajishirzi H (2018)
ESPNet: efficient spatial pyramid of dilated convolutions for
semantic segmentation. In: Proceedings of the European confer-
ence on computer vision (ECCV), pp 552–568

 51. Mehta S, Rastegari M, Shapiro L, Hajishirzi H (2019) ESP-
NetV2: a light-weight, power efficient, and general purpose
convolutional neural network. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, pp
9190–9200

 52. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2020) GhostNet:
more features from cheap operations. In: 2020 IEEE/CVF confer-
ence on computer vision and pattern recognition, CVPR 2020,
Seattle, WA, USA, June 13–19, 2020. Computer Vision Founda-
tion/IEEE, pp 1577–1586

 53. Darbani P, Rohbani N, Beitollahi H, Lotfi-Kamran P (2022)
RASHT: a partially reconfigurable architecture for efficient
implementation of CNNs. IEEE Trans Very Large Scale Integr
Syst 30(7):860–868

 54. Vasu PKA, Gabriel J, Zhu J, Tuzel O, Ranjan A (2023) Mobile-
One: an improved one millisecond mobile backbone. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 7907–7917

 55. Cai Z, Shen Q (2023) FalconNet: Factorization for the light-
weight ConvNets. arXiv Preprint. http:// arxiv. org/ abs/ 2306.
06365

 56. Ding X, Zhang X, Ma N, Han J, Ding G, Sun J (2021) RepVGG:
making VGG-style ConvNets great again. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 13733–13742

 57. Nair V, Hinton GE (2010) Rectified linear units improve
restricted Boltzmann machines. In: Proceedings of the 27th
international conference on machine learning (ICML-10), pp
807–814

 58. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:
surpassing human-level performance on ImageNet classification.
In: Proceedings of the IEEE international conference on com-
puter vision, pp 1026–1034

 59. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks.
In: 2018 IEEE conference on computer vision and pattern rec-
ognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22,
2018. Computer Vision Foundation/IEEE Computer Society, pp
7132–7141

 60. Wu B, Wan A, Yue X, Jin P, Zhao S, Golmant N, Gholaminejad
A, Gonzalez J, Keutzer K (2018) Shift: a zero flop, zero param-
eter alternative to spatial convolutions. In: Proceedings of the
IEEE conference on computer vision and pattern recognition,
pp 9127–9135

 61. Mehta S, Hajishirzi H, Rastegari M (2020) DiceNet: dimension-
wise convolutions for efficient networks. IEEE Trans Pattern
Anal Mach Intell 44(5):2416–2425

 62. Lai L, Suda N, Chandra V (2018) Not all ops are created equal!
CoRR. https:// arxiv. org/ abs/ 1801. 04326

https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/2109.15099
http://arxiv.org/abs/2306.06365
http://arxiv.org/abs/2306.06365
https://arxiv.org/abs/1801.04326

1933Review of Lightweight Deep Convolutional Neural Networks

1 3

 63. Tan M, Le QV (2019) EfficientNet: rethinking model scaling
for convolutional neural networks. In: Chaudhuri K, Salakhut-
dinov R (eds) Proceedings of the 36th international confer-
ence on machine learning, ICML 2019, 9–15 June 2019, Long
Beach, CA, USA, volume 97 of proceedings of machine learn-
ing research. PMLR, pp 6105–6114

 64. Tan M, Le QV (2021) EfficientNetV2: smaller models and
faster training. In: Meila M, Zhang T (eds) Proceedings of
the 38th international conference on machine learning, ICML
2021, 18–24 July 2021, virtual event, volume 139 of proceed-
ings of machine learning research. PMLR, pp 10096–10106

 65. Zoph B, Le QV (2016) Neural architecture search with rein-
forcement learning. arXiv Preprint. http:// arxiv. org/ abs/ 1611.
01578

 66. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transfer-
able architectures for scalable image recognition. In: Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion, pp 8697–8710

 67. Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evo-
lution for image classifier architecture search. In: Proceedings
of the AAAI conference on artificial intelligence, vol 33, pp
4780–4789

 68. Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le
QV (2019) MnasNet: platform-aware neural architecture search
for mobile. In: IEEE conference on computer vision and pattern
recognition, CVPR 2019, Long Beach, CA, USA, June 16–20,
2019. Computer Vision Foundation/IEEE, pp 2820–2828

 69. Howard A, Pang R, Adam H, Le QV, Sandler M, Chen B, Wang
W, Chen L-C, Tan M, Chu G, Vasudevan VK, Zhu Y (2019)
Searching for MobileNetV3. In: International conference on
computer vision

 70. Yang T-J, Howard A, Chen B, Zhang X, Go A, Sandler M, Sze V,
Adam H (2018) NetAdapt: platform-aware neural network adap-
tation for mobile applications. In: Proceedings of the European
conference on computer vision (ECCV), pp 285–300

 71. Chu X, Zhang B, Xu R (2019) MoGA: searching beyond Mobile-
NetV3. In: ICASSP 2020—2020 IEEE international confer-
ence on acoustics, speech and signal processing (ICASSP), pp
4042–4046

 72. Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P,
Jia Y, Keutzer K (2018) FBNet: hardware-aware efficient Con-
vNet design via differentiable neural architecture search. CoRR.
https:// arxiv. org/ abs/ 1812. 03443

 73. Wan A, Dai X, Zhang P, He Z, Tian Y, Xie S, Wu B, Yu M, Xu
T, Chen K, Vajda P, Gonzalez JE (2020) FBNetV2: differentiable
neural architecture search for spatial and channel dimensions.
CoRR. https:// arxiv. org/ abs/ 2004. 05565

 74. Dai X, Zhang P, Wu B, Yin H, Sun F, Wang Y, Dukhan M, Hu Y,
Wu Y, Jia Y, Vajda P, Uyttendaele M, Jha NK (2018) ChamNet:
towards efficient network design through platform-aware model
adaptation. CoRR. https:// arxiv. org/ abs/ 1812. 08934

 75. Cai H, Zhu L, Han S (2018) ProxylessNAS: direct neural archi-
tecture search on target task and hardware. CoRR. https:// arxiv.
org/ abs/ 1812. 00332

 76. Tan M, Le QV (2019) MixConv: mixed depthwise convolutional
kernels. CoRR. https:// arxiv. org/ abs/ 1907. 09595

 77. Lin M, Chen H, Sun X, Qian Q, Li H, Jin R (2020) Neural archi-
tecture design for GPU-efficient networks. arXiv Preprint. http://
arxiv. org/ abs/ 2006. 14090

 78. Dai X, Wan A, Zhang P, Wu B, He Z, Wei Z, Chen K, Tian Y,
Yu M, Vajda P, Gonzalez JE (2020) FBNetV3: joint architecture-
recipe search using neural acquisition function. CoRR. https://
arxiv. org/ abs/ 2006. 02049

 79. Wu B, Li C, Zhang H, Dai X, Zhang P, Yu M, Wang J, Lin Y,
Vajda P (2021) FBNetV5: neural architecture search for multiple
tasks in one run. CoRR. https:// arxiv. org/ abs/ 2111. 10007

 80. Zhang L, Shen H, Luo Y, Cao X, Pan L, Wang T, Feng Q (2022)
Efficient CNN architecture design guided by visualization. In:
2022 IEEE international conference on multimedia and expo
(ICME). IEEE, pp 1–6

 81. Cai H, Zhu L, Han S (2019) ProxylessNAS: direct neural archi-
tecture search on target task and hardware. In: 7th international
conference on learning representations, ICLR 2019, New
Orleans, LA, USA, May 6–9, 2019. OpenReview.net

 82. Han S, Pool J, Tran J, Dally WJ (2015) Learning both weights
and connections for efficient neural networks. In Proceedings of
the 28th international conference on neural information process-
ing systems - volume 1 (NIPS'15). MIT Press, Cambridge, MA,
USA, pp 1135–1143

 83. Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ
(2016) EIE: efficient inference engine on compressed deep neural
network. ACM SIGARCH Comput Archit News 44(3):243–254

 84. Meng F, Cheng H, Li K, Luo H, Guo X, Lu G, Sun X (2020)
Pruning Filter in Filter. In Proceedings of the 34th international
conference on neural information processing systems (NIPS'20).
Curran Associates Inc., Red Hook, NY, USA, Article 1479, pp
17629–17640

 85. Huo Z, Wang C, Chen W, Li Y, Wang J, Wu J (2022) Balanced
stripe-wise pruning in the filter. In: International conference on
acoustics, speech, and signal processing, pp 4408–4412

 86. Ma X, Guo F-M, Niu W, Lin X, Tang J, Ma K, Ren B, Wang
Y (2019) PCONV: the missing but desirable sparsity in DNN
weight pruning for real-time execution on mobile devices. In:
the AAAI conference on artificial intelligence, pp 5117–5124

 87. Niu W, Ma X, Lin S, Wang S, Qian X, Lin X, Wang Y, Ren
B (2020) PatDNN: Achieving Real-Time DNN Execution on
Mobile Devices with Pattern-based Weight Pruning. In Proceed-
ings of the twenty-fifth international conference on architectural
support for programming languages and operating systems (ASP-
LOS '20), pp 907–922

 88. Vysogorets A, Kempe J (2021) Connectivity matters: neural net-
work pruning through the lens of effective sparsity. http:// arxiv.
org/ abs/ 2107. 02306

 89. Li H, Kadav A, Durdanovic I, Samet H, PGraf H (2016) Pruning
filters for efficient convnets. arXiv: Computer Vision and Pattern
Recognition

 90. Ye J, Lu X, Lin Z, Wang JZ (2018) Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution
layers. In: International conference on learning representations

 91. He Y, Liu P, Wang Z, Hu Z, Yang Y (2019) Filter pruning via
geometric median for deep convolutional neural networks accel-
eration. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp 4335–4344

 92. Luo J-H, Wu J, Lin W (2017) ThiNet: a filter level pruning
method for deep neural network compression. In: 2017 IEEE
international conference on computer vision (ICCV)

 93. Fang G, Ma X, Song M, Mi MB, Wang X (2023) DepGraph:
towards any structural pruning. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, pp
16091–16101

 94. He Y, Lin J, Liu Z, Wang H, Li LJ, Han S (2018) AMC: AutoML
for model compression and acceleration on mobile devices. In:
European conference on computer vision

 95. Li B, Wu B, Su J, Wang G, Lin L (2020) EagleEye: fast sub-net
evaluation for efficient neural network pruning. In: European
conference on computer vision, pp 639–654

 96. Blalock D, Ortiz JJG, Frankle J, Guttag J (2020) What is the state
of neural network pruning? Proc Mach Learn Syst 2:129–146

 97. Wang H, Qin C, Bai Y, Fu Y (2023) Why is the state of neu-
ral network pruning so confusing? On the fairness, comparison
setup, and trainability in network pruning. arXiv Preprint. http://
arxiv. org/ abs/ 2301. 05219

http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1812.03443
https://arxiv.org/abs/2004.05565
https://arxiv.org/abs/1812.08934
https://arxiv.org/abs/1812.00332
https://arxiv.org/abs/1812.00332
https://arxiv.org/abs/1907.09595
http://arxiv.org/abs/2006.14090
http://arxiv.org/abs/2006.14090
https://arxiv.org/abs/2006.02049
https://arxiv.org/abs/2006.02049
https://arxiv.org/abs/2111.10007
http://arxiv.org/abs/2107.02306
http://arxiv.org/abs/2107.02306
http://arxiv.org/abs/2301.05219
http://arxiv.org/abs/2301.05219

1934 F. Chen et al.

1 3

 98. Li Y, Adamczewski K, Li W, Gu S, Timofte R, Van Gool L
(2021) Revisiting random channel pruning for neural network
compression. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp 191–201

 99. Jaderberg M, Vedaldi A, Zisserman A (2014) Speeding up
convolutional neural networks with low rank expansions. In:
British machine vision conference

 100. Zhang X, Zou J, He K, Sun J (2015) Accelerating very deep
convolutional networks for classification and detection. IEEE
Trans Pattern Anal Mach Intell. https:// doi. org/ 10. 1109/
TPAMI. 2015. 25025 79

 101. Kim Y, Park E, Yoo S, Choi T-L, Yang L, Shin D (2015) Com-
pression of deep convolutional neural networks for fast and
low power mobile applications. arXiv: Computer Vision and
Pattern Recognition

 102. Chen Y, Jin X, Kang B, Feng J, Yan S (2018) Sharing residual
units through collective tensor factorization to improve deep
neural networks. In: International joint conference on artificial
intelligence

 103. Su J, Li J, Bhattacharjee B, Huang F (2018) Tensorial neural
networks: generalization of neural networks and application to
model compression. arXiv: Machine Learning

 104. Garipov T, Podoprikhin D, Novikov A, Vetrov D (2016) Ulti-
mate tensorization: compressing convolutional and fc layers
alike. arXiv: Learning

 105. Hawkins C, Yang H, Li M, Lai L, Chandra V (2021) Low-
rank+ sparse tensor compression for neural networks. arXiv
Preprint. http:// arxiv. org/ abs/ 2111. 01697

 106. Chu B-S, Lee C-R (2021) Low-rank tensor decomposition for
compression of convolutional neural networks using funnel
regularization. arXiv Preprint. http:// arxiv. org/ abs/ 2112. 03690

 107. Miyashita D, Lee EH, Murmann B (2016) Convolutional neural
networks using logarithmic data representation. CoRR. https://
arxiv. org/ abs/ 1603. 01025

 108. Zhou A, Yao A, Guo Y, Xu L, Chen Y (2017) Incremental net-
work quantization: towards lossless CNNs with low-precision
weights. In: 5th international conference on learning repre-
sentations, ICLR 2017, Toulon, France, April 24–26, 2017,
conference track proceedings

 109. Guo Y, Yao A, Zhao H, Chen Y (2017) Network sketching:
exploiting binary structure in deep CNNs. In: Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, pp 5955–5963

 110. Nahshan Y, Chmiel B, Baskin C, Zheltonozhskii E, Banner R,
Bronstein AM, Mendelson A (2021) Loss aware post-training
quantization. Mach Learn 110(11):3245–3262

 111. Li Y, Gong R, Tan X, Yang Y, Hu P, Zhang Q, Yu F, Wang
W, Gu S (2021) BRECQ: pushing the limit of post-training
quantization by block reconstruction. arXiv Preprint. http://
arxiv. org/ abs/ 2102. 05426

 112. Nagel M, van Baalen M, Blankevoort T, Welling M (2019)
Data-free quantization through weight equalization and bias
correction. In: 2019IEEE/CVF international conference on
computer vision, ICCV 2019, Seoul, Korea (South), October
27–November 2, 2019. IEEE, pp 1325–1334

 113. Gholami A, Kim S, Dong Z, Yao Z, Mahoney MW, Keutzer K
(2021) A survey of quantization methods for efficient neural
network inference. CoRR. https:// arxiv. org/ abs/ 2103. 13630

 114. Nagel M, Fournarakis M, Amjad RA, Bondarenko Y, van
Baalen M, Blankevoort T (2021) A white paper on neural net-
work quantization. CoRR. https:// arxiv. org/ abs/ 2106. 08295

 115. Nagel M, Amjad RA, van Baalen M, Louizos C, Blankevoort
T (2020) Up or down? Adaptive rounding for post-training
quantization. In: Proceedings of the 37th international con-
ference on machine learning, ICML 2020, 13–18 July 2020,

virtual event, volume 119 of proceedings of machine learning
research. PMLR, pp 7197–7206

 116. Banner R, Nahshan Y, Soudry D (2019) Post training 4-bit quan-
tization of convolutional networks for rapid-deployment. In:
Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox
EB, Garnett R (eds) Advances in neural information processing
systems 32: annual conference on neural information processing
systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver,
BC, Canada, pp 7948–7956

 117. Cai Y, Yao Z, Dong Z, Gholami A, Mahoney MW, Keutzer K
(2020) ZeroQ: a novel zero shot quantization framework. In:
2020IEEE/CVF conference on computer vision and pattern rec-
ognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020.
Computer Vision Foundation/IEEE, pp 13166–13175

 118. Hubara I, Nahshan Y, Hanani Y, Banner R, Soudry D (2021)
Accurate post training quantization with small calibration sets.
In: Meila M, Zhang T (eds) Proceedings of the 38th international
conference on machine learning, ICML 2021, 18–24 July 2021,
Virtual Event, volume 139 of proceedings of machine learning
research. PMLR, pp 4466–4475

 119. Wei X, Gong R, Li Y, Liu X, Yu F (2022) QDrop: randomly
dropping quantization for extremely low-bit post-training quan-
tization. In: The tenth international conference on learning
representations, ICLR 2022, virtual event, April 25–29, 2022.
OpenReview.net

 120. Courbariaux M, Bengio Y, David J-P (2015) BinaryConnect:
training deep neural networks with binary weights during prop-
agations. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M,
Garnett R (eds) Advances in neural information processing sys-
tems 28: annual conference on neural information processing
systems 2015, December 7–12, 2015, Montreal, QC, Canada,
pp 3123–3131

 121. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y
(2016) Binarized neural networks. In: Lee DD, Sugiyama M,
von Luxburg U, Guyon I, Garnett R (eds) Advances in neural
information processing systems 29: annual conference on neural
information processing systems 2016, December 5–10, 2016,
Barcelona, Spain, pp 4107–4115

 122. Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) XNOR-
Net: ImageNet classification using binary convolutional neural
networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Com-
puter vision-ECCV 2016-14th European conference, Amsterdam,
The Netherlands, October 11–14, 2016, proceedings, part IV,
volume 9908 of lecture notes in computer science. Springer, pp
525–542

 123. Zhou S, Wu Y, Zekun N, Zhou X, Wen H, Zou Y (2016)
DoReFa-Net: training low bitwidth convolutional neural net-
works with low bitwidth gradients. arXiv: Neural and Evolu-
tionary Computing

 124. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y
(2017) Quantized neural networks: training neural networks
with low precision weights and activations. J Mach Learn Res
18:187:1–187:30

 125. Gysel P, Pimentel JJ, Motamedi M, Ghiasi S (2018) Ristretto: a
framework for empirical study of resource-efficient inference in
convolutional neural networks. IEEE Trans Neural Netw Learn
Syst 29(11):5784–5789

 126. Bengio Y, Léonard N, Courville AC (2013) Estimating or propa-
gating gradients through stochastic neurons for conditional com-
putation. CoRR. https:// arxiv. org/ abs/ 1308. 3432

 127. Choi J, Wang Z, Venkataramani S, Chuang PI-J, Srinivasan V,
Gopalakrishnan K (2018) PACT: parameterized clipping activa-
tion for quantized neural networks. CoRR. https:// arxiv. org/ abs/
1805. 06085

 128. Jung S, Son C, Lee S, Son JW, Han J-J, Kwak Y, Hwang SJ,
Choi C (2019) Learning to quantize deep networks by optimizing

https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579
http://arxiv.org/abs/2111.01697
http://arxiv.org/abs/2112.03690
https://arxiv.org/abs/1603.01025
https://arxiv.org/abs/1603.01025
http://arxiv.org/abs/2102.05426
http://arxiv.org/abs/2102.05426
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1805.06085

1935Review of Lightweight Deep Convolutional Neural Networks

1 3

quantization intervals with task loss. In: IEEE conference on
computer vision and pattern recognition, CVPR 2019, Long
Beach, CA, USA, June 16–20, 2019. Computer Vision Founda-
tion/IEEE, pp 4350–4359

 129. Esser SK, McKinstry JL, Bablani D, Appuswamy R, Modha DS
(2020) Learned step size quantization. In: 8th international con-
ference on learning representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26–30, 2020. OpenReview.net

 130. Bhalgat Y, Lee J, Nagel M, Blankevoort T, Kwak N (2020)
LSQ+: improving low-bit quantization through learnable off-
sets and better initialization. In: 2020IEEE/CVF conference on
computer vision and pattern recognition, CVPR workshops 2020,
Seattle, WA, USA, June 14–19, 2020. Computer Vision Founda-
tion/IEEE, pp 2978–2985

 131. Asim F, Park J, Azamat A, Lee J (2022) Centered symmetric
quantization for hardware-efficient low-bit neural networks. Brit-
ish Machine Vision Association (BMVA)

 132. Dong Z, Yao Z, Arfeen D, Gholami A, Mahoney MW, Keutzer K
(2020) HAWQ-V2: Hessian aware trace-weighted quantization of
neural networks. Adv Neural Inf Process Syst 33:18518–18529

 133. Yao Z, Dong Z, Zheng Z, Gholami A, Yu J, Tan E, Wang L,
Huang Q, Wang Y, Mahoney M et al (2021) HAWQ-V3: dyadic
neural network quantization. In: International conference on
machine learning. PMLR, pp 11875–11886

 134. He Y, Lin J, Liu Z, Wang H, Li L-J, Han S (2018) AMc: AutoML
for model compression and acceleration on mobile devices. In:
Proceedings of the European conference on computer vision
(ECCV), pp 784–800

 135. Bucila C, Caruana R, Niculescu-Mizil A (2006) Model compres-
sion. In: Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds)
Proceedings of the twelfth ACM SIGKDD international confer-
ence on knowledge discovery and data mining, Philadelphia, PA,
USA, August 20–23, 2006. ACM, pp 535–541

 136. Hinton GE, Vinyals O, Dean J (2015) Distilling the knowledge
in a neural network. CoRR. https:// arxiv. org/ abs/ 1503. 02531

 137. Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y
(2015) FitNets: hints for thin deep nets. In: Bengio Y, LeCun Y
(eds) 3rd International conference on learning representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, conference
track proceedings

 138. Zhang Y, Xiang T, Hospedales TM, Lu H (2018) Deep mutual
learning. In: 2018 IEEE conference on computer vision and pat-
tern recognition, CVPR 2018, Salt Lake City, UT, USA, June
18–22, 2018. Computer Vision Foundation/IEEE Computer
Society, pp 4320–4328

 139. Furlanello T, Lipton ZC, Tschannen M, Itti L, Anandkumar A
(2018) Born-again neural networks. In: Dy JG, Krause A (eds)
Proceedings of the 35th international conference on machine
learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10–15, 2018, volume 80 of proceedings of machine learning
research. PMLR, pp 1602–1611

 140. Yang C, Xie L, Su C, Yuille AL (2019) Snapshot distillation:
teacher–student optimization in one generation. In: IEEE confer-
ence on computer vision and pattern recognition, CVPR 2019,
Long Beach, CA, USA, June 16–20, 2019. Computer Vision
Foundation/IEEE, pp 2859–2868

 141. Cho JH, Hariharan B (2019) On the efficacy of knowledge distil-
lation. In: 2019 IEEE/CVF international conference on computer
vision, ICCV 2019, Seoul, Korea (South), October 27–November
2, 2019. IEEE, pp 4793–4801

 142. Mirzadeh SI, Farajtabar M, Li A, Levine N, Matsukawa A,
Ghasemzadeh H (2020) Improved knowledge distillation via
teacher assistant. In: Proceedings of the AAAI conference on
artificial intelligence, vol 34, pp 5191–5198

 143. Chen D, Mei J-P, Zhang H, Wang C, Feng Y, Chen C (2022)
Knowledge distillation with the reused teacher classifier. In:

IEEE/CVF conference on computer vision and pattern recogni-
tion, CVPR 2022, New Orleans, LA, USA, June 18–24, 2022.
IEEE, pp 11923–11932

 144. Beyer L, Zhai X, Royer A, Markeeva L, Anil R, Kolesnikov A
(2022) Knowledge distillation: a good teacher is patient and con-
sistent. In: IEEE/CVF conference on computer vision and pattern
recognition, CVPR 2022, New Orleans, LA, USA, June 18–24,
2022. IEEE, pp 10915–10924

 145. Yim J, Joo D, Bae J-H, Kim J (2017) A gift from knowledge
distillation: fast optimization, network minimization and transfer
learning. In: 2017IEEE conference on computer vision and pat-
tern recognition, CVPR 2017, Honolulu, HI, USA, July 21–26,
2017. IEEE Computer Society, pp 7130–7138

 146. Zagoruyko S, Komodakis N (2017) Paying more attention to
attention: improving the performance of convolutional neural
networks via attention transfer. In: 5th international conference
on learning representations, ICLR 2017, Toulon, France, April
24–26, 2017, conference track proceedings. OpenReview.net

 147. Huang Z, Wang N (2017) Like what you like: knowledge distill
via neuron selectivity transfer. CoRR. https:// arxiv. org/ abs/ 1707.
01219

 148. Heo B, Lee M, Yun S, Choi JY (2018) Knowledge transfer via
distillation of activation boundaries formed by hidden neurons.
CoRR. https:// arxiv. org/ abs/ 1811. 03233

 149. Kim J, Park S, Kwak N (2018) Paraphrasing complex network:
network compression via factor transfer. In: Bengio S, Wallach
HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R
(eds) Advances in neural information processing systems 31:
annual conference on neural information processing systems
2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada,
pp 2765–2774

 150. Heo B, Kim J, Yun S, Park H, Kwak N, Choi JY (2019) A
comprehensive overhaul of feature distillation. In: 2019 IEEE/
CVF international conference on computer vision, ICCV 2019,
Seoul, Korea (South), October 27–November 2, 2019. IEEE, pp
1921–1930

 151. Park W, Kim D, Lu Y, Cho M (2019) Relational knowledge dis-
tillation. In: IEEE conference on computer vision and pattern
recognition, CVPR 2019, Long Beach, CA, USA, June 16–20,
2019. Computer Vision Foundation/IEEE, pp 3967–3976

 152. Peng B, Jin X, Li D, Zhou S, Wu Y, Liu J, Zhang Z, Liu Y
(2019) Correlation congruence for knowledge distillation. In:
2019IEEE/CVF international conference on computer vision,
ICCV 2019, Seoul, Korea (South), October 27–November 2,
2019. IEEE, pp 5006–5015

 153. Tian Y, Krishnan D, Isola P (2019) Contrastive representation
distillation. CoRR. https:// arxiv. org/ abs/ 1910. 10699

 154. Tung F, Mori G (2019) Similarity-preserving knowledge distilla-
tion. In: 2019 IEEE/CVF international conference on computer
vision, ICCV 2019, Seoul, Korea (South), October 27–November
2, 2019. IEEE, pp 1365–1374

 155. Zhao B, Cui Q, Song R, Qiu Y, Liang J (2022) Decoupled knowl-
edge distillation. In: IEEE/CVF conference on computer vision
and pattern recognition, CVPR 2022, New Orleans, LA, USA,
June 18–24, 2022. IEEE, pp 11943–11952

 156. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga
R, Moore S, Murray DG, Steiner B, Tucker PA, Vasudevan V,
Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a sys-
tem for large-scale machine learning. In: Keeton K, Roscoe T
(eds) 12th USENIX symposium on operating systems design and
implementation, OSDI 2016, Savannah, GA, USA, November
2–4, 2016. USENIX Association, pp 265–283

 157. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf
A, Yang EZ, DeVito Z, Raison M, Tejani A, Chilamkurthy

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1707.01219
https://arxiv.org/abs/1707.01219
https://arxiv.org/abs/1811.03233
https://arxiv.org/abs/1910.10699

1936 F. Chen et al.

1 3

S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an
imperative style, high-performance deep learning library. In:
Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F,
Fox EB, Garnett R (eds) Advances in neural information pro-
cessing systems 32: annual conference on neural information
processing systems 2019, NeurIPS 2019, December 8–14,
2019, Vancouver, BC, Canada, pp 8024–8035

 158. Keras. https:// keras. io/. Accessed 16 Nov 2022
 159. PyTorch lightning. https:// www. pytor chlig htning. ai/. Accessed

20 Dec 2022
 160. Theano. https:// github. com/ Theano/ Theano. Accessed 16 Nov

2022
 161. The microsoft cognitive toolkit. https:// learn. micro soft. com/

en- us/ cogni tive- toolk it/. Accessed 16 Dec 2022
 162. Deeplearning4j suite overview. https:// deepl earni ng4j. kondu

it. ai/. Accessed 16 Nov 2022
 163. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick

RB, Guadarrama S, Darrell T (2014) Caffe: convolutional
architecture for fast feature embedding. In: Hua KA, Rui Y,
Steinmetz R, Hanjalic A, Natsev A, Zhu W (eds) Proceedings
of the ACM international conference on multimedia, MM’14,
Orlando, FL, USA, November 03–07, 2014. ACM, pp 675–678

 164. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu
B, Zhang C, Zhang Z (2015) MxNet: a flexible and efficient
machine learning library for heterogeneous distributed sys-
tems. CoRR. https:// arxiv. org/ abs/ 1512. 01274

 165. Apache MXNet. https:// mxnet. apache. org/ versi ons/1. 9.1/.
Accessed 23 Dec 2022

 166. NVIDIA TensorRT. https:// devel oper. nvidia. com/ zh- cn/ tenso
rrt. Accessed 20 Dec 2022

 167. Kechit Goyal. Title, deep learning frameworks in 2023 you
can’t ignore. https:// www. upgrad. com/ blog/ top- deep- learn ing-
frame works/. Accessed 09 Jan 2023

 168. Shuvo MMH, Islam SK, Cheng J, Morshed BI (2023) Efficient
acceleration of deep learning inference on resource-constrained
edge devices: a review. Proc IEEE 111(1):42–91

 169. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient process-
ing of deep neural networks: a tutorial and survey. Proc IEEE
105(12):2295–2329

 170. Xu X, Ding Y, Hu SX, Niemier M, Cong J, Hu Y, Shi Y (2018)
Scaling for edge inference of deep neural networks. Nat Elec-
tron 1(4):216–222

 171. Jetson TX2 Module. https:// devel oper. nvidia. com/ embed ded/
jetson- tx2. Accessed 09 Dec 2022

 172. Intel Edison development platform. https:// www. intel. com/
conte nt/ dam/ suppo rt/ us/ en/ docum ents/ edison/ sb/ edison_ pb_
33117 9002. pdf. Accessed 29 Dec 2022

 173. Chen Y-H, Krishna T, Emer JS, Sze V (2017) Eyeriss: an
energy-efficient reconfigurable accelerator for deep con-
volutional neural networks. IEEE J Solid State Circuits
52(1):127–138

 174. Chen Y-H, Yang T-J, Emer JS, Sze V (2019) Eyeriss V2: a flex-
ible accelerator for emerging deep neural networks on mobile
devices. IEEE J Emerg Sel Top Circuits Syst 9(2):292–308

 175. Baischer L, Wess M, TaheriNejad N (2021) Learning on hard-
ware: a tutorial on neural network accelerators and co-proces-
sors. arXiv Preprint. http:// arxiv. org/ abs/ 2104. 09252

 176. Krizhevsky A, Hinton G (2009) CIFAR-100 (Canadian institute
for advanced research). Technical report, CIFAR

 177. Khosla A, Jayadevaprakash N, Yao B, Fei-Fei L (2011) Novel
dataset for fine-grained image categorization. In: First work-
shop on fine-grained visual categorization, IEEE conference
on computer vision and pattern recognition, Colorado Springs,
CO, June 2011

 178. Lin T-Y, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D,
Dollár P, Zitnick CL (2014) Microsoft COCO: common objects

in context. In: Fleet DJ, Pajdla T, Schiele B, Tuytelaars T (eds)
Computer vision—ECCV 2014—13th European conference,
Zurich, Switzerland, September 6–12, 2014, proceedings, part
V, volume 8693 of lecture notes in computer science. Springer,
pp 740–755

 179. Cordts M, a Sebastian Ramos MO, Rehfeld T, Enzweiler M,
Benenson R, Franke U, Roth S, Schiele B (2016) The city-
scapes dataset for semantic urban scene understanding. In:
2016 IEEE conference on computer vision and pattern recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016.
IEEE Computer Society, pp 3213–3223

 180. Lai L, Suda N (2018) Rethinking machine learning develop-
ment and deployment for edge devices. CoRR. https:// arxiv.
org/ abs/ 1806. 07846

 181. Polino A, Pascanu R, Alistarh D (2018) Model compression
via distillation and quantization. arXiv Preprint. http:// arxiv.
org/ abs/ 1802. 05668

 182. Liu Z, Mu H, Zhang X, Guo Z, Yang X, Cheng K-T, Sun J
(2019) MetaPruning: meta learning for automatic neural net-
work channel pruning. In: Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp 3296–3305

 183. Liu Y, Yang G, Qiao S, Liu M, Qu L, Han N, Wu T, Yuan G,
Wu T, Peng Y (2023) Imbalanced data classification: using
transfer learning and active sampling. Eng Appl Artif Intell
117(Part):105621

 184. Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Gupta BB, Chen
X, Wang X (2022) A survey of deep active learning. ACM
Comput Surv 54(9):180:1–180:40

 185. Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q (2020) ECA-Net:
efficient channel attention for deep convolutional neural net-
works. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp 11534–11542

 186. Zhang Q-L, Yang Y-B (2021) SA-Net: shuffle attention for
deep convolutional neural networks. In: ICASSP 2021–2021
IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, pp 2235–2239

 187. Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: convolu-
tional block attention module. In: Proceedings of the European
conference on computer vision (ECCV), pp 3–19

 188. Cao, Y., Xu, J., Lin, S., Wei, F., & Hu, H (2019) GCNet: non-
local networks meet squeeze-excitation networks and beyond.
In: Proceedings of the IEEE/CVF international conference on
computer vision, pp 1971–1980

 189. Li X, Hu X, Yang J (2019) Spatial group-wise enhance:
improving semantic feature learning in convolutional networks.
arXiv Preprint. http:// arxiv. org/ abs/ 1905. 09646

 190. Mehta S, Rastegari M (2021) MobileViT: light-weight, gen-
eral-purpose, and mobile-friendly vision transformer. arXiv
Preprint. http:// arxiv. org/ abs/ 2110. 02178

 191. Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L
(2021) CvT: introducing convolutions to vision transformers.
In: Proceedings of the IEEE/CVF international conference on
computer vision, pp 22–31

 192. Maaz M, Shaker A, Cholakkal H, Khan S, Zamir SW, Anwer
RM, Khan FS (2022) EdgeNext: efficiently amalgamated CNN-
transformer architecture for mobile vision applications. CoRR.
https:// arxiv. org/ abs/ 2206. 10589

 193. Chen Y, Dai X, Chen D, Liu M, Dong X, Yuan L, Liu Z (2022)
Mobile-former: bridging MobileNet and transformer. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 5270–5279

 194. Zhang J, Li X, Li J, Liu L, Xue Z, Zhang B, Jiang Z, Huang T,
Wang Y, Wang C (2023) Rethinking mobile block for efficient
neural models. arXiv Preprint. http:// arxiv. org/ abs/ 2301. 01146

https://keras.io/
https://www.pytorchlightning.ai/
https://github.com/Theano/Theano
https://learn.microsoft.com/en-us/cognitive-toolkit/
https://learn.microsoft.com/en-us/cognitive-toolkit/
https://deeplearning4j.konduit.ai/
https://deeplearning4j.konduit.ai/
https://arxiv.org/abs/1512.01274
https://mxnet.apache.org/versions/1.9.1/
https://developer.nvidia.com/zh-cn/tensorrt
https://developer.nvidia.com/zh-cn/tensorrt
https://www.upgrad.com/blog/top-deep-learning-frameworks/
https://www.upgrad.com/blog/top-deep-learning-frameworks/
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
https://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison_pb_331179002.pdf
https://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison_pb_331179002.pdf
https://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison_pb_331179002.pdf
http://arxiv.org/abs/2104.09252
https://arxiv.org/abs/1806.07846
https://arxiv.org/abs/1806.07846
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1905.09646
http://arxiv.org/abs/2110.02178
https://arxiv.org/abs/2206.10589
http://arxiv.org/abs/2301.01146

1937Review of Lightweight Deep Convolutional Neural Networks

1 3

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	Review of Lightweight Deep Convolutional Neural Networks
	Abstract
	1 Introduction
	2 Motivation and Category
	2.1 The Motivation of Utilizing Lightweight CNNs
	2.2 Category of Lightweight DCNNs Methods

	3 Methods for Lightweight Convolutional Neural Networks
	3.1 Architecture Design
	3.1.1 Manual Design
	3.1.2 AutoML Design
	3.1.3 Analysis and Summary

	3.2 Model Compression
	3.2.1 Network Pruning
	3.2.2 Low-Rank Decomposition
	3.2.3 Low-Bit Quantization
	3.2.4 Knowledge Distillation

	4 Underlying Frameworks Support
	5 Benchmark Datasets
	6 Future Research Directions
	7 Conclusions
	Acknowledgements
	References

