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Abstract
Respiratory diseases can lead to lung failure, which happens when the lungs cannot give the body enough oxygen. These 
diseases can be diagnosed using medical data, lung pathology, functional testing of the lungs, etc. However, challenges in 
care quality persist, which results in inaccurate diagnoses and restricts patient satisfaction. Deep transfer learning models 
have emerged as a powerful tool for detecting and classifying respiratory diseases due to their ability for analyzing the large 
bulk of data from medical images, patient records, etc., to identify patterns and predict the likelihood of disease. Keep-
ing this in view, the paper aims to design a system for the prediction and classification of multiple respiratory diseases. 
Various deep transfer learning models such as EfficientNetB6, EfficientNetV2B3, DenseNet201, Inception-v3, Xception, 
EfficientNetV2B1, ResNet50V2, EfficientNetV2S, InceptionResNet-v2, ResNet101V2, and a proposed hybrid model (Effi-
cientNetB6 + ResNet101V2) have been used to analyze 19,488 pulmonary images such as CT scans as well as chest x-ray 
of lung cancer, pulmonary embolism, COVID, and pneumoconiosis along with the healthy lungs. The images are initially 
pre-processed with the help of contrast enhancement technique and are represented graphically via histogram equalization 
to understand the distribution of their pixel intensity. To obtain the region of interest and extract features, contour features 
as well as thresholding techniques are applied. Later, the models are trained and evaluated which depicts that the proposed 
hybrid model computes the best accuracy, precision, recall, and F1 score with values of 99.77%, 1.00, 0.99, and 1.00, respec-
tively, and the lowest loss value of 0.001. Based on the research, the proposed hybrid deep transfer learning model will help 
doctors and experts make better predictions and improve the classification of respiratory diseases.

1 Introduction

Lungs are the most important organ in human body but peo-
ple neither take good care of them nor give importance to 
their own respiratory and breathing related issues which later 
causes various infections and injuries [1]. According to the 
WHO, airway diseases are the foremost cause of death and 
disability worldwide hence it is essential to ensure a better 
diagnostic technique that can provide an accurate diagno-
sis as well as take appropriate actions to cure it. Numer-
ous factors contribute to the rise of such diseases which 
includes direct or indirect tobacco smoke exposure, low birth 
weight, heavy exposure to malnutrition, air pollution, and 
virus exposure, like the influenza virus or the Coronavirus. 
In addition to this, there are also certain similarities in the 
symptoms of these diseases which can cause confusion and 
lead to misdiagnosis in treatment, therefore it is important 
to detect and diagnose multiple airway diseases accurately 
and timely [2].
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In the healthcare sector, where massive and complex 
amounts of data are generated, artificial intelligence (AI) 
has proven to be an invaluable and irreplaceable asset. AI 
techniques have done a fantastic job in the image recogni-
tion sector of healthcare, such as to evaluate and classify the 
images of lung cancer, diagnosis of fibrotic lung disease, to 
interpret the pulmonary function tests as well as to diag-
nose various restrictive and obstructive lung diseases. In a 
broader sense, the medical sector is getting more involved 
with artificial intelligence for assisting doctors to predict 
and diagnose numerous types of diseases, particularly in the 
previous years when there was pandemic due to COVID-
19 virus and insufficient hospitals were there to provide 
adequate care to ill people [3]. According to the NHS-com-
missioned Topol Report, the advanced algorithms of math-
ematics, cloud computing, etc. have escalated to develop the 
methods based on artificial intelligence (AI) techniques to 
analyze, interpret, and forecast healthcare data [4].

One of the researchers created a cough detection-based 
application, as shown in Fig. 1, that uses sensors to record 
the symptoms such as cough sound, body temperature, air-
flow, etc. of patients' or users. The recorded data was later 
converted and processed by a machine learning based tech-
niques for identifying patterns and classifying the combined 
symptoms of various respiratory disorders [2].

Another study stated that Google AI scientists developed 
a neural network where they had reported that their network 
was better or as accurate as radiologists to detect malig-
nant lung nodules [5]. A similar model was found to detect 
chronic obstructive pulmonary disease (COPD) in smokers 
to predict acute respiratory disease cases and mortality [6]. 
In paper [7], the authors learned that the machine learning 
algorithm worked well with the radiologists to interpret tho-
racic using high resolution computed tomography images by 
73%. Their study also demonstrated that deep learning algo-
rithms could be valuable in diagnosing interstitial lung dis-
ease. Similarly, in paper [8], the authors discovered that deep 
learning improved the diagnosis of chronic hypersensitivity 

pneumonitis, nonspecific interstitial pneumonia, cryptogenic 
organizing pneumonia, and typical interstitial pneumonia 
patterns. Therefore, it can be said that AI-based techniques 
have demonstrated superior performance and provide clini-
cians with a powerful decision support tool. The importance 
of such technology in improving clinical practice will drive 
medical community acceptance in the real world [9–12].

In this paper, the image dataset of four respiratory dis-
eases like lung cancer, pulmonary embolism (PE), covid-
19, and pneumoconiosis, including the normal lung images, 
have been considered and applied on various deep learn-
ing models such as EfficientNetB6, EfficientNetV2B1, 
EfficientNetV2B3, DenseNet201, Xception, ResNet50V2, 
Inception-v3, EfficientNetV2S, InceptionResNet-v2, 
ResNet101V2, and proposed hybrid model (EfficientNetB6 
and ResNet101V2). The models are evaluated using several 
factors which include loss, accuracy, F1 score, MCC, preci-
sion, and recall. The research found that the proposed hybrid 
model obtained the highest training and testing accuracy of 
99.84% and 99.77%, respectively.

1.1  Contribution

The contributions that have been made to develop the pre-
diction system of respiratory diseases are shown as under:

1. The dataset of 19,488 images was initially taken from 
the four diseases, including the normal lungs, and later 
pre-processed by applying the CLAHE technique to 
enhance the contrast and remove noisy signals from 
images.

2. Using histogram equalization, the images have been 
visualized graphically to study the patterns of the pixel 
as well as detect anomalies if present.

3. For extracting features and to obtain ROI various tech-
niques have been used such as contour features, Otsu 
thresholding, and Adaptive thresholding. It results in 

Fig. 1  AI based cough detection 
application [2]
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38,876 image features and is later split into training and 
testing sets on a scale of 70:30.

4. Subsequently, ten deep transfer learning models along 
with the proposed hybridized model are applied and 
trained using training and testing dataset. These models 
are further examined through various parameters such 
as loss, accuracy, recall, F1 score, precision, and MCC 
values. Besides this, the values of confusion matrix to 
showcase the best model for identifying and classifying 
the respiratory diseases have been also generated.

1.2  Road Map of the Paper

The first section of the research paper is referred to as the 
Introduction. It provides concise information on respiratory 
diseases, their impact, and AI-based strategies for combating 
them. The context for discussing the researcher's work in the 
field of detecting respiratory disease is presented in Sect. 2. 
In addition, Sect. 3 describes the dataset, techniques, and 
parameters used to develop the respiratory disease detec-
tion system, while Sect. 4 describes the system's outcomes. 
In Sects. 5 and 6, the proposed work is contrasted with the 
existing one in the discussion, and the paper is summarized 
and concluded respectively.

2  Background

In this section, the work of various researchers in detecting 
lung cancer, covid 19, PE, and pneumoconiosis with the 
help of machine and deep learning techniques have been 
showcased [13, 14]. A tabular representation in Table 1 has 
also been provided to make it more informative, where the 
dataset, methods used by the researchers, and their outcomes 
and limitations have been shown. In the case of lung cancer 
detection, researchers like Dunke et al. [15] and Sori et al. 
[16] classified the lung nodules and detected their malig-
nancy level using a 3D multi-path VGG network, U-Net 
architecture, and multi-phase CNN, respectively. Likewise, 
Chen et al. [17] researched lung cancer treatment to reflect 
better diagnosis by providing higher interpretability of the 
output. During the research, they analyzed the model's per-
formance for a small imbalance dataset, and to overcome 
it, they proposed a new bag simulation method for multiple 
instance learning. Likewise, Said et al. [18] had discussed 
the use of deep learning techniques for accurate diagnosis 
of lung cancer through medical image segmentation. The 
study used a dataset of CT scans of lung cancer patients and 
compared the performance of different deep learning archi-
tectures for image segmentation. The results showed that the 
use of deep learning techniques significantly improved the 
accuracy of lung cancer diagnosis through medical image 

segmentation. The study had important implications for the 
future of lung cancer diagnosis and treatment.

In the case of pneumoconiosis, Sun et al. [19] proposed a 
fully deep learning technique that comprised segmentation 
and a staging procedure. The researchers initially segmented 
and extracted lung regions in the CXR images and later clas-
sified them into four stages using focal staging loss and deep 
log-normal label distribution learning. Similarly, Yang et al. 
[20] also developed the automatic pneumoconiosis screening 
system, which used pre-processing pipeline along with the 
ResNet classification model. As per the authors, a large set 
of data was used. In their paper, Zhang et al. [21] mentioned 
an AI-based model that assisted radiologists in screening 
and stage pneumoconiosis based on their CXR images. 
The model initially segmented the lung region into six sub-
regions, and later CNN based network was applied to clas-
sify and predict the opacity level of each sub-region. Their 
research ended by diagnosing each area and classifying them 
under the classes such as normal, stage 1, stage II, or III 
based on their prediction results. Peng et al. [22] investi-
gated the use of convolutional neural networks in medical 
images to enhance pneumoconiosis diagnosis. The research 
gathered 8361 chest X-ray films for the first round of model 
testing and 24,887 chest X-ray films for the third round of 
model testing. Three distinct models were designated with 
test sets, and the diagnostic efficacy of each was computed.

In the case of PE [23], the authors applied a novel 
approach for analyzing the incomplete and partial datasets 
based on Q-analysis and ML algorithms. The authors' main 
aim was to introduce the hybridization of the theory of 
hyper networks and supervised artificial neural networks. 
Using this strategy, they developed new computer-aided 
design software to detect PE for reducing the number of 
CT-angiography analyses and ensure a great efficiency of the 
diagnosis. Similarly, in [24], the researchers worked on CT- 
angiography images of PE by training weakly labelled data 
on a deep neural network. The author took a small dataset 
and proved that the results obtained were much better, and 
it demonstrated that small research groups could use DL 
models for limited resources. In [25], the authors stated that 
a CT exam is necessary for achieving fast detection and diag-
nosis of PE. So based on it, they proposed a pipeline-based 
technique that used U-Net (Fig. 2) to detect embolisms from 
CT images and classified them between true positives and 
false positives using machine learning algorithms.

Grenier et al. [26] developed a CNN model as well as the 
hybrid 3D/2D UNet topology to detect and suspect PEs on 
computed tomography angiograms (CTAs). They used the 
dataset of 387 anonymized real-world chest CTAs which had 
been acquired on 41 different scanner models. The results 
showed that their algorithm correctly identified 170 out of 
186 positive PE cases with 91.4% sensitivity and 184 out of 
201 negative PE cases with 91.5% specificity.
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To detect covid-19, the authors in [27] used the Fuzzy 
technique, MobileNetV2, Squeeze Net, and support vector 
machine. The data classes were restructured during the pre-
processing phase and stacked with the original images. The 
MobileNetV2 and Squeeze Net models were then used to 
train the stacked dataset and support vector machine was 
used to combine and classify efficient features. Similarly, 
in [28], the researchers used deep learning and laboratory 
data to predict and estimate the covid-19 disease patients. 
The model was validated using tenfold cross-validation after 
testing 18 laboratory outcomes from 600 patients. In [29], 
the authors predicted that during COVID-19, children would 
experience stress, depression, and anxiety. To understand 
the children's stress, depression, and anxiety levels, a Deep 
Learning Neural Network (DLNN)-based method was used. 
Using cutting-edge Machine Learning techniques, Duong 
et al. [30] presented a practicable method to detect Covid-
19 in chest X-ray (CXR) and lung computed tomography 
(LCT) images. The primary classification engine used the 
EfficientNet and MixNet technique on four real-world data-
sets i.e. two CXR datasets of 17,905 and 15,000 images, 
and two LCT datasets having 411,500 and 2,482 mages, 
respectively. The approach was evaluated using a five-fold 
cross-validation method, in which the dataset was divided 
into five parts where accuracy consistently exceeded 95.0% 
across all configurations, indicating a promising prediction 
performance across all datasets.

3  Methodology

This section addresses the many phases of the research, such 
as Sect. 3.1, which provides details about the dataset. Sec-
tion 3.2 describe the procedure for pre-processing the data. 
Section 3.4 depict picture visualization graphically. Sec-
tion 3.4 provide the methods for extracting the features, and 
Sect. 3.5 describe the models briefly. Finally, Sect. 3.6 give 
an overview of the parameters used to evaluate the model's 
performance. The flow of all these phases is shown in Fig. 3.

3.1  Dataset

The initial step in developing an automatic identification 
system for predicting and classifying airway disorders 
such as lung cancer, PE, pneumoconiosis, and covid-19 is 
to gather data from authorized sources. To fit the model, 
the lung cancer images are gathered from a dataset of chest 
CT scan images in.jpg or.png format [31]. Pneumoconio-
sis illness images are obtained from the Chongqing CDC 
through chest x-rays. It is divided into two subfolders: 
training and validation, which contain 568 and 140 images 

of pneumoconiosis-affected lungs and normal lungs, 
respectively [32]. Covid -19 pictures are obtained from 
the SARS-COV-2 Ct-Scan Dataset. This dataset includes 
1230 covid negative and 1252 covid positive CT scans for 
a total of 2482 CT scans [33]. The images for PE were 
acquired from CT imaging of PE. The dataset consists of 
35 different patients' computed tomography angiography 
(CTA) pictures for PE [34]. Finally, the images for normal 
lungs were extracted from all of the datasets mentioned 
above and merged to generate a single dataset. Figure 4 
depicts the original images of numerous airway illnesses 
including normal lungs used in the research.

3.2  Pre‑processing

Following the collection of images of size 224 × 224 × 1 
from various disease datasets, pre-processing has been per-
formed to improve the characteristics and remove the noisy 
signals so that they may be readily evaluated better. The 
CLAHE approach, which stands for contrast limited adap-
tive histogram equalization, is useful for medical images as 
it improves the contrast of an original image by dividing it 
into small regions called tiles and equalizing the histogram 
of each tile separately. The approach is adaptive because 
it adjusts the contrast enhancement locally to the charac-
teristics of each tile, which can vary within an image. This 
allows it to handle images with large variations in illumina-
tion and contrast. Two important parameters of the CLAHE 
approach are the clip limit and the tile grid size. The clip 
limit, specified by the cliplimit() function, sets a threshold 
on the amount of contrast enhancement applied to each tile. 
This limit prevents over-amplification of the contrast, which 
can lead to the loss of image details and the introduction of 
artifacts. In this study, the clip limit has been set to 10, which 
is lower than the default value 40. The tile grid size, com-
pute by the tileGridSize() function, determines the number 
of tiles used to divide the image for histogram equalization. 
The size of the tiles is important because it affects the trade-
off between local and global contrast enhancement. A larger 
tile size leads to more global contrast enhancement, while 
a smaller tile_size enhances more local contrast. In this 
approach, the image is initially divided into non-overlapping 
tiles of equal size, and each tile is processed independently. 
After CLAHE technique is applied to each tile, the gener-
ated tiles are merged using bilinear interpolation to provide 
a more contrasted and visible output image. Figure 5 shows 
the output images obtained using the CLAHE approach with 
the specified parameters.
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3.3  Exploratory Data Analysis

During pre and post-processing of original images, the his-
togram using hist() has been generated to find out the pattern 
of an image. Figure 6a represents the histogram of original 
images which indicates that the pixel intensity distribution 
of images is not uniform and have noisy signals in it. On the 
contrary, after applying the contrast enhancement technique 
to the images, it can be seen in Fig. 6b that the technique 
improves the visualization of certain features in the image 
as well as reduces the noise.

3.4  Feature Extraction

In this section, after obtaining the histogram equalized 
images, the features have been extracted using various image 
augmentation techniques. Initially contour feature is used for 
finding out the extreme points to crop the images for obtain-
ing the desired region using threshold techniques. During 
this phase, the properties of the images have been generated 
by calculating the parameters such as area, epsilon, perim-
eter, height, width, extent, equivalent diameter, minimum 
value, aspect ratio, maximum value, min value location, 
max value location, extreme leftmost point, extreme right-
most point, mean color, extreme topmost point, and extreme 

Fig. 2  UNet architecture to detect pulmonary embolism

Fig. 3  Proposed system design for respiratory diseases detection and classification
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bottommost point using Eqs. (1) to (16). All the computed 
values are displayed in Table 2. 

Initially, we calculated area, which is the product of 
height and width and based on it, the aspect ratio has also 
been calculated. The equations to compute them are (1) and 
(2)

Further, other parameters such as height and width are 
computed, as shown in Eqs. (3, 5), depending on the con-
tour feature points which are being passed to the bounding 
rectangle function through the OpenCV library.

Moreover, perimeter, equivalent diameter, extent, and 
epsilon are also calculated using Eqs. (5–8). Perimeter is 
computed through arclength, and the extent is the ratio of 
an object's area to the bounding rectangle area. Diameter is 
similar to the image's contour area, and in the end, epsilon 
is used for calculating the distance between the two points 
of the same classes.

(1)area = height × width

(2)Aspect ratio =

width

height

(3)height = cv2.boundingRect(cnt)

(4)width = cv2.boundingRect(cnt)

(5)epsilon =

√

((x2 − x1)
2
+ (y2 − y1)

2

(6)Perimeter = 0.1 × cv2 × arclength(cnt, True)

In addition to this, max and min value location as well as 
max and min values of the feature is calculated along with 
the value of color intensity as shown in Eqs. (9–12)

In the end, extreme leftmost, rightmost, bottommost, and 
topmost values are also calculated, in which 0 stands for the 
extreme left and rightmost point which means the calcula-
tion of values takes place in the horizontal direction. At the 
same time, 1 refers to calculating values in the vertical direc-
tion for extreme bottommost and topmost points.

(7)Extent =
object area

bounding rectangle area

(8)Equivalent diameter =

√

4 × contour area

�

(9)Minimum value location = cv2.minMaxLo()

(10)Maximum value location = cv2.minMaxLo()

(11)Minimum value = cv2.min()

(12)Maximum value = cv2.max()

(13)Mean color = cv2.mean()

(14)
Extreme leftmost point = tuple(cnt(cnt[∶, ∶, 0].argmin()[0])

(15)
Extreme rightmost point = tuple(cnt(cnt[∶, ∶, 0].argmin()[0])

Fig. 4  Original images of a lung cancer, b PE, c Covid-19, d pneumoconiosis, e normal lungs taken from respective dataset

Fig. 5  Pre processed images of various respiratory diseases
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Using cv2.contour (), the morphological values of the 
various contour features are used to determine the largest 
contour (). The contours are the curves that connect all con-
tinuous points (along the boundary) that have the same hue 
or intensity. They are helpful for analyzing the shape as well 

(16)
Extreme topmost point = tuple(cnt(cnt[∶, ∶, 1].argmin()[0])

(17)
Extreme bottommost point = tuple(cnt(cnt[∶, ∶, 1].argmin()[0])

as item identification and recognition. They are utilized in 
this research to generate the extreme points for cropping the 
image so that the characteristics can be extracted and extra-
neous information or details can be avoided to save space 
and time. The colors red, green, blue, and teal are used to 
define the extreme points for x–y coordinates, and they are 
determined using argmax() and argmin() as shown in Fig. 7. 

Further, the cropped images are segmented to obtain the 
region of interest by generating the bounding box using 
Otsu and adaptive thresholding techniques as shown in 

Fig. 6  a Histogram of before pre-processed images. b Histogram of after pre-processed images

Table 2  Characteristics of 
different images of respiratory 
diseases

Parameters Lung cancer Covid-19 Pneumoconiosis Pulmonary 
embolism

Normal lungs

Area 4.0 5.5 2.0 7.0 2.0
Perimeter 7.6 9.1 5.6 16.0 5.6
Epsilon 0.7 0.9 0.5 1.6 0.5
Width 3 4 3 8 3
Height 4 4 3 2 3
Aspect ration 0.75 1.0 1.0 4.0 1.0
Extend 0.3 0.3 0.2 0.4 0.2
Equivalent diameter 2.2 2.7 1.5 2.9 1.59
Minimum value 126.0 120 127.0 128.0 127.0
Maximum value 142.0 135 167.0 128.0 255.0
Min value location 39,161 159;219 298,442 240,427 419,338
Max value location 39,163 158;221 298,443 240,427 419,339
Mean color 133.0 129 138 128.0 155.0
Extreme leftmost point 38,161 157,219 297,442 240,427 418,338
Extreme rightmost point 40,161 160;219 297,442 247,428 420,338
Extreme topmost point 39,160 158;218 298,441 240,427 419,337
Extreme bottommost point 39,163 158;221 298,443 240,428 419,339
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Fig. 7  Applying feature extraction on multiple respiratory diseases. (Color figure online)
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Figs. 8 and 9 respectively which results in to 38,976 image 
features. The Otsu method, also known as the binariza-
tion algorithm, is an uncomplicated and efficient auto-
matic thresholding technique. The results of thresholding 
technique are generated using cv2.Otsu(). An image is 
consisted of two classes i.e. background and foreground. 
Otsu technique helps to compute an optimized threshold 
value which minimize and maximize the intra-class vari-
ance (σwc) and the inter-class variance (σbc) of these five 
classes respectively. Two variances i.e. σwc and σbc, are 
calculated using eq (xviii) and (xix) respectively for all 
possible thresholds (thresh = 0 to I, i.e., maximum inten-
sity level). In the end, if the value of the pixel luminance 
is less or equal to the threshold, it is replaced by 0 (black), 
and if greater than the threshold, it is replaced by 1 (white) 
in order to obtain the binary or black/white image.

where, weights �1(t) refers to the probabilities which are 
separated by a threshold t of the two classes. �1 and �2 are 
the variances of these two classes [35].

An adaptive threshold is also being chosen on the basis 
of the statistical properties of the pre-processed images 
which are cropped after their extreme points have been 
generated. The function cv2.adaptiveThresholding() used 
for weight updating unit in order to find an acceptable 

(18)�2
wc
t = �1(t)�

2
1
t + �2(t)�

2
2
t

(19)�2
bc
t = �2 − �2

w
t

threshold value for the images that are bimodal in nature. 
Consider a size [W × H] image and assign two weights, 
�1 and �2 and later compare them to each and every pixel 
value in the [W × H] image. Later, the weight which is 
closest to the pixel value is selected for updating the 
weight of each input pixel. Further, the variation between 
the closest and input weight is multiplied by the learning 
rate � and is added to the closest weight. If �1 is close to 
that value of the pixel, �1 is updated, and if �2 is close to 
that pixel, �2 is updated by applying the following Eqs. 
(20).

The updated weights are applied to each image pixel 
as well as the average of these two weights is used as the 
value of the threshold; Eq. (20) describes it. This thresh-
old setting can be used to convert a picture to binary form 
[36].

The pixel that ranges above ath value is considered as 
object and the value that ranges below ath value are con-
sider as background.

(20)�new = �old + � × (pixel − �old)

(21)ath =
�1 + �2

2

Fig. 8  Images after applying Otsu thresholding

Fig. 9  Images after applying adaptive thresholding i lung cancer, ii PE, iii normal lung, iv Covid-19, v pneumoconiosis
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Table 3  Hyper-parameters of 
applied deep learning models

Parameters Value

Size of batch 128
Learning rate 0.0001
Epochs 15
Optimizer Adam
Shear range 0.1
Classes 5
Width shift range 0.10
Zoom range 0.1
Horizontal flip True
Steps per epoch 107
Height shift range 0.10

Fig. 10  Architecture of EfficientNet model

3.5  Classifiers

This section briefly describes about all deep learning models 
that have been applied to the dataset (Sect. 3.1) for predict-
ing and classifying airway diseases. In addition to this, their 
hyper-parameter values are also shown in Table 3 that has 
been kept fixed throughout the research.

EfficientNet It is a convolutional neural network based 
scaling and design method that uses a compound coeffi-
cient to scale all depth/width/resolution dimensions con-
sistently (Fig. 10). EfficientNet is constructed upon the 
foundational network derived from the neural architecture 
search conducted by the AutoML MNAS framework. The 
architectural design incorporates a mobile inverted bot-
tleneck convolution technique, which bears resemblance 
to the MobileNet V2 model. However, it should be noted 
that this architecture exhibits an increase in size, primar-
ily attributed to the corresponding rise in floating-point 
operations per second (FLOPS) [37]. In this paper, four 
new efficientNet series were used: EfficientNetB6 (total 
parameters 40,970,656, Traianable parameters 40,746,221, 
and Non-trainable params: 224,435), EfficientNetV2B3 

(Total params: 12,937,587, Trainable params: 12,828,371, 
Non-trainable params: 109,216), EfficientNetV2B1 (Total 
params 6,934,391, Trainable params: 6,863,319, Non-train-
able params: 71,072), and EfficientNetV2S (Total params 
20,337,333, Trainable params: 20,183,461, Non-trainable 
params: 153,872).

DenseNet201 DenseNet201, in Fig. 11, has the prop-
erty of reusing features with the help of its multiple layers, 
which increases variation in the subsequent layer input and 
enhances performance. This model has a more complex and 
denser network where all the layers are linked together with 
shorter connections in order to efficiently train and generate 
results [38]. The total number of parameters generated by 
the DenseNet201 model in this study is 18,321,475, of which 
18,092,419 are trained and 229,056 are untrained.

Inception-v3 As shown in Fig. 12, the model contains 
42 layers and has a lower error rate than Inception v1 and 
Inception V2. The core building block of Inception v3 is the 
inception module. Each inception module comprises parallel 
branches of different filter sizes, including 1 × 1, 3 × 3, and 
5 × 5 convolutions. These branches are designed to capture 
features at various spatial scales. In addition, 1 × 1 convolu-
tions are used within the inception module to reduce the 
number of channels and control computational complexity. 
The outputs of all branches are concatenated along the chan-
nel dimension, providing a rich set of multi-scale features 
[39].

In this study, the Inception-v3 model generated a total 
of 21,808,355 parameters, of which 21,773,923 are trained 
and 34,432 are not.

Xception The Xception model, as shown in Fig. 13, com-
prises of multiple modules called Xception blocks. Each 
Xception block consists of a sequence of depthwise separa-
ble convolutions, batch normalization, and nonlinear acti-
vation functions. The residual connections from the Incep-
tion-ResNet architecture are also incorporated into Xception 
blocks to facilitate gradient flow and ease optimization. The 
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Xception model typically concludes with global average 
pooling and a fully connected layer with softmax activa-
tion for classification. The global average pooling reduces 
the spatial dimensions to a vector representation, and the 
fully connected layer generates class probabilities [40]. In 
this study, the Xception model produced an entire set of 

20,867,051 parameters, of which 20,812,523 are trained, and 
54,528 are not.

ResNet50V2 The modified version of ResNet50 is 
ResNet50V2 (Fig. 14), and it performs better on the Ima-
geNet dataset than ResNet50 and ResNet101. ResNet50V2 
is organized into multiple stages, including Stage 01, Stage 

Fig. 11  Architecture of DenseNet201 model

Fig. 12  Architecture of Inception-v3 model

Fig. 13  Architecture of Xception model
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02, Stage 03, Stage 04, and Stage 05, each containing sev-
eral residual blocks. The feature map sizes decrease as the 
network goes deeper, capturing features at different scales. 
The architecture also uses a bottleneck design within each 
residual block, consisting of 1 × 1 convolutions to reduce 
dimensionality, 3 × 3 convolutions for feature extraction, and 
another 1 × 1 convolution for dimension restoration. This 
bottleneck architecture reduces computational complexity 
and allows for more efficient feature learning [41].

The total number of parameters generated by the 
ResNet50V2 model in this study is 23,564,675, of which 
23,519,235 are trained, and 45,440 are untrained.

InceptionResNet-v2 The core building blocks of Incep-
tion-ResNetV2 are the Inception blocks. These blocks cap-
ture multi-scale features crucial for understanding complex 
visual patterns. Each Inception block contains parallel 
branches with different filter sizes and pooling operations. 
By operating in parallel, the network can capture and effi-
ciently combine features at various scales. One notable 
feature of Inception-ResNetV2 is the incorporation of 
residual connections. Residual connections allow for the 
direct propagation of information from earlier layers to later 

layers. This enables smoother gradient flow during training 
and helps alleviate the vanishing gradient problem, which 
can hinder the training of very deep networks. The residual 
connections also contribute to the network's ability to learn 
shallow and deep features effectively. Inception-ResNetV2 
architecture also includes auxiliary classifiers. The auxil-
iary classifiers typically combine convolutional layers, pool-
ing layers, and fully connected layers. These classifiers are 
inserted at intermediate stages of the network and help with 
gradient propagation during training. They encourage the 
network to learn more meaningful representations and pre-
vent overfitting [42].

Figure 15 depicts the InceptionResNet-v2 basic block 
diagram. In this study, the overall number of parameters 
generated by the InceptionResV2 model is 54,343,845, 
54,283,301 are trained, and 60,544 are untrained.

ResNet101V2 The ResNet101V2 architecture consists of 101 
layers and is widely used in computer vision tasks like image 
classification and object detection. The network starts with an 
input layer that takes an image as an input and is sent to the con-
volutional layers that extract low-level features from that input 
image. The key innovation of ResNet101V2 lies in its residual 

Fig. 14  Architecture of ResNet50V2 model

Fig. 15  Architecture of InceptionResNet-v2
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blocks, which include skip or shortcut connections. These con-
nections enable the network to learn residual mappings by pre-
serving the input and combining it with the output of convo-
lutional layers. The residual blocks also employ a bottleneck 
structure, which reduces the dimensionality of feature maps to 
improve efficiency without degrading the performance. Further, 
global average pooling reduces spatial dimensions, followed 
by fully connected layers for final classification or regression. 
Activation functions, such as ReLU, introduce non-linearity and 
shortcut connections to ensure the flow of gradients during train-
ing [43].

Overall, ResNet101V2 is a powerful architecture that lev-
erages skip connections and bottleneck structures to train 
deep networks effectively and extract meaningful features 
for visual tasks. In this research, the ResNet101V2 model 
(Fig. 16) produced a total of 42,630,533 parameters, of 
which 42,532,869 are trained and 97,664 are untrained.

Proposed hybrid transfer learning model This proposed 
hybrid model is composed of two pre trained models such as 

EfficientNetB6 and ResNet101V2 which are being trained with 
an input size of 224 × 224 and has generated 83,601,949 param-
eters, out of which 83,279,085 are trainable parameters, and 
322,099 are non-trainable parameters as shown in Fig. 17.

The layered structure of EfficientNetB6 consists of one 
input layer, one rescaling layer, one normalization layer, two 
2D convolution layers, two batch normalization layers, two 
activation layers. The architecture also contains seven blocks 
as well as sub blocks which are connected sequentially. In 
blocks 1 and 7, there are three sub blocks that consist of one 
Global AveragePooling 2D layer, one reshape layer, three 2D 
convolution layers, one multiply layer, two batch normaliza-
tion layers, one drop out layer, one activation layer, and one 
add layer each. Likewise, from block 2 to block 6, the eight 
sub blocks consist of four 2D convolution layers, two batch 
normalization layers, one activation layer, one zero padding 
2D layer, one depth wise 2D convolution layer, one global 
average pooling 2D layer, and one reshape, add as well as 
multiply layer each.

Fig. 16  Architecture of ResNet101V2

Fig. 17  Layered structure of proposed hybrid model
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On the other side, the layered architecture of 
ResNet101V2 consists of one input layer, one zero padding 
2D layer, two 2D convolution layers, one max pooling 2D 
layer, two batch normalization layers, and three activation 
layers. The architecture too contains three blocks which are 
initially followed by twenty three blocks via one activation 
layer. Each block is having sub blocks which consist of three 
2D convolution layers, two batch normalization layers, two 
activation layers, one zero padding 2D layer, and one add 
layer.

Later the output activation layer of each model is concat-
enated at the concatenate layer which is further connected 
to dense and softmax layer from where the possibilities of 
predicting the class of airway diseases are obtained.

Besides it, the architecture has also been shown in 
Table  4 where the layers have been taken randomly 
but sequentially to provide the gist and parameters of 
EfficientNetB6 + ResNet101V2.

The columns that have been depicted in the table con-
tains Layer which lists the name or type of each layer in the 
model, Output Shape to indicate the shape of the output 
tensor or feature map produced by each layer. The shape 
is represented as (batch_size, height, width, channels), and 
Param# to show the number of parameters (weights and 
biases) associated with each layer. The description about 
each layer is as followed:

input_5 (InputLayer) This is the input layer of the 
model, expecting input tensors with a shape of (None, 224, 
224, 1). "None" represents a variable batch size, 224 × 224 

is the input image size, and 1 is the number of channels 
(grayscale).

rescaling_2 (Rescaling) This layer rescales the input 
data, so the values fall within a specific range.

normalization_2 (Normalization) This layer normal-
izes the input data, making it have zero mean and unit 
variance.

stem_conv_pad (ZeroPadding2D) This layer adds zero-
padding to the input tensor.

stem_conv (Conv2D) It applies convolutional opera-
tions to the input and produces an output tensor with a 
shape of (None, 112, 112, 56).

stem_bn (BatchNormalization) This layer performs 
batch normalization on the previous output tensor.

stem_activation (Activation) It applies an activation 
function to introduce non-linearity to the tensor.

block1a_dwconv (DepthwiseConv2D) This layer per-
forms depthwise convolution, which applies separate con-
volutions to each input channel.

conv2_block1_1_conv (Conv2D) This convolutional 
layer produces an output tensor with a shape of (None, 
56, 56, 64).

block7c_project_conv (Conv2D) This layer applies con-
volution to the input tensor, resulting in an output tensor 
with a shape of (None, 7, 7, 576).

conv5_block2_2_conv (Conv2D) It performs convolu-
tion on the input tensor, generating an output tensor of 
shape (None, 7, 7, 512).

conv5_block3_3_conv (Conv2D) This convolutional 
layer produces an output tensor with a shape of (None, 
7, 7, 2048).

top_conv (Conv2D) It applies convolution to the input 
tensor, resulting in an output tensor with a shape of (None, 
7, 7, 2304).

conv5_block3_out (Add) This layer performs element-
wise addition between two input tensors.

top_bn (BatchNormalization) It performs batch nor-
malization on the previous output tensor.

post_bn (BatchNormalization) This layer applies batch 
normalization to the input tensor.

Activation It applies an activation function to the tensor.
concatenate_2 This layer concatenates multiple input 

tensors along the channel axis.
dense_2 (Dense) It is a fully connected (dense) layer 

that produces an output tensor with a shape of (None, 7, 
7, 5).

In a nutshell, the table provides a summary of the archi-
tecture, input/output shapes, and parameter counts for each 
layer in the model.

Table 4  Architecture of proposed hybrid model (Efficient-
NetB6 + ResNet101V2)

Layer Output shapre Param#

input5(InputLayer) None, 224, 224, 16 0
rescaling_2(Rescaling) None, 224,224,1 0
normalization_2 (Normalization) None, 224, 224, 1 3
stem_conv_pad (ZeroPadding2D) None, 225, 225, 1 0
stem_conv (Conv2D) None, 112, 112, 56 504
stem_bn (BatchNormalization) None, 112, 112, 56 224
stem_activation (Activation) None, 112, 112, 56 0
block1a_dwconv (DepthwiseConv2 None, 112, 112, 56 504
conv2block11conv (Conv2D)

None, 56, 56, 64 4096
block7c_project_conv (Conv2D) None, 7, 7, 576 1,990,656
conv5block22conv (Conv2D)

None, 7, 7, 512 2,359,296
conv5_block3_3_conv (Conv2D) None, 7, 7, 2048 1,050,624
top_conv (Conv2D) None, 7, 7, 2304 1,327,104
conv5_block3_out (Add) None, 7, 7, 2048 0
top_bn (BatchNormalization None, 7, 7, 2304 9216
post_bn (BatchNormalization) None, 7, 7, 2048 8192
Activation None, 7, 7, 2048 0
concatenate_2 None, 7, 7, 4352 0
dense_2 (Dense) None, 7, 7, 5 21,765
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3.6  Evaluation parameters

The aforementioned applied models have to be now evalu-
ated to test their performances and for that certain param-
eters are required which are described in this section.

Accuracy The parameter measures the efficiency of the 
model to correctly classify the image of any respiratory dis-
ease [44]. It is calculated by Eq. (22)

Loss This parameter is used for predicting the discrep-
ancy between the actual and the predicted values. If the loss 
value generated is nearer to zero, it implies that the model 
works best else it should be re-trained [45]. It is calculated 
by Eq. (23)

Precision and Recall These parameters are used to 
examine the model in terms of the positive prediction [46]. 
These both metrics are calculated by Eqs. (24) and (25) 
respectively.

F1 score It is the parameter that evaluates the perfor-
mance of the classifier especially in those scenarios where 
both precision and recall are important and are needed to be 
balanced efficiently [47]. It is represented by Eq. (26) 

Matthew’s Correlation coefficient The Matthews corre-
lation coefficient (MCC) is a parameter which depends on 
the values of confusion matrix as well as defines the quality 
of the prediction of classifier [48]. It is computed using Eq. 
(17)

4  Experimental Results

This section reflects that the models such as Efficient-
NetB6, EfficientNetV2B3, DenseNet201, Inception-v3, 
Xception, EfficientNetV2B1, ResNet50V2, Efficient-
NetV2S, InceptionResNet-v2, ResNet101V2, and Hybrid 

(22)
Accuracy =

True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

(23)Loss =
(Actual − Predicted)2

Total number of observations

(24)Precision =
True Positive

True Positive + False Positive

(25)Recall =
True Positive

True Positive + False Negative

(26)F1 score =
2 × Precision × Recall

Precision + Recall

(27)MCC =
True Positive × True negative − False negative × False positive

√

(True positive + False positive)(True positive + False negative)(True negative + False positive)(True negative + False negative)

(EfficientNetB6 + ResNet101V2) have been evaluated using 
the parameters as mentioned in Sect. 3.6 to test their perfor-
mances for different diseases dataset.

Initially, the models are evaluated for their training and 
testing accuracy as well as loss. Later the confusion matrix 
of 5 × 5 for classes C0 as lung cancer, C1 as PE, C2 as covid 
19, C3 as normal lungs, and C4 as pneumoconiosis has been 
generated to evaluate the performance of the classification 
models for the said classes in Fig. 16 in order to compare 
their actual target values with the predicted ones.

In Table 5, during the training phase, the EfficeintNetB6 
and Xception generated the best accuracy of 98.99% and 
99.75%, respectively, whereas loss values of 0.02 and 0.01, 
respectively. On the other hand, during the testing phase, 
EfficientNetB6 and ResNet101V2 computed the best 
accuracy by 99.26% and 99.13%, and loss by 0.01 each, 
respectively.

Based on their best accuracy and loss for a testing dataset, 
the aforementioned models have been clubbed together to 
form the hybrid model and tested on the same dataset. The 
overall scenario shows that the values in bold are generated 
by the hybrid model, which indicates its highest accuracy for 
both training and testing datasets with 99.84% and 99.77%, 
respectively, with a minimum testing loss of 0.001.

Moreover, the curves generated by the models while iter-
ating over the training and testing datasets for 15 epochs are 
also studied in Fig. 18. After analyzing the curves, it was 
discovered that the models at certain epochs reveal that the 
plot of training loss drops to the point of stability, as does the 
plot of testing loss, and has a little gap with the training loss. 

Table 5  Evaluation of models for various respiratory diseases

a The top two models have been bold and italicized based on their best 
training as well as testing accuracy and loss values

Algorithms Training Phase Testing Phase

Accuracy Loss Accuracy Loss

EfficientNetB6# 98.99 0.02 99.26 0.01
EfficientNetV2B3 99.06 0.02 93.96 0.14
DenseNet201 99.78 0.06 98.71 0.04
Xception# 99.75 0.01 98.85 0.04
EfficienetNetV2B1 99.27 0.07 69.48 0.84
ResNetV2_50 99.65 0.08 98.54 0.05
Inception_V3 99.23 0.01 98.88 0.02
EfficientNetV2S 99.05 0.02 98.54 0.03
InceptionResNet-v2 99.69 0.07 99.03 0.02
ResNet101V2a 99.62 0.09 99.13 0.01
Hybrid(EfficientNetB

6 + ResNet101V2)
99.84 0.03 99.77 0.001
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Fig. 18  Analyzing the curves of models during training and testing phase
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Fig. 18  (continued)
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Fig. 18  (continued)
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Similarly, it can be seen that the testing accuracy plot rises 
to the point of stability and has a little gap with the train-
ing accuracy. This shows that the models have good-fitting 
learning curves. On the other hand, at the rest of the epochs, 
there is a big gap between the accuracy and loss curves, 
which indicates that the training dataset does not provide the 
enough information in order to understand the problem as 
compared to the testing dataset during evaluation. Compared 
to the other remaining models, the accuracy and loss curves 
of the hybrid model and EffiicientNetB6 are superior.

The models are also evaluated on their performances for 
the parameters such as F1 score, recall, and Precision, as 
shown in Table 6. The proposed hybrid model (EfficientNet 

B6 and ResNet101V2) has generated the highest precision 
value with 1.00, recall with 0.99, and F1 score value. The 
least value was obtained by EfficientNetV2B1 by 0.63, 0.66, 
and 0.60, respectively which mean that EfficientNetV2B1 
generated the highest number of false positives compared 
to true positives (Table 8).

Figure 19 shows the execution time that had been taken 
by the models to generate the testing accuracy. It can be 
found that the lowest execution time has been taken by Effi-
cientNetB6 and Inception_V3 with 3280 s, while the high-
est has been taken by ResNet101V2 with 3779 s. As far as 
proposed hybrid model is considered, it has taken 3291 s to 
generate the output of testing accuracy. Besides this, if train-
ing time is considered, then all transfer models took the aver-
age time of 4 to 5 h to get trained but the proposed hybrid 
model took 10 h to generate the training accuracy and loss.

After training and testing the model with the airway dis-
eases dataset, the confusion matrix, as shown in Fig. 20, 
has been generated for five target classes to compute their 
true positive as well as false positive, false negative as well 
as true negative values by using the formula as shown in 
Table 7.

Here the value of i and j is same as the label of the class. 
For example if it is class 0, then it’s true positive will be the 
value at C00 and so on. In a nutshell all the diagonal values 
of the confusion matrix are the true positive of their cor-
responding class.

Table 8 shows that using EfficientNetB6 for class 0 (lung 
cancer), true positive value 430 indicates that 430 data 
points of positive class are successfully classified. False 
negative 31 indicates that 31 positive class data points are 

Table 6  Evaluating applied models for multi-disease detection

Algorithms Precision F1 score Recall

EfficientNetB6 0.99 0.99 0.99
EfficientNetV2B3 0.88 0.89 0.91
DenseNet201 0.95 0.97 0.99
Xception 0.98 0.98 0.99
EfficienetNetV2B1 0.63 0.60 0.66
ResNetV250 0.97 0.95 0.94
Inception_V3 0.98 0.99 0.99
EfficientNetV2S 0.97 0.98 0.98
InceptionResNet-v2 0.98 0.98 0.99
ResNet101V2 0.97 0.98 0.98
Hybrid(EfficientNetB6 + 

ResNet101V2)
1.00 1.00 0.99

Fig. 19  Execution time of models
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Fig. 20  Confusion matrix of models
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Table 7  Formulae to compute 
values of confusion matrix

Class True Positve(TP) False Positve (FP) False Negative (FN) True Negative (TN)

0 Cij
∑4

i=0
Ci0 − TP

∑4

j=0
C0j − TP

∑4

i,j=0
Cij − (TP + FP + FN)

1 Cij
∑4

i=0
Ci1 − TP

∑4

j=0
Ci1 − TP

∑4

i,j=0
Cij − (TP + FP + FN)

2 Cij
∑4

i=0
Ci2 − TP

∑4

j=0
C2j − TP

∑4

i,j=0
Cij − (TP + FP + FN)

3 Cij
∑4

i=0
Ci3 − TP

∑4

j=0
C3j − TP

∑4

i,j=0
Cij − (TP + FP + FN)

4 Cij
∑4

i=0
Ci3 − TP

∑4

j=0
C3j − TP

∑4

i,j=0
Cij − (TP + FP + FN)

Table 8  Values of TP, TN, FP, 
and FN for different classes of 
respiratory diseases

Models Classes True positive False positive False negative True negative

EfficientNetB6 Lung cancer 430 25 31 5362
Pul_embolism 1500 0 0 4348
Covid-19 150 0 2 2190
Normal 3600 33 25 2190
Pneumoconiosis 110 0 0 5738

EfficientNetV2B3 Lung cancer 210 240 130 5250
Pul_embolism 1500 0 0 4336
Covid-19 140 6 0 5697
Normal 3500 131 240 1967
Pneumoconiosis 110 0 1 5727

EfficientNetV2B1 Lung cancer 51 400 753 5473
Pul_embolism 1500 0 800 3624
Covid-19 64 86 0 5774
Normal 2400 1311 100 2028
Pneumoconiosis 110 2 61 5751

EfficientNetV2S Lung cancer 390 64 34 5362
Pul_embolism 1500 0 0 4350
Covid-19 150 1 0 5697
Normal 3600 33 64 2003
Pneumoconiosis 110 0 2 5738

DenseNet201 Lung cancer 400 56 3 5456
Pul_embolism 1500 0 0 4415
Covid-19 140 6 0 5769
Normal 3700 1 68 2142
Pneumoconiosis 100 12 0 5803

Inception-v3 Lung cancer 400 49 0 5461
Pul_embolism 1500 0 0 4410
Covid-19 150 0 2 5758
Normal 3700 1 48 2161
Pneumoconiosis 110 0 0 5800

Xception Lung cancer 400 52 1 5461
Pul_embolism 1500 0 0 4414
Covid-19 150 1 0 5763
Normal 3700 1 52 2162
Pneumoconiosis 110 0 1 5803

ResNet50V2 Lung cancer 410 46 36 5417
Pul_embolism 1500 0 0 4373
Covid-19 150 3 0 5720
Normal 3600 54 33 2186
Pneumoconiosis 110 0 34 5729
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classified incorrectly as negative class data points, False 
positive 25 indicates that 25 data points of negative class 
are classified incorrectly as positive class data points, and 
true negative 5362 indicates that 5362 negative class data 
points are correctly classified. Similarly, we can explain the 
significance of TP, FN, FP, and TN values for the remaining 
classes and classifiers. After assaying the table completely, 
it has been found that the classifiers have been quite good 
for our dataset by obtaining greater true negative and true 
positive values except for EfficientNetV2B1. In the end, the 
system performance of the proposed hybrid (EfficientNetB6 
and ResNet101V2) model has also been validated using the 
images taken from the dataset to predict the class of each 
disease and the results are shown in Fig. 21.

5  Discussion

Artificial intelligence technologies have been used to fore-
cast the mortality rate in patients who are having airway 
illnesses because these diseases are one of the most com-
mon causes of mortality worldwide. In this paper, various 
techniques have been used to develop a system for identify-
ing and classifying airway diseases like PE, covid-19, lung 
cancer, and pneumoconiosis along with normal lung images. 
Initially, the CLAHE technique was used for enhancing the 
quality and contrast of an image, followed by extracting con-
tour features (Sects. 3.2, 3.4). These contour features were 
used to crop the image, which was later sent for segmenta-
tion to get a region of interest. Two thresholding techniques, 
Otsu /binarization and Adaptive, were applied to the image 
dataset to obtain the ROI efficiently (Sect. 3.4). Later ten 
deep pre-trained models were used such as EfficientNetB6, 
EfficientNetV2B3, DenseNet201, Inception-v3, Xception, 
EfficientNetV2B1, ResNet50V2, EfficientNetV2S, Incep-
tionResNet-v2, and ResNet101V2 from which the two best 

Table 8  (continued) Models Classes True positive False positive False negative True negative

InceptionResNet-v2 Lung cancer 440 12 23 5360
Pul_embolism 1500 0 0 4335
Covid-19 150 0 3 5682
Normal 3600 23 9 2203
Pneumoconiosis 110 0 0 5725

ResNet101V2 Lung cancer 400 49 2 5462
Pul_embolism 1500 0 0 4413
Covid-19 150 1 0 5761
Normal 3700 2 50 2161
Pneumoconiosis 110 0 1 5802

Hybrid(EfficientN
etB6 + ResNet10
1V2)

Lung cancer 450 4 9 5461
Pul_embolism 1500 0 0 4424
Covid-19 150 0 0 5774
Normal 3700 10 4 2211
Pneumoconiosis 110 0 1 5813

Fig. 21  Prediction of respiratory diseases using proposed hybrid model
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Fig. 22  Analysis of models for different performance metrics
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models were hybridized and re-trained by using the same 
dataset. During testing, it was determined that the proposed 
hybrid model had the highest recall, accuracy, precision, and 
F1 score compared to the other models. Figure 22 depicts 
more assessments of the models using Recall, Precision, 
F1 score, and Matthew's correlation coefficient for distinct 
classes of respiratory diseases.

EfficientNetB6, Inception-v3, and InceptionResNet-v2 
obtained the highest precision, accuracy, F1 score, recall, 
and MCC of 1.00 for PE and pneumoconiosis while as Effi-
cientNetV2B3, DenseNet201, Xception ResNet50V2, Effi-
cientNetV2S, and ResNet101V2 obtained the same values 
only for PE. On the other hand, EfficientNetV2B1 computed 
the highest accuracy of 0.98 for lung cancer, the precision 
of 1.00 and F1 score of 0.78 for PE, recall of 0.78 for covid 
19, and MCC of 0.79 for pneumoconiosis. The proposed 
hybrid model (EfficientNetB6 and ResNet101V2) obtained 
1.00 accuracy, recall, precision, F1 score, and MCC for PE 
and covid.

After obtaining all the results, the comparison has been 
done between the proposed hybridized method and the tech-
niques that have been used by the researchers to predict mul-
tiple airway diseases on the basis of their accuracy metric, 
as mentioned in Table 9. 

6  Conclusion

In this paper, ten deep transfer learning models such as Effi-
cientNetB6, EfficientNetV2B3, DenseNet201, Inception-v3, 
Xception, EfficientNetV2B1, ResNet50V2, EfficientNetV2S, 
InceptionResNet-v2, ResNet101V2, along with the proposed 
hybrid model (EfficientNetB6 + ResNet101V2) had been 
trained using the dataset of four different respiratory dis-
eases. It has been found that hybridizing the two models, i.e., 
EfficientNetB6 and ResNet101V2, obtained the highest test-
ing accuracy of 99.77%. On the other hand, the lowest values 
were obtained by EfficientNetV2B1 with 69.48% accuracy 
and the highest loss value of 0.84. The research also has 
limitations, such as much computational time has been taken 

to pre-process the data and obtain its features. Besides this, 
the Otsu threshold did not work as efficiently as the Adap-
tive threshold for the dataset images to find the region of 
interest. The reason behind this is the limited flexibility of 
the technique, which cannot handle or generate accurate ROI 
for complex images with multiple regions and vary with 
intensity values. In addition, EfficientNetV2B1 generated 
the highest number of false positives, which obtained low 
precision of 0.63, an F1 score of 0.60, and a recall of 0.66. 
This shows that the model suffers from the underfitting prob-
lem, which should be taken care in the future to enhance its 
accuracy in prediction. It can be done by adding more layers, 
increasing the number of neurons in the existing layers, or 
using more complex model architecture. Another approach 
is to provide more training data or increase the number of 
epochs during training to allow the model to learn the under-
lying patterns in the data more effectively. On a large scale, 
researchers can also work on developing a unified platform 
that can detect all airway diseases in an instant in the future 
to minimize the time of patients and clinicians.
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