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Abstract
An overview of the Pseudo-Direct Numerical Simulation (P-DNS) method is presented. This is a multi-scale method aiming 
at numerically solving the unknown fields at two different scales, namely coarse and fine. The P-DNS method is built around 
four key ideas. The first one is that of numerically solving both scales, which facilitates obtaining solutions to problems of 
both concurrent multi-scale and hierarchical multi-scale types. The second key idea is that of computing off-line the fine 
solution via Direct Numerical Simulation in simplified domains, termed representative volume elements (RVEs), while the 
third idea is that of storing the basic (physics-informed) results obtained from this solution in a problem-independent unique 
dimensionless database. This database may be subsequently used for solving different problems at the coarse level, i.e. by 
using coarse meshes in the corresponding problem domains, via a surrogate model. In this sense P-DNS resembles Reduced 
Order Methods, which require a previous off-line evaluation of the modes to be used in the solution, sharing with them the 
benefit of solving the reduced problem, more precisely the coarse scale, in P-DNS terms, in a very efficient way. The fourth 
and last key idea of P-DNS is based on the fact that most of the high-frequency modes of a turbulent flow are convected 
by the fluid velocity of the low-frequency modes. Taking this into account the P-DNS technique is implemented in such a 
way that the fine instabilities are convected by the velocity field of the coarse solution. Finally, although the P-DNS method 
has been used to solve different computational mechanics problems, such as convection-diffusion and convection-reaction/
absorption problems, the scope of this overview will be limited to its application to turbulent incompressible fluid flows, 
including both single phase and particle-laden flows.

1  Introduction

The primary challenge in numerical simulation of turbulent 
flows originates from the enormous range of scales that must 
be resolved. For accurate simulations, the size of the compu-
tational domain must typically be at least one order of mag-
nitude larger than the largest energy containing waves, while 
the computational mesh must be fine enough to resolve the 
smallest dynamically significant length-scale, related to the 
turbulence kinetic energy dissipation, known as the Kol-
mogorov scale.

1.1 � The DNS Approximation

The simulation of any physical phenomenon without relying 
on any empirical or modeling approach is known as Direct 
Numerical Simulation (DNS). DNS is a technique that 
allows solving problems that cannot be solved by theoreti-
cal methods. With sufficient computational resources, DNS 
can fully solve the governing equations that are accepted 
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to reproduce the mechanics of a fluid flow, particularly in 
geometries of arbitrary complexity, providing the complete 
answer to the problem at hand. In practical fluid flow cases, 
it is well known that most interesting situations fall into 
unstable regimes and the challenge here is to simulate both 
the local details of the instabilities and their impact on the 
bulk flow. Accepting that the Navier–Stokes (N–S) equations 
provide a theoretical framework that governs the behavior of 
this type of fluid flows, their numerical solution with DNS 
not only allows one to understand the transfer mechanisms 
within the fluid flow, but also provides much more detailed 
information, in space and time, than a laboratory experi-
ment. The DNS method could be thought at the same time as 
a numerical approach to obtain the same information as that 
of an analytical solution on arbitrary geometries, nonlinear 
situations and with general parameters. Another potential 
capacity of the DNS method that differentiates it from other 
numerical modeling techniques for fluid flows is the univer-
sality of its behavior, that is, its capacity to model the lower 
limit scale where molecular diffusion phenomena dominate, 
thus capturing all flow structures.

Since Orszag’s pioneering work in 1969 [1], many DNS 
studies have been performed on incompressible flows 
[2–12]. Unfortunately, despite the rapid development that 
hardware has undergone recently, the number of degrees of 
freedom required to handle turbulent flow issues with the 
DNS method makes this approach still unfeasible for engi-
neering applications, even those with moderate Reynolds 
number. It is known that the computational resources for 
using DNS techniques in fluids scale as the Reynolds num-
ber raised to a power of 9/4. On the other hand, recent DNS 
studies allowed us to analyze flows in Reynolds numbers 
higher than those that can be achieved in laboratory experi-
ments. The limitation of the latter stems from the need for 
large experimental facilities to produce high-velocity flows, 
in addition to the impossibility of observing unstable flow 
structures at very small scales and in situations with high 
intermittency. Therefore, any progress on the DNS method 
will help further improve our understanding of unstable 
fluids.

1.2 � State of the Art Models to Reduce the DNS 
Computational Cost

The Reynolds Averaged Navier Stokes (RANS) approach 
[13, 14] was developed to considerably reduce the compu-
tational cost in the simulation of turbulent flows. It is based 
on averaging all the scales, incorporating their effects on the 
overall flow via models that rely on empirical coefficients 
obtained in experiments carried out in equilibrium condi-
tions. The more advanced and powerful RANS methods are 
those classified as Reynolds Stress Models (RSM). They 
aim at transporting the full Reynolds stress tensor instead 

of relying on a turbulent eddy viscosity and the Boussinesq 
approximation. Some of the most advanced RSM are based 
on the Algebraic Reynolds Stress Model (ASM) [15], most 
notably in its explicit versions (EASM, see for example [16, 
17]). However, the loss of details of the transient behavior 
of the flow in the necessary averaging process makes the 
RANS approach not adequate for many practical situations. 
Particularly, it usually fails to predict complex flow features, 
such as the transition from onset to almost fully developed 
turbulence, making it unsuitable in general for modeling 
turbulent flows.

Another widely used approach for modeling turbulent 
flows is the Large Eddy Simulation (LES) technique [18–24]. 
In LES, the large-scale motions (large eddies) are computed 
directly on the mesh, leaving only small (sub-grid) scale 
motions to be modeled. This leads to a considerable reduc-
tion in computational cost with respect to DNS. However, 
the limit between large and small eddies is not well-defined 
in LES, being typically a decision to be made by the users 
of the model according to their experience and the available 
computational resources. The good practices advise setting 
this limit where the fluid structures that remain to be mod-
eled behave in a universal way, with an order of magnitude 
dictated by the molecular scales, mostly isotropic. In fact, 
obtaining LES solutions of accuracy close to that of DNS 
still requires very fine meshes, in particular near solid bod-
ies, making LES unfeasible, in terms of computational costs, 
for the computer architectures existing today.

The hybridization of RANS and LES methods is a prom-
ising way to efficiently deal with separated turbulent flow 
simulations allowing to circumvent the drawback of LES to 
accurately solve the flow close to the solid walls [25, 26]. In 
this approach, the large eddies are resolved away from the 
walls, with the boundary layers covered by a RANS model. 
Examples of such global hybrid models are detached eddy 
simulation (DES) [27–29], scale-adaptive simulation (SAS) 
[30, 31], and Partially Averaged Navier-Stokes (PANS) mod-
els [32]. More advanced versions of DES include delayed 
DES (DDES), shear-layer-adapted (SLA) DDES (DDES-
SLA), and improved DDES (IDDES) [33–35].

Despite the fact that RANS and LES only differ in how 
length or time scale information is provided for the modeled 
turbulent motions, it remains unaffordable to develop univer-
sally applicable RANS-LES hybrid methods. The problem is 
the incompatibility of both approaches in the region where 
they interact, since on the one hand the LES models only 
handle fluctuations of the subgrid, while RANS provides 
fluctuations that are a statistical average of all the scales, 
not only those of the subgrid. This poses a challenge that is 
still unresolved.

However, and as a brief summary, RANS remains the 
only approach to address most of the problems proposed 
by industry, even incorporating transient effects through 
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U-RANS methodology, leaving the LES modeling approach 
reserved for situations where the relationship between mesh, 
accuracy and technological advances in terms of hardware, 
allow its use. As for DNS, everything indicates that it will 
have a growing role in science and technology and that 
efforts should be directed at finding better and more efficient 
ways to make use of it.

1.3 � The Multi‑scale Approximations

In general, the term multi-scale is used for problems where 
there are two or more different scales which, from the 
numerical point of view, cannot be treated as a unique single 
scale. In this sense, whether explicitly mentioned or not, all 
models to simulate turbulent flows are based on multi-scale 
approaches.

It is interesting to point out that the term multi-scale is 
used when there are different scales due to the physical char-
acteristics of the material (multi-scale in density, multi-scale 
in elastic coefficients, etc.), and also when there are different 
scales in features of the solution behavior (multi-scale of 
frequencies, multi-scale of velocities, gradients, oscillations, 
etc.). Furthermore, from the modeling point of view, multi-
scale phenomena can be classified into two main classes: 
hierarchical and concurrent. On one hand, hierarchical 
multi-scale phenomena are those where the physical char-
acteristics of the constituent materials belong to two or more 
totally separated scales that are weakly coupled. Here, the 
large-scale variations decouple from the small-scale phys-
ics, or the large-scale variations appear homogeneous and 
quasi-static from the small-scale point of view. On the other 
hand, concurrent multi-scale phenomena, on the other hand, 
are those where their solution involves the sum of functions 
that belong to two or more scales, for example waves of 
very different lengths. The modeling here attempts to link 
methods appropriate for each scale together in a combined 
model, where the different scales of the system are con-
sidered concurrent and communicate with each other with 
some type of hand-shaking procedure [36, 37]. Hierarchical 
multi-scale phenomena are associated to composite materi-
als such as concrete, FRP materials, porous materials, etc., 
while concurrent multi-scale phenomena are typically those 
governed by the advection–diffusion equations, most nota-
bly the fluid mechanics equations as applied to turbulent 
flows, among others [38]. A combination of both classes of 
multi-scale phenomena may also be found, for example in 
turbulent flows of particle-laden fluids, in which the fluid 
flow modeling part belongs to the category of concurrent 
multi-scale, but the combination of the density of the fluid 
with the density of the particles belongs to the category of 
hierarchical multi-scale.

The idea of treating homogeneous fluids as a multi-scale 
problem, within the frame of the finite element method 

(FEM) was first introduced by Hughes via the Variational 
Multi-Scale (VMS) framework [39]. Hughes presented a 
general procedure to derive numerical methods capable of 
dealing with concurrent multi-scale phenomena. Its develop-
ment tries to rectify the simple fact that the direct application 
of the Galerkin method using standard bases, such as FEM, 
is not a robust approach for solving concurrent multi-scale 
phenomena. As for hierarchical multi-scale problems, there 
are many works aimig to modeling solids in this way, and the 
reader can see some of them in Reference [40].

In general, all multi-scale methods proceed along a simi-
lar path, with the solution decomposed into two different 
fields as � = �H + ��, where �H is solved numerically using 
a spatial discretization of characteristic element length H, 
and �′ is obtained approximately, either analytically or 
numerically, so that �′ is eliminated from the solution of 
the problem. Both �H and �′ can overlap or be disjoint, and 
�′ can be defined globally or locally, although its effect on 
the global problem will always be non-local [41].

The first approach to obtain �′ is proposed in [39], using 
analytical Green functions. The difficulty of applying this 
procedure to complex problems lead to the development of 
residual-based models. This kind of sub grid-scale mod-
els aim at providing an approximate analytical solution for 
�′ [42]. For this purpose, the scaling introduced is used 
to approximate the partial differential equations for the 
unresolved-scale quantities by solving ordinary differential 
equations or algebraic relations. Codina [41, 43] proposed 
a closed-form expression for the sub-grid scales based on 
a Fourier analysis of the problem of which they are the 
solution.

Alternative modeling strategies for the sub-grid scales are 
the addition of sub-grid viscosity [44], the use of a coarse 
time integration in the Galerkin method [45], or the use of 
bubble functions [46]. As a result of any of these procedures, 
algebraic scaling is combined with one scaling parameter 
for each equation, which can be identified as the inverse of 
the stabilization parameter of the more classical stabilized 
FEM [47].

The method of multiscale virtual power couples the 
macro- and micro-scale kinematical descriptors by means 
of kinematical insertion and homogenization operators. 
Micro-scale equilibrium equations as well as formulae for 
the homogenized (macro-scale) force- and stress-like quanti-
ties are derived a variational extension of the Hill-Mandel 
Principle that enforces the balance of the virtual powers of 
both scales [48, 49].

The FE2 (FEM squared) method [50] is a hierarchical 
multi-scale approach admissible when the length scales of 
the structural problem and of the microstructure are sepa-
rated. The FE2 method links each integration point at the 
structural scale with a representative volume element (RVE), 
discretized using a FEM model of the microstructure. The 
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prohibitive computational cost of this approach can be cir-
cumvented by solving the microscale problem with the fast 
Fourier transform [51], or even better using reduced basis 
homogenization schemes [52].

1.4 � The P‑DNS Ideas

The Pseudo-Direct Numerical Simulation (P-DNS) method, 
which was first introduced in [53], is a multi-scale method 
built around four key ideas.

The first key idea of P-DNS is that of numerically solv-
ing both scales, which facilitates obtaining solutions to 
problems of both concurrent multi-scale and hierarchical 
multi-scale types. The second key idea is that of computing 
off-line the fine scale solution via Direct Numerical Simula-
tion in simplified domains, i.e. RVEs. The third idea is that 
of storing the basic (physics-informed) results obtained from 
this solution in a problem-independent unique dimension-
less database. This database may be subsequently used for 
solving different problems at the coarse level, i.e. by using 
coarse meshes in the corresponding problem domains, via 
a surrogate model. In this sense P-DNS resembles Reduced 
Order Methods (ROM), which require a previous off-line 
evaluation of the modes to be used in the solution, sharing 
with them the benefit of solving the reduced problem, more 
precisely the coarse scale in P-DNS terms, in a very efficient 
way. The fourth and last key idea of P-DNS is based on 
the fact that most of the high-frequency modes of a turbu-
lent flow are convected by the fluid velocity of the low-fre-
quency modes. Taking this into account the P-DNS mexthod 
is implemented in such a way that the fine instabilities are 
convected by the coarse velocity field.

Figure 1 provides a summary of the P-DNS methodology, 
which comprises two steps, namely the off-line preparation 
of a dimensionless database and the on-line use of such data-
base. On one hand, the off-line step of the method involves 
off-line DNS solutions in fine meshes of a collection of RVE 
problems, each of them associated to specific values of an 
input set of dimensionless parameters ( ̂a1, â2,… , ân ). This 
input set, which details will be addressed later, is specifically 
designed to be computable with the information available in 
the global problem. Each RVE simulation computes relevant 
information, represented by �i , which is stored as the output 
of the dimensionless database and associated to the corre-
sponding input set values. On the other hand, the on-line 
step means solving a given global problem in a coarse mesh 
with a solution enriched with the fine mesh solution obtained 
from the database. To do this, during each time step of the 
global problem, the dimensionless inputs ( ̂a1, â2,… , ân ) are 
computed in each RVE, which was previously convected in 
a Lagrangian way by the global velocity field. The down-
scale process is the evaluation of the reduced model in a 

database format to obtain the homogenized information from 
the fine-scale, �i , which is up-scaled to enrich the coarse-
scale solution.

The concept of P-DNS originates from noticing a cer-
tain similarity between the microstructure in composite 
solid materials and the structures occurring in fluid flows, 
in particular, those related to turbulence. In a composite 
solid material, the overall rheological features come from 
the interaction of components with different properties and 
topology. On the other hand, in a turbulent flow of a fluid 
material, the overall behavior at the greater scales may be 
interpreted as the flow of a pseudo-fluid with particular rheo-
logical characteristics dependent on the instabilities present 
in the smaller scales. Behaviours like this are analogous to 

coarse scale (ONLINE)

reduced model

fine scale (OFFLINE)

RVE

downscale upscale

Fig. 1   Summary of the P-DNS methodology
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those seen in multiphase flows, where the apparent prop-
erties of the mixture are usually different from the simple 
averaging of those of the constituent phases.

The P-DNS method can also be understood as a varia-
tion of the VMS method, where the fine solution in the for-
mer is solved numerically while in the latter the idea lies in 
approximating the Green functions of the problem operator 
in order to stabilize the numerical solution scheme.

Also, from the point of view of homogenization methods, 
P-DNS can be perceived as the evolution of an FE2 method 
in which the most expensive part of the computation is car-
ried out off-line.

Finally, the P-DNS method can be framed as a Reduced 
Order Model (ROM) since from the methodological point 
of view it shares the idea of generating a priori an offline 
calculated database necessary to solve the main problem. In 
[54] the advantages and disadvantages of both methodolo-
gies are highlighted. This paper also discusses the drawback 
of standard ROM-type methods to solve problems in which 
space and time are not separate variables and that can be 
successfully solved by the P-DNS methodology.

The name P-DNS arises from the premise that in all 
multi-scale problems, the numerical result obtained with a 
very fine discretization is the correct one, without the need 
to introduce any additional theory (i.e. turbulence models), 
or any stabilization procedure for the transport equation 
terms (as in residual-based VMS techniques). As the coarse 
mesh is refined, P-DNS is designed so that it yields numeri-
cal results tending to the DNS solution, deemed here as the 
right solution, of the problem.

P-DNS, however, does not assume universality in the sub-
grid (more specifically sub-coarse-mesh) model and, thus 
is free from the LES limitation that would have imposed a 
usually excessive requirement on the fine mesh size. Instead, 
it proposes to simulate (i.e. without turbulence models) the 
sub-grid instabilities in a fine mesh, and to re-insert their 
effect into the coarse mesh solution in a computationally 
efficient way.

The problem to face when developing numerical multi-
scale approaches of practical value is that the fine-scale field 
�′ is generally non-local, except in one-dimensional prob-
lems, thus making it impossible to isolate a subdomain for 
an independent study. This is the main source of error of 
any multi-scale method and the accuracy of the solution will 
depend on how this aspect is addressed. In some problems, 
particularly those where the fine-scale solution is used to 
enrich the global solution, a direct approximation of �′ is 
generally used on the boundaries of each isolated subdomain 
through the Dirichlet boundary conditions (local solution). 
In other cases, for example when the goal is to incorpo-
rate disturbances on the mean solution, normally continuity 
conditions between subdomains may be employed, that is, 

Neumann-type or periodicity boundary conditions between 
subdomains (non-local solutions) for �′.

Finally, it is worth mentioning that although the P-DNS 
method arose as another way to solve turbulent homogene-
ous fluid flows, it was later generalized to solve convection-
diffusion problems, which share with the first the property 
of not requiring stabilization or sufficiently fine meshes. for 
stable and accurate results. Convection-diffusion-reaction and 
convection-diffusion-absorption problems were also included 
in the scope of P-DNS [55].

More recently, the P-DNS method was extended to simulate 
turbulent particle-laden flows. In this case, P-DNS provides a 
solution to two very different problems, namely, the modula-
tion of turbulence due to the presence of particles within the 
fluid, and the treatment of the mixture as a homogenized fluid 
using multi-scale techniques to obtain the homogenization 
parameters [56, 57].

The two sections that follow present an overview of the 
P-DNS methodology in two different contexts. Section 2 pre-
sents P-DNS as applied to homogeneous incompressible lami-
nar and turbulent fluid flows. Special emphasis is placed on 
presenting both the so called internal and wall RVEs, suitable 
for representing the fine scale contribution in the bulk flow and 
inside boundary layers, respectively. Present challenges and 
possible solutions related to building an improved wall RVE 
suitable for developing boundary layers will also be briefly 
presented. Section 3, meanwhile, is devoted to the applica-
tion of P-DNS to particle-laden fluid flows. The description of 
P-DNS for problems of transport of scalar quantities has been 
left out of this overview, and the reader is invited to consult 
[54, 55] for details.

2 � The P‑DNS Method for Turbulent 
Homogeneous Incompressible Fluid Flows

2.1 � The Governing Equations

For homogeneous incompressible fluid flows, the N–S equa-
tions may be written as

and

for expressing momentum and mass conservation, where ui 
is the i-component of the velocity vector, p is the pressure 
and

(1)�Ai =
�Tij

�xj
−

�p

�xi
+ Bi

(2)
�ui
�xi

= 0
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is the constitutive law for the viscous stresses tensor Tij, � 
and � the dynamic viscosity and the density of the fluid, Bi a 
body force, and Ai the acceleration, which will be written in 
an Arbitrary Lagrangian/Eulerian (ALE) form as

where the derivative DUui

Dt
 must be interpreted as the ALE 

time derivative with respect to a reference frame moving at 
velocity U, with

2.2 � Splitting of the Unknown Fields

As in all multi-scale approaches, the unknown fields are split 
into coarse and fine scale parts

where uc
i
 and pc are the fields associated to a coarse mesh, 

and all subgrid effects are linked to uf
i
 and pf .

A standard criteria in P-DNS is to consider that the coarse 
scale corresponds to a piecewise linear approximation in 
space via FEM or FVM procedures and that the fine scale 
comprises all higher order contributions.

After the splitting, the N–S equations read

where

are the coarse and fine viscous shear stress tensors, respec-
tively, and where it has been considered that the ALE refer-
ence frame moves at the coarse velocity ��. Equation (7) is 
termed the “Lagrangian minus” version of the N–S equa-
tions, because a “fully Lagrangian” approach would require 
the frame to move with the full velocity field u instead of ��.

In order to consider another approach, however, the 
term D�

�

uc
i

Dt
 may be transformed into D�

�

uc
i

Dt
=

�uc
i

�t
+ uc

j

�uc
i

�xj

 , 

(3)Tij = �

(
�ui
�xj

+
�uj

�xi

)

(4)Ai =
DUui

Dt
+ (uj − Uj)

�ui
�xj

,

(5)
DUui

Dt
=

�ui
�t

+ Uj
�ui
�xj
.

(6)ui = uc
i
+ u

f

i
; p = pc + pf ,

(7)
�

[
D�

�

uc
i

Dt
+ u

f

j

�uc
i

�xj

]
−

�Tc
ij

�xj
+

�pc

�xi
− Bi

+�

[
D�

�

u
f

i

Dt
+ u

f

j

�uf
i

�xj

]
−

�Tf

ij

�xj
+

�pf

�xi
= 0

(8)
Tc
ij
= �

(
�uc

i

�xj
+

�uc
j

�xi

)

T
f

ij
= �

(
�uf

i

�xj
+

�uf
j

�xi

)

leading to what has been called “Eulerian plus” version of 
the momentum equations, namely

This is not termed “fully Eulerian” because the convection 
of the fine instabilities due to the coarse velocity field has 
been written in Lagrangian form.

Finally, the splitting of the mass conservation equation 
simply reads

2.3 � Weighted Residual Form for the Coarse Scale

The weighted residual form of Eq. (7) for the coarse scale 
is written as

where Ωl is the integration domain of node l, or in other 
terms the support of the standard FEM or FVM weighting 
functions Nc,l associated to the coarse mesh, for instance 
piecewise linear weighting functions within each element for 
FEM, or constant and equal to 1 within each cell for FVM. 
The terms indicated by the underbrace are expected to be 
provided by the results of the off-line simulations stored in 
the RVE database.

Integrating by parts some terms of the previous equa-
tion leads to the weak form of the variational expression, 
which reads

where Γl is the boundary of the nodal domain Ωl.

(9)
�
[
�uc

i

�t
+ uc

j

�uc
i

�xj
+ u

f

j

�uc
i

�xj

]
−

�Tc
ij

�xj
+

�pc

�xi
− Bi

+�

[
D�

�

u
f

i

Dt
+ u

f

j

�uf
i

�xj

]
−

�Tf

ij

�xj
+

�pf

�xi
= 0

(10)
�uc

i

�xi
+

�uf
i

�xi
= 0.

(11)

∫
Ωl N

c,l
{
�

[
D�

�

uc
i

Dt
+ u

f

j

�uc
i

�xj

]
−

�Tc
ij

�xj
+

�pc

�xi
− Bi

+ �

[
D�

�

u
f

i

Dt
+ u

f

j

�uf
i

�xj

]
−

�Tf

ij

�xj
+

�pf

�xi
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

from DB (off-line)

}
dΩ = 0.

(12)

∫
Ωl N

c,l�

[
D�

�

uc
i

Dt
+ u

f

j

�uc
i

�xj
− Bi

]
dΩ +⋯

∫
Ωl

�Nc,l

�xj

(
Tc
ij
− pc�ij

)
dΩ +⋯

∫
Γl N

c,l
(
Tc
ij
− pc�ij

)
dΓj +⋯

∫
Ωl N

c,l�

[
D�

�

u
f

i
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In the case of FEM, and limiting the study to linear 
weighting functions, the momentum equation results in

As for the FVM version, with constant weighting functions, 
it reads

2.4 � Constrains to be Imposed to the Unknown 
Fields

In the following, some constrains are applied to the unknown 
fields, in preparation for the introduction of the internal 
RVEs, leaving the treatment of wall RVEs for a later section.

Recalling that the full solution of the problem is the 
sum of its coarse and its fine counterparts, and that this 
splitting is so far arbitrary, P-DNS assigns the translational 
and rotational aspects of u solely to the coarse field uc , 
which results in a fine field which has null mean value and 
null mean gradient inside Ωl . Introducing similar consid-
erations for the pressure field p, it is possible to write the 
following constrains of the fine fields

Note that the constrains applied to the gradients of the fields 
may be rewritten as

and

(13)

∫
Ωl N

c,l�

[
D�

�

uc
i

Dt
+ u

f

j

�uc
i

�xj
− Bi

]
dΩ +⋯

∫
Ωl

�Nc,l

�xj

(
Tc
ij
− pc�ij

)
dΩ +⋯

∫
Ωl N

c,l�

[
D�

�

u
f

i

Dt
+ u

f

j

�uf
i

�xj

]
dΩ +⋯

∫
Ωl

�Nc,l

�xj

(
T
f

ij
− pf �ij

)
dΩ = 0.

(14)

∫
Ωl �

[
D�

�

uc
i

Dt
+ u

f

j

�uc
i

�xj
− Bi

]
dΩ −⋯

∫
Γl

(
Tc
ij
− pc�ij

)
dΓj +⋯

∫
Ωl �

[
D�

�

u
f

i

Dt
+ u

f

j

�uf
i

�xj

]
dΩ −⋯

∫
Γl

(
T
f

ij
− pf �ij

)
dΓj = 0.

(15)
∫Ωl

u
f

i
dΩ = ∫Ωl

pf dΩ = 0;

∫Ωl

�uf
i

�xj
dΩ = ∫Ωl

�pf

�xj
dΩ = 0

(16)∫Ωl

�uf
i

�xj
dΩ = ∫Γl

u
f

i
dΓj = 0

which represent what P-DNS considers “weak periodic” 
boundary conditions. As will be explained later, strongly 
periodic conditions will in fact be imposed when simulating 
the fine fields, meaning that they are fulfilled for each pair 
of homologous points of opposite faces of the RVE, and not 
only on average. This strong periodicity is even more restric-
tive than the mentioned weak periodicity, therefore limiting 
even further the possibilities of variation of the velocity and 
pressure fields.

Furthermore, as an additional constrain, P-DNS consid-
ers both parts of the velocity field, i.e. both uc

i
 and uf

i
, to be 

incompressible, meaning that

Also, recalling that Ωl has been defined as the domain asso-
ciated to a generic coarse mesh node l, it is possible to assign 
to it a coarse velocity gradient Gl

ij
 computed as the average 

of the gradients Ge
ij
 of the elements sharing node l in the case 

of FEM or any desired interpolation scheme for computing 
a velocity gradient of cell l in the case of FVM.

Introducing all these constrains into the momentum 
equations, and approximating the gradient �u

c
i

�xj
 of the coarse 

field by the average gradient Gl
ij
 , it is possible to write, for 

FEM

and for FVM

(17)∫Ωl

�pf

�xj
dΩ = ∫Γl

pf dΓj = 0

(18)
�uc

i

�xi
=

�uf
i

�xi
= 0

(19)
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+⋯∫Ωl
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+⋯∫Ωl
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+⋯∫Ωl
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(
u
f

j
�uf

i

)
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(20)
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]
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−⋯∫Γl

(
Tc
ij
− pc�ij

)
dΓj

+⋯∫Ωl

�
D�

�

u
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Dt
dΩ

−⋯∫Γl

(
u
f

j
�uf

i

)
dΓj = 0
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As a last step, and to allow for the decoupling of the fine 
solution opening the possibility of off-line computations in 
separate independent subdomains (i.e. RVEs), P-DNS pro-
poses to neglect the term ∫

Ωl �
D�

�

u
f

i

Dt
dΩ , an approximation 

whose validity has yet to be shown by the numerical results, 
which are presented in the next sections.

Finally, the coarse momentum equation to be solved 
is, for FEM

and for FVM

where

is named “inertial stress tensor”, being the only remaining 
contribution from the fine scale to the coarse one.

It must be noticed that, as P-DNS considers the fine 
fields as being convected by the coarse velocity field, the 
same applies for the inertial stress tensor (please see [58] 
for details).

2.5 � The Coarse Scale Equations with Averaged Fine 
Scale Unknowns

The coarse scale solution requires solving the coarse scale 
equations, which from this point of view are not more than 
modified N–S equations that account for the effect of the fine 
scale solution through the added fine scale terms. In general, 
in every multi-scale solution, it is not necessary to obtain the 
instantaneous point-to-point solution of the fine scale. What is 
really needed, from an engineering point of view, is the overall 
effect of the fine scales space-averaged in spatial scales of the 
order of the local coarse mesh size. Therefore, P-DNS pro-
poses to replace the instantaneous local inertial stress tensor 
by an averaged tensor defined in each Ωl as

Although this proposition may of course, in general, intro-
duce approximation errors, this is not the case in the scope 
of P-DNS, for reasons that are different depending on the 
choice between FEM and FVM aproaches.

(21)
∫
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c,l�
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D�

�
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i

Dt
− Bi

]
dΩ +⋯

∫
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�Nc,l

�xj
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ij
− T

�
ij
− pc�ij

)
dΩ = 0

(22)
∫
Ωl �
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D�

�

uc
i

Dt
− Bi

]
dΩ −⋯

∫
Γl

(
Tc
ij
− T

�
ij
− pc�ij

)
dΓj = 0

(23)T
�
ij
= �uf

i
u
f

j

(24)T̂
�
ij
=

1

Ωl ∫Ωl

(
�uf

i
u
f

j

)
dΩ.

For the FEM, with linear weighting functions, �Nc,l

�xj

 is con-

stant within each element included in Ωl , thus allowing us to 
perform this replacement within each element without incur-
ring in approximations. The resulting equations to be solved 
at the coarse level mesh are then

For the case of FVM, being Nc,l constant and equal to 1 
inside Ωl , it is even easier to see that the proposed replace-
ment does not imply any approximation. The resulting 
coarse scale equations are in this case

2.6 � The Representative Volume Elements

The next step in the P-DNS process, however, does introduce 
an approximation. It consists on calculating the average of T�

ij
 

not over Ωl , but over a cubic volume of dimensions larger than 
those of the coarse scale grid. i.e. over the RVE. In P-DNS, 
then, T̂�

ij
 is approximated as

where ΩR is the volume of a RVE.
Regarding the size of the RVE, it must be large enough so 

as to include all the wavelengths not captured by the coarse 
mesh but at the same time small enough so as to limit the error 
introduced by the spatial averaging. Although P-DNS does not 
propose a strict mathematical definition of the optimal size 
of an RVE associated to a given spatial location in the global 
domain, its dimension should be between the local size of the 
coarse mesh up to twice its value. This relationship between 
RVE size and local coarse mesh size has already been concep-
tually depicted in Fig. 1.

As for the shape of the RVE, since in the P-DNS method 
the information about the fine scales required by each ele-
ment or cell of the coarse mesh has been reduced to con-
stant values, due to the already described averaging pro-
cess, simple geometric shapes are sought for RVEs, such 
as cubes or cuboids. This makes them independent of the 
coarse mesh topology and facilitates the implementation 
of periodic or jump-periodic boundary conditions, which 

(25)
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are required for the P-DNS formulation of the off-line fine 
scale problems.

2.7 � Solving the Fine Problem

Solving the fine problem means finding a way of computing 
the value of the approximated inertial stress tensor defined in 
Eq. (27) whenever and wherever it is required during the solu-
tion of the coarse scale equations. P-DNS tackles this problem 
by (i) computing off-line equilibrium stresses and storing them 
in dimensionless databases, and (ii) dealing with non-equilib-
rium stresses via a memory model. The task of computing the 
equilibrium databases is also split in two steps, one aimed at 
computing inertial stresses to be used on the coarse problem 
bulk flow, namely the internal RVE database, and another one 
intended to deal with the coarse problem boundary layers, 
namely the wall RVE database. Both types of databases and 
the associated memory model are detailed in the following 
sections.

2.7.1 � The Equilibrium Internal RVE

Let us turn first our attention to the development of an 
internal RVE, i.e. one aimed at modeling turbulence in 
the bulk flow, and its associated dimensionless database.

In P-DNS, RVEs are simple domains, i.e. cubes or 
cuboids, in which simulations of the standard N-S equa-
tions subject to simple boundary conditions are carried out 
in meshes fine enough so as to qualify as DNS solutions. 
As it will be explained later, these boundary conditions 
reduce to an applied velocity gradient, and in some special 
cases might include an applied pressure gradient.

Simple boundary conditions are a key feature of the 
P-DNS RVEs, and they are termed simple in the sense that 
they are able to be completely defined using a reduced set 
of parameters, such as the value of a velocity gradient and/
or that of a pressure gradient. This is not a requirement of 
the fine problem itself, but a requirement of the form in 
which the RVE results, i.e. the RVE database, will be used 
when solving the global, or coarse, problem. The RVEs 
boundary conditions must be defined using parameters able 
to be computed during the solution of the global problem 
with local instantaneous information available at any given 
position of the global domain and at any given time step.

Moreover, for the RVE database to be computable off-
line and to be ready for its use on any future global prob-
lem, it is required that both the definition of the RVE prob-
lem and the storage of the relevant information obtained 
from its DNS simulation are carried out in dimensionless 
form [53], as explained below.

2.7.2 � The Equilibrium Internal RVE Dimensionless Database

Let Gij be a velocity gradient tensor. It can be written in a 
dimensionless form as

where Idij is to be considered as an instability index tensor, 
with H a characteristic length. On one hand, from the global 
problem point of view, this index may be computed at any 
given position and at any time step using the available coarse 
field velocity, the properties of the global fluid problem, and 
some estimation of the local coarse mesh size. On the other 
hand, from the RVE point of view, it may be computed using 
the values of the velocity shear applied in the DNS simula-
tion, the properties of the RVE problem fluid, and a length 
representative of the RVE size. It should be noted that this 
index tensor has a unique value for each individual RVE 
simulation, independent of space and time, as the results 
to be stored in the database are time-averaged equilibrium 
conditions also space averaged over the RVE domain.

The instability index tensor Idij is intended to be com-
puted whenever and wherever required in the coarse prob-
lem solution process and used as an input parameter to 
the RVE database. However, P-DNS does not make use 
of the full coarse velocity gradient tensor to this end. It 
is well known that shear is one of the main sources of 
flow instabilities, e.g. those of Kelvin-Helmholtz type. 
Although some flow instabilities are commonly associ-
ated to other sources, like for example the buoyancy-
driven type, it should be noted that, even when the larger 
scales are clearly promoted by density differences, the rest 
of the scales (which P-DNS aims to model) are mostly 
related with the larger shear scales. Due to this, and to 
eliminate the rigid body rotations which do not introduce 
instabilities, Idij will be computed using only the sym-
metrical component

of the coarse velocity gradient tensor. Furthermore, as it is 
shown in Appendix 1, with the appropriate tensor rotations 
and by taking advantage of the incompressibility restriction 
of the coarse velocity field, the nine components of Idij may 
be reduced to only two dimensionless parameters, namely 
Id1 and Id2.

Now, from the point of view of an RVE, a given pair of 
Id1 and Id2 values correspond to a DNS simulation of a prob-
lem with a given shear applied as jump-periodic velocity 
boundary conditions between, say, the top and bottom faces 
of the cube or cuboid, and a different shear applied to, say, 
the left and right faces. This problem is simulated until a 

(28)Idij =
GijH

2�

�

(29)Gs
ij
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�uc

i

�xj
+

�uc
j
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]
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statistically steady “equilibrium” state is reached, which 
means that the inertial stress tensor T̂�

ij
 reaches a constant 

value T
�

ij
.

Before storing these equilibrium stresses in the database, 
they must be put in dimensionless form, using fluid proper-
ties and a characteristic length pertaining to the correspond-
ing RVE simulation. In this case, it is defined as

This dimensionless equilibrium inertial stress tensor is 
stored as an output value in the database, associated to the 
corresponding dimensionless input parameters Id1 and Id2.

It is worth mentioning here that, as already been said, this 
is an equilibrium database. The coarse problem, however, 
would certainly require to deal with inertial stresses that are 
not necessarily in equilibrium with the local instantaneous 
coarse velocity gradient. Tackling this problem requires an 
involved process, which P-DNS refers to as a memory model, 
which will be detailed later.

2.7.3 � Simulating an Internal RVE

A RVE must be a three-dimensional (3D) domain, because 
turbulent flow instabilities appear in all three spatial direc-
tions even under two-dimensional applied shear forces. 
P-DNS proposes to represent a RVE by a cube of side length 
H, see Fig. 2.

In the following, the coordinate system {xR
i
, i = 1, 3} is 

considered local to the RVE, with origin in the geometrical 
center of the RVE. The unknown velocity and pressure fields 
inside the RVE will be denoted as uR

i
 and pR , respectively. 

The RVE fields are split as

and

where GR
ij
 is a particular symmetrical velocity gradient with 

null main diagonal, and ΠR
i
 is a pressure gradient. The veloc-

ity gradient GR
ij
 is associated to its dimensionless counterpart 

Idij through Eq. (28). As for the pressure gradient, it is con-
sidered null for internal RVEs.

The weighted residual equation to be solved in an RVE 
for obtaining the fine scale solution is, for FEM

(30)̃
T
�

ij
=

T
�

ij
H2�

�2
.

(31)uR
i
= GR

ij
xR
j
+ u

f

i

(32)pR = ΠR
i
xR
i
+ pf

and for FVM

Both forms represent solving the transient incompressible 
N-S equations in an Eulerian frame (i.e. the RVE frame). 
They are to be solved in a DNS mesh, which means simulat-
ing all the scales down to the smallest waves, or Kolmogorov 
scale. For this reason, its resolution does not require any con-
vection stability scheme, and only incompressibility stability 
schemes should be taken into account.

As for the boundary conditions, they certainly cannot be 
of the Dirichlet type, as a strong imposition like that elimi-
nates a large part of the possible instabilities. Therefore, 
less restrictive boundary conditions such as that of periodic 
nature are used. However, as they would obviously prevent 
the formation of waves of length 2H. Waves of this and 
larger lengths would be expected to be solved by the coarse 
problem. For this reason, and from the coarse problem point 
of view, the RVE must be seen as a domain that covers twice 
the local mesh size, as conceptually shown in Fig. 1. Due to 
this, RVEs associated to neighboring elements or cells may 
certainly overlap.

The physical problem to be solved in a RVE is then com-
pletely defined by a side length H, fluid properties � and μ, 
an applied shear velocity GR

ij
 . The shear velocity is imposed 

as jump periodic conditions between opposite faces of the 
cube. The magnitude of the jump is computed as GR

ij
nj , being 

nj the unit normal to the corresponding face. The null 
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Fig. 2   Sketch of the internal RVE
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pressure gradient is simply imposed as regular periodic con-
ditions between opposite faces.

At the RVE level, the standard N-S equations are solved 
until reaching an equilibrium state, meaning that the mov-
ing average of the spatial mean of all inertial stresses reach 
steady values. The dimensionless counterparts of these 
steady values are stored as output parameters in the database 
for later use, associated to the correspondent input param-
eters Id1 and Id2 (see typical results in Fig. 3).

2.8 � Dealing with Boundary Layers: An Equilibrium 
Wall RVE

Internal RVEs are adequate for modeling zones of the flow 
in which both (i) the coarse solution varies almost linearly, 
and (ii) the inertial stresses are almost uniform, in a region 
of a size comparable with the RVE size H. None of these 

assumptions hold in boundary layers, i.e. near solid walls. To 
deal with these regions of the coarse flow problem a special 
type of inertial stresses database is required, intended to be 
used for computing the coarse solution in the first layer of 
coarse cells in solid boundaries.

The first attempt of P-DNS for dealing with this problem 
is the so-called wall RVE database, that relies on a DNS 
simulation of a null-pressure gradient developed turbulent 
flow fluid between two horizontal parallel plates, namely 
lower and upper, separated by a distance 2H and moving 
in opposite directions, at velocities (−U, 0, 0) and (U, 0, 0), 
respectively ( Fig. 4). The boundary conditions are those 
typical of solid walls on the lower and upper plates, i.e. 
imposed velocity and null normal pressure gradient, and 
periodic between the other two pairs of faces. The simula-
tion is performed over a domain of size H × H × 2H , while 
the averaging of the inertial stress tensor is carried out in 
the lower half of the domain. The upper half, meanwhile, is 
just an artifact for imposing adequate conditions on the top 
face of the RVE, and it is not intended to represent a physi-
cally correct flow between parallel plates. The velocity of 
the plates is fixed, inducing a purely 2D shear, leading to a 
3D fine problem characterized by only one instability index 
Id associated to the applied velocity gradient Gxz = U∕H.

As in the internal RVE, the standard N-S equations are 
solved until reaching an “equilibrium state”, in which, tak-
ing a sufficiently large time window, the spatial-temporal 
average of all inertial stresses reaches a steady value. The 
dimensionless values of this equilibrium tensor is stored as 
output in the database for later use, associated to a single 
dimensionless instability index Id.

From the point of view of the coarse problem, this data-
base is accessed when required from cells or elements in 
contact with solid walls. It is assumed that in those cells 
the coarse velocity will be almost parallel to the wall. In 
any given wall cell it is then possible to compute a single 
valued local coarse velocity gradient Gns , where n stands for 
the direction normal to the wall and s for the local stream-
line direction. With this gradient it is possible to compute 
the local instability index Id with which to access the wall 
RVE database to recover the dimensionless inertial stresses 
required by the coarse equations of this particular cell.

Before describing how P-DNS deals with non-equilib-
rium conditions in the next section, we highlight that a more 
involved treatment of boundary layers will be presented in 
a later section.

2.9 � Dealing with Out‑of‑Equilibrium RVEs: 
A Data‑Driven Memory Model

In a previous section it was said that P-DNS aims at solv-
ing the coarse problem as the flow of a pseudo-fluid with 
properties related to the fine instabilities. Considering that, 

10
5

10
5

10
5 10

5

10
510

5

Fig. 3   Database for the six-components of the fine-scale inertial 
stress tensor for an internal RVE. Data available in [59]
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for P-DNS, a RVE is a portion of pseudo-fluid convected 
by the coarse velocity field, it may be assimilated to a vir-
tual particle located at its center, which is responsible for 
storing and carrying the instabilities. As mentioned above, 
adopting a Lagrangian formulation allows for accurately and 
naturally convecting and spreading the instabilities, even 
using a coarse mesh. Good resolution may be obtained by 
using either the first [60, 61] or the second generation of 
the particle finite element method (PFEM-2) [62–66] or its 
finite volume version, called particle finite volume method 
(PFVM) [67]. The readers are referred to these publications 
for further details on these technologies.

It was also said that the inertial stresses stored in the data-
bases correspond to equilibrium conditions, considered as 
functions of state ̃T

�

ij

(
Id1, Id2

)
 of two (or one in wall RVEs) 

instability indices. These stresses are however not enough 
to fully capture the complex rheological behavior of the 
pseudo-fluid, as its properties depend not only on the local 
present conditions on a given location of the coarse prob-
lem, but on the history of strain rates experienced by the 
pseudo-material, which may be costly tracked and stored 
in databases.

The aforementioned difficulty may be approached by 
using techniques from the memory fluids discipline. In [53], 
the authors propose a first approach to tackle this problem 
by means of a simplified algorithm, approximating the stress 
T̃
�
ij

n+1

 of a given RVE at time tn+1 = tn + Δt as a weighted 
average between: (i) the equilibrium stress ̃T

�

ij

n+1

 for the 
coarse conditions prevailing at the present RVE position, and 
(ii) the past RVE stress T̃�

n

ij
 . This is expressed as

(35)T̃
�
ij

n+1

= mT̃
�
ij

n

+ (1 − m)
̃
T
�

ij

n+1

where the weighting factor m is a memory factor defined as

where � may be thought of as a relaxation time (measuring 
how long it takes for an RVE to forget its past). The larger 
the value of � , the greater the dependence of the current state 
on the previous state of the RVE.

In [53] � was assumed to be a user-defined constant, but 
in [58] the authors introduce a somehow automatic and more 
precise technique to define � , a brief description of which 
follows.

The technique relies on the results of hundreds of off-line 
simulations of internal RVEs initially in equilibrium with 
a given imposed 2D strain, i.e. one in which Id1 ≠ 0 and 
Id2 = 0 . RVEs in equilibrium with a given Id1 = IdA where 
subject to sudden changes of the applied shear leading to 
a different Id1 = IdB . Figure 5 shows an example for the 
transition from IdA = 400 to IdB = 200 , with the evolution 
of dimensional kinetic energy versus dimensional time t[s].

By studying different transitions for several pairs 
(IdA, IdB) of applied shears, in the range Id = 200 to 
Id = 600 , the authors found that the internal RVEs behave 
as a dynamical system with a relaxation time of the order of 
the inverse of the mean applied shear, that is

for all sudden transitions, no matter the size or direction of 
the jump, with C� ≃ 1.

Tests of this proposed relaxation time in decaying tur-
bulence problems soon revealed that the model required a 
more sophisticated approach. The main reason is the fact 
that, during the update of the state of particles/RVEs in each 
time step of the coarse problem, the initial state A is no 
necessarily in equilibrium with the local IdA , thus rendering 
the applied velocity gradient GA as not adequate to be used 
in estimating the corresponding �.

The revised version of the memory model, as published in 
[58], proposes a more involved computation of the relaxation 
time, which is expressed as

where ĞA is an applied shear consistent with the actual ini-
tial stress state of the RVE, information which is obtainable 
from the database. Here,

(36)m = e
−

Δt

�

(37)� = C�∕

(
GB + GA

2

)

(38)𝜏 = C𝜏∕

(
GB +W𝜏(𝛽)Ğ

A

2

)

(39)𝛽 =
∣ ĞA − GB ∣

∣ ĞA ∣ + ∣ GB ∣

ρ=μ=1
H=1

ΩR

xR

2H

uR=(-U,0,0)

uR=(U,0,0)

periodic BCs

Fig. 4   Sketch of the wall RVE
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measures the relative magnitude of the jump, with � 
approaching 0 for small jumps and 1 for large jumps, and is 
used as indication of how far is the RVE from equilibrium. 
The weighting factor W�(�) is introduced to control how 
much of the past information (i.e. ĞA ) is used in actually 
computing the relaxation time. In the present model, it is 
defined as

where C1 = 6.8 and C2 = 4.0 are coefficients calibrated by 
adjusting the P-DNS results of a decaying homogeneous iso-
tropic turbulence problem.

The memory model presented in [58] also incorporates 
a low Re correction, to account for the fact that in decay-
ing turbulence it appears to be a constant relaxation time 
� during the final period of decay. To mimic this behavior, 
ĞA is freezed for low enough perturbation Reynolds, i.e. for 
Re <= Re∗ . This value is chosen to be Re∗ = 15 (Tennekes 
and Lumley [68] suggest taking Re∗ of the order of 10).

2.10 � Examples of Applications of P‑DNS 
for Turbulent Fluid Flows

Next, a series of examples taken from references [53, 58] 
will be provided to demonstrate the effectiveness of the 
P-DNS method. The specific situation of developing bound-
ary layers will be addressed in subsequent sections.

The cases of a Couette and Poiseuille flow are presented 
first to demonstrate that with the P-DNS technology, good 
results can be achieved with a small number of elements 
close to the walls. The case of mixing layers is then pre-
sented to illustrate the results for different mesh refinements 
and to demonstrate that P-DNS can obtain good results with 
coarser meshes than other methods, such as LES, require.

A case typically used to show the performance of any 
approximation of turbulence is that of decaying turbulence. 

(40)W� = C1�
3 + C2(1 − �3)

In the examples shown in Ref [58], it can be seen that in 
P-DNS there is no strict limit on the split between the coarse 
mesh and the fine mesh. Acceptable results are obtained with 
very different partitions, something that other methods, such 
as LES, cannot do.

The backward-facing step and the flow around a square 
cylinder are already less academic examples than the pre-
vious ones. Despite the fact that in the former there is a 
developing boundary layer downstream that has not yet been 
considered, the results show excellent agreement between 
the stream-wise velocities, shear Reynolds stresses, and 
averaged friction and pressure coefficients. In all cases, there 
was no need for excessive mesh refinement near the domain 
walls or objects.

Finally, the Taylor–Green vortex (TGV) problem is a 
benchmark that allows for evaluating the ability of a simu-
lation methodology to predict key physical processes such as 
vortex dynamics, turbulent transition, turbulent decay, and 
energy dissipation processes.

The standard notation ⟨⋅⟩ is used from here on to denote 
time-averaged values. In addition, hereinafter, LES refers 
to the dynamic k-Equation Subgrid-Scale (DKSGS) LES 
method proposed by Kim and Menon [69]. This method 
employs an equation for the transport of the subgrid kinetic 
energy (k), enabling it to account for some non-local and 
history effects that are completely neglected by simpler alge-
braic LES models.

2.10.1 � Poiseuille and Couette Flows

Consider two one-dimensional coarse meshes with only 
four and three finite volume 1D cells, respectively. With this 
mesh, the RVEs must resolve all the unsteadiness of the flow. 
The objective is to obtain the averaged incompressible flow 
field by solving the steady-state Navier-Stokes equations 
with a modified stress tensor from the RVE databases. Note 
that this test involves the coupling of the distinct treatment 
for the near-wall cells with the treatment for the internal 
cells.

Two classical flows between plates are solved: one driven 
by a pressure difference (Poiseuille flow) and the other by 
pure shear due to the movement of the walls (Couette flow).

Above a certain Reynolds number, it is well known that 
these flows become turbulent, resulting in average velocity 
profiles that are very different from those corresponding to 
the laminar cases, i.e. parabolic for Poiseuille and linear for 
Couette. Both problems result in turbulent regimes under the 
conditions and dimensions specified in Table 1.

Figure 6 compares the results obtained by solving the 
problems using three different strategies: (1) using the coarse 
mesh without modeling non-captured scales (unresolved 
DNS, u-DNS); (2) using the coarse mesh while modeling the 
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Fig. 5   A set of 100 RVE simulations with Id=400 for t < 0 to Id=200 
when t ≥ 0 . Realizations (dark lines) and ensemble averaging (thick 
white line) of total kinetic energy K(t)
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non-captured scales with the presented databases (P-DNS); 
and (3) using standard 3D DNS in a fine mesh capable of 
capturing all instability scales. In addition, for the Poiseuille 
flow, an estimate of the average velocity for smooth tubes 
derived from the classic experimentally-based Colebrook 
formula (or Moody chart [70]) is provided by employing 
the concept of equivalent hydraulic diameter. Even with a 
small number of cells, the results demonstrate that the mean 
velocity profile predicted by P-DNS method closely matches 
the DNS solution.

In [53], a Poiseuille flow in a 2D domain was also solved. 
In this instance, a refined coarse mesh was utilized, result-
ing in a separation of scales, which led to the coarse mesh 
capturing a portion of the flow’s unsteadiness. As previously 
described, in the Lagrangian formulation the computation 
is performed including virtual particles to transport velocity 
and instability data.

A snapshot showing the time-average velocity profiles 
in the channel is shown in Fig. 7. A spatially averaged time 
mean velocity is calculated for a time window of 100 s. The 
average streamwise velocity ∠uc

x
⟩ = 0.378 m/s, which leads 

to a Re = 1.5 × 105 , considering the equivalent hydraulic 
diameter of the channel. In this way, we were able to esti-
mate a predicted friction factor fr = 0.014 , close to the value 
of 0.016 obtained from the Moody diagram for a smooth 
pipe.

2.10.2 � Mixing Layer

The solution via P-DNS of the mixing layer that forms 
between two fluid streams moving with different velocities 
is examined next. The main feature present in the mixing 
layer is the self-similarity property, which is characterized 
by linear growth of the layer as well as the mean velocities 
and turbulent statistics being independent of the downstream 
distance non-dimensionalized by appropriate length and 
velocity scales.

This example was solved with three meshes of differ-
ent refinement. It is very interesting to show how small 

dependence exists in the solution via P-DNS on the distri-
bution of the turbulence between the coarse and fine mesh.

Figure 8 presents the configuration studied. Free-stream 
velocities selected are U1 = 4 m/s and U2 = 13 m/s in order 
to compare with the results of Yang et al. [71]. The initial 
velocity distribution is assumed to be that of an inviscid flow 
with a velocity distribution at the inlet section with a hyper-
bolic tangent profile. The so-called traction-free boundary 
conditions are adopted at the top and bottom boundaries 
of the computational domain, and an advective boundary 
condition is used at the outlet to prevent wave reflections.

The tree meshes analyzed are: Case A with a mesh com-
posed by 128 × 30 cells and Δt = 0.0005 s, the Case B with 
256 × 61 cells using Δt = 0.00035 s, and a Case C with 
512 × 121 cells using Δt = 0.0002 s.

Figure 9 presents snapshots of the solution on mesh and 
particles at a specific simulation time for which the flow is 
developed. While Case A barely shows the vortex street, 
Case C obtains a visually good definition of the phenom-
ena. Moreover, in Case C flow structures observed in sev-
eral experiments are clearly detected: in the screenshot pre-
sented, a paired vortex structure is followed by an unpaired 
vortex. 

Table 1   Setup of the one-dimensional tests

parameter units Poiseuille Couette

� m2/s 5 × 10−5 5 × 10−5

pin−pout

�
m2/s2 0.0008 0

utop m/s 0 1
ubot m/s 0 -1
L m 2 2
W m 1 1
Re – 1.65 × 105 4 × 104

No. of cells – 4 3

(a) (b)

(c) (d)

Fig. 6   One-dimensional tests. Poiseuille flow, streamwise velocity (a) 
and ratio of xy-component of stresses (b). Couette flow, streamwise 
velocity (c) and ratio of xy-component of stresses (d)



987The P‑DNS Method for Turbulent Fluid Flows: An Overview﻿	

1 3

Figure 9 also shows how the relevance of the data from 
the fine scales is reduced when more structures are captured 
by the coarse mesh. This is reflected by the magnitude of the 
instabilities transported by virtual particles 

(
T�
xy
∕Gxy

)
 , 

which decreases when the coarse mesh is refined. We 
observe that, using P-DNS, refining the coarse mesh could 
be considered equivalent to moving the limit between what 
is considered large and small scales.

Although the coherent vortices have been plausibly simu-
lated, these are just qualitative results. In order to guarantee 
the accuracy, the statistical results must be examined. The 
streamwise averaged velocity at three different positions 
(x = 0.4, 0.45, 0.5 m) is shown in Fig. 10, compared with 
Oster’s experimental measurement. From the plots, it should 
be noticed that the numerical solution with P-DNS accom-
plishes the self-similarity condition for the mean velocity 
even using a coarse grid for the large scales. Moreover, when 
the coarse-scale grid is refined, the results converge to the 
experimental ones.

Figure 10 also presents the Reynolds shear stress at the 
same three positions (namely x = 0.4, 0.45, 0.5 m). Due 
to the scales splitting, we can sum up the fluctuations of 
the large scales and the pre-computed data from the fine 
scales. In this sense, the Reynolds shear stress is computed 
as ⟨u�

x
u�
y
⟩ = ⟨(uc

x
− ⟨uc

x
⟩)(uc

y
− ⟨uc

y
⟩)⟩ + ⟨T�

xy
⟩∕�. Cases B and 

C, P-DNS presents a good agreement with experimental data 
and, in Case A, less than half of the real turbulent intensity 
is predicted. Authors explain the inaccurate results in Case 
A because of the fact of separating scales at a size where the 
fine scales cannot yet be considered homogeneous, a strong 
hypothesis used on the RVE simulations.

For the sake of brevity, more graphical comparisons are 
not included in this overview, but it is good to mention that 
performing simulations with the standard LES and employ-
ing coarser grids than those used by Yang (same as cases B 
and A), LES is not able to capture the instabilities.

2.10.3 � Decaying Turbulence

Homogeneous isotropic turbulence refers to turbulence 
whose average properties are independent of position and 
direction. Decaying homogeneous and isotropic turbulence 
(DT) is one of the most important and extensively studied 
out-of-equilibrium problems in fluid dynamics and a focal 
point of the study of turbulence. The problem involves a 
cubical domain with an initial velocity field consistent with 
a given turbulence spectrum. This field is allowed to evolve 
until all the remaining mechanical energy has dissipated 
without any energy input. In this example, the objective is 
to first obtain DNS solutions of kinetic energy decay for dif-
ferent Reynolds numbers and then to evaluate the prediction 
of P-DNS of this energy decay for the same flow conditions 
but with coarser meshes, thus necessitating the modeling of 
finer scales. This example demonstrates that there is no pre-
cise physical–mathematical variable in P-DNS that defines 

Fig. 7   Two-dimensional Poiseuille test. Time-averaged streamwise 
velocities

U2

U1

0.6 m

0.2 m

x

y

Fig. 8   Mixing layers. Geometry and case configuration

Fig. 9   Mixing-layer, screenshot of P-DNS solutions. Virtual particles 
coloured by an approximation to the effective viscosity �eff = T�

xy∕Gxy from 

0 (white) to 0.001 (magenta). a Case A, b Case B, and c Case C. (Color 
figure online)
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the separation between the coarse scale and the fine scale. 
Particularly in this example, where there are no boundary 
conditions, acceptable solutions can be obtained with either 
a fine or coarse mesh for the coarse scale.

In a cubic domain of size L = 9(2�) cm, the initial con-
ditions are synthetically generated to accomplish the von 
Kármán Pao energy spectrum (vKP) using the implementa-
tion of [73]. Null mean is imposed to the initial velocity, 
being u′ the RMS value of the fluctuations. By selecting 
different values for the kinematic viscosity � , both the fluc-
tuation-based Reynolds number and the minimum grid size 
required to fully represent all turbulent length scales can be 
adjusted. In particular, two test cases are selected employing 
� = 4 × 10−4 (high � ) and � = 5.625 × 10−5 (low � ) which 
give Reu� ≈ 60 and Reu� ≈ 500 respectively.

For the DNS simulation, a mesh with 256 cells by side 
is able to reach the Kolmogorov scale in the high Reynolds 
case (low � ). Figure 11 shows a comparison between the 
theoretical and the synthetically generated spectra for each 
case. In the low � case, the so-called inertial subrange is 
cleary present, showing the characteristic -5/3 slope. In this 
range, a transfer of energy from larger to smaller eddies is 
carried out, ideally without any viscous dissipation, which 
is thought to occur exclusively in the dissipation range. This 
inertial subrange may not be clearly identified for lower 
Reynolds numbers, as shown in the high � case. Figure 11 
also presents a snapshot of the initial velocity condition for 
each case. DNS simulations are carried out using an adap-
tive time step to keep CFL ≤ 1, where CFL is the Courant-
Friedrichs-Levy number, and simulated until a final time of 
Tf = 50 s.

As for the coarser meshes, grids of 32, 16, 8, and 4 cells 
by side are chosen. Initial conditions are obtained as follows: 

1.	 Start by filtering the DNS velocity fields by successive 
averaging on 23 subdomains to get initial velocity fields 
ui for cases 323, 163, 83, and 43.

2.	 Then, for each case: 

(a)	 compute the initial coarse kinetic energy field, 
kc = uc

i
uc
i
,

(b)	 compute the initial fine kinetic energy field as 
kf = kDNS − kc , where kDNS is the kinetic energy

(c)	 estimate the initial conditions of inertial stresses 
as T�

ij
=

2

3
�kf �ij.

In order to compare solutions, the total kinetic energy per 
unit mass K is estimated as

where Kc is the coarse kinetic energy, computed as

and Kf  is the fine kinetic energy, whose evaluation depends 
on the numerical model employed. For the P-DNS, it is com-
puted as

Solutions obtained for high � cases are presented in 
Fig. 12a, b. Here, the DNS prediction of the normalized 
total kinetic energy decay K∕∕K0 is compared with P-DNS 
and LES predictions using coarser meshes for the first three 
seconds of simulation. For LES the fine kinetic energy is

(41)K(t) = Kc(t) + Kf (t)

(42)Kc =
1

Ω ∫Ω

uc
i
(t)uc

i
(t)

2
dΩ,

(43)K
f

P-DNS
=

1

Ω ∫Ω
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Fig. 10   Mixing layer case, P-DNS solutions. Normalized streamwise 
mean velocity in subfigures (a, c, e), and normalized Reynolds shear 
stresses in subfigures (b, d, f) for Cases A, B and C respectively. 
Experimental data are taken from [72]
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The most relevant conclusion is that P-DNS obtains reason-
able results, even with the coarsest meshes. On the other 
hand, although LES solutions using 323 cells are accurate, 
the results depart considerably from the DNS solution 
as meshes get coarser. Moreover, solutions for the low � 
cases (high Reynolds), shown in Fig. 12c,d, lead to similar 
conclusions.

2.10.4 � 3D Taylor–Green Vortex Flow

The 3D TGV problem is a canonical benchmark which 
allows testing the ability of a simulation methodology to 
predict key physical processes as vortex dynamics, turbu-
lent transition, turbulent decay and energy dissipation pro-
cesses. The test consists of a cubical volume of fluid with 
periodic boundary conditions that contains a smooth ini-
tial distribution of vorticity. As time advances the vortices 
roll-up, stretch and interact, eventually breaking down into 
turbulence. Because of the lack of external forces, the small-
scales will dissipate all the energy in the fluid, which will 
eventually come to rest.

(44)K
f

LES
=

1

Ω ∫Ω

k dΩ.

The purpose of dealing with this complex 3D problem is 
to evaluate the capability of the P-DNS approach with the 
proposed memory model to reproduce the physics of the 
flow using meshes coarser than that required to represent 
the DNS solution (data from [74] are used as reference). 
For comparison purposes, LES solutions are also computed.

The problem domain is a cube with a side length of 2� 
m. The problem is defined as a periodic flow pattern in a 
cubic domain. The initial conditions for the velocity can be 
seen in Fig. 13a. Analytic expression can be obtained from 
[58]. Structured uniform orthogonal hexahedral grids are 
chosen to discretize the domain. Although the DNS solu-
tion requires a grid of 5123 , grids of 643 , 323 and 163 cells 
are also employed in order to evaluate the coarse and fine 
scales contribution. The total dimensionless simulation time 
is t̂f = 20 s , where the final velocity field seen by the coarse 
scale is displayed in Fig. 13b.

The problem is studied by computing the temporal evo-
lution of the kinetic energy K(t) and its derivative −dK∕dt , 
i.e. the kinetic energy dissipation rate, as presented in 
Fig. 13c–f. The reference solution shows two very distinct 
phases. First, there exists an initial phase in which the energy 
is mainly transferred from large to small scales until the 
dissipation peaks, at about t̂ = 8 s, signaling that the energy 
cascade has reached its smallest scale. Then, the final phase 
begins, in which the smallest scales start to vanish, much 
like in the decaying turbulence problem discussed above. 
In the case of N = 643 cells, all solutions are close to the 
reference values, showing that the fine scale modeling is in 
this case irrelevant. For N=323 cells, however, after an early 
stage (up to t̂ = 5 ) where all solutions are close to the refer-
ence, the energy evolution results begin to differ.

The LES method underestimates the energy decay, 
while the P-DNS method, in turn, although overestimates 
the energy decay during the late stage of the initial phase 
(i.e. between t̂ = 5 and t̂ = 8 ), shows a good agreement in 
most of the final phase, thus confirming the reliable predic-
tion shown in the decaying turbulence problem presented 
previously.

2.10.5 � Backward Facing Step

Separation of turbulent flows due sudden expansions occur 
in many practical engineering applications, both in internal 
flow systems such as diffusers, combustors and channels, 
and in external flows like those around airfoils and build-
ings. The flow subsequently reattaches downstream forming 
a recirculation bubble. Among the flow geometries used for 
the studies of separated flows, the most frequently selected 
is the backward-facing step (BFS). In this section, the tur-
bulent BFS flow at Reh = 5000 is studied, where h = 1 is the 
step height. Figure 14 presents the configuration of the case 
study. The computational domain consists of a streamwise 
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Fig. 11   Decaying turbulence case. Top: Theoretical (input) and syn-
thetic (computed) turbulence spectra for high (a) and low (b) vis-
cosities. Dashed line represents the maximum wave number that the 
employed mesh can capture. Bottom: magnitude of the velocity field 
for these spectra, i.e. the initial conditions for high (c) and low (d) 
viscosities
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length L = 30 h, including an inlet section L = 10 h prior 
to the sudden expansion, vertical height H = 6 h and span-
wise width W = 4 h. The coordinate system is placed at the 
lower step corner. The mean inflow velocity profile, U(y), 
imposed at the left boundary x = −L is a flat-plate turbulent 
boundary layer profile, with U0 = 1 being the maximum 
mean inlet velocity.

Reference time-averaged flow results and turbulent sta-
tistics are taken from the experimental study in [75], and 
the DNS simulation, using a mesh of 6 M cells, reported 
in [76]. Simulations using P-DNS and LES are performed 
using a structured mesh of 142K cells, where the step height 
is discretized using 20 cells. It is known that the results are 
strongly influenced by the inlet velocity profiles, therefore 
the turbulent inflow data are generated using a digital filter 
based approach to match the experimental conditions [77]. 
Fixed total pressure is set at the outlet, symmetry conditions 
are imposed at the top boundary, while periodic conditions 
are set in the spanwise direction. Finally, no-slip boundary 

conditions are imposed at the bottom wall. The total simula-
tion time is tf  = 800 s, with a fixed time-step Δt = 0.02 s. 
The time averaging is performed during the last 600 s, time-
window long enough to obtain converged statistics. A snap-
shot of the P-DNS solution can be seen in Fig. 15.

Figure 16 presents the comparison of several time-aver-
aged quantities measured in the wind tunnel (experiment) 
and the numerical solutions. The mean longitudinal and 
vertical velocities in global coordinates (U/U0 and V/U0 
vs. y/h) are compared at four streamwise locations x/h, see 
Fig. 16a, b. Turbulence intensity profiles for the 3-velocity 
components ⟨u�2⟩1∕2 , ⟨v�2⟩1∕2 , ⟨w�2⟩1∕2 normalized by U0 , and 
the Reynolds shear-stress component ⟨u′v′⟩ normalized by 
U2

0
 are shown in Fig. 16c–f respectively. The skin-friction 

coefficient Cf
 is shown in Fig. 16g. Finally, the wall static-

pressure coefficient Cp measured in the plane of symmetry 
along the bottom wall downstream of the step is shown in 
Fig. 16h.

Fig. 12   Decaying turbulence 
case. Top: high � case. Kinetic 
energy decay. Comparison 
of the DNS reference with 
P-DNS (a) and LES (b) solu-
tions varying the coarse mesh 
discretization. Bottom: low � 
case. Comparison of the DNS 
reference with P-DNS (c) and 
LES (d) solutions

P-DNS N01 P-DNS N04 P-DNS N08 P-DNS N16 P-DNS N32

LES N32LES N16LES N8LES N4

(a) (b)

(c) (d)



991The P‑DNS Method for Turbulent Fluid Flows: An Overview﻿	

1 3

The mean reattachment length lr can be identified based 
on the zero crossing of their Cf

 distribution. The experi-
mental curve gives lr∕h = 6 ± 0.15 , which was confirmed 
through oil flow visualization. The reattachment length 
obtained by DNS is 6.1h, while a similar analysis leads 
to predictions of 6.05h and 5.1h by P-DNS and LES 
respectively.

2.10.6 � Flow Around a Square Cylinder

A canonical configuration to study bluff body aerodynamics 
and vortex induced vibration phenomena is the flow around 
a square cylinder. For moderate and high Reynolds numbers 
(based on the inflow velocity U and the width D of the cyl-
inder cross section) the flow separates from the upstream 
corners leading to an asymmetric shedding of vortices into 
the wake which induces alternating forces on the cylinder. 

Fig. 13   Taylor–Green vortex 
case. Snapshot of velocity fields 
at a t̂ = 0 and b t̂ = 20 in (m/s). 
Kinetic energy evolution for c 
P-DNS and d LES solutions 
using different discretizations. 
Dissipation rate for e P-DNS 
and f LES solutions

(a) (b)

DNS (N512)P-DNS (N64) LES (N64)

P-DNS (N32) LES (N32)

P-DNS (N16) LES (N16)

(c) (d)

(e) (f)
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This promotes structural vibration and is a source of fatigue 
and flow-induced noise for many engineering applications, 
explaining the relevance of its study.

Although most research on flow around cylindrical 
objects has been carried out for circular cylinders, a cylinder 
with square cross section is here studied. The main reason is 
that the separation points are fixed (the sharp corners) allow-
ing to concentrate on the turbulent behavior in the fluid bulk 
without the need to focus in the wall treatment model, which 
is left for the next section on developing boundary layers.

As a reference study, the work of Trias et al. [78] is cho-
sen. There, a DNS solution of the flow around a square cyl-
inder at Re=22,000 is presented, where time-averaged flow 
results and turbulent statistics are discussed and validated 
with experimental data, conforming a complete dataset use-
ful for our comparison purposes.

The configuration of the case study is presented in 
Fig. 17. The origin of coordinates is placed at the center 
of the cylinder, while the dimensions of the computational 
domain are 27D × 13D × πD in the stream-wise, cross-
stream and span-wise direction, respectively, far enough to 
avoid introducing disturbances in the solution near the cyl-
inder due to the boundary conditions.

The domain is discretized with a parametric mesh of 
hexahedra with decreasing sizes towards the cylinder, being 
hmin = 0.04D the mesh size on the cylinder surface. The 
mesh employed in the current numerical simulations con-
tains approximately 2 million cells, a really low number, in 
comparison with the 300 million cells required for the DNS 
solution.

As boundary conditions, a constant inflow profile 
u = (U;0;0) is imposed at the inlet, while fixed total pressure 
is set at the outlet. Also, symmetry conditions are imposed at 
the top and bottom boundaries, while periodic conditions are 
set in the span-wise direction. Finally, no-slip boundary con-
ditions are imposed at the surface of the cylinder. Hencefor-
ward the results are presented in dimensionless form where 
D, U, D/U, and U2/2 are respectively the reference length, 
velocity, time, and kinematic pressure.

Regarding simulation control, second order discretiza-
tion schemes are employed, while two orders of convergence 
of pressure and velocity residuals is required per time-step, 
being the time-step value adapted such that Co ≤ 1. Starting 
from a null velocity initial condition, the simulation is per-
formed up to 300 dimensionless time units, while the time 
averaging is performed during the last 200 units, a time-
window long enough to obtain converged statistics.

The solution obtained with P-DNS is compared with 
the reference DNS solution. A simulation with LES is 
also performed for comparison purposes. Table 2 summa-
rizes several bulk quantities obtained from the simulations 
performed.

Main time-averaged flow features of the P-DNS simu-
lation are presented through velocity streamlines in the 
Fig. 18a. The laminar upstream flow impinges on the front 
wall of the cylinder leading to high pressure values. The two 
large recirculations reported in the DNS reference at the top 
and bottom areas of the cylinder are well predicted, but the 
secondary recirculations near the upstream and downstream 
corners are not properly captured due to the lack of grid 
refinement.

When compared with those of LES, the P-DNS predic-
tions for the averaged stream-wise, ⟨u⟩ , and cross-stream, 
⟨v⟩ , velocities in the near cylinder region show a more accu-
rate location of the main vortex, as evidenced by the mean 
velocities displayed for positive x coordinates in Fig. 18b, 
c. Instead, large curvatures of the mean flow, located at 
negative x coordinates, are only partially predicted by both 
approaches.

The improved reliability of P-DNS solutions is confirmed 
by evaluating the reattachment length lR , which indicates the 
length of the time-averaged separation region behind the 
cylinder. Using P-DNS with the automatic memory model 
results in lR = 1.04 which is, again, closer to the DNS refer-
ence than the other numerical alternatives here employed 
(see last row of Table 2).

Time-averaged turbulent statistics are presented in 
Fig. 18d, e as profiles of the averaged streamwise nor-
mal stress, and the shear stress component predicted by 
the P-DNS and the LES simulations. A better agreement 
with the DNS reference results is generally obtained using 
P-DNS. Beyond the already mentioned accurate predic-
tion of the main recirculation on sides, see Fig. 18a, it is 
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Fig. 14   Backward Facing Step case configuration

normalized velocity magnitude

0 0.25 0.5 0.75 1

Fig. 15   Backward Facing Step case solved with P-DNS. Snapshot of 
the instantaneous velocity field
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Fig. 16   Backward Facing Step 
case. Comparison between 
experimental data [75], and 
DNS [76], P-DNS and LES 
solutions. Averaged on slices at 
different x-locations: stream-
wise (a) and vertical (b) veloci-
ties, streamwise (c), vertical 
(d), tranversal (e) and shear (f) 
Reynolds stresses. Averaged 
on the ground: friction (g) and 
pressure (h) coefficients

ExperimentalDNSP-DNS LES

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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noticeable the ability of P-DNS to predict mean turbulent 
statistics, i.e. the profile of the components of the time-
averaged Reynolds stress tensor, see Fig. 18b, c, even using 
a much coarser mesh than that of the reference solution.

Solutions have similar accuracy regarding the DNS ref-
erence, which confirms an inherent ability of the P-DNS 
method to predict the turbulent flow behavior.

2.11 � Recent Advances: Improved Wall RVE 
and Velocity Enrichment

The P-DNS method described so far has proven to be suc-
cessful in problems in which the boundary layers were 
either fully developed, not relevant for the global problem, 
or not present at all. As the long term goal of P-DNS is to 
be a method of general applicability, able to work with very 
coarse meshes, it is evident that a better way of dealing with 
boundary layers is required.

2.11.1 � A Wall RVE Based on Time Developing Boundary 
Layers

Of the variety of approaches that were explored by the 
researchers involved in the development of P-DNS, the 
approach presently being used is that of a time develop-
ing boundary layer wall RVE, or TDL-RVE. As it will 
be explained in detail hereafter, the idea is to perform a 
DNS simulation of a time developing boundary layer over 
a horizontal infinite flat plate under null pressure gradient 
conditions are reached. The initial condition is a uniform 
horizontal laminar flow. From the mathematical point of 
view, and once written in dimensionless form, this a unique 
problem that has to be solved only once to obtain the time 
evolution of the RVE-averaged quantities which will con-
form the desired output of the simulation. As for the DNS 
problem domain size and shape, P-DNS proposes a cube of 
sides Lx × Ly × Lz , with x aligned with the free stream flow, 
being z the coordinate normal to the plate, see Fig. 19. The 
base of this domain lays on the solid wall, i.e. the plate, of 
area Aw = LxLy . This domain has to be at least large enough 
so as to include all the relevant large scale vortices (whose 
size will be of the order of the ever-growing boundary layer 
thickness �(t) ). This size is however a minimum require-
ment, in the sense that the resulting RVE-averaged quantities 
would lack of enough spatial statistics for their values to be 
smooth functions of time. This problem has to be addressed 
either by performing an additional wide enough time win-
dow averaging, by increasing the spatial statistics with a 
larger Aw , or by performing ensemble averaging from several 
independent simulation instances of the problem. We note 
that the flow remains laminar until Re� , defined as

reaches a given threshold value. Until then, the problem is 
essentially one-dimensional in the vertical direction, with 
analytical solution [79]. In the DNS simulation, however, 
the laminar-turbulent transition may happen earlier due to 
numerical tripping mechanisms.

Although an infinite flat plate is a particular case of a 
boundary layer, the results obtained and tabulated in a data-
base will be used for all global problems in the vicinity of 
solid walls of any geometry. Furthermore, it will be used in 
spatially developing steady state boundary layers, somehow 
stretching the concept of self similarity with its implied rela-
tionship between space and time. All these intended uses are 
approximations aimed at avoiding the need to create special-
ized databases for a large variety of solid wall geometries and 
flow characteristics. It is worth mentioning, however, that this 
approach leaves aside the effect of the pressure gradient, which 
is related to important flow phenomena, e.g. flow separation 

(45)Re� =
�U�

�
,
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z

D
13D

27D ΠD
U

Fig. 17   Flow around a square cylinder, case configuration

Table 2   Comparison of several bulk quantities among the current 
simulations and the DNS reference. From top to bottom: Strouhal 
number, the time-averaged drag a lift coefficients, the rms values of 
the fluctuations of the drag and lift coefficients, and the reattachment 
length

DNS [78] P-DNS LES

# cells 300 M 2 M 2 M
St 0.132 0.127 0.115
<Cd> 2.18 2.551 2.701
Cdrms 0.205 0.233 0.293
<Cl> 0.002 0.044 0.049
Clrms 1.71 1.574 1.771
lR 1.04 1.108 1.404
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and recirculation. Therefore, further developments of the wall 
RVEs along these lines may be needed in the future to accu-
rately represent particular types of flows.

Another important feature of the TDL-RVE, as explained 
below, is that not only the time evolution of the RVE-aver-
aged inertial stresses tensor needs to be computed and stored 
in the database. Other relevant results like the time evolution 
of the wall shear stress sustained by the flat plate are also 
stored and lately used for solving the wall cells in coarse 
meshes.

2.11.2 � A New Splitting: Enriched Velocity Fields

The coarse scale equations developed in previous sections, 
namely Eqs. (25) or (26) depending on the selected coarse 
numerical method, relied on the approximation of uc as a 
linear velocity profile, able to be represented in Ωl by a con-
stant velocity gradient Gij . P-DNS, however, it is not to be 
seen only as a means of modelling turbulent flows, but as 
a method aimed at using very coarse grids, even in laminar 
cases. Due to this, and because a laminar boundary layer 

Fig. 18   Flow around a square 
cylinder. Comparison between 
DNS simulation [78], P-DNS 
and LES solutions

DNSP-DNS LES

(b) (c)

(d) (e)

(a)
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velocity profile is clearly far from being linear, the assump-
tion of linear spatial variations for the coarse flow is aban-
doned in the TDL-RVE aproach, thus introducing a more 
complex field splitting and the concept of velocity enrich-
ment, as explained below.

The RVE total velocity uR
i
 is in this case split into three 

parts, namely spatial average ûi , enrichment ue
i
 , and fine uf

i
 , 

so that

The spatial average is defined as

where ΩR is the RVE domain, a cube of sides Lx × Ly × H , 
being H < Lz the height of the RVE.

The fine part uf
i
 mainly represents turbulence, much like 

in the already described P-DNS methodology, and has the 
same already mentioned imposed constrains. Due to these 
constrains, its spatial average is null in the RVE. With 
this result and using Eqs. (46) and (47), it follows that the 
spatial average of the enrichment part is also null (Fig. 20).

In order to compute the enrichment part ue
i
 a plane 

surface ΓR
xy
(z) is defined, obtained by cutting ΩR with a 

horizontal plane located at a distance z above the plate. 
For any given z, it is possible to compute a corresponding 
surface average

which is a velocity whose only non-null component is 
aligned with x and which is function of z only. The enrich-
ment part ue

i
 is then defined as

(46)uR
i
= ûi + ue

i
+ u

f

i
.

(47)ûi =
1

ΩR ∫ΩR

uR
i
dΩ,

(48)uz
i
(z) =

1

ΓR
xy
(z) ∫ΓR

xy
(z)

uR
i
dΓ

which is also a function of z only.
Finally, the fine part is then computed as

which is in accordance with the splitting defined in Eq. (46).
Now, from the coarse scale point of view, for any given 

boundary node or cell l, the value uc
i
 will take the place 

of the RVE averaged ûi . With this in mind, using this new 
splitting, and after repeating many of the steps that led to 
the previously mentioned coarse scale equations, we get 
an updated version valid for boundary layer cells, which 
for the case of FEM reads

while for the FVM version is

Here, the novelty are two new averaged tensors, additional 
to the averaged inertial stresses T̂�

ij
 defined in Eq. (24), and 

(49)ue
i
(z) = uz

i
(z) − ûi

(50)u
f

i
= uR

i
− uz

i
,

(51)
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Fig. 19   Sketch of the time developing boundary layer wall RVE Fig. 20   Conceptual representation of the triple splitting
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both related to the newly added enrichment. Much like the 
inertial stresses, they will also be approximated by averaging 
them over an RVE and not over Ωl , that is

and

In this RVE, then, it is possible to write the inertial and 
viscous enrichment stresses as

and

where it is clear that only two scalar values are enough to 
fully define them.

There is, however, an additional value to be computed and 
stored in the TDL-RVE database: the viscous enrichment 
wall shear stress T̂we , defined as

During the solution of the coarse scale problem, this value 
will be required for computing the enrichment shear force 
over the solid wall portion of Γl.

2.11.3 � The Fine Problem and the TDL‑RVE Database

As been already said, the fine problem to be solved at the 
RVE level is that of a time developing boundary layer over 
an infinite steady flat plate. This problem is to be solved just 
once in a domain large enough so as to represent the largest 
turbulent scale with a mesh fine enough so as to capture the 
smallest scales, i.e. the Kolmogorov scale.

The flow outside the boundary layer is assumed to be 
laminar, with a uniform velocity U = (U, 0, 0) expressed 
in a local coordinate system with x aligned with the free 
stream velocity and with z normal to the flat plate. Both the 

(53)
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free stream velocity U and the fluid properties � and μ may 
be selected arbitrarily, because the results are going to be 
stored in dimensionless form, which is of course independ-
ent of the particular values selected for the simulation. As 
for the actual size of the domain, it is selected based on the 
maximum expected boundary layer thickness � desired to 
be included in the database. This is, in principle, also an 
arbitrary value, but it must be kept in mind that it limits the 
validity range of the database. It may well occur that a given 
coarse problem asks for conditions that lay outside the avail-
able RVE database, thus requiring some form of extrapola-
tion or additional RVE simulations in order to extend it.

Unlike the internal and wall RVE databases discussed so 
far, that of the TDL-RVE is not an equilibrium database, as the 
results to be computed, non-dimensionalized, and stored are 
in this case the time evolution of the desired fine stresses. The 
desired results to be stored as functions of time are the dimen-
sionless averaged stresses T̃�e

ij
 , T̃�

ij
 , T̃e

ij
 and T̃we , being the first 

three volumetric averages (i.e. on the RVE volume) and the last 
one a surface average (i.e. on the flat plate surface). These 
values are considered to be the outputs of the database.

As for the inputs, they are twofold: (i) a single instability 
index Id1 , to be described in detail later, and (ii) the time, 
which for this database to be general, it must also be stored 
in dimensionless form. Being U, � and μ the only available 
parameters, the only possible way of defining a dimension-
less time is

Much like it was described in the previously discussed equi-
librium wall RVE, the instability index Id1 is the only dimen-
sionless parameter required to specify the applied shear. The 
way in which this is computed and interpreted is, however, 
different in the TDL-RVE. In this case, for a given RVE of 
height H, it is defined as

where ûx(t) is the instantaneous volumetric average of the 
horizontal velocity at instant t. It is then possible to define 
a set of RVE heights, namely H = {Hi} , with i = 1,NH , and 
a set of instants T = {tj} , with j = 1,Nt , and, for each pair 
(Hi, tj) , compute the following dimensionless quantities:

•	 the instability index Id1,
•	 the time t̃,
•	 the fine inertial stresses T̃�

ij
,

•	 the enrichment inertial stress T̃�e
ij

,
•	 the enrichment viscous stresses T̃e

ij
 , and

•	 the enrichment wall stress T̃we,

(58)t̂ =
𝜌U2t

𝜇
.

(59)Id1 =
𝜌ûx(t)H

𝜇
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being the first two the inputs and the rest the outputs of a 
double entry database with NH cols and Nt rows.

2.11.4 � Computable Database Inputs

The coarse problem solution process requires the databases 
to be consulted whenever and wherever required, which 
means at least for each coarse problem time step and for 
each element or cell in the coarse mesh.

The first dimensionless input to the TDL-RVE database, 
the instability index Id, is readily computable with the infor-
mation locally available in any coarse element or cell. For 
any given coarse domain Ωl pertaining to a wall degree of 
freedom l it is evaluated as

where � and μ are the coarse problem fluid properties, uc,l
�

 is 
the projection of the coarse velocity uc,l onto the wall, and 
Hl is the local mesh size.

The second input, namely the dimensionless time t̃ , 
requires however knowledge of a freestream velocity U 
which is an information that is neither local nor precisely 
defined in the coarse problem. To tackle this problem, 
and assuming a coarse mesh locally structured near solid 
walls, the actual second dimensionless parameter that 
P-DNS uses as index in the database is the dimensionless 
quotient of two velocities, namely the shape index Is . It 
is defined as

where uc,q
�

 is the projection of the coarse velocity uc,q onto 
the wall, with q being the "upper" cell located immediately 
above cell l, i.e. its neighbor in the second layer of boundary 
cells. From the point of view of the TDL-RVE, this is com-
puted as the quotient of the spatial average ûx(t) on the RVE 
over the spatial average on a domain ranging from z = H to 
z = 2H , which plays the role of "upper" RVE. In the TDL-
RVE simulation process, the initial value of the shape index 
is Is = 1.0 , indicating a uniform or piston flow, and decays 
to a minimum of approximately Is ≈ 0.82 at the time in 
which the boundary layer � reaches 2H, staying almost con-
stant from then on.

As for the pros and cons of this index, on one hand this is 
a dimensionless monotonically decaying function of time, 
thus making it an excellent replacement. On the other hand, 
however, is it possible for the coarse problem to produce val-
ues of Is outside the range [0.82 − 1.0] , e.g. when the bound-
ary layer velocities are faster that those of the far field. In 

(60)Id =
�uc,l

�
Hl

�

(61)Is =
u
c,l

�

u
c,q

�

those cases, there is no valid data available in the database, 
and some form of extrapolation or ad-hoc approximation is 
required, a matter to be sorted out in future developments of 
the TDL-RVE procedure.

2.12 � Examples of Applications of P‑DNS 
for Developing Boundary Layers

The null pressure gradient flow over a semi-infinite flat 
plate is the most common case of developing boundary 
layer (BL), and is shown here as an example of the TDL-
RVE detailed in Sect. 2.11. Two cases have been consid-
ered namely a fully laminar boundary layer and a turbulent 
boundary layer.

More examples of flows including complex geometries 
and pressure gradients are under development and are 
expected to be published in the near future.

2.12.1 � The Flat Plate Laminar Boundary Layer

A laminar flow past a thin plate at zero incidence with null 
pressure gradient will be studied next. Figure 21 presents 
the case configuration. It is initialized with a free-stream 
velocity U = 0.06

m

s
 and a the boundary layer will grow until 

an equilibrium state is reached.
The theoretical (numerical) solution of a developing lami-

nar boundary layer was achieved by Blasius in 1908 [80]. 
Two quantities will be compared between the P-DNS simu-
lation versus the Blasius exact solution, namely the bound-
ary layer thickness � and the friction factor Cf .

Figure 22 shows that the chosen mesh includes the whole 
boundary layer in the first row of cells along the plate. Con-
sidering that in order to reproduce a parabolic solution, such 
as the laminar BL, at least five point should be taken into con-
sideration, the virtue of the enrichment detailed in Sect. 2.11 
arises. Figure 23 shows the excellent agreement between both 
� and Cf  , for such a coarse mesh. � value for the P-DNS simu-
lation was calculated using the velocity in the wall cell and 
assuming a parabolic profile.

2.12.2 � The Flat Plate Turbulent Boundary Layer

As for the turbulent case, the discretization will be the same 
used in the laminar case (Fig. 24). However, taking into 
account the crucial importance of the laminar sub-layer for 
the computation of Cf  for this case, using the same coarse 
mesh would be extremely ambitious. Therefore, the results 
presented in Fig. 25 show the remarkable agreement between 
P-DNS and the analytical solution proposed by Schlichting 
in [81]. In this case, the boundary layer reaches the second 
row of cells along the plate. In order to make a comparison, 
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the turbulent wall-RVE demanded a mesh of 264 cells in the 
direction of growth of the BL, so that the laminar sub-layer 
and the Kolmogorov scale were captured.

Regarding the transition, there is no additional modelling 
rather than establishing a threshold for passing from the lami-
nar database to the turbulent one.

3 � The P‑DNS Method for Turbulent 
Particle‑Laden Fluid Flows

This section describes the methodology for solving parti-
cle-laden fluid flows using P-DNS. Two separated scales 
are observed, the small where the particles interacts with 
each other and with the carrier fluid, and the global scale. 
This is a hierarchical multiscale problem, and the P-DNS 
solution is based on the assumption that the solution on a 
fine enough mesh is reliable.

Multiphase flows are defined as the simultaneous flow 
of two or more phases. Here, the continuous (or carrier) 
phase occupies a continually connected region of space, and 
may be either gaseous or liquid. The dispersed phase, which 
occupies disconnected (discrete) regions of space, can con-
sist of either solids (particles), liquids (droplets), or gases 
(bubbles). In the following, the term ‘particles’ will be used 
regardless of whether their state is solid, fluid, or gas.

The multiscale and nonlinear interactions between the 
carrier and the dispersed phases lead to complex flow phys-
ics and pose unique modeling challenges. Also, many of 
these flows involve turbulence. The simultaneous presence 
of two of the most challenging topics in fluid mechanics, 
namely multiphase flows and turbulence, is still an unsolved 
problem that deserves more attention and this section is ori-
ented to how P-DNS addresses this challenge. Two different 
applications of the P-DNS method to particle-laden fluids 

Fig. 21   Flat plate: case configuration

Fig. 22   Laminar flow past a thin 
plate. A representation of the 
RVE flow profile for differ-
ent stations along the plate are 
presented
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will be discussed here. One is how the particles modify the 
turbulence, causing turbulence to increase or decrease. A 
second application is how to use the P-DNS to model the 
motion of many millions of particles in a fluid, without the 
need to move the particles within the fluid, but consider-
ing instead an homogenized fluid with properties defined 
by a scalar function representing the concentration of par-
ticles. Both approaches will serve to better understand how 
to model complex problems that are still open to the fluid 
mechanics community.

Fig. 23   Boundary layer thick-
ness (a), and friction coefficient 
(b) for the flat plate laminar 
boundary layer

Fig. 24   Turbulent flow past a 
thin plate. A representation of 
the RVE flow profile for differ-
ent stations along the plate are 
presented. A single line profile 
is shown despite an averaged 
value is taken into account to 
calculate the necessary quanti-
ties

Fig. 25   Friction coefficient for the flat plate turbulent boundary layer
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3.1 � Turbulent Modulation

Turbulence modulation by the dispersed phase changes the 
carrier flow’s stochastic behavior. Because different mecha-
nisms operate at different length and time scales, carrier 
phase turbulent kinetic energy enhancement and attenuation 
occur simultaneously. Higher inertia, particle drag-induced 
dissipation, and effective viscosity explain particle-laden 
flow attenuation. Wake dynamics, self-induced vortex shed-
ding, and buoyancy-induced instabilities due to density vari-
ations cause production [82].

The overall modulation depends on the relative strength 
of the mechanisms, which is a result of the characteristics 
of the particles, such as volume fraction �p , mean diam-
eter d̄p , mass loading �p , also on the carrier phase flow 
properties, the inertial effects measured by the flow, Re, 
and the particle, Rep , Reynolds numbers, and the response 
effects quantified by the Stokes number St = �p∕�e , i.e. 
the ratio of the characteristic time of a particle, �p , to a 
characteristic time of the flow �e . Some models have been 
proposed to consider the relative influence of these phe-
nomena and predict the turbulence modulation by effect of 
the dispersed phase [83–85]. However, these models have 
limited validity [86, 87]. Although numerical simulations 
can analyze turbulence modulation in specific multiphase 
configurations [88, 89], the computational power available 
does not support the experimental data needed to validate 
the numerical results [90]. Therefore, there still is a lack 
of a universal indicator for turbulence modulation. This is 
mainly due to the wide range of length and time scales in 
the particulate flow systems and the complexity of study-
ing them, either numerically or experimentally.

Multiphase f lows are intrinsically multiscale but, 
unlike what happens in solid mechanics, here the parti-
cles move relative to the bulk fluid and strongly interact 
with it, altering the global behavior. This characteristic 
makes the problem as a multiscale fluid–structure interac-
tion one. Particle-fluid and particle-particle interactions at 
the microscale (order of some particle diameters dp ) lead 
to organized mesoscale structures (tens of dp ) that affect 
macroscale flow behavior [91]. Recent proposals have used 
multiscale numerical strategies. Luo et al. [92] proposed 
several gas-liquid system modeling and simulation meth-
ods for all scales. Other methods study the interaction 
of the discrete phase in the boundary layer near walls, 
including mass and heat transfer and fluid droplet colli-
sions [93]. Particle-resolved direct numerical simulation 
of the microscale governing equations has been used to 
study gas-solid flows and quantify meso- and macroscale 
developments. These developments have improved their 
respective applications, but none have improved dispersed 
flow turbulence modulation modeling. This topic has few 

literature proposals. These are applied to energy-based tur-
bulence models that account for turbulence modulation 
through Stokes number-only source terms. These extra 
source terms usually predict non-realistic attenuation 
and production rates, which does not improve simulation 
results. This suggests that a turbulence model suitable for 
particle-laden flows must be developed [94] and that a 
systematic study of high-fidelity simulations of particle-
laden flows can provide further insights [95].

3.1.1 � The Equation to be Solved for a Particle‑Laden Flows

From the differential equations point of view, the only dif-
ference between a particle-laden flow and an unladen one 
is the variation in density at each point of the domain due 
to the spatially variable void fraction of particles. It is also 
necessary to add the forces that the relative movement of 
the particles with respect to the fluid make on it.

Since we intend to represent polydisperse multiphase 
systems, for reasons of informatics tractability it is con-
venient to define a concentration ck for each type of parti-
cle, defined as the ratio between the volume occupied by 
nk particles of type k and the total volume Ω , namely

with Ωj being the volume of the j-th particle belonging to 
the k-type of particles. What is left of the volume when all 
the k-type of particles are removed is called the fluid volume 
fraction c(xi, t):

The averaged density of the remaining fluid when the parti-
cles are removed � is then:

The above assumption leads to the following residual 
weighting differential equation to be solved for the continu-
ous phase at the coarse scale. For the FEM:

and for the FVM:

(62)ck =

⎛⎜⎜⎝

nk�
j=1

Ωj
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∕Ω
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with

Remark 1  The inertial stress tensor in Eq. (67) is not any 
more a symmetric tensor as in Eq. (27). This is due to the 
variation of the volume fraction and the use of an ALE ref-
erence frame.

Calling fi the sum of all the forces that the particles exert 
on the fluid and calling gi the vector of the acceleration of 
the particles (gravity or other accelerations) the source term 
Bi in Eq. (65) is expressed as

Equations (65) or (66) will be solved in the coarse mesh 
using explicitly the values of T̂�

ij
 obtained from an RVE.

Now, the dispersed phase model is presented where a Dis-
crete Particle Method (DPM) is employed in both the coarse 
and fine scale mesh (RVE).

The acceleration of a particle will be given by Newton’s 
law,

where f g
i
 is the net force due to gravity, and f d

i
 and f l

i
 are 

the drag and lift forces. On the other hand, �k and dk are the 
density and the diameter of the particle of the set k.

The gravitational and buoyancy forces are computed as a 
single force acting on a spherical particle as:

The drag f d
i

 and lift f l
i
 forces that a spherical particle exerts 

on the fluid are function of the relative velocity between the 
surrounding fluid ui and the particle vi . Namely,

where CD is the drag coefficient whose expression can be 
found in [96]; and

(66)
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where � is the vorticity and CL is the lift coefficient whose 
expression is taken from [97].

Finally, the momentum transfer term that enforces the 
two-way coupling between the particles and the fluid-phase, 
is defined as

where the sum is over all the particles of the k-th set located 
in the volume Ωl.

3.1.2 � Constructing a RVE for a Particle‑Laden Flow

At the RVE level, the fluid with particles is solved using a 
high-fidelity simulation based on the DPM approach. The 
unit size cubic domain ΩR , as seen in Fig. 26, is discretized 
using a standard mesh of finite elements or finite volumes 
of cell volume Ωf  , such as ΩR = ∪Ωf  and ∩Ωf = 0 . The 
particle-point approach considers the particles diameter 
smaller than the grid size. Also, the mesh size should be 
fine enough to represent most of the fluid wavelengths that 
may appear. This fact impose the largest particle diameter 
that is possible to treat with the RVE discretization.

To enable the construction of the database, the follow-
ing simplifying hypotheses will be made: 

1.	 A k sets of particles of density �k are considered. An 
average diameter d̄k and a spread �k to define the diam-
eters distribution with the Rosin-Rammler function is 
used. Any other distribution can be used. Each of these 
sets is denoted with an upper index k.

2.	 Initially the particles are equally distributed throughout 
the RVE domain with a concentration equivalent to the 
mean concentration obtained in the coarse mesh.

3.	 As in the coarse level a particle will be considered as a 
geometric point in a specified position. It will perceive 
drag and lift forces proportional to its diameter and the 
relative speed with the surrounding fluid.

4.	 An average concentration ck is defined for each set k of 
particles as 

 where the concentration field ckR for the kth particle set 
is defined considering the contribution of the particles 
in a computational cell of volume Ωf  as 
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5.	 During the time evolution on the RVE ck does not vary. 
This hypothesis enables us obtaining averaged statistics 
of the fine scale. In practice, for each particle of the 
kth set that leaves the RVE domain, another particle of 
equal diameter enters the RVE domain. This periodic 
condition is inspired on the periodicity that we already 
imposed to the uf  and pf .

6.	 In order to preserve momentum in the RVE, it will be 
considered that if a particle leaves the RVE with a veloc-
ity vi , another particle of equal diameter enters with the 
same velocity from the opposite side.

7.	 To avoid the unaffordable task of evaluating the tem-
poral transition of the movement of the fluid and the 
particles over time, at the coarse level, a memory-model 
will be used for the fluid, as described in [58].

The weighting average N-S equations to be solved at the 
RVE, for instance for a FEM formulation are:

and its equivalent version for a FVM method.
The space of parameters for RVE has the following com-

ponents: Id1 and Id2 , the concentration ck , the dimensionless 

mean diameter d̃k , the spread �k and the density ratio r̃k , 
for each set of particles k. The RVE outputs are the aver-
aged values in time and space of the nine components of the 
dimensionless inertial stress tensor at equilibrium, computed 
as
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3.2 � Examples the Applications of P‑DNS 
for the Modulation of the Turbulence

This section presents case studies where the P-DNS meth-
odology is used to predict turbulence modulation. Firstly, 
the reported in [56] is presented, where a synthetic model 
from pre-computed (off-line) simulations of RVEs is built 
to characterize the nonlinear dynamic response of the mul-
tiphase system composed by water droplets in air. Secondly 
of particle-laden flows on the coarse scale are solved, evalu-
ating the capacities incorporated when using the reduced 
model developed.

The results in this section are obtained using the DPM 
approach on both, coarse and fine, scales. The solution 
of the disperse phase is performed using a semi-implicit 
integration approach [98, 99]. This guarantees numerical 
stability using moderate time-steps when managing the 
wide range of times scales introduced by the polydisper-
sion of particle sizes. As the computing requirements are 
proportional to the number of particles, the strategy of 
computational parcels is employed. A parcel p̂ agglom-
erates a set of Np̂ particles. The main hypothesis is that 
nearby particles experience the same changes in their 
properties. The extensive quantities 𝜓p̂ are computed as:

Thus, the governing equations are computed for an indi-
vidual particle p and the effect of that particle is transferred 
back to the fluid Np̂ times. Note that the particle-point 
approach imposes a restriction on the largest particle diam-
eter, which should be smaller than the mesh size h.

The equations for the continuum phase are solved 
with the standard finite volume method. The time-step is 
restricted such as the Courant number does not exceed 
the unity, while the pressure–velocity coupling is solved 
with the PIMPLE algorithm [67] imposing a convergence 
of three orders for the velocity and pressure residuals. 
Second-order operators are used for both the spatial and 
time discretizations.

3.2.1 � Enhancement and Attenuation at the Fine‑Scale

Turbulence modulation can be seen as the change of intensity 
of the time-averaged kinetic energy of the carrier flow due to 
the presence of the particles regarding the unladen flow. In 
this regard, this subsection analyzes the output of the RVE 

(77)T̃
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T
∫ T

0
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ΩR
∫
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i
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= Np̂𝜌p𝜓p.

Fig. 26   Sketch of the particle-laden RVE
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simulations performed in Ref [56] to highlight the impact of 
the input parameters to attenuate or enhance the turbulence.

The effect of the particles on the kinetic energy of 
the carrier flow is presented in Fig. 27, where the time-
averaged kinetic energy obtained by 126 RVE simulations 
is displayed. Results are clustered in three subfigures 
according to the particle mean diameter: large particles 
( ̄d = 0.005 ), medium particles ( ̄d = 0.0005 ) and small 
particles ( ̄d = 0.00005 ). The cases with Id2 = 0 and vary-
ing Id1, �p and n are analyzed, while reference results for 
unladen RVEs (i.e. particle-free) under same shear stresses 
conditions.

The unladen cases show, as expected, that an increase in 
the shear stresses leads to an increase of the kinetic energy. 
When the presence of the discrete phase is included in the 
analysis, Fig. 27a shows that the presence of large particles 
increases the carrier flow turbulence if the particle concen-
tration is above some threshold. The value of this thresh-
old increases with the shear stress (i.e. the value of Id). 
For example, large particles in a concentration of �p ≈ 10−4 

noticeably enhance the carrier fluid turbulence when 
Id1 = 100. However, a value of �p ⪆ 5 × 10−4 is required 
to modify the unladen situation when Id1 = 500. From the 
analysis of individual simulations, the turbulence augmen-
tation is obtained as a consequence of higher magnitudes 
of the averaged velocity field of the carrier phase. They 
are induced by the higher inertia of the particles and their 
constructive interaction with chaotic carrier flow patterns. 
On the other hand, small particles attenuate turbulence for 
almost all the configurations analyzed, with the exception 
of low concentrations with strong imposed shear stress 
(Fig. 27c). For medium size particles (Fig. 27b) there is 
again a critical minimum concentration over which tur-
bulence modulation occurs. In this case, and similarly to 
small particles, high concentrations tend to attenuate the 
turbulent intensity of the carrier flow.

No apparent generalized dependence of the variation of 
kinetic energy on the spread parameter � (filled and dashed 
lines compare same RVE configuration but different � ) is 
discernible.

Fig. 27   Kinetic energy of the 
carrier phase (time-averaged) 
fixing Id2 = 0. Results varying 
the particle mean diameter 
compared with the unladen case 
(a–c). Resulting classification 
map (d)

(a) (b)

(c) (d)
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However, although the particle mean diameter d̄p appar-
ently is the most sensitive parameter to determine the tur-
bulence modulation behavior, in some particular cases the 
dispersion could modify the results. For example, in the 
cases of kinetic energy enhancement considering large 
particles, the simultaneous presence of smaller particles, 
i.e. when � = 1.5 is chosen, reduces the rate of turbulence 
increase. Also, for configurations with medium size parti-
cles near the critical concentration threshold, using small 
values of � (large dispersion) produces a kinetic energy 
increase, which may be associated with the inclusion of 
large particles. This phenomenon is negligible when the 
concentration rises and the global results lead to turbu-
lence attenuation due to the massive presence of small 
particles.

As expected, as the concentration parameter �p dimin-
ishes the results obtained in laden RVEs tend to the unladen 
cases for the same Id. However, even a very diluted presence 
of small particles is enough to completely modify the flow 
behavior: for example, with Id1 = 100 and �p = 1.5 × 10−6 , 
a strong attenuation is observed, and a lower volume frac-
tion is needed to neglect the effects of those small particles.

Lastly, in Fig. 27d presents the classification map of 
regimes of interaction between particles and turbulence 
according to the results obtained in the RVE simulations. 
There, the relationship between the particles concentra-
tion and the Stokes number is displayed considering the 
regions of turbulence augmentation and attenuation. Every 
RVE simulation is plotted on the map, where a red circle 
denotes turbulence augmentation and blue square indicates 
turbulence attenuation (turbulent intensity, TKE, greater 
or lower than the unladen case). The cases with absolute 
TKE differences lower than 20% are considered neutral 
regarding turbulence modulation and marked with a black 
cross. The Stokes number considers the particle response 
time �p = �d2

p
∕(18�) and the �e as the turnover time of large 

eddies.
Flows with larger timescale ratios induce turbulence 

enhancement (red region), while smaller timescale ratios 
lead to turbulence attenuation (blue region). The results 
of the RVE simulations agree with the general observation 
experimental and numerical collections [87, 100]. However, 
these references usually mention that the separation between 
them is defined by the timescale ratio St = 10 for any mass 
loading. The results obtained here do not show such a fixed 
threshold. Instead, a dependence on the averaged distance 
between particles is noticeable. This value is mentioned as 
a critical parameter for turbulence modulation [101] and it 
could explain why the enhancement-attenuation threshold 
found on RVE simulations is not fixed to St = 10.

3.2.2 � Turbulent Particle‑Laden Flow in a Channel

The unloaded and loaded cases of turbulent flow in a channel 
bounded by two parallel plates (Poiseuille flow) are studied 
in this section. Using direct numerical simulation (DNS), 
the objective of this section is to first obtain reference solu-
tions for the flow with and without particles. Then, using a 
coarse mesh, the P-DNS method is utilized to predict the 
flow behavior. Finally, these results are compared to those 
derived from other numerical approaches to modeling tur-
bulence for such a multiphase system.

The case study consists of flow at Re=57,000 in a 
1.5x0.5x0.5 m domain simulating a ventilation air duct. 
The flow is driven by periodic boundary conditions in the 
longitudinal and transverse coordinate directions and a 
pressure jump of Δp = 0.0151875Pa between the inlet and 
outlet. To highlight the interaction between turbulence and 
particles without the additional effect of particle depo-
sition, gravity is ignored. The initial solution for the air 
velocity field is obtained by running a simulation with-
out particles until a statistically stationary state of fully 
developed turbulence is reached. Then, solid particles of 
� = 1000 kg/m3 and 200 μm diameter are introduced at 
random positions, uniformly distributed across the entire 
computational domain, and with an initial velocity equal to 
the air velocity at the position of each particle. The volume 
fraction of the dispersed phase is �k = 0.0005.

For the DNS simulation, the domain is discretized using 
a mesh of 300x150x50 cells that has been refined towards 
the walls. Solving the equations for the carrier flow and 
the particles using second-order time and spatial schemes 
yields a DNS solution, without the need of additional tur-
bulence modeling or boundary layer treatment. In con-
trast, a coarse mesh of 36 × 12 × 12 cells of equal size is 
used to obtain the P-DNS solution. It must be noticed that 
such coarse grid size, 0.04 cm, enables homogenizing the 
particles as their diameter (200 μm) is smaller than the 
fine grid size, 0.04/80 cm ≈ 500 μm. In addition, coarse 
mesh solutions with a static Smagorinsky LES model and 
an unsteady RANS solver with a standard k-� model are 
obtained for further comparison. In the latter, standard 
wall functions are considered, but no additional term for 
turbulence modulation is introduced.

Figure 28 displays statistically converged solutions, i.e., 
the averages of the results computed by averaging over the 
two homogeneous directions and over a long enough simu-
lation time. The mean streamwise velocity Fig. 28a and c 
and mean kinetic energy, Fig. 28b and d of the carrier phase 
along the wall-normal coordinate are respectively displayed 
for the unladen and laden cases. Due to the inertia intro-
duced by the particles, the kinetic energy of laden DNS solu-
tions increases as predicted. This increase in inertia causes 
a change in the average profile, which tends to be sharpened 
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with an increase in flow rate. Even on a very coarse mesh, 
the P-DNS solution reproduces these mechanisms with 
regard to the energy value and its effect on the velocity with 
great accuracy.

The obvious lack of precision of the other numerical 
methods utilized should also be noted. In the case of LES, 
although some inertia enhancement is predicted, the overall 
results are inaccurate due to the unresolved boundary layer. 
Solving with the URANS model, however, reveals negligible 
differences between the laden and unladen results, indicating 
that ensemble averaged solutions cannot predict turbulence 
modulation.

3.2.3 � Expelled Saliva Droplets

The target of this section is to perform a set of numerical 
experiments to evaluate the influence of the turbulence mod-
eling when a saliva exhalation event is simulated. The saliva 
(water) droplets are injected into the domain from a circular 
region whose initial direction conforms to a 30 degree spray 

cone angle. Particles are released in 0.2 s with an initial 
velocity equal to the surrounding flow and a temperature of 
37 Celsius degrees. Temperature differences between the 
human body’s expelled air and droplets and the surrounding 
environment cannot be ignored. Consequently, the energy 
equation is added to the governing equations, and buoyancy 
effects are modeled by coupling the energy and momen-
tum equations via the Boussinesq approximation [102]. In 
addition, the empirical Ranz-Marshall correlation is used 
to account for heat transfer from the surface of Lagrangian 
droplets to the surrounding [103, 104].

Aerosols are modeled under two conditions: (i) exhala-
tion with a large quantity of water from the respiratory tract, 
and (ii) exhalation with the same droplets after drying out 
in typical ambient conditions. Utilizing the Rosin-Rammler 
distribution, the number of aerosols is imposed as a function 
of their diameter. The domain is discretized with a 952K 
hexahedral cell mesh that is refined toward the inlet. The 
coarse grid size enables homogenizing the particles as their 
diameters are smaller than the RVE grid size.

Fig. 28   Mean velocity and 
mean kinetic energy for the 
unladen (a) and (b), and laden 
(c) and (d) cases. Comparisons 
of several numerical solutions

DNS LESP-DNS k-ε

a) b)

c) d)
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Each flow condition is resolved employing both the 
P-DNS method and a static Smagorinsky LES technique. 
Due to the fact that the primary difference between these 
two methods is the treatment of unresolved turbulence 
scales, the comparison is useful for determining the impact 
of modeling the turbulence modulation phenomenon. Note 
that the isotropic turbulence requirement of LES methods 
for non-simulated turbulent scales is assumed to be met for 
the employed cell length.

Figure 29b presents the predictions of P-DNS and LES 
for the penetration of droplets with the condition (i). Inertia 
allows more than 90% of particles to advance behind Π1 , but 
most of them are quickly stopped by the air, and then sink 
slowly towards the floor in close proximity to the inlet. Pre-
dictions by the P-DNS and LES techniques are quite similar, 
and their agreement on computing the accumulated volume 
behind planes is a consequence of a very similar prediction 
of flow pattern evolution. Figure 29c depicts a comparison 
of the predicted accumulated volume using P-DNS and LES 
when simulating condition (ii). The majority of aerosols are 
completely dragged by the main flow due to the smaller 
droplet size and, consequently, the smaller Stokes number 
and settling velocities. The inlet flow ceases at t = 0.2 s, 
after which the air velocity dissipates slowly while a large 
number of droplets are carried by the air’s inertia. At t = 1 s, 
for instance, roughly 30% of the droplets have reached the 
final plane Pi6 . Both the P-DNS and LES models predict 
comparable penetration lengths. However, there are more 
differences than in condition (i) because the particle trajecto-
ries are more intricate due to the flow’s complex structures.

The similarity between P-DNS and LES results indicates 
that turbulence modulation can be neglected when analyzing 
the propagation of airborne pathogens in built environments. 
The primary reason is the low value of mass loading that 
results from exhaling saliva in an open space.

3.3 � Using P‑DNS to Solve a Particle‑Laden Flows 
as a Scalar Concentration Function

In this chapter, the methodology previously proposed to 
solve particle-laden turbulent flows through a multiscale 
approach is extended by introducing a continuous function 
for the dispersed phase concentration. The proposed continu-
ous model is especially useful for studying the motion of 
particle streams in which gravitational and inertial effects 
cause the particles to deviate from a simple trajectory fol-
lowing the surrounding flow, as would be the case for the 
limit of very small, massless particles. The results show an 
excellent comparison between the solutions obtained using 
the continuous model and simulations evaluating the forces 
on each particle individually. Distinct advantages of the con-
tinuous approach are a much lower computational overhead, 

a better load balance and ease of parallelization. This is, pos-
sibly, one of the most effective P-DNS applications.

As commented in the previous section, two different ways 
of treating the particles at the coarse mesh level have been 
used. One is using the DPM approach (for Discrete Parti-
cle Method) as presented previously, where each particle 
was represented in the coarse mesh by a point moving in a 
Lagrangian way due to acceleration and drag and non drag 
forces. Another way is using the CPM approach (for Con-
tinuous Particle Method), as will be explained now. In the 
so-called Eulerian-Eulerian approaches, the forces from the 
relative movement of the particles with respect to the fluid 
are typically modeled through simplified empirically cali-
brated theoretical arguments. Our proposal may shed light 
on the possibility of bringing improvements for more accu-
rate modeling using first principles of mechanics. Here, at 
the RVE level, a particle will be considered as usual as a 
geometric point in a specified position which perceive drag 
and lift forces proportional to its diameter and the relative 
speed with the surrounding fluid using the following approx-
imations. At the coarse level, a continuous function for the 
dispersed phase concentration will be used, that moves as an 
independent fluid with a velocity and a diffusion that will be 
obtained from the RVE. Moving a scalar function, instead of 
moving millions of independent particles, is a great advan-
tage from a computational point of view.

3.3.1 � The Quasi‑Eulerian Time Integration

Consider a fluid of density �k , moving with a velocity uk
i
 . 

The mass conservation equation reads:

or, as a function of their corresponding concentrations:

Equations (79) or 80 correspond to the mass conservation 
equations expressed in an Eulerian reference frame.

Splitting the concentration function in a constant part 
inside each RVE coming from the coarse mesh plus an 
incremental part corresponding to the fine mesh:

with

(79)��k

�t
+

�
(
�kuk

i

)
�xi

= 0

(80)�ck

�t
+

�
(
ckuk

i

)
�xi

= 0

(81)ck = ckc + ckf
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Therefore, the Eulerian mass conservation equation is:

Equation (83) can be transformed in a quasi-Eulerian version 
in the following form:

(82)
ckc =

1

ΩR
∫
ΩR c

kRdΩ, with

∫
ΩR c

kf dΩ = 0, and

∫
ΩR

�ckf

�xi
dΩ = 0

(83)�ckc

�t
+

�ckf

�t
+

�
(
ckcuk

i

)
�xi

+
�
(
ckf uk

i

)
�xi

= 0

or

or

(84)�ckc

�t
+

D�
�

ckf

Dt
− uc

i

�ckf

�xi
+

�
(
ckcuk

i

)
�xi

+
�
(
ckf uk

i

)
�xi

= 0

(85)
�ckc

�t
+

D�
�

ckf

Dt
− uc

i

�ckf

�xi
+

�(ckcuki )
�xi

+

ckf
�uk

i

�xi
+ uk

i

�ckf

�xi
= 0

Fig. 29   Expelled saliva case. a 
Geometry and sampling planes. 
Conditions (i) (b), and (ii) (c). 
Accumulated volume at differ-
ent samplings distances

LESP-DNS
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where ukR
i

 is the velocity of the particles of type k inside the 
RVE defined as ukR

i
= uk

i
− uc

i
.

The name quasi-Eulerian for the time integration comes 
from the fact that the terms in ckc must be integrated in 
time in a Eulerian form, while the terms in ckf  must be 
integrated in a Lagrangian frame moving with uc

i
.

Similar to the splitting performed for the concentration 
field, the relative velocity of the particles is also split in 
two parts, a coarse and a fine variation, i.e.:

with

Equation (86) may be written as:

Equation (89) evidences the terms that must be integrated 
in an Eulerian way and those that must be integrated in the 
Lagrangian way.

Using a residual weighted formulation for Eq. (89), taking 
into account the constrains imposed in (88), and the condi-
tion that the RVE moves with a velocity uc

i
 , the term cor-

responding to the Lagrangian time integration in Eq. (89) is 
identically null, leaving the following equation to be solved 
in the coarse mesh:

also

For the case of the FVM:

(86)
�ckc

�t
+

D�
�

ckf

Dt
+ ukR

i

�ckf

�xi
+

�(ckcuk
i
)

�xi
+

ckf
�uk

i

�xi
= 0,

(87)ukR
i

= ukc
i
+ u

kf

i

(88)

ukc
i
=

1

ΩR ∫ΩR

ukR
i
dΩ, and

∫ΩR

u
kf

i
dΩ = 0, and

∫ΩR

�ukf
i

�xi
dΩ = 0

(89)

�ckc

�t
+ uk

i

�ckc

�xi
+ ckc

�uk
i

�xi
+

D�
�

ckf

Dt
−⋯ ckf

�
(
uc
i
+ ukc

i
+ u

kf

i

)

�xi

+
(
ukc
i
+ u

kf

i

)
�ckf

�xi
= 0

(90)
∫
Ωl N

R
l

(
�ckc

�t
+ uk

i

�ckc

�xi
+ ckc

�uk
i

�xi
+⋯

ckf
�ukf

i

�xi
+ u

kf

i

�ckf

�xi

)
dΩ = 0

(91)∫
Ωl N

R
l

(
�ckc

�t
+

�(uki c
kc)

�xi
+

�sk
i

�xi

)
dΩ = 0

The fields uk
i
 and sk

i
= ckf u

kf

i
 are computed from the RVE. It 

must be taken into account that the RVE moves in a Lagran-
gian way with a velocity uc

i
.

Equation (91) can be seen as an advection-reaction equa-
tion for the concentration of particles. The second term in 
Eq. (91), that comes from the second and the third terms in 
Eq. (90), is the advection at a uk

i
 velocity, plus a reaction or 

an absorption, of the concentration function with a reaction/
absorption coefficient �uki

�xi

 , which represents the global com-

pressibility of the disperse phase. The third term represents 
a reaction/absorption of the concentration function due to 
their local compressibility at the fine mesh level.

Remark 2  In the P-DNS CPM methodology proposed in this 
work, the equation system to be solved at the coarse scale 
are the mass and the momentum conservation, Eqs. (65) and 
the mass conservation for the dispersed phase, Eq. (91). The 
momentum for the dispersed phase is considered when solv-
ing individually the particles at the fine-scale. The contribu-
tion of the fine scale is driven by the fields T�

ij
 , f k

i
,uk

i
 and sk . 

This means that, when the time integration of the equations 
is performed, these fields are required at every time t. How-
ever, as mentioned before, the values stored in the RVE data-
base were computed at equilibrium, as presented in Eqs. 
(77). To overcome this drawback, the memory-model pre-
sented in Sect. 2.9 is used. As shown above, for the fluid 
variables the relaxation time depends on the local fluid 
velocity gradients, see Eq. (38). A relaxation time derived 
from the behavior of an isolated particle is adopted for the 
disperse phase in [54], which reads

Remark 3  The equilibrium states for the fine scale fields are 
recovered from the condition prevailing at the RVE position 
from the pre-computed database. This dimensionless data 
must be rescaled as indicated in Table 1 according to type of 
variable involved. As an example, the inertial stress tensor 
is now dimensionalized as

where T̃�
ij
= F(X) with

, being F the RVE database or a synthetic model of that data-
set [56]. This multi-valuated and multi-dimensional func-
tion predicts the averaged fine scale response for the local 

(92)∫
Ωl

�ckc

�t
dΩ + ∫

Γl

(
ckcuk

i
+ sk

i

)
dΓi = 0

(93)�k =
�kdk

2

18�
.

(94)T
�,eq
ij

= T̃
�
ij

�2

�H2

X =
(
Id1;Id2;g̃l;c

k; �dk;�𝜉k;�rk
)
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conditions specified through the dimensionless parameters 
set X.

Remark 4  Due to the fact that the velocities computed on the 
RVE are relative to a moving frame, the total velocity of the 
particles uk

i
 should be computed as the sum of the velocity 

of the particles evaluated at the RVE ukR
i

 , plus the velocity 
of the fluid in the coarse mesh uc

i
 , this is

The equation to be solved in the RVE is the same as for the 
previous case, except that now the acceleration g̃i must be 
introduced at the RVE level, both the gravitational and any 
other inertial or electromagnetic force that exists, and in 
addition to the tensor T̃�

ij
 evaluated in the formulation above, 

we must now also calculate the average relative velocity of 
the particles ũkR

i
 , the vector s̃ki =

̃
ckf u

kf

i
 and the average 

forces 
∑̃

k f
k
i
 to be transmitted to the coarse mesh.

3.4 � Examples of Application of P‑DNS with Particles 
Transported as a Scalar Function

A collection of case studies with some complexity is dis-
cussed below in order to evaluate the advantages of the 
P-DNS method, in terms of efficiency and accuracy using 
the continuous particle model, which it is referred as CPM.

Each test is studied using a detailed DPM simulation to 
get a reference solution. For this task, the DPMFoam solver, 
distributed in the OpenFOAM platform, is used. Then, the 
prediction of the P-DNS-CPM, hereinafter termed just 
P-DNS, is computed.

The P-DNS implementation here presented uses Open-
FOAM as the core library. Using the same configuration in 
the same platform guarantees a reliable comparison of the 
results. In both DPM and P-DNS procedures, the equations 
for the continuum phases are solved with the finite volume 
method, while the PIMPLE (PISO + SIMPLE) algorithm is 
used to perform the pressure–velocity coupling for transient 
flows [67]. Case studies employ first-order time integration 
schemes and second-order spatial FV discretizations.

The first test case evaluates the dynamics of a cloud of 
water particles in air at rest. Then, the same cloud of par-
ticles is analyzed in a fluid subject to crossflow. Finally, a 
prototype example where a pollutant plume ejected from a 
chimney to air is studied.

3.4.1 � Dynamics of a Cloud of Particles in a Fluid

The target of the first example is predicting the settling 
velocity of the cloud and the acceleration from rest. Water 
droplets are initially placed in a 20 cm by 30 cm rectangular 

(95)uk
i
= uc

i
+ ukR

i

domain with a concentration of ck = 10 ppm. The computa-
tional domain of 0.5 × 2 m is discretized with a 50 × 200 cell 
structured grid. The boundary conditions depict a bounded 
region with tangential velocity acting on the lateral surfaces.

The diameters of particles of (i) 80 μm and (ii) 10 μm are 
examined. To satisfy the initial concentration requirements 
in the DPM simulation, over 22 K particles were used in case 
(i) and over 114 K parcels of 100 particles were used in case 
(ii). At t = 0 s, gi (gravity) is activated and particles begin 
to fall. The time step is constrained to prevent the Courant 
number from exceeding unity.

The interaction with the surrounding gas modifies the 
cloud’s initial shape, as observed in Fig. 30a. b, which depict 
the concentration of the dispersed phase. Although each test 
considers the same amount of water, the results reveal that 
the evolution of the dispersed phase is highly dependent 
on the particle diameters. The cloud with larger particles 
descends more quickly, and its initial shape deforms and 
becomes skirted after 5 s. In contrast, the cloud composed of 
smaller particles exhibits a much larger deformation and pro-
duces an instability similar to Rayleigh–Taylor, as indicated 
by the fingers observed at time t = 5 s. Results indicate that 
by modeling the movement of the particles with a concentra-
tion field instead of moving them explicitly as such in the 
coarse scale simulation of the P-DNS method, it is possible 
to reproduce these dynamics with good agreement.

In Fig. 30c, the settling velocity of a cloud of 80 micron 
particles is observed to not increase asymptotically. This 
highlights the differences between the dynamic behaviour 
of a cloud and that of an isolated one. Taking the DPM 
solution as reference, the P-DNS method accurately repro-
duces the dispersed phase dynamics, with negligible differ-
ences found at the beginning of the simulation. The cloud 
of smaller particles shows even more complex dynamics, 
with initially accelerated sinking reaching velocities one 
order larger than an isolated water drop. A group of par-
ticles is dragged upwards due to shape deformation after 
1.5 s, and the average falling velocity reaches a maximum 
around t = 2.5 s before decreasing and changing displace-
ment direction. The P-DNS technique using the continuous 
particle approach (as a concentration) accurately reproduces 
these complex dynamics.

A more complicated case is to add a transversal air flow 
to the previous example. While gravity tends to settle the 
droplets, the cross-flow horizontally drags the cloud. These 
dynamics result in a complex interaction of the dispersed 
phase with the surrounding air presented in Fig. 31.

The evolution of 10 μm droplets presented through con-
centration snapshots at specific solution times reveals that 
the shape deformation is distinct from the fluid at rest. As 
the outer particles are dragged upwards by the ascending 
surrounding flow, the bell-like shape observed at t = 2 s 
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Fig. 30   Snapshots of the vol-
ume fraction of dispersed phase 
field for times t = 2.5 and 5 s for 
a large and b small particles. In 
c the evolution of the averaged 
velocity
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gradually changes to a horn-like shape. This behavior facili-
tates the sinking of inner droplets.

Using the DPM results as the reference solution, the 
P-DNS method is able to reproduce the complex nature 
of this particulate flow. In addition, the numerical scheme 
used to advect the continuum field that models the particles 
does not introduce artificial diffusion, allowing the complex 
evolution of the morphology of the dispersed phase to be 
accurately reproduced.

3.4.2 � Pollutant Plume Ejected from a Chimney

The modeling of particulate flows in urban environments is 
relevant in the study of air pollution. This example proto-
types a pollutant plume ejected from a chimney to air.

The case study considers that the particulate flow is sub-
jected to gravitational forces and a crossflow. Figure 32 pre-
sents the geometry considered. The computational domain is 
discretized using 437K cubic cells, using a cell size of 0.02 
m near the chimney and 0.04 far from it.

A constant horizontal velocity of magnitude U = 1 m/s 
is imposed at the inlet surface. The slip boundary condition 
is set at the building, chimney stack, top, bottom, front and 
back, while an outlet condition is considered at the remain-
ing surface.

The simulation studies the ejection of particulate flow 
from the top of the chimney at a velocity of V = 2 m/s. Par-
ticles of 80 microns in diameter and density of 1000 kg/m3 

compose the dispersed phase. As inlet boundary condition, 
the concentration is fixed to 100 ppm and the ejected mass 
flow rate of particles is assumed as 2.8 g/s. The reference 
data computed from a DPM solution are compared with the 
P-DNS predictions and from a third simulation which con-
siders incompressible one-phase flow and the concentration 
of the particles as a passive scalar field, i.e. a tracer.

The interaction between the airflow and the particulate 
flow results in complex flow dynamics. This phenomenon is 
characterized by a turbulent behavior and the development 
of a trace visually identified as a fume plume. Figure 33 
compares the particulate plume predicted at t = 8 s by the 
P-DNS method, the tracer, and the DPM solutions. In the 
light of the results, the dispersed phase can not be assumed 
simply as a passive scalar. As Fig. 33 shows, the tracer does 
not keep trapped by the air recirculation behind the build-
ing, because lacks of a settling capability following the air 
in its movement which represents a dangerous prediction 
failure. Despite the chaotic evolution, the flow macrostruc-
tures developed in the reference simulation using DPM are 
well reproduced by the continuous model used in the P-DNS 
technique.

A quantitative comparison of the results is performed 
evaluating the mean mass flow rate through sample planes 
placed at different locations. Four measuring planes nor-
mal to the streamwise direction and two normal to the 
y-direction are used, as depicted in Fig. 32. At time t, the 
mean mass flow rate through a given plane is the ratio of 

Fig. 31   Settling in cross flow. 
Snapshots of the concentration 
of the dispersed phase. Diam-
eter of particles: 10 microns
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the dispersed-phase mass that has traversed the plane to the 
elapsed time.

The vertical planes Πx
p
 allow computing the streamwise 

distance reached by particles being dragged by the crossflow. 
The horizontal planes Πy

p measure the sinking, a sensitive 
parameter when designing chimneys to avoid the particulate 
cloud keeps trapped between buildings. This phenomenon 
is not only harmful to pedestrian’s health but also increases 
the risk of re-entry of the pollution indoors.

Figure 34 shows the evolution of the mass flow rate at 
the different sampling planes. At the initial stage, the flow 
rate measured at any plane is null. When the plume reaches 
a plane, the flow rate increases up to an approximately con-
stant value. Figure 34a and b shows that arrival times are 
well predicted by the P-DNS method, but some discrepan-
cies are found on the steady flow rate mainly at planes Πx

2
 

and Πx
3
 . The low flowrate measured at plane Πx

4
 indicates that 

more than 80% of the mass ejected to air sinks and remains 
trapped behind the building. The P-DNS simulation repro-
duces well the evolution of the settled mass as reported in 
Fig. 34c.

Considering the dispersed phase as a passive scalar is 
equivalent to neglecting the mass of the particles. There-
fore, the statistics collected from the tracer simulation do 
not agree with the reference data. Not considering the inertia 
leads to an excessive streamwise velocity of the particles, 
which is reflected by early arrival times to the planes and 
the overprediction of the penetration of the flume. In addi-
tion, as the gravity force does not influence the dynamics of 
the tracer, the settling flow rate is not correctly estimated, 
as seen in Fig. 34c.

The chimney ejects to the air more than 10 million parti-
cles per second. The detailed DPM simulation of this case 
study quickly turns intractable. Strategies as using computa-
tional parcels of particles, i.e. performing the detailed analy-
sis for one particle and then applying the effect to many, 
could partially overcome this issue. But in general, DPM 
turns unaffordable when long simulation times or large com-
putational domains are required. Employing a continuous 
field as proposed in this work is a realistic alternative for 
modeling the behavior of the dispersed phase accounting for 

the dynamics of the individual particles and their interaction 
with the surrounding flow.

3.4.3 � Latest Applications: Electrostatic Spray Coating

One of the many interesting applications of P-DNS to solve 
particulate-laden fluid problems using a continuous formu-
lation is the powder coating technology. Powder coating is 
a finishing process for metal surfaces where a dry powder, 
typically made of a mixture of resins, pigments, and other 
additives that are electrostatically charged, is sprayed onto 
the surface. The particles adhere to the metal surface, form-
ing a smooth and even layer that is then cured with heat to 
create a strong and durable finish. The complex nature of 
the physics involved in sprays behavior poses a significant 
challenge for researchers and manufacturers to optimize the 

Fig. 32   Chimney. Geometry specification and measuring planes. 
Units are in meters

Fig. 33   Chimney. Comparison of the particulate flow at t = 8 s. a par-
ticle volume fraction with P-DNS, b particles in DPM, c concentra-
tion as a passive scalar (tracer)
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process and achieve consistent results. The goal is to achieve 
a uniform coating layer over the entire surface, using the 
least amount of dust and in the least amount of time. For 
this, the variables to regulate are: the intensity of the electric 
field to be introduced, the speed with which the spray gun 
moves, the distance between the material to be covered and 
the spray gun, the intensity of the particle jet, the inclination 
of the diffuser, among many others. The classical approach 
to solve this problem is the so-called Discrete Particle Model 
(DPM), which allows for the simulation of the particles’ 
interactions with the fluid and electrostatic fields. The main 
drawback of DPM is the requirement of significant compu-
tational resources, particularly for large-scale simulations. 
This can lead to long simulation times and high comput-
ing costs, which can limit its practical application in cer-
tain industries. In this example the extensions of the P-DNS 
CPM model for the coupling of the two-phase flow with an 
electric field is presented. Also the proposal enhances the 
continuous particulate phase modeling by consider turbu-
lent dispersion and a simple but realistic strategy for the 

interaction of spray with target surfaces to quantitatively 
account for the coating finishing.

Recently, in [105], the painting process of a ship’s pro-
peller that is fixed in a vertical position is studied using the 
P-DNS CPM model. A moving spray gun rotates around 
the target surface at a speed that may be variable, ejecting a 
particulate flow rate of 0.6666 g/sec. Considering particles 
with diameter of 60 microns and a density of 1500 kg/m3, it 
means 3.9 million of particles/sec. The impressive compu-
tational cost is alleviated using the P-DNS CPM proposal.

Figure 35 shows some snapshots at different time steps 
where the spray gun is turning at a velocity of 12 rpm, while 
the electrode in its tip is established at a electrical potential 
of − 90 kV.

Figure 36 shows for the same case, the thickness of the 
paint layer on a center line of each of the 4 blades after 
completing one turn of the spray gun.

Fig. 34   Chimney. Mean 
flowrate at measuring planes. a 
horizontal planes Πx

1
 and Πx

3
 , b 

horizontal planes Πx
2
 and Πx

4
 , c 

vertical planes

P-DNS DPM Tracer

(a) (b)

(c)
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4 � Conclusions and Future Works

An overview with the main applications found in the litera-
ture of the P-DNS method has been exposed.

Like all multi-scale methods, P-DNS is based on split-
ing the unknown fields into a coarse scale plus a fine scale. 
Then, both scales are resolved numerically. The greatest 
originality of the method is to solve the fine scale off-line in 
a dimensionless way and for a series of RVEs with a simple 

geometric shape. This is possible thanks to three fundamen-
tal factors: 

1.	 An iterative procedure where the solution of the fine 
scale in isolated subdomains uses boundary conditions 
obtained from the coarse scale.

2.	 The dimensionless form to write the problem in both, 
the coarse scale and the fine scale.

3.	 The averaging of results obtained from the fine scale 
allows for solving simpler geometries without requir-
ing precise consideration of the original geometry at the 
coarse scale.

The results obtained with the P-DNS method are encourag-
ing. For homogeneous fluids problems presented in the liter-
ature, using coarse and medium mesh sizes, P-DNS provides 
better match to the experimental data than LES. In addition, 
LES methods do not comply with the self-similarity prop-
erty or the averaged symmetry over the time of the flow. 
Moreover, the standard LES using coarser grids may not 
even capture instabilities that P-DNS approach is capable of 
capturing. From a computational point of view, P-DNS may 
be cheaper than LES because it avoids the LES requirement 
of using fine enough meshes to capture every large eddy.

The accuracy of the P-DNS solution on the coarse mesh 
is highly influenced by the accuracy of the fine scale solu-
tion. Therefore, it is worthy to invest as much computational 
power as possible to increase the refinement level to com-
pute the fine mesh solution, and the number of samples to 
properly capture the nonlinear variation of the database coef-
ficients to the different parametric inputs.

The results shown in this overview indicate that the 
P-DNS method is very recommendable for solving 

Fig. 35   Painting a ship propeller. Snapshots of the particulate volume 
fraction

Fig. 36   Painting a ship propeller. Paint thickness over a line at the 
center of the blades after a revolution of the spray gun
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homogeneous turbulent fluids flows problems. However, 
other potential and very attractive fields of application of the 
P-DNS technique are heterogeneous multiphase flows and 
active fluids, where the interaction of the different materials 
involved with the instabilities at the finest scales is very dif-
ficult to capture by any method other than the standard DNS.

The treatment of the particles as a continuous fluid has 
several advantages with respect to the discrete particle 
model (DPM), where the particles are treated in a Lagran-
gian frame. The main drawback of the Lagrangian treatment 
of the particles is that once the number becomes very large, 
it requires a prohibitive amount of computational power to 
track a sufficiently large sample of particles required for 
statistical convergence. Furthermore, on parallel machines 
load imbalances may occur, requiring frequent re and sub 
partitioning for multi-objective load balancing. None of this 
occurs for the CPM model using P-DNS. In this case, the 
treatment of the dispersed phase just requires an extra com-
puting cost which is the evaluation of the RVE database. 
This overhead is constant regarding the number of parti-
cles. In any case, a quantitative comparison of computational 
times of P-DNS against DPM requires further study as it is 
problem-dependent.

The great advantage of P-DNS over other multiscale 
methods is that the fine scale is solved previously and only 
once (off-line) for a dimensionless system parametrized for 
certain physical characteristics. In this way, at the coarse 
scale level, only a scalar function must be transported, and 
the only additional work is to consult the velocity and the 
forces in a previously calculated database.

The results show an excellent agreement between the 
numerical solutions using DPM and CPM with P-DNS, with 
the great advantage that the continuous model has from a 
computational point of view.

The continuous method proposed is particularly useful to 
study the movement of particulate flows such as aerosols in 
which the gravitational and inertial effects combine so that 
the particles do not follow the trace of the surrounding flow. 
At the computational price of transporting an extra scalar 
field, the CPM approach via P-DNS allows solving problems 
where the behavior of the dispersed phase should invariably 
consider the dynamics of the individual particles.

In the future, other applications of the P-DNS method 
to particle-laden fluids will be tested or expanded, such as 
modeling and simulation of infectious diseases in air (stud-
ies already started in [56]), transport of pollutants in the 
atmosphere (studies already started in [54]), simulation of 
powder coating sprays (see [105]), analysis of corrosion due 
to rainwater drops in wind generators, study of the distribu-
tion of vacuum drops in cavitation problems, distribution of 
drops of nasal spray remedies, and many other applications 

where a fluid such as air or water carries particles of a dif-
ferent density.

Appendix 1: Computing the dimensionless 
parameters and obtaining the equilibrium 
stress tensor

1.	 Compute the velocity gradient Gorg

ij
=

�uc
i

�xj

 of the coarse 

velocity field uc
i
.1

2.	 Obtain the transformation tensor Sij and the correspond-
ing rotated velocity gradients g1 and g2 following the 
procedures in “The internal RVE case” section for an 
internal cell or in “The wall-RVE case” section in this 
appendix for a boundary cell.

3.	 Compute the dimensionless gradients on the rotated con-
figuration as: 

4.	 Enter the database with |Id1| and |Id2| (remember that the 
RVE simulations were computed for positive Idi values) 
to obtain the dimensionless equilibrium fine stresses T̃�

ij

.
5.	 Recover the correct sign of the off-diagonal components 

of T̃�
ij
 by computing 

6.	 Obtain the dimensional equilibrium stress tensor: 

7.	 Finally, transform the tensor back to the coarse mesh 
coordinates: 

The internal RVE case

Starting with a real, symmetric, null trace tensor

Id1 = g1
�H2

�

Id2 = g2
�H2

�

T̃�
xy
∶= sign(Id1)T̃

�
xy
,

T̃�
xz
∶= sign(Id2)T̃

�
xz
,

T̃�
yz
∶= sign(Id2)T̃

�
yz
.

T
�

ij
= T̃

�
ij

�2

�H2
.

T
�

ij
= SikT

�

kl
Sjl.

1  Warning: the collocated finite volume guarantees divergence-free 
velocity fluxes on cell faces. In case of using the cell-centered fields, 
a correction of the component Gorg

zz
 must be done for it to have null 

trace.



1017The P‑DNS Method for Turbulent Fluid Flows: An Overview﻿	

1 3

which is typical of the symmetric part of a velocity gradient, 
the idea is to obtain, by orthogonal transformations, a tensor

where |g1| ≥ |g2| . This can be achieved with the following 
procedure. 

	 (i)	 Rotate to the principal axes by computing 

 where �i are the eigenvalues, with �1 ≤ �2 ≤ �3 , and 
where the rotation matrix Vij is built from the cor-
responding eigenvectors.

	 (ii)	 Reorder the eigenvalues to obtain the configuration 
of maximum energy, by defining 

 where � = 90◦ if (𝜎1𝜎2) < 0 , � = 0◦ otherwise, and 
computing 

	 (iii)	 Rotate around first axis to make null a diagonal coef-
ficient, by defining 

 w h e r e  � = 90◦  i f  |G0
22
| < 𝜀   , 

� = tan−1
(√

G0
11
∕G0

22
+ 1

)
 o t h e r w i s e ,  a n d 

computing 

	 (iv)	 Rotate around third axis to make null the remaining 
diagonal coefficients, by defining 

(96)G
symm

ij
=

⎛
⎜⎜⎝

g11 g12 g13
g12 g22 g23
g13 g23 − (g11 + g22)

⎞
⎟⎟⎠
,

(97)Grot
ij

=

⎛
⎜⎜⎝

0 g1 g2
g1 0 g2
g2 g2 0

⎞
⎟⎟⎠
,

(98)VikG
symm

kl
Vjl = G�

ij
=

⎛
⎜⎜⎝

�1 0 0

0 �2 0

0 0 �3

⎞
⎟⎟⎠
,

R0
ij
=

⎛⎜⎜⎝

cos(�) 0 sin(�)
0 1 0

− sin(�) 0 cos(�)

⎞⎟⎟⎠
,

(99)R0
ik
G�

kl
R0
jl
= G0

ij
.

R1
ij
=

⎛
⎜⎜⎝

1 0 0

0 cos(�) − sin(�)
0 sin(�) cos(�)

⎞⎟⎟⎠
,

(100)R1
ik
G0

kl
R1
jl
= G1

ij
.

R2
ij
=

⎛⎜⎜⎝

cos(�) − sin(�) 0
sin(�) cos(�) 0

0 0 1

⎞⎟⎟⎠
,

 where �0 = 45◦ , and computing 

	 (v)	 Rotate to obtain xy ≠ xz , by defining 

 where �0 = 90◦ if |G23
2| ≠ |G2

13
|, � = 0◦ otherwise, 

and computing 

	 (vi)	 Rotate to obtain sign(xz) = sign(yz) , by defining 

 where �0 = 180◦ if |G23
3 − G3

13
| > 0 , � = 0◦ other-

wise, and computing 

Finally, by defining

the full transformation can be expressed as

and the opposite transformation as

The wall‑RVE case

In this case, the process starts with a real, null trace but not 
necessarily symmetric tensor

typical of a full velocity gradient, a unit vector ni normal to 
the wall and a cell-centered velocity Ui . The idea is to 
express Gorg

ij
 in a new local coordinate system, where the unit 

vectors î , ĵ , k̂ represent the axes, so that the wall normal is 
aligned with the ĵ direction and the tangential velocity 
U�

i
= Ui − (Ujnj)ni is aligned with the î direction (Fig. 37).

1.	 Define the auxiliary variables as 

(101)R2
ik
G1

kl
R2
jl
= G2

ij

R3
ij
=

⎛
⎜⎜⎝

cos(�) 0 − sin(�)
0 1 0

sin(�) 0 cos(�)

⎞
⎟⎟⎠
,

(102)R3
ik
G2

kl
R3
jl
= G3

ij
.

R4
ij
=

⎛⎜⎜⎝

1 0 0

0 cos(�) − sin(�)
0 sin(�) cos(�)

⎞⎟⎟⎠
,

(103)R4
ik
G3

kl
R4
jl
= G4

ij
.

Sij = R4
ik
R3
kl
R2
lm
R1
mn
R0
np
Vpj

(104)Grot
ij

= SikG
symm

kl
Sjl

(105)G
symm

ij
= SkiG

rot
kl
Slj.

(106)G
org

ij
=

⎛⎜⎜⎝

g11 g12 g13
g21 g22 g23
g33 g32 − (g11 + g22)

⎞⎟⎟⎠
,
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 where �ijk is the Levi–Civita tensor.
2.	 Rotate such as align boundary normal with y-direction 

 where �ij is the identity tensor and compute 

3.	 Redefine the auxiliary variables as 

4.	 Rotate such as align tangential velocity with x-direction 

 and compute 

Finally, by defining

the full transformation can be expressed as

It is important to note that:

•	 The resulting tensor Grot
ij

 is aligned with boundary nor-
mal and tangential velocities.

•	 This tensor is expressed as 

s =niĵi

m =𝜖ijknjĵk

R1
ij
= s𝛿ij + (1 − s)mimj∕

√
mkmk + niĵj − njĵi

(107)R1
ik
G

org

kl
R1
jl
= G1

ij
.

U�
i
=R1

ij
U𝜏

j

s =U�
i
îi

m =𝜖ijkU
�
j
îk

R2
ij
= s𝛿ij + (1 − s)mimj∕

√
mkmk + U�

i
îj − U�

j
îi

(108)R2
ik
G1

kl
R2
jl
= Grot

ij
.

Sij = R2
ik
R1
kj

(109)Grot
ij

= SikG
org

kl
Sjl

(110)Grot
ij

=

⎛⎜⎜⎝

0 g1 0

0 0 0

0 0 0

⎞⎟⎟⎠
,

 only if the unique non-zero component of Gorg

ij
 is uv 

(with u aligned to the tangential velocity and v to the wall 
normal). If this is not the case, the other non-zero com-
ponents are neglected.
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