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Abstract
Food-borne diseases have a high worldwide occurrence, substantially impacting public health and the social economy. Most 
food-borne diseases are contagious or poisonous and are caused by bacteria, viruses or chemicals that enter the body via 
contaminated food. The most prevalent harmful bacteria (Salmonella, Escherichia coli, Campylobacter, Clostridium and 
Listeria) and viruses (norovirus) may cause acute poisoning or chronic disorders such as cancer. Thus, the detection of patho-
genic organisms is crucial for the safety of food. Artificial intelligence has recently been an effective technique for predicting 
pathogens spreading food-borne diseases. This study compares and contrasts the accuracy of many popular methods for 
making predictions about the pathogens in food-borne diseases, including decision trees, random forests, k-Nearest Neigh-
bors, stochastic gradient descent and extremely randomized trees, along with an ensemble model incorporating all of these 
approaches. In addition, principal component analysis and scaling methods were used to normalize and rescale the values 
of the target variable in order to increase the prediction rate. The performance of classification systems has been examined 
using precision, accuracy, recall, F1-score and root mean square error (RMSE). The experimental results demonstrate that 
the suggested new ensemble model beat all other classifiers and achieved the average highest 97.26% accuracy, 0.22 RMSE 
value, 97.77% recall, 97.66% precision and 98.44% F1-Score. This research investigates the predictability of pathogens in 
food-borne diseases using ensemble learning techniques.

1 Introduction

Food-borne illnesses (FBDs) are a critical and increasing 
public health issue that causes significant morbidity and 
mortality worldwide. After ingesting contaminated foods 
or beverages, various diseases, parasites or microbes cause 
them to show gastrointestinal symptoms [1]. More than 200 
illnesses may spread if people eat food tainted with germs, 

viruses, parasites or chemicals like heavy metals. The most 
severe occurrences often affect the very young, the elderly, 
those with compromised immune systems and healthy peo-
ple exposed to very high doses of an organism. In addition, 
food or water contamination can potentially cause various 
diseases [2]. Every age group is susceptible to food-borne 
diseases, which range from cancer to diarrhea [3, 4]. Differ-
ent forms of FBD have similar symptoms, making it chal-
lenging to get a correct diagnosis. In addition to endangering 
the general public’s health, FBD may cause considerable 
economic losses because of lost productivity, medical costs, 
hospital stays, epidemiological research costs, and harm to 
the travel and food industries. Low- and middle-income 
nations and young children are more prone to getting food-
borne diseases than the general population [5]. Most often, 
contaminated foods are used as a vehicle for the movement 
of bacteria into the body and other organs, leading to the 
transmission of food-borne illnesses. Therefore, it is cru-
cial to research the microorganisms responsible for food-
borne illnesses. It might be difficult to intuitively classify 
microorganisms from patient data and disease descriptions 
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alone [6] because of the variability in clinical manifesta-
tions of food-borne disorders caused by various infections. 
Therefore, research on the microorganisms that cause food-
borne illnesses is critical. However, many bacteria that cause 
food-borne illnesses have similar clinical features, making 
it intuitively challenging to identify pathogens from patient 
records and disease descriptions. In addition, conventional 
pathogen detection methods that rely on lab tests are often 
time-consuming. Researchers have recently proposed sev-
eral approaches, notably nucleic acid, biosensor and immu-
nological technologies, for rapidly detecting pathogens in 
food-borne illnesses; however, these techniques need special 
tools and their practical usefulness is restricted. Therefore, 
the pathogens of only a tiny fraction of food-borne illnesses 
have been discovered, which has a significant influence on 
the diagnosis of food-borne illnesses, may restrict physi-
cian’s ability to treat diseases brought on by pathogens and 
may lead to misdiagnosis. Additionally, the low percentage 
of recognized food-borne pathogens leads to inadequate data 
available for analysis, resulting in a negative effect on esti-
mating the disease burden and forecasting outbreaks. The 
initial manufacturing process carries substantial microbio-
logical hazards. Microorganisms, including human infec-
tions, may contaminate various agricultural goods. There 
are many different types of pathogens and although some 
may be found in the soil or water, others can be found in 
animals or people. Figure 1 lists the top 16 items that most 
often resulted in food-borne diseases [7].

Researchers offer several machine learning-based 
approaches for diagnosing diseases, predicting disease out-
breaks and analyzing the genes of disease pathogens. Food-
borne illness research has been enlightened by the effec-
tive use of ML in epidemiology; various works have been 
conducted to tackle foodborne disease issues using machine 
learning techniques [8]. For example, many classification 
methods have successfully identified pathogens using images 
from a near-infrared laser scatter. Compared to conventional 

statistical analysis techniques, machine learning techniques 
quickly provide more accurate results and can manage more 
extensive and complicated datasets [9]. However, most of 
this research concentrates on detecting or predicting ill-
nesses, while only a tiny proportion of these studies were 
conducted to analyze disease pathogens. Consequently, 
machine learning technologies have become prominent solu-
tions for foodborne disease challenges. The study innova-
tively uses artificial intelligence (AI) approaches to address 
foodborne infections. The study endeavors to enhance iden-
tifying, diagnosing, and predicting illnesses caused by food 
AI-based learning techniques, including ensemble learn-
ing [10]. This is achieved by analyzing symptoms associ-
ated with these diseases. The aforementioned approach can 
enhance the precision and effectiveness of identifying and 
forecasting foodborne diseases, thereby assisting in imple-
menting timely intervention and prevention tactics [11]. 
Implementing artificial intelligence (AI) in this scenario 
presents a new and encouraging approach towards improving 
food safety and public health initiatives. A comprehensive 
investigation is required to understand the impact of data 
scaling approaches employed in various machine learning 
models. The significant contribution of the work is sum-
marized as follows:

• Data pre-processing and exploratory data analysis have 
been performed to clean the data and categories illnesses 
into state-wise illness, hospital-wise and fatalities.

• Further feature scaling has been performed using prin-
cipal component analysis to standardize and rescale the 
target variable values to get a better prediction rate.

• Applied the machine learning models and proposed 
ensemble learning model, constructed using majority 
voting to aggregate numerous classification models to 
predict food-borne disease pathogens.

• Using quality metrics, including precision, accuracy, 
recall, f-score and RMSE, the applied techniques pre-

Fig. 1  Common causes of food-
borne diseases
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dicted and evaluate the presence of food-borne patho-
gens, including norovirus, Salmonella, Campylobacter, 
Clostridium, Escherichia coli (E. coli) and Listeria.

The following is the rest of the paper: The background 
investigation review has summarized in Sect.  2, which 
includes a detailed analysis of previous findings. Section 3 
covers the proposed framework, data analysis and pre-
processing. Finally, Sect. 4 discusses the various classi-
fiers utilized in the research. The simulation findings and 
outcomes acquired from performance measure assessment 
approaches have described in Sect. 5. Finally, the discus-
sion and future improvements are summarized in Sects. 6 
and 7, respectively.

1.1  Symptoms and Onsets of Major Foodborne 
Diseases

Ingestion of a pathogen that subsequently establishes itself 
(and typically multiplies) in the host’s body causes the food-
borne disease; similarly, ingestion of a toxigenic pathogen 
that has established itself in a food item and produced a 
toxin then causes foodborne sickness in the human host. The 
two main types of food poisoning are (a) infections and (b) 
poisonings. Due to the incubation period often associated 
with foodborne infections, the interval between ingestion 
and the onset of symptoms is much greater than in the case 
of foodborne intoxications. There are almost two hundred 
known food-borne illnesses [12]. The elderly, the young, 
those with reduced immune function, and healthy individu-
als exposed to extremely high doses of an organism are more 
likely to have life-threatening complications. Table 1 dis-
plays the most frequent bacteria that cause food poisoning, 
along with their symptoms, time of onset and prevalence.

1.2  Diagnostics of Foodborne Diseases

Identifying foodborne pathogens linked to numerous obsta-
cles in food has garnered significant interest in scientific 

research. The existence of diverse food types, including 
solid, liquid, meat and ready-to-eat options, poses numerous 
challenges in sampling, preparation and analysis. Numer-
ous inhibitors in food matrices exhibit considerable efficacy 
in impeding detection methodologies such as DNA-based 
assays, PCR techniques and antigen–antibody-specific 
assays (ELISA). Sample preparation is a challenging task 
that is carried out before detection. Numerous methodolo-
gies have been employed to identify pathogen DNA and 
toxin in food. However, these assays have encountered set-
backs owing to inadequate recovery rate, which is attributed 
to reduced assay accuracy. For point of care testing (POCT), 
one of the biggest research issues, several amplification strat-
egies that combine simplicity, cost efficiency, and robust-
ness would be valuable [13]. The procedures for detecting 
and identifying foodborne pathogens are time-consuming 
and labor-intensive, necessitating the development of new 
techniques to detect small concentrations of viable bacterial 
cells in certain amount of food in near real-time. Recent 
advances in nucleic acid technology, immunological meth-
ods and biosensor design have made it possible to identify 
even rapidly and accurately trace amounts of live bacteria in 
food samples. In qualitative and quantitative terms, ELISA 
is a reliable and accurate method for detecting a wide variety 
of proteins in a complex matrix. In the food industry, biosen-
sor technology offers encouraging solutions for the portable, 
rapid and sensitive detection of microorganisms. Figure 2 
depicts the various detection strategies for contaminated 
pathogens, traditional and innovative.

1.2.1  Traditional Methods or Commonly Used Approaches

The conventional techniques employed for microbiologi-
cal analysis, which involve growing pathogens on media, 
are known to be dependable and precise. However, these 
methods are also known to be demanding in terms of time 
and labor. The methodology entails the amalgamation of 
the food specimen with a particular enrichment medium, 
followed by plating onto a suitable media [14, 15]. The 

Table 1  Symptoms, onset, and microorganisms/toxins for major foodborne diseases

Toxin/organism Prevalent symptoms Approximate symptom onset 
period (hours)

Norovirus Vomiting, nausea, diarrhea that is not bloody, and loss of water (dehydration) 12–48 h
Salmonella Symptoms include fever, abdominal pain, diarrhea, vomiting and headache 6–96 h (often 1–3 days)
Escherichia coli Symptoms include diarrhea (often bloody), nausea, vomiting, malaise and fever (rare with E. 

coli O157:H7)
1–10 (typically 3–5) days

Listeria Symptoms such as high body temperature, low body temperature, pain in joints, weakness, 
fatigue, sore throat, and enlarged lymph nodes

The duration of time can differ

Campylobacter The individual presents with symptoms including chills, a high temperature, headaches, 
arthalgia, prostration, malaise, and swollen lymph nodes

Various durations

Clostridium Stomach pain, watery stools, putrid stools and sometimes vomiting and nausea 2–36 h (Average: 6–12 h)
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procedure as mentioned above, requires a duration of 48 
to 72 h to obtain outcomes and a period of 168 to 240 h 
for verification. Traditional culture techniques selectively 
grow just the targeted microbe in a solid or liquid culture 
medium to limit the development of other microbes pre-
sent in the food.

1.2.2  Approaches Based on Culture‑Based

Pathogens that may be present in food are first cultured 
in a pre-enrichment medium, then cultured in a selective 
enrichment medium, and then identified biochemically 
and confirmed serologically. Notwithstanding, traditional 
cultural techniques are still advancing and can be amal-
gamated with other detection techniques to produce more 
resilient outcomes. There are both quantitative and quali-
tative ways of studying culture-based methods.

• Qualitative procedures: These are employed when the 
objective is to determine the presence or the absence 
of an infectious agent in a food sample. In such meth-
ods, selective media is utilized to cultivate presump-
tive colonies from a predetermined quantity of food. 
The process involves developing uncontaminated cul-
tures, followed by identifying the pathogen through a 
range of biochemical or serological assays.

• Quantitative procedures: The enumeration of micro-
organisms in food samples by culture method can be 
achieved by using either the plate counting approach 
or the most likely number method. Both of these 
approaches rely on repeated dilution procedures to 
accurately quantify the microbial load present in the 
sample. Despite being cost-effective, precise and 
widely accepted as reliable techniques, the primary 
drawback of these methods is their protracted analysis 
duration and demanding manual labor. Typically, the 

complete process spans a period of approximately 7 to 
10 days [16].

1.2.3  Approaches Based on Microscopy

To ensure the microbiological hygiene of foods and food 
products, several methods based on the microscopic and 
optical characteristics of the properly dyed microbe cells 
have been developed. These methods include:

• The technique of flow cytometry is utilized to quantify 
the quantity of viable bacteria present in each sample, as 
well as to examine the viability, metabolic state and anti-
genic characteristics of bacteria using fluorescent dyes. 
Using this method, the optical characteristics of cells 
may be measured when they are individually subjected 
to a laser beam.

• This method integrates the fundamental concepts of solid 
phase cytometry (SPC) and Flow Cytometry. Micro-
organisms are immobilized on a membrane filtering, 
labelled with fluorescent markers, and quantified through 
automated enumeration via laser scanning. A computer-
controlled moving stage can visually examine individual 
fluorescent spots by coupling an epifluorescence micro-
scope and a scanning instrument.

1.2.4  Techniques Based on Immunology

Modern immunology serves several functions in medicine, 
agriculture and other life sciences. Serological detection 
of illnesses caused by microbial infections has made great 
strides forward because of the development of the enzyme-
linked immuno sorbent assay (ELISA). Antibodies are bound 
to their target antigens, and the antigen–antibody complex 
is detected [17]. However, the capacity to identify micro-
organisms in “real-time” is still lacking in antibody-based 
detection, which is why ELISA is so famous for developing 

Fig. 2  Various ways for detecting foodborne pathogens
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pathogenic bacterial and bacterial toxin detection techniques 
in foods.

These techniques depend on the identification of charac-
teristic stretches of DNA in the chromosomes of the organ-
ism of interest (signature sequences). The sequences may 
be selected to identify a particular microbial genus, species, 
and even strain. The most frequent and commercially avail-
able DNA-based tests for diagnosing foodborne illnesses 
are probes and nucleic acid amplification methods, how-
ever, there are numerous more kinds of DNA-based assays.

• Transducers
  Biosensors, which may be broken down into subcat-

egories depending on their transduction techniques, rely 
heavily on the transducer throughout the detection pro-
cess. Depending on whether they measure potential, cur-
rent, conductance or impedance, electrochemical detec-
tion techniques are called impedimetric, amperometric, 
conductimetric or potentiometric. It has been claimed 
that amperometric detection may be used to identify 
food-borne diseases such as E. coli O157:H7, Salmonella 
and L. monocytogenes. Pathogens have been detected 
using light-addressable potentiometric sensors (LAPS) 
and immuno ligand assays (ILA). Several types of bio-
sensors based on impedance analysis have been devel-
oped for the detection and quantification of food-borne 
diseases. Research into creating an electronic nose for 
detecting pathogens has gained traction in recent years.

1.2.5  Novel Methods Used for the Detection of Food‑Borne 
Diseases

Pathogen- and chemical-contaminated foods are both 
unhealthy and nutritionally deficient. Millions of people 
all over the globe face serious health risks due to diseases 
spread via food. A responsive monitoring system requires 
susceptible, simple, rapid, business-related and transport-
able detection technologies. These capabilities are shared by 
sophisticated molecular techniques such as multiplex poly-
merase chain reaction (PCR) assays, LC-PCR hybridization 
and many biosensors and electrochemical immunosensors. 
Together, sensors and the proper signal transduction technol-
ogy form a biological detecting component that translates 
the reaction between the goal and the identified element into 
a meaningful indication. This is where biosensors stand out 
from the standard method of investigation. These biosensors 
have several advantages over more traditional methods for 
detecting pathogens in food and environmental pollutants. 
As a result, there is a pressing need to enhance methods for 
rapid, effective and reliable early detection and identifica-
tion of foodborne pathogens. They are helpful for the rapid 
diagnosis of food-borne illnesses. More study on the most 

significant applications, perception, and pattern, from the 
analyte to the layout of likely sensors, has been completed to 
prepare for the detection of potential food pathogens.

1.2.6  Signal‑Based Methods: Bioreceptor (Biosensors 
for the Detection of Food‑Borne Pathogens)

An electrical signal may be generated by a biosensor, an 
analytical instrument that measures biological responses and 
signals. The system comprises two primary constituents, 
namely a bioreceptor that facilitates recognition and a trans-
ducer that enables the conversion of the recognition event 
into a measurable and sensitive electrical signal. Antibodies 
are frequently utilized as bioreceptors and can exist in mono-
clonal, polyclonal or recombinant forms. To provide enough 
electron transport to the working electrode, enzymes are 
selected based on their capacity to bind and their catalytic 
activity. DNA biosensors now offer intriguing new prospects 
because to recent developments in nucleic acid identifica-
tion, particularly the advent of peptide nucleic acid (PNA) 
[18]. The probe molecule known as PNA exhibits several 
benefits, including enhanced hybridization properties, the 
ability to identify single-base mismatches, and increased 
resistance to chemical and enzymatic degradation. Cell-
based bioreceptors (CBBs) are comprised of either complete 
cells or microorganisms or a distinct cellular constituent, 
which exhibits the ability to bind to species. Biosensors 
based on synthetic cells possess a prolonged lifespan and 
demonstrate greater ease of preservation. Proteins function 
as a vehicle for the transportation of chemicals, facilitating 
molecular recognition through various mechanisms. The 
lectin-based sensor arrays can detect viable cells of both 
Gram-negative and Gram-positive bacteria, as well as yeast. 
Moreover, these arrays exhibit the ability to differentiate 
among five distinct microbial species.

1.2.7  Multiplex PCR Method

About 1.5–2.5 million people each year, mostly small chil-
dren in developing countries, die from gastroenteritis trans-
mitted from person to person. We have designed, character-
ized, and applied a multiplex molecular technique to detect 
Campylobacter spp rapidly. In a single examination, this test 
may identify more than 30 different types of enteropatho-
genic bacteria from 8 other taxa. We also used this method in 
the real world to determine the worldwide research standing 
of Vibrio cholera by testing culturally significant pharma-
ceutical activist samples.

1.2.8  Nucleic Acid‑Based Methods

These techniques depend on the identification of character-
istic stretches of DNA in the chromosomes of the organism 
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being studied (signature sequences). The sequences may 
be selected to identify a particular microbial genus, spe-
cies, and even strain. There are other more DNA-based test 
types, however, the most popular and widely used methods 
for detecting foodborne diseases include nucleic acid ampli-
fication methods and probes.

• Nucleic acid probes: Probe-based tests are widely used 
in the food industry due to their convenience. Nucleic 
acid probes are immobilized to inorganic substrates to 
prevent their destruction or loss during routine manipula-
tions (such as removing unhybridized DNA by washing). 
The concept upon which DNA probes rely is relatively 
simple. It involves hybridizing the DNA sequence of a 
mystery microbe with a known DNA probe (labelled 
DNA). When testing for the presence of pathogens in 
food, microbial cells are lysed to release their DNA, 
which is then denatured and the probe is applied. The 
DNA probe is single-stranded and reacts by hybridizing 
with freed pathogenic DNA in the meal.

• Polymerase chain reaction (PCR): Nowadays, polymerase 
chain reaction (PCR) has replaced culture enrichment as 
the go-to method for fast exponentially increasing the 
amount of a particular target sequence. This method is 
sensitive enough to identify one copy of the target DNA 
sequence in food contaminated by a single virus. PCR’s 
many advantages over culture and other conventional 
methods for identifying microbial illnesses include its 
sensitivity, specificity, precision, rapidity and capacity to 
detect negligible quantities of the targeted nucleic acid in 
a sample. There are several different PCR formats avail-
able for use in the identification of food-borne diseases.

2  Related Work

Food-borne illness outbreaks are a substantial but avoid-
able threat to public health, usually resulting in sickness, 
death, severe economic damage and a breakdown of con-
sumer confidence. As shown in Table 2, we highlighted 
the significant work that has been done in the domain of 
food-borne illness detection utilizing machine learning and 
deep learning techniques. Chenar et al. [19] used a hybrid 
PCA-ANN modeling technique to create a hybrid model for 
predicting oyster norovirus outbreaks. This model achieved a 
sensitivity and specificity of 72.7% and 99.9%, respectively. 
Zhang et al. [20] built a model for identifying potential out-
breaks using data from the CFSA’s FDMRS. The eXtreme 
XGBoost  model outperformed all other classification 
machine learning models, with recall rates and F1-scores 
of 0.9699 and 0.9582, respectively. Chenar et al. [21] cre-
ated the ANN-2Day model, which uses artificial intelligence 
to predict oyster viral outbreaks. The ANN-2Day model’s 

accuracy score of 99.83 percent demonstrates its usefulness 
in forecasting the danger of norovirus sickness epidemics 
to human health. Min et al. [22] investigated a gadget lat-
eral-flow test analyzer that detected Salmonella spp. using 
machine-learning approaches. Images of test lines are used 
to calculate concentrations Integrating colour spaces with 
SVM and K-nearest neighbors classification culminated in 
a high level of accuracy, according to the researchers (95.56 
percent). Nguyen et al. [23] utilised a sample dataset of 5278 
Salmonella genomes to construct XG Boost based machine 
learning methods for determining MICs for 15 antibiotics. 
Within a simple twofold dilution step, the MIC forecast-
ing models attained an overall average accuracy of 95%. 
Without prior information on the bacterium' underlying gene 
makeup or resistance features, the model calculates MICs. 
Polat et al. [24] used a 539-point data set to train and ana-
lyze classification methods such as artificial neural networks 
(ANNs), the nearest neighbor method (kNN) and support 
vector machine (SVM). Generic E. coli exhibited the highest 
accuracy (about 75 percent) of all the algorithms studied, 
followed by enterococci (65 percent) and total coliforms (60 
percent). Additionally, classifiers calculated turbidity accu-
racy 6–15 percent higher, ranging from 62 to 66 percent. 
According to Amado et al. [25], this study intends to develop 
prediction models for identifying microorganisms such as E. 
coli and Staphylococcus aureus in raw meat using machine 
learning approaches. The models perform well, with 94.97, 
91.84, 97.57, 61.46 and 66.84% accuracy rates, respectively.

Wang et al. [9] used case data from the National Food-
borne Disease Surveillance Reporting System to construct a 
machine learning-based categorization strategy for bacteria 
associated with food-borne disorders. Lupolova et al. [26] 
developed a SVM classifier for predicted proteins based on 
whole-genome sequencing data. The same approach was 
utilized to demonstrate the classifier’s capacity to foresee a 
zoonotic threat using correctly identified human Vs. bovine 
E. coli isolates (83% accuracy) and E. coli O157. Hieura 
et al. [27] estimated viable bacterial counts in different meals 
using an eXtreme gradient boosting tree, a machine learn-
ing approach. The mean square error was around 1.0 log 
CFU between the actual and predicted levels. Njage et al. 
[28] used Basic Local Alignment to match the assemblies 
to a collection of 136 virulence and stress resistance genes 
(BLAST). Due to the lack of notable difference in accuracy 
amongst the algorithms, we chose an SVM classifier with a 
linear kernel for further research. Borujeni et al. [29] simu-
lated Listeria monocytogenes and Escherichia coli bacterial 
development using sigmoid functions, including Logistic 
and Gompertz functions, and (LSSVM)-least square sup-
port vector machine-based techniques. This study enhanced 
the parameters of the LSSVM by applying a non-dominated 
sorting genetic algorithm-II (NSGA-II). Bandoy et al. [30] 
used GWAS, a machine learning method and bacterial 
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community genetics to establish the infection mechanism. 
Using 1.2 million SNPs and indels, our method prioritized 
the relevance of porA-related alleles in Campylobacter jejuni 
for 30 years. As a result, an intestinal and extraintestinal 
group named PathML has differential porA mutations that 
induce abortion. Hill et al. [31] used a food chain approach 
to estimate the advantages of integrating genetic and epide-
miological data. Studying food supply chain dynamics would 
likely provide additional information on foodborne risk. To 
automate the identification of complaints of dangerous food 
goods, Maharana et al. [32] employed ML (machine learn-
ing) approaches and over-and under-sampling techniques to 
corresponding data. The best method for detecting danger-
ous food reviews was Bidirectional Encoder Representation 
from Transformations, with an F1 score of 0.74, accuracy 
of 0.78 and recall of 0.71, respectively. OLM et al. [33] 
employed the ML approach Boosted gradient to find micro-
biological characteristics predictive of NEC. Necrotizing 
enterocolitis (NEC) is a life-threatening intestinal condition 
that affects preterm babies. Genetics, bacterial strain varie-
ties, eukaryotes, bacteriophages, plasmids and growth rates 
are all considered.

3  Proposed Design

The datasets, suggested strategy and methodologies 
employed for early prediction of food-borne pathogens are 
discussed in this section. As seen in Fig. 3, the proposed 
framework makes an effort to enhance food-borne pathogens 
prediction results via ensemble learning techniques. In the 
proposed methodology, data is collected and prepared from 
an open access data set, Kaggle, as stated under Sect. 3.2, 
followed by data standardization and feature scaling tech-
niques, outlined in Sect. 4, before being used in the proposed 
strategy. Furthermore, the data has been augmented and 
segregated for validation. The following automated learn-
ing algorithms are used to classify the pathogens (norovirus, 
Salmonella, Campylobacter, Clostridium, Escherichia coli 
(E. coli) and Listeria): The decision tree (DT), the random 
forest (RF), the k-nearest neighbor (KNN), the stochastic 
gradient descent (SGD), the extremely randomized trees 
(Extra Tree), and the Ensemble Technique (Hybridization 
of the DT + RF + KNN + SGD + Extra Tree). Section 4.4 
provides a comprehensive description of all of the ML 
(Machine Learning) techniques used in the research. Further, 
the models are tested and compared based on their ability to 
predict the future using various evaluation criteria (Sect. 5).

3.1  Preprocessing

Data must be pre-processed after collection. As shown in 
Fig. 2, pre-processing is the practice of cleaning, checking, 

and organizing data to create a useful dataset. Before creat-
ing the machine learning (ML) model, the most time-con-
suming operation is data preparation. It raises the dataset's 
quality, giving machine learning algorithms more data to 
work with. Additionally, good pre-processing may directly 
impact the model’s ability to produce accurate predictions. 
In machine learning, data pre-processing is used to clean 
and prepare data to meet the model’s requirements [34]. 
As discussed in the following sections, we used cutting-
edge techniques to cleanse and preprocess the data in our 
investigation.

3.2  Dataset Description

The Pandas software was used to import the CSV data-
set, which can store enormous volumes of data for math-
ematical computations. This dataset, which can be found at 
“https:// www. kaggle. com/ datas ets/ cdc/ foodb orne- disea ses 
select = outbreaks.csv,” provides information on foodborne 
illnesses reported to the CDC between 1998 and 2015. This 
dataset contains twelve attributes as shown in Table 3. The 
dataset was split into two parts for the experiment: a 75% 
training data set and a 25% testing set. Year, state and the site 
where the meals were prepared, confirmed food vehicle and 
infected component, etiology status, cumulative chronic con-
ditions, hospital visits, and deaths are just some of the data 
fields. Many epidemiological studies fail to identify food 
vehicles; hence the food vehicle variable is left undefined 
in these cases. Figure 4 illustrate the disease count reported 
between 1998 and 2015 outbreak, Norovirus was responsible 
for the majority of outbreak-related infections (53%), fol-
lowed by Campylobacter (24%) respectively. To complete 
different tasks, we employed many libraries. Some of the 
standard libraries are NumPy, Pandas, Seaborn, Scikit—
Learn, Matplotlib and mlxtend. Matplotlib is a free and 
open-source toolkit for producing graphs and charts using 
numerical computing. It works with the Panda Framework 
as well as the Numbly Array. Pandas is used to manipulate 
and analyze data, while Seaborn is the best open-source data 
visualization tool available. It is faster than Python lists, and 
it can hold more data for scientific calculations.

Pandas were used to import the dataset, and Scikit-Learn, 
a free machine learning framework developed in Python, 
was utilized for the analysis. The dataset has some miss-
ing values, which may be imputed or approximated using 
the existing data, a more effective technique. We imputed 
missing data using the Scikit-learn Simple Imputer class. 
On our dataset, we utilized Label Encoder to encode target 
labels ranging from 0 to n class-1. We may artificially lower 
the proportion of variance in your dataset by supplying new 
values close to the mean via data imputation. Missing values 
may be imputed using a constant value specified by the user 
or the columns' statistics (mean, median, or most frequent). 

https://www.kaggle.com/datasets/cdc/foodborne-diseases
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We may artificially lower the proportion of variance in your 
dataset by supplying new values close to (or equal to) the 
mean via data imputation.

3.3  Distribution of Illness, Hospitalizations 
and Fatalities Based on Months, States 
and Years

The etiology, month, year and state in which the outbreak 
occurred and the number of illnesses, hospital admissions, 
and fatalities during the outbreak are shown in graphs. In 
addition, it allegedly involved food(s), sites where meals 
were prepared & consumed, and factors that contributed to 
the outbreak are all included in the outbreak study. As shown 
in Fig. 5a, May has the month with the most significant num-
ber of diseases, more than 1800, followed by December as 
the month with the following highest significant number.

On the other hand, September has the fewest range of 
illnesses reported, which is 1250. In addition, according 
to Fig. 5b, Florida has the highest total number of illness 
occurrences. According to graph Fig. 5c, the most instances 
were reported in 2000, while the fewest were 2009, i.e., 600.

In Fig. 6a shows that May has the most instances, with over 
1500 patients hospitalized, followed by December with 1500 
cases. On the other side, September had the fewest hospital-
ized cases (1200). Furthermore, California and Florida have 
the highest number of cases hospitalized due to food-borne 
infections, with over 2000 instances each, while Guam has 
the lowest number of cases hospitalized, as seen in Fig. 6b. 

Finally, the most significant and lowest numbers of hospital-
ized patients were recorded in 2004 and 2009, as depicted in 
Fig. 6c.

May and December seemed to have the highest number of 
deaths (over 1500), whereas September had the lowest num-
ber of fatalities, as seen in Fig. 7a. California had the most 
significant number of deaths, with 2000, while Florida had 
the second-biggest number of fatalities, with 2000.According 
to Figs. 6, 7b, the states with the fewest deaths instances were 
Washington, DC, and Montana. As seen in Fig. 7c, the years 
2004 and 2009 had the most deaths (> 1000), while the year 
2009 had the fewest (600).

4  Feature Scaling

4.1  Principal Component Analysis (PCA)

We use feature scaling to normalize each feature’s metric 
measures to avoid big-number features from overpowering 
learning. Principal Component Analysis reduces data sets 
so they may be examined faster. If there are N eigenvectors, 
the equation shows the explained variance for each Eq. (1).

�i in the equation represent the matching eigenvalue. The 
standard scalar function is used to standardize data. The 
distributions of an independent variable are normalized to 

(1)Explained variance =
�i

(�1 + �2 +⋯ + �n)

Fig. 3  Framework for predicting pathogens in food-borne diseases
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have a mean of zero and a variance of one. By generating the 
relevant statistics on the training set instances, each attribute 
performs centering and scaling independently to biased out-
comes. Making the data identical scales may assist prevent 
this problem. To achieve this mathematically, remove the 
mean and divide by the standard deviation to every variable.

After standardization, all parameters will have the same 
scale. However, since variables are highly connected, they 
contain duplicate information. To determine these relation-
ships, we generate a covariance matrix. The covariance 

(2)z =
value − mean

standard deviation

Fig. 4  Total count of reported 
food-borne diseases (1998–
2015)

53%
24%

9% 6%

4% 4%

Species specific food-borne diseases

Norovirus Salmonella Clostridium Campylobacter E. Coli Listeria

Fig. 5  Illnesses based on months (a), states (b) and years (c)
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matrix is a p-square matrix that includes the covariances and 
all potential pairings of the initial variables as entries. To 
get the data’s principal components, we must first calculate 
the correlation matrix’s eigenvectors and eigenvalues. New 
parameters are created by merging or combining previous 
variables to generate major components. The variables are 
formed once the data from the actual parameters are con-
densed into the uncorrelated starting components. It is pos-
sible that determining the eigenvectors and sorting them in 
descending order of their eigenvalues can help us determine 
the relative importance of the various components. Here, 
we choose out which of these elements have high eigenval-
ues and keep the others, or we throw out the ones with low 
eigenvalues. Therefore, a feature vector is simply a matrix 
with the eigen-vectors of the elements we desire to retain 
as columns. In the last step, we use the feature vector com-
puted from the covariance matrix's eigenvectors to reorient 

the data such that it lies along the axes suggested by the criti-
cal components. To do this, we multiply the features vector's 
transposition by the transposed original data.

4.2  Scaling Methods (MinMax Scaler and Standard 
Scaler)

Numerous machine learning methods perform more effec-
tively when numeric input parameters are scaled to a nor-
mal distribution. We use feature scaling to normalize metric 
measures for each feature to avoid learning becoming over-
whelmed by large-number features. Normalization or feature 
scaling, is the last stage in pre-processing; it standardizes 

(3)
Final Dataset = FeatureVectorT

× StandardizedOriginal DatasetT

Fig. 6  Hospitalizations based on months (a), states (b) and years (c)
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data propertie’s range. Most machine learning algorithms 
function well when numerical input data are scaled to a 
specific range. Each attribute has a range, such as a year, 
month or a number of diseases, and if these values are sup-
plied during the training phase, the model will be unable to 
understand the skewness in the data-set range [35]. It has 
no concept of years or counting; all it recognizes are num-
bers that span an extensive range, resulting in an inadequate 
model. Additionally, feature scaling is required since the 
size of the data’s input variables may fluctuate. In Python, 
the sklearn package contains tools for pre-processing raw 
feature vectors into a format that downstream estimators 
can comprehend. Minmax scaler and standard scaler are two 
scaling techniques for continuous variables used in machine 
learning. The minmax scaler is a particular case of a scaler 
in which the minimum and maximum values are scaled to 
0 and 1, respectively. While the standard scaler adjusts all 
values within min and max to fit inside a range defined by 
the min and max values.

(4)
xi − min(x)

max(x) − min(x)

standard Scaler is based on the standard normal distribution, 
implying that the data included inside each feature follows a 
normal distribution [36]. The scaling produces a distribution 
with a mean of 1 and a standard deviation of 1 due to the 
transformation. The following formula is used to measure 
the standard scaler score for a data sample x: Where sd indi-
cates the standard deviation of x

4.3  Dataset Split

Models are trained first, and then tested against test data 
[37]. The dataset is then randomly split into train and test 
groups for this purpose (three-fourths of data cases). Sub-
sequently, we reported the outcomes associated with the 
testing data.

4.4  Model Selection and Hyper‑Parameter Tuning

The methodology and hyper-parameter values utilized 
may significantly influence the model’s performance, but 

(5)
xi − mean(x)

sd(x)

Fig. 7  Fatalities based on months, states and years
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choosing them requires much experience and many manual 
iterations. Computer science academics have developed 
several automated selection approaches for algorithms 
and hyper-parameter values for a particular supervised 
machine learning issue to make machine learning accessi-
ble to layperson users with low computing experience. The 
regularisation hyperparameter controls the model’s capac-
ity by determining the model’s adaptability. In the case of 
overfitting, the model loses some of its ability to predict 
novel test data because it is too malleable and adjusts too 
much during training. Effective model capacity control 
prevents overfitting. Therefore, the hyper-parameters must 
be suitably adjusted. This section summarizes the catego-
rization methods used in the research to predict various 
food-borne illnesses.

4.4.1  Decision Tree (DT)

To examine rules, Decision Tree picks target variables and 
branches to show as a hierarchical structure. The hierar-
chical link between choice variables and target variables 
may be discovered and used for prediction using a trimmed 
DT [38]. A DT is a multivariate analytic approach that 
uses supervised machine learning. In Machine Learning, 
the Decision Tree technique may be used to tackle both 
classification and regression issues [39]. CART or Clas-
sification and Regression Trees, is another name for it. 
Decision trees are divided into two categories. They are 
classified according to the sort of target variable they pos-
sess. The decision tree is referred to as a ‘categorical vari-
able decision tree’ if the target variable is categorical. A 
‘continuous variable decision tree,’ on the other hand, it 
has constructed training models for a continuous objective 
variable that may be used to anticipate the target class, and 
decision criteria are based on past data (training data). The 
node(root) of the tree has been the most distinguishing 
attribute. These trees are generated utilizing rules-based 
upon “if–then” classifiers, with different rules for each 
edge between root and leaf. “gini” is the criterion used to 
separate nodes. The min sample split is set as “10” with 
max depth of the tree as 5 in this study.

4.4.2  Random Forest (RF)

A decision tree-based ensemble model called random for-
est can address the issue of decision tree’s limited general-
izability [40]. It constructs several decision trees to arrive 
at the outcome and employs voting procedures. Each tree 
obtains its training data via a different proportional sam-
pling of its features using a replacement sampling tech-
nique. The RF classifier uses k decision tree classifiers, 

each of which is repeatedly applied to the decision func-
tion to classify all of the labels in the data. These are 
built on several decision trees and work on the ensemble 
learning principle by using a bootstrap aggregating (bag-
ging) approach to their trees during the training phase 
[41]. The results are counted similarly to how majority 
voting is conducted. Bootstrap-True, Max depth-00, Max 
features-3, Min sample leaf-5, Min sample split-12, N 
estimators = 1000 are the parameters used to generate the 
Random Forest classification model.

4.4.3  K‑Nearest Neighbours (KNN)

The K-nearest neighbor (KNN) technique is an essential 
machine learning algorithm that classifies data points by 
computing their distances. This approach is widely used in 
statistical estimates and pattern identification. KNN keeps 
track of its examples and classifies the most recent ones 
using a similarity metric [42]. It will not make any previ-
ous assumptions as it is a non-parametric method [43]. The 
Euclidean Distance is used by the KNN method to determine 
the similarity between data points. A case classification will 
be determined by a majority of votes of its neighbors, with 
the case being allocated to the most frequent class among its 
K closest neighbors as determined by a distance role. The 
KNN algorithm was chosen because it allows us to classify 
data using the most significant number of nearby values. 
If many similar data were examined, the risk of general-
izing based on a small number of data would be reduced, 
and the risk of misclassifying non-diseased people as dis-
eases people would be reduced. Sampling approaches and 
hyper-parameter tweaking are used to fine-tune the model's 
performance. Each test sample’s predicted class in KNN is 
assigned to the class that most of its k-nearest neighbors 
in the training set belong. Assume the training set exists 
T = 

{(

x1, y1
)

,
(

x2,x2, y2
)

,… , (xn, yn)
}

,xi is the instance’s fea-
ture vector and yi ∈ {c1, c2,… , cm} is the instance’s class, 
i = (1,2,…,n), the class y of a test instance x may be repre-
sented by:

in which I(x) is an indicator function, with I = 1 when yi = cj 
and I = 0 otherwise; Nk(x) is the field involving x’s k-nearest 
neighbours. Weights = uniform neighbours = 100 are the 
parameters used to build the KNN classification model in 
this work.

4.4.4  Stochastic Gradient Descent (SGD)

A popular machine learning (ML) method for model 
optimization is the SGD. It could make it possible for 

(6)y = argmaxcj

∑

xi∈Nk(x)

1
(

yi − cj
)

, i = 1, 2,… , n; j = 1, 2,… ,m
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linear classifiers using convex loss functions, including 
neural nets [44], SVM classifiers and LR, to learn dis-
criminatively. SGD is an improved gradient descent-based 
approach. Because it employs an estimated gradient rather 
than an actual gradient via randomly subsampling a whole 
training dataset, this approach is considered a stochastic 
approximation of gradient descent optimization [45]. 
The technique is popular for datasets containing redun-
dant samples due to its excellent efficiency and ease of 
implementation. SGD, on the other hand, is seldom used 
in landslide susceptibility evaluations, which need to be 
thoroughly investigated. The parameters used for build-
ing the SGD classification model are the loss function 
used to construct the model is the hinge, Penalty = l2, 
Max_iterations = 500.

4.4.5  Extremely Randomised Tree

The Extra-Trees algorithm creates a top-down ensemble 
of unpruned decision trees. Unlike previous tree-based 
ensemble approaches, it separates nodes randomly and 
grows trees from whole learning samples instead of a boot-
strap replica [46]. These parameters are K, the number of 
randomly picked characteristics per node, and  nmin, the 
minimum sample size for dividing a node. It is employed 
numerous times with the original learning set to produce 
an ensemble model (M trees). The final forecast is based 
on the majority vote in categorization and the arithmetic 
average in regression. The deliberate randomization of the 
cut-point and attributes paired with ensemble averaging 
should be able to minimize variance more strongly than 
other approache’s weaker randomization schemes [47]. In 
addition, using the whole original learning sample rather 
than bootstrap clones reduces bias. In terms of computa-
tional complexity, assuming balanced trees, the process is 
on the order of N log N in terms of learning sample size. 
The Extra Trees method, like Random Forest, is unaffected 
by the value utilized, despite being a critical hyperparam-
eter to control. The parameters used for building Extra 
Trees classification model are N_estimators = 100, Crite-
ria = entropy, Max features = 2.

4.4.6  Ensemble Model

Machine learning ensemble methods utilize the insights 
gained from different learning models to help make more 
accurate and better judgments. For example, noise, varia-
tion, and bias are the most common error causes in learn-
ing K-Nearest Neighbors, random forests, stochastic gradi-
ent descent classifier and an extra tree classification model 
[38]. As a result, the suggested ensemble technique achieves 

considerable accuracy, outperforming all individual classi-
fiers [48]. Furthermore, it is an improvement approach used 
to the outputs of several algorithms to improve model’s 
accuracy. Ensemble approaches in machine learning assist 
in reducing these error-causing elements, ensuring that 
machine learning (ML) methods are accurate and stable. 
This research employed the hybridization of Decision Trees, 
resulting in a final classification that is superior to individual 
classifiers. As seen in Fig. 8, the graphic displays the recom-
mended ensemble model.

4.4.7  Prediction Assessment Parameters

The confusion matrix sometimes referred to as the error 
matrix, is represented by a matrix detailing how a classi-
fication model performed on a test data set. The confusion 
matrix represents counts between the expected and actual 
values as shown in Fig. 9. True negative (TN) indicates how 
many false positives were removed from the training set. 
Similarly, the number of correctly identified positive cases 
is denoted by the abbreviation “TP,” which stands for True 
Positive. False Positive indicates the number of genuine 
negative cases incorrectly labeled positive. In contrast, False 
Negative indicates the opposite: the number of genuine posi-
tive examples that were incorrectly labeled negative [49, 50].

After creating the confusion matrix, the efficacy of the 
data classification methods was compared using the metrics 
accuracy rate, recall, F1 measure, and RMSE (root mean 
squared error). The following parameters are determined:

• Accuracy: The metric accuracy is used to quantify the 
efficacy of a classifier. The number of properly classified 
values in a set is termed as accuracy, and it is determined 
using an equation [51].

• Root Mean Squared Error (RMSE): RMSE is consid-
ered as the difference between the values predicted by the 
model and the values actually observed. N denotes the 
number of observations. The formula for RMSE is given 
in Eq. (3).

• Recall: A statistic that measures how many patients were 
accurately identified as having a disease relative to the 
overall number of patients with the disease. The percep-
tion of recall is the number of patients diagnosed with the 
disease. Sensitivity is another term for recall. TP stands 
for “truly positive”.

(7)Accuracy =
TPn + TNn

TPn + TNn + FPn + FNn

(8)RMSE =

�

∑N

i=1
((Predictedi − Actuali)

2

N
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• Precision: Precision, also known as a positive predictive 
value, refers to the proportion of really positive outcomes 
relative to the total number of such outcomes that may be 
anticipated. Thus, precision may be defined as the rate at 
which positive values are accurately identified: precision 
is expressed mathematically as shown in Eq. (5).

• F1-Score (F1): The F1 score, often known as the F-score 
or F-measure [52, 53], is the harmonic-mean of accuracy 
and sensitivity as given in Eq. (6).

(9)Recall =
TP

TP + FN

(10)Pn =
TP

TP + FP

(11)F1 =
2 × Precision × Sensitivity

(Precision + Sensitivity)

5  Simulation Results

The assessment must be organized and provide visible, clear 
findings that may be utilized and improved. Data analysis 
and evaluation are critical parts of the evaluation process, 
and there are a variety of assessment methodologies to 
choose from. Several criteria were used to assess the effec-
tiveness of classification techniques. The tools and libraries 
needed for model training are shown in Table 4.

5.1  Confusion Matrix Results

A confusion matrix may be used to assess a classifier's 
potential. Correctly categorized outcomes are represented 
by all diagonal elements, whereas off diagonals represent 
misclassified outcomes. Therefore, a confusion matrix with 
just diagonal entries and all other elements set to zero will 
be the best classifier. After the categorization procedure, a 
confusion matrix yields actual and expected values. Table 5 
depicts the confusion matrices of several classification 
methods.

5.2  Results of Machine Learning Classifiers

The accuracy of the six machine learning classifiers for 
food-borne disease prediction on the same dataset without 
using any scaling strategies is shown in Table 6. The Ensem-
ble Learning approach outperformed the other five tech-
niques, except for Salmonella and Listeria diseases, when 
we employed an unscaled dataset. The ensemble method 
offers the highest accuracy, with a 97.74% detection rate 
for Norovirus, 99.64% detection rate for Clostridium, 99.0% 

Fig. 8  Proposed ensemble 
model

Fig. 9  Confusion matrix
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detection rate for Campylobacter and 98.99% detection rate 
for E. coli. On the other hand, stochastic gradient descent 
(SGD) fared severely in virtually all instances. The K-near-
est neighbor classifier outperformed the competition with 
99.63% accuracy in predicting Salmonella sickness, whereas 
the Extremely Randomized Tree method came in second 
with 99.61%. In Listeria disease, Extremely Randomized 
Tree had the highest accuracy of 98.73%, while Stochastic 
Gradient Descent had the lowest accuracy of 86.86. 

The performance of various metrics is illustrated in 
Figs. 10 and 11a–d without using any scaling technique, 
including root mean squared error, accuracy, recall and 
F1-score. applying multiple measurements, ensemble learn-
ing and decision trees were able to obtain excellent outcomes 
in all metrics; on the other hand, stochastic gradient descent 
achieved the lowest score in all illnesses.

5.3  MinMax Scaling and Standard Scaling Methods

In this investigation, we utilized two scaling techniques 
(minmax and standard); however, the minmax and standard 
scaling methods improved the overall performance of the 
classifiers. This is because particular models (though not all) 
are scale-sensitive, meaning that they give disproportionate 
weight to characteristics that appear on bigger scales. Fur-
thermore, scaling provides a good framework since it aligns 
all features, increasing the likelihood that the model will 
recognize the proper patterns. As depicted in Tables 7, 8, 9, 
10, 11 and Figs. 12, 13, 14, 15, the outcomes of accuracy, 
RMSE and precision were obtained for various classifiers 
after applying the minmax and standard scalers. As shown 
in previous Table 6, when we compare the results of dif-
ferent classifiers using minmax and standard scaling strate-
gies with the results of classifiers that did not use a scaling 
strategy, we observe that the ensemble approach employing 
scaling techniques is more accurate in nearly predicting all 
food borne pathogens.        

The root mean squared error (RMSE) error measure is 
used extensively and is an effective all-around error measure 
for numerical predictions. This metric informs us how accu-
rate our estimations are and how much they deviate from 

the actual data. The RMSE score of our proposed ensemble 
learning (EL) strategy is the best, indicating that EL cor-
rectly predicted the data, but the Stochastic Gradient Descent 
model fared poorly. Ensemble model excelled by achieving 
predicted accuracies of 98.84 percent in norovirus illness 
99.75 percent in campylobacter disease and 99.83 percent 
in listeria disease using the standard Scaler approach. Using 
minmax scaler, the ensemble model had outstanding results, 
with projected accuracy rate of 99.94 percent for salmonella 
disease, 99.64 percent for Clostridium disease and 99.99 
percent for E. coli disease. The stochastic gradient descent 
model did not perform well on both Scaling techniques, 
with the lowest accuracy (58%), recall (67%) and F1 Score 
(72%). Other tree-based techniques, such as decision trees 
and random forest, yield high prediction scores, suggesting 
strong performance. The decision tree classifier achieved the 
second most excellent prediction results. The results indicate 
that stochastic gradient descent (SGD) did not yield satisfac-
tory RMSE scores in either Standard or Minimax scaling 
methods. However, our proposed method, ensemble learn-
ing (EL), demonstrated consistent and accurate data predic-
tions regarding RMSE scores. Notably, illnesses including 
Norovirus, Salmonella, Clostridium, Campylobacter, E. 
coli and Listeria have RMSE scores ranging from 0.120 to 
0.320 when using normal and MinMax scaling as shown in 
Tables 8 and 9.

This study presents a new approach to ensemble learning 
techniques that has not been previously explored in the exist-
ing literature. This study proposes using ensemble learning 
to enhance the precision and dependability of detecting and 
forecasting foodborne illnesses, including their symptoms 
and diagnostics. The research presented in this study show-
cases the efficacy of ensemble learning through empirical 
evidence of its superior performance compared to other 
established methodologies. As seen in Table 12, proposed 
ensemble learning method obtained more than 90% accuracy 
detecting in all food-borne disease pathogens. This study 
provides a quantitative evaluation of the impact of ensemble 
learning on disease prediction metrics, specifically RMSE 
scores.

6  Discussion

One of the most significant phenomena anticipated to 
impact food safety in the upcoming years is the presence 
(or emergence) of unexpected or new pathogens in foods. 
Food pathogen identification is essential for reasons of pub-
lic food safety and health. Contagious pathogens found in 
contaminated food are distributed widely in the environ-
ment. People who work in the food industry are exposed 
to various food pathogens that may cause fatal food-borne 
illnesses such as hemolysin dysfunction, fever, diarrhea 

Table 4  Model-training prerequisites

Implementation requirements

Processor Intel i7(recommended)

Ram 32 GB
GPU 4 GB
Windows 10
Software https:// www. anaco nda. com/
Web-based interactive environment Jupyter notebook
Programming language Python

https://www.anaconda.com/
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and stomach cramps. It is crucial to monitor outbreaks of 
food-borne illness to spot patterns in the foods, regions and 
pathogens involved. In this field, it is necessary to know 
the genotype and subtype of food contamination strains to 

identify the transmission source, define, and compare vari-
ants. Additionally, various strains of food-borne pathogens 
are connected with human illness differently. These varia-
tions may be ascribed, among other things, to the hardiness 

Table 5  Confusion matrix of classification models

Decision tree Random forest

 
 

k-nearest neighbor Stochastic gradient descent

  

Extremely randomised tree Ensemble learning
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Table 6  Performance evaluations based on accuracy without any scaling technique

Diseases Norovirus Salmonella Clostridium Campylobacter E. coli Listeria

Algorithms
 Decision tree (DT) 97.41 95.41 92.51 98.61 98.41 96.61
 Random forest (RF) 95.66 99.46 97.61 97.13 99.56 96.44
 K-nearest neighbor (KNN) 97.73 99.63 98.99 98.73 97.53 96.73
 Stochastic gradient descent (SGD) 87.00 81.66 87.16 75.66 75.83 86.86
 Extremely randomised tree 96.44 99.61 96.43 97.73 98.00 98.73
 Ensemble learning (EL) 97.74 92.41 99.64 99.00 98.99 93.94

Fig. 10  Results of precision and RMSE (without any scaler)

Fig. 11  Results of recall and F1 score (without any scaler)
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of specific strains that allows them to live and multiply in 
food-related situations or to their higher virulence towards 
people. In this study, we used a food-borne disease dataset 
to predict various pathogens in food-borne diseases. Data 
preprocessing and exploratory data analysis were used to 
clean the data and categorize illnesses by state, hospital, and 
fatality. To aggregate various classification models to predict 
food-borne illnesses, we used machine learning models and 
suggested an ensemble learning model built via majority 
voting. Predictions of pathogens are evaluated using qual-
ity metrics, including precision, accuracy, recall, F-score, 
root mean square error and confusion matrix. In order to 
diagnose food-borne illness infections, we analyzed data on 
cases and pathogens. In addition, we used machine learning 
to assess connections between geographical location, period, 
and potentially contaminated foods. We examined the find-
ings of multiple models to find the most accurate pathogen 
prediction model.

7  Conclusion

Emerging food-borne microorganisms, such as bacte-
ria, viruses and parasites, are undoubtedly one of the 
most significant food safety concerns affecting the food 
industry and public health agencies. Emerging pathogen 
research focuses on improving techniques for identifying 
and managing evolving infections, shortening the period 
between a pathogen’s appearance and its management, and 
anticipating new food safety issues. The problem of food-
borne pathogens' emergence is expected to be effectively 
controlled mainly via the establishment and implementa-
tion of robust and effective surveillance systems. These 

programs will allow early detection and study of develop-
ing (or reemerging) food-borne infectious diseases and 
deploy effective control and preventative strategies. Lastly, 
it is anticipated that the creation and use of innovative 
molecular tools for researching food-borne diseases would 
assist in a better understanding of the aspects that led to 
the rise of these infections. In recent years, there has been 
an increase in the prevalence of diseases transmitted by 
ingesting contaminated food. A more effective strategy 
for reducing the spread of foodborne infections is detect-
ing potential pathogenic bacteria in food and processing 
settings. Analytical results and machine learning-based 
pathogen classification may aid in identifying and treating 
foodborne illnesses. This study employed machine learn-
ing models to aggregate various classification models to 
predict food-borne infections and a suggested ensemble 
learning model was developed using majority voting. 
Using quality criteria such as accuracy, precision, recall, 
F-score, root mean square error, and confusion matrix, the 
applied models, predict and assess food-borne illnesses. 
The ensemble model achieves the best prediction average 
accuracy, 99.74 percent, followed by the extra randomized 
tree classifier. According to the RMSE, precision, recall 
and F1 score as shown in various Figures and Tables, the 
suggested ensemble techniques outperformed KNN and 
other ensemble approaches. This study concludes that 
machine learning-based approach can be utilized for pre-
dicting the pathogens in food-borne illnesses. Thus, these 
models, especially ensemble-based approaches can be 
endorsed as benchmark models for prediction modeling. 
We may enhance our work in the future in two ways. First, 
we may enhance the average effectiveness of predictions 
for food-borne pathogen detection by using several feature 

Table 9  Metrics F1 and recall-based MinMax scaling methods

F1 and recall (MinMax scaler)

Diseases→
Algorithms↓

Norovirus Salmonella Clostridium Campylobacter E.Coli Listeria

F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall

 Decision tree (DT) 99 100 99 100 100 100 100 100 100 100 99 99
 Random forest (RF) 99 100 99 100 100 100 100 100 100 100 99 99
 K-nearest neighbor (KNN) 99 98 99 99 100 100 100 100 100 100 100 100
 Stochastic gradient descent (SGD) 68 100 72 97 71 89 70 84 86 86 69 47
 Extremely randomised tree 99 100 99 100 100 100 100 100 100 100 100 99
 Ensemble learning (EL) 99 100 99 100 100 100 100 100 100 100 100 99
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Fig. 12  Results of RMSE and precision (with MinMax scaler)

Fig. 13  Results of recall and F1 score (with MinMax scaler)

Fig. 14  Results of RMSE and precision score (with standard scaler)
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selection strategies and optimization procedures. Second, 
we may extend our model to incorporate more food-borne 
pathogens, which would assist in diagnosing a variety of 
diseases.
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