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Abstract
Human activity recognition is essential in many domains, including the medical and smart home sectors. Using deep learn-
ing, we conduct a comprehensive survey of current state and future directions in human activity recognition (HAR). Key 
contributions of deep learning to the advancement of HAR, including sensor and video modalities, are the focus of this 
review. A wide range of databases and performance metrics used in the implementation of HAR methodologies are described 
in depth. This paper explores the wide range of HAR’s potential uses, from healthcare, emotion calculation and assisted 
living to security and education. The paper provides an in-depth analysis of the most significant works that employ deep 
learning techniques for a variety of HAR downstream tasks across both the video and sensor domains including the most 
recent advances. Finally, it addresses problems and limitations in the current state of HAR research and proposes future 
research avenues for advancing the field.

1 Introduction

Identifying and comprehending human actions, also known 
as Human Activity Recognition (HAR), is essential for a 
wide range of practical uses. It is possible to integrate it 
into automated navigation systems [1] in order to recognise 
human behaviours for the purpose of ensuring safe opera-
tion, as well as surveillance systems [2] in order to recog-
nise potentially hazardous activities involving humans. A 
great number of other applications, such as human-robot 
interaction [3], video retrieval [4] and entertainment [5], are 
dependent on it. Health monitoring, home automation, fit-
ness, traffic scheduling and control, augmented reality, pre-
cise advertising, and security are just a few examples of the 
many services that rely on an understanding of human activ-
ity [6]. For instance, a person’s activity log can be used to 
determine his caloric intake for the day, leading to advice on 
how to improve his diet and fitness levels; similarly, moni-
toring elderly people’s fall activity can prompt immediate 
help in the event of a fall, preventing potentially catastrophic 
injuries.

Wearables, environmental sensors, and computer vision 
systems all feed data into HAR systems, which then use a 
machine learning or deep learning model to recognize the 
activities [7]. Installing environmental sensors in a home is 
a costly endeavor [8]. Vision systems, which rely on cam-
eras for recognition, are often seen as invasive [9]. Wearable 
devices are another option, and they’re attracting research-
ers’ attention because of how widely they’re used. Since 
sensors like the accelerometer, gyroscope, and compass are 
already built into and integrated into wearable devices like 
fitness trackers and smartwatches, these devices are primar-
ily used for recognition. Figure 1 demonstrates a general 
framework for HAR. Smartphones are used instead of wear-
able devices for activity recognition because they are con-
venient, can be used anywhere, are inexpensive, have the 
same kinds of embedded sensors that wearable devices do, 
and are often used in real-time applications [10]. The visibil-
ity of data can also be used to roughly categorise modalities 
into visual and non-visual categories. RGB, depth, skeleton, 
point cloud, infrared sequence, and event stream are just 
some of the visual modalities that can be used to accurately 
depict human actions. When it comes to HAR, visual modal-
ities tend to perform better than others. In particular, HAR 
has found widespread use in monitoring and surveillance 
systems [11], where RGB video data predominates. A per-
son’s joint trajectories can be represented by their skeleton 
data. If the action being performed has nothing to do with 
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objects or the scene context, HAR can do it quickly and 
easily. Point clouds and depth data capture the 3D structure 
and distance information used for HAR in robot navigation 
and self-driving applications. Additionally, infrared data can 
be used for HAR even in low-light settings, and the event 
stream is well-suited for HAR as it maintains the foreground 
motion of the human subjects while removing distracting 
background elements. Human behaviour is not visually 
“intuitive” to represent in non-visual modalities like sound, 
acceleration, WiFi, radar etc. However, in situations where 
subject confidentiality must be maintained, these modali-
ties can also be used for HAR. While acceleration data can 
be used to implement fine-grained HAR, audio data can be 
used to pinpoint events in time sequences. Since radar is a 
non-visual modality, its data can also be used for HAR in 
through-wall applications.

Traditional machine learning techniques can detect 
human action. The problem with the standard machine learn-
ing approaches to HAR is that they necessitate manually 
designing and selecting features to use. To accomplish this 
requires time-consuming human involvement and special-
ized knowledge, and even then, the resulting feature set may 
not function as optimally as possible. In recent years, deep 
learning approaches have been proposed [12, 13] to allevi-
ate the need for human intervention in the feature engineer-
ing process. The application of deep learning techniques to 
HAR has the potential to improve the field in a variety of 
ways. For one, it eliminates the need for the time-consuming 
and often-complex process of designing features by hand. 
Second, it has proven to be more precise in HAR than tra-
ditional methods [14–16]. Finally, it can learn from unla-
beled data, which is particularly helpful for HAR because 
it is impractical to collect a large amount of labeled activity 
data. Fourth, it has the robust capability of learning useful 

features from raw data, and it can process activity-related 
data from a wide range of people, device models, and device 
poses. Furthermore, the machine learning-based solutions 
rely entirely on pre-processed data from raw signals, which 
contains valuable and remarkable features that can enhance 
the performance of classification algorithms. Deep learning 
models can be used to quickly address or circumvent these 
difficulties [17]. Recent improvements and promising results 
on various benchmark datasets used by machine learning-
based solutions have been achieved by deep learning models. 
In the data pre-processing and feature extraction stage, it can 
help reduce the workload. In addition, it can strengthen the 
deep learning model’s generalization abilities and make it 
less prone to breakdowns.

1.1  Contributions

In this work, we contribute significantly to the literature by 
looking at a wider perspective on the overall development 
HAR research from both sensor and video modalities over 
the last decade. We don’t just focus on algorithmic informa-
tion, contrary to current surveys. As explained in the last 
section, most of the studies/works examined only particu-
lar machine-learning aspects of HAR. More recently, the 
introduction of a variety of deep learning frameworks and 
methodologies for HPE modeling has also added various 
new hypotheses, procedures, and applications. Therefore, a 
thorough HAR survey is important and crucial to collabora-
tors/contributors, physicians, and researchers who attempt to 
formulate and integrate these methods with existing systems 
or carry out ameliorated HAR research. In this survey, we 
recapitulate both past and current research and cover a broad 
range of aspects of HAR, including datasets, methods, and 

Fig. 1  General Human activity recognition (HAR) framework
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human activity recognition models. The following key points 
highlight our contributions:

– A detailed discussion on the variety of sensor-based and 
video-based databases and performance metrics incor-
porated is presented for a better understanding of the 
frontier ideas in HAR.

– A comparative review of all the major works that use 
deep learning models for various downstream tasks in 
each domain for both sensor-based and video-based HAR 
is conducted.

– An overview of a variety of applications of HPE across 
domains like surveillance and security, emotional cal-
culation, healthcare and rehabilitation, education, etc., 
is presented along with the most recent advances in the 
field of HAR.

– Several unresolved problems in this area have been exam-
ined and the future direction for deep learning-based 
HAR is discussed.

1.2  Organisation of Paper

The paper is organised in the following manner: In Sect. 2, 
we compare and contrast the findings of several recent large-
scale surveys of HAR. Section 3 explains in depth the many 
data sources and Sect. 4 discusses the pre-processing tech-
niques used in HAR. Following this, Sects. 5 and 6 discuss 
the history of research in various fields and a wide variety 
of classifications and deep learning-based methodologies 
for sensor-based and video-based HAR, respectively. In 
Fig. 2 we can see how various deep-learning strategies for 
HAR have been categorized. In Sect. 7, we discuss about 
various metrics of performance measurement used in HAR. 
The eighth section focuses on the many practical uses of 
this technology, including healthcare, emotion calculation, 
assisted living, security and education. In the final section 
of the paper, we discuss some of the most contentious issues 
and their potential future evolution as a means of wrapping 
up the discussion.

2  Existing Surveys

Multiple uses, including smart healthcare services and smart 
home systems, can benefit from HAR. Wearable sensors, 
smartphones, RF sensors (Wi-Fi, RFID), LED light sen-
sors, cameras, etc., are just some of the sensors that have 
been used for human activity recognition. As wireless sen-
sor networks have evolved quickly, a wealth of informa-
tion has been gathered to aid in the identification of human 
activities using various sensors. Traditional shallow learning 
algorithms like support vector machine and random forest 
necessitate the manual extraction of some representative 

features from large and noisy sensory data. Manual feature 
engineering, on the other hand, is time-consuming and prone 
to missing implicit features because it relies on specialised 
domain expertise. In recent years, deep learning has seen tre-
mendous success in many difficult research domains, includ-
ing image recognition and natural language processing. The 
ability to automatically learn representative features from 
massive data sets is the primary benefit of deep learning [18, 
19]. HAR may be an appropriate application for this tech-
nology. As a result, it is crucial to record the successes and 
think critically about them in order to achieve even more. 
Vision-based HAR and sensor-based HAR are the two main 
types of HAR currently available. Preprocessing data, object 
segmentation, feature extraction, and classifier implementa-
tion are the integral parts of the vision-based processing 
phase. Many researchers over the past few decades have 
proposed numerous video-based HAR technologies that 
can achieve the rapid recognition of human behaviour by 
using video and motion sensors in response to the enormous 
market demand and economic value of such technologies. 
However, when privacy is a major concern, the shadow of 
the object, the colour of the background, and the intensity 
of the light can all negatively impact the accuracy of vision-
based HAR. This privacy concern, however, can be avoided 
when smartphones and wearable sensors are used for HAR 
in smart homes.

In the last few years, various survey studies have been 
published related to human activity recognition. The first 
HAR system was proposed by authors in [20], which uses 
five wearable dual-axis accelerometers and machine learning 
classifiers to recognise 20 ADLs with an impressive 84% 
classification accuracy. Combining accelerometers with 
gyros has been shown to boost recognition performance 
[21, 22]. Data from smartphone inertial sensors were used 
for classification alongside expert hybrid models to create 
a HAR system in [23] that could be used to identify five 
transport activities. The authors of [24] proposed a system 
for offline HAR that makes use of a smartphone equipped 
with a three-axis accelerometer. The smartphone was hidden 
in a pocket during the experiment. An activity recognition 
system was developed in [25] by attaching a smartphone to 
the user’s waist and using the device’s inertial sensors.

Single-data modality and multi-data modality approaches, 
such as fusion-based and co-learning-based frameworks, 
are presented by the authors of [11, 26]. In [27–30], the 
authors analyse several prominent studies that employ vari-
ous sensing technologies to carry out HAR tasks by means 
of machine learning (ML) methods. Improved recognition 
accuracy in HAR has been achieved through the applica-
tion of deep learning techniques in recent years. The accu-
racy of these deep learning models is vastly superior to that 
of more conventional recognition strategies. In their sur-
vey of the relevant literature, the authors of [31] find that 
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Fig. 2  Taxonomy of this review
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Convolutional Neural Networks (CNNs), Long Short-Term 
Memories (LSTMs), and Support Vector Machines (SVMs) 
are the most effective methods. In [32, 33], the benefits and 
advantages of multi-user activity recognition are laid out, 
along with the sensing methods, recognition approaches, and 
practical applications that make use of them, as well as the 
challenges and techniques involved in data fusion. [34] sum-
marises the deep learning techniques used in smartphone 
and wearable sensor-based recognition systems. In [35], 
authors concentrated primarily on techniques for recognis-
ing human actions and interacting with inanimate objects. 
For the purpose of action classification inferred from time 
series of 3D skeletons, Presti et al. [36] provided a survey of 
human action recognition based on 3D skeletons, summa-
rising the main technologies, including hardware and soft-
ware. Further, Kang and Wildes [37] presented the results of 
another survey. It provided a concise summary of algorithms 
for recognising and detecting actions, with an emphasis on 
feature encoding and classification.

3  Datasets

As interest in human action recognition algorithms has 
grown, many datasets have been recorded and made avail-
able to the research community. Improvements in action 
recognition have largely been shown on industry-standard 
benchmark datasets. With these data sets, we can test and 
compare various approaches to a problem. We provide a 
brief overview of the most relevant publicly available data-
sets in this area.

3.1  Sensor‑Based Dataset

To impartially compare the efficacy of deep learning and 
machine learning-based solutions for HAR [39], researchers 
have compiled a wide range of benchmark datasets. The sub-
ject’s head, shin, forearm, chest, upper arm, thigh, waist, and 
legs were all used to collect motion signals for the dataset’s 
embedded sensors. Smartphones are tucked into pants or a 
shirt, and smartwatches are wrapped around the dominant 
hand. Sensors in these devices include things like acceler-
ometers, gyroscopes, magnetometers, temperature sensors, 
and ambient light detectors, among others. Time series data 
from the MotionSense dataset [38], for example, includes 
12 features (attitude.roll, attitude.pitch, attitude.yaw, 
gravity.x, gravity.y, gravity.z, rotationRate.x, rotationRate.y, 
rotationRate.z, userAcceleration.x, userAcceleration.y, 
userAcceleration.z), as shown in Fig. 3. Subjects’ ages, 
heights, weights, and other biometric characteristics are 
described in different ways across datasets’ collected sig-
nals. As part of the sensory data collection process, the sub-
jects are given both simple and complex tasks to complete. 
Traveling by foot, jumping, lying down, running, jogging, 
ascending and descending stairs, and pedaling a bicycle are 
all easy. Complex tasks include preparing meals, laundering 
clothes, and cleaning the kitchen. Table 1 gives an overview 
of several representative benchmark datasets based on sen-
sors for HAR.

3.1.1  PAMAP2

In the PAMAP2 Physical Activity Monitoring dataset, nine 
subjects wore three inertial measurement units and a heart 

Fig. 3  Sample from MotionSense dataset [38]
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rate monitor while engaging in eighteen distinct physical 
activities (such as walking, cycling, playing soccer, etc.). 
Dataset can be used for training and testing algorithms 
for data processing, segmentation, feature extraction, and 

classification; activity recognition; and intensity estima-
tion. Three Colibri inertial measurement units operate 
on a wireless signal (IMU). The rate of sampling is 100 
Hz. One IMU is worn on the dominant hand’s wrist. One 

Table 1  An overview of some representative benchmark sensor-based datasets for HAR (IMU inertial measurement unit, HR Heart rate, ECG 
Electrocardiogram, Acc. Accelerometer, SP Smartphone, SW smart watch)

Dataset Year Sampling frequency Environment Devices Subjects Activities Key features

Daphnet [44, 45] 2010 64 Hz Lab 3 Acc 3 10 A data set created to 
compare different 
automatic gait freeze 
recognition methods 
using data collected 
from accelerometers 
attached to the user’s 
hips and legs

PAMAP2 [46–48] 2012 100Hz Lab 3 IMU, 1 HR Monitor 18 9 Training and testing 
for data processing, 
segmentation, feature 
extraction, and classi-
fication, and estimat-
ing the intensity of 
activities

OPPORTUNITY [49, 50] 2012 50Hz Home 9D IMU 4 6 Dataset from Wearable, 
Object, and Ambient 
Sensors to provide a 
standard against which 
human activity recogni-
tion algorithms can be 
evaluated

UCI-HAR [51–53] 2013 20Hz Out of Lab 9D IMU 51 18 Time-series sensor 
information from a 
smartphone and smart-
watch accelerometer 
and gyroscope

MHEALTH [54–56] 2014 50Hz Out of Lab 9D IMU, ECG 10 12 Acceleration, Rotational 
velocity, and magnetic 
field orientation are all 
measured by sensors 
strapped to the subject’s 
chest, right wrist, and 
left ankle

HHAR [57–59] 2015 100-200 Hz Out of Lab SP, SW 9 6 Acceleration, Developed 
to study how sensor 
heterogeneities affect 
human activity recogni-
tion algorithms

UniMiB-SHAR [60–62] 2017 50 Hz Controlled SP 30 17 Samples of accelera-
tion collected using an 
Android smartphone 
specifically designed 
for human activity 
recognition and fall 
detection

Skoda checkpoint [63–65] 2017 98 Hz Controlled 20 3D Acc 1 10 To address human 
movement complex-
ity, noise from sensing 
devices, and individual 
differences in factory 
maintainence
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inertial measurement unit is worn on the chest. One IMU is 
implanted in the ankle of the dominant foot The sampling 
rate of the HR monitor is 9Hz [40].

3.1.2  HHAR

Collected from Smartphones and Smartwatches, Heterogen-
ity HAR is designed to benchmark human activity recogni-
tion algorithms (classification, automatic data segmentation, 
sensor fusion, feature extraction, etc.) in real-world contexts; 
specifically, the dataset is gathered with a variety of dif-
ferent device models and use-scenarios, in order to reflect 
sensing heterogeneities to be expected in real deployments. 
Data from two smartphone motion sensors are included in 
the dataset. Smartwatches and smartphones were worn as 
readers carried out scripted activities in a random order. The 
accelerometer and gyroscope, both built into the device, are 
used as sensors, with their readings sampled as frequently 
as possible. There are eight mobile devices total, includ-
ing four smartwatches (two LG watches and two Samsung 
Galaxy Gears) and four smartphones (two Samsung Galaxy 
S3 minis, two Samsung Galaxy S3, two LG Nexus 4s, and 
two Samsung Galaxy S+s). Nine people’s recordings have 
been made [41].

3.1.3  UCI‑HAR

The human Activity Recognition database collected data 
from 30 people while they went about their daily lives with a 
smartphone attached to their waists and equipped with iner-
tial sensors. Thirty volunteers between the ages of 19 and 
48 participated in the experiments. The participants moved 
through six different positions while wearing a Samsung 
Galaxy S II smartphone on their waist: walking, walking 
upstairs, walking downstairs, sitting, standing, and lying 
down. We recorded 3-axis linear acceleration and 3-axis 
angular velocity at a rate of 50 Hz using its built-in acceler-
ometer and gyroscope. In order to manually label the data, 
the experiments have been filmed. This obtained dataset 
was then randomly split in half, with 70% of the volunteers 
used to produce the training data and 30% used to produce 
the test data. The accelerometer and gyroscope signals were 
pre-processed with noise filters and then sampled in fixed-
width sliding windows of 2.56 seconds and 50% overlap 
(128 readings/window). Using a Butterworth low-pass fil-
ter, we were able to disentangle the gravitational and body-
motion components of the acceleration signal recorded by 
the sensor. Since it is assumed that the gravitational force 
consists entirely of low-frequency components, a filter with 
a cut-off frequency of 0.3 Hz was employed. To create a vec-
tor of features, time and frequency domain variables were 
calculated for each window [42].

3.1.4  OPPORTUNITY

OPPORTUNITY dataset is created to evaluate and compare 
human activity recognition algorithms for HAR from Wear-
able, Object, and Ambient Sensors (classification, automatic 
data segmentation, sensor fusion, feature extraction, etc). 
The data set is made up of motion sensor readings gathered 
while users went about their daily routines. There are a total 
of 14 sensors–7 IMUs, 12 3D acceleration sensors, and 4 3D 
localization sensors-that can be worn on the body. There are 
a total of 12 objects with 3D acceleration and 2D rate of turn 
measured by the object sensors. There are 13 switches and 8 
3D acceleration sensors that detect the surrounding environ-
ment. Six trials were recorded for each of four users. Five 
of these are ADLI runs, in which daily tasks are completed 
in an unforced and organic manner. The sixth iteration is a 
“drill” iteration, wherein users carry out a predetermined 
series of actions. The user’s actions throughout the scenario 
are annotated at various tiers, and this is reflected in the 
classes that are used to describe them. There are 13 “low-
level actions” that link 13 actions to 23 objects, 17 “mid-
level gesture” classes, and 5 “high-level activity” classes 
that represent different “modes of locomotion.” Activity 
recognition environments and scenarios are built to pro-
duce a large number of realistic activity primitives. Each 
participant worked in a space designed to replicate a studio 
apartment, complete with a deckchair, kitchen, doors lead-
ing to the outdoors, coffee machine, table, and chair. There 
are a total of 6 separate runs for each subject. Five of these 
tasks, known as ADLs (activities of daily living), were car-
ried out in accordance with the conditions described below. 
The other option is a drill run, which is meant to produce 
many separate instances of the activity being tested. As the 
ADL run progresses, different events take place. Numerous 
action primitives happen in every context (like making a 
sandwich) (e.g. reaching for bread, moving to the bread cut-
ter, operating the bread cutter) [43].

3.1.5  MHEALTH

The purpose of the MHEALTH (Mobile Health) dataset is 
to serve as a benchmark for methods of human behaviour 
analysis using multimodal body sensing. Ten volunteers 
representing a wide range of backgrounds participated in 
the MHEALTH (Mobile HEALTH) study, which recorded 
their body movements and vital signs as they engaged in 
a variety of physical activities. The subject wears sensors 
on their chest, wrist, and ankle, which record accelera-
tion, rotational velocity, and magnetic field orientation. 
The sensor can also take 2-lead ECG readings when 
placed on the chest, which can be used for basic heart 
monitoring, checking for various arrhythmias, or studying 
the ECG’s response to physical exertion. This dataset was 
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compiled from recordings of body motion and vital signs 
made by 10 volunteers with varying backgrounds as they 
engaged in 12 different types of physical activity. The 
data was collected using Shimmer2 [BUR10] wrist-worn 
sensors. The subject had elastic straps attached to their 
chest, right wrist, and left ankle where the sensors were 
placed. By employing several sensors, we are able to more 
accurately capture the body’s dynamics by measuring the 
acceleration, rate of turn, and magnetic field orientation 
that are experienced by various parts of the body. The 
chest-mounted sensor also provides two-lead electrocar-
diogram readings, but these are not used in training the 
recognition model. As an example, this data can be used 
for routine heart monitoring, the diagnosis of arrhyth-
mias, or the study of how physical activity affects the 
electrocardiogram (ECG). The sampling rate of 50 Hz 
is used for all sensing modalities because it is adequate 
for recording human activity. A video camera captured 
each meeting. Given the variety of body parts involved 
in each action (e.g., the frontal elevation of arms versus 
knees bending), the intensity of the actions (e.g., cycling 
versus sitting and relaxing), and their execution speed or 
dynamicity, this dataset is found to generalize to common 
activities of the daily living (e.g., running vs. standing 
still). Activities were collected in a non-laboratory setting 
with no requirements for how they should be performed 
beyond the subject’s best effort [66].

3.1.6  UniMiB‑SHAR

Android smartphones were utilised in the data collection 
process for UniMiB SHAR, a dataset designed for HAR 
and fall detection. Thirty people, ranging in age from 18 
to 60, contributed 11,771 samples of human activities 
and falls. The samples are organised into 17 fine-grained 
classes that are then grouped into two coarse-grained 
classes, one of which includes examples of 9 different 
ADLs and the other of which includes examples of 8 dif-
ferent types of falls. The dataset was saved with all the 
information necessary to select samples based on various 
criteria, such as the type of ADL performed, the age, 
the gender, and so on. Finally, four distinct classifiers 
and two distinct feature vectors have been benchmarked 
on the dataset. Four different classification tasks (fall 
vs. no fall, 9 activities, 8 falls, 17 activities, and falls) 
were tested and analysed. We ran both a fivefold cross-
validation (where all subjects’ samples were used in both 
the training and test datasets) and a leave-one-subject-out 
cross-validation on each classification task (i.e., the test 
data include the samples of a subject only, and the train-
ing data, the samples of all the other subjects) [68]

3.1.7  UCIHAPT

Thirty subjects were recorded while they performed eve-
ryday tasks and posture changes while wearing a smart-
phone attached to a belt with inertial sensors to create an 
activity recognition data set. Thirty volunteers between 
the ages of 19 and 48 took part in the experiments. Six 
fundamental movements were performed, including three 
static postures (standing, sitting, and lying) and three 
dynamic activities (walking, walking downstairs, and 
walking upstairs). As part of the study, we also tracked 
the subjects’ postural changes as they moved between the 
various static positions. The transitions include standing 
to sitting, sitting to standing, lying down to sitting, lying 
down to lying down, standing to lying down, and lying 
down to standing up. During the course of the experiment, 
each participant wore a smartphone (a Samsung Galaxy S 
II) at their waist. Using the device’s built-in accelerom-
eter and gyroscope, we recorded linear acceleration in all 
three directions and angular velocity in all three directions 
at a steady 50 Hz. Video recordings of the experiments 
were taken so that the data could be manually annotated. 
A random split was performed on the obtained dataset, 
with 70% of the volunteers used to produce the training 
data and 30% used to produce the test data. Noise filters 
were applied to the accelerometer and gyroscope signals 
before they were sampled in fixed-width sliding windows 
of 2.56 seconds with 50% overlap (128 readings per win-
dow). Using a Butterworth low-pass filter, we were able to 
disentangle the gravitational and body-motion components 
of the acceleration signal recorded by the sensor. As it 
is generally accepted that the gravitational force consists 
entirely of low-frequency components, a filter with a cutoff 
frequency of 0.3 Hz was employed. By summing up time- 
and frequency-domain variables for each window, a vector 
of 561 features was derived [23].

3.2  Video‑Based Dataset

The goal of these datasets is to provide difficult videos of 
people acting in natural settings with varying backgrounds 
and lighting. But these deeds are not “real.” Then, many 
scientists have created new realistic benchmark datasets by 
extracting realistic situations from movies or sports videos 
on social networks like YouTube. The general approach 
in these datasets is to collect videos from “in-the-wild” 
sources with many clips and action classes. Due to their 
massive size, it is easy to see that many datasets are cre-
ated with deep learning algorithms in mind. Table 2 gives 
an overview of several representative benchmark datasets 
based on image/video for HAR.
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3.2.1  UCF101

The UCF101 dataset was built using YouTube’s realistic 
action videos and 101 distinct action categories to train a 
computer to recognize specific types of motion. The 50-cat-
egory UCF50 data set has been expanded here. The UCF101 
data set is the most difficult to date because it contains 13320 
videos from 101 action categories and the widest range of 
challenges in terms of camera motion, object appearance 
and pose, object scale, viewpoint, cluttered background, 
illumination conditions, etc. UCF101 seeks to inspire more 
research into action recognition by learning and exploring 
new realistic action categories, as most existing data sets are 
not naturalistic and are staged by actors. The videos in each 
of the 101 action categories are further divided into 25 sub-
categories, with 4-7 videos per subcategory. There may be 
commonalities between the videos in a set, such as a shared 
setting or point of view [69].

3.2.2  SPORTS‑1M

More than a million clips from YouTube’s Sports channel 
make up the Sports-1M dataset. The authors provided a You-
Tube URL where users can access the dataset’s video clips. 
Since the dataset was created, roughly 7% of the videos have 
been deleted by their creators on YouTube. In spite of this, 
the dataset still contains over a million videos, split across 
487 distinct sports-related categories with anywhere from 
one thousand to three thousand clips in each. By analyzing 
the text metadata of the videos and using the YouTube Top-
ics API, the videos are automatically categorized into 487 
different types of sports (e.g. tags, and descriptions). Only 
about 5 percent of the videos have annotations for more than 
one category [67] as shown in Fig. 4.

3.2.3  NTU RGB+D

Large-scale RGB-D HAR dataset developed at NTU. There 
are 56,880 data points representing 60 different classes of 
action, gathered from 40 different people. The actions can be 
generally divided into three categories: 40 daily actions (e.g., 
drinking, eating, reading), nine health-related actions (e.g., 
sneezing, staggering, falling down), and 11 mutual actions 
(e.g., punching, kicking, hugging) (e.g., punching, kicking, 
hugging). There are 17 distinct scene conditions that these 
events that occur in across 17 videos (i.e., S001-S017). 
Three cameras were used to record the events, one each at 
a 45-degree, 0-degree, and +45-degree horizontal imaging 
viewpoint. Action characterization is supported by a wide 
variety of data types, from depth maps and 3D skeleton joint 
positions to RGB frames and infrared sequences. The per-
formance evaluation is performed by a cross-subject test that 
split the 40 subjects into training and test groups, and by a 
cross-view test that employed one camera (+45-degree) for 
testing, and the other two cameras for training [70].

3.2.4  ActivityNet

The ActivityNet dataset includes 849 hours of videos culled 
from YouTube, in addition to 200 distinct categories of 
activities. ActivityNet is the largest benchmark for tempo-
ral activity detection to date in terms of both the number of 
activity categories and the number of videos, which makes 
the task particularly challenging. ActivityNet was developed 
by Microsoft Research and consists of a large collection of 
videos. The dataset, version 1.3, includes a total of 19994 
unedited videos and is separated into three subsets: train-
ing, validation, and testing in the proportions of 2:1:1. Each 
activity category has, on average, 137 videos that have not 

Fig. 4  Sample from SPORTS-1M dataset [67]
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been edited. On average, there are 1.41 activities that have 
temporal boundaries attached to them across all of the vid-
eos. Annotations of test videos’ ground truth are not made 
available to the public [71].

3.2.5  KTH Action

In 2004, the KTH Royal Institute of Technology was the 
first institution to make an effort to develop a non-trivial 

dataset that was made available to the public for the pur-
pose of action recognition. The KTH dataset is one of the 
most common datasets, and it includes six different actions: 
walking, jogging, running, boxing, and hand-clapping with 
both hands. In order to capture the nuances of each per-
formance, each action is carried out by a different one of 
25 different people, and the environment is systematically 
changed for each actor in each action. Variations on the set 
include the following: outdoors (s1), outdoors but with a 

Table 2  An overview of some representative benchmark video-based datasets for HAR (S Skeleton, D Depth, IR Infrared, Au Audio, Ac Accel-
eration, Gyr Gyroscope)

Dataset Year Total samples Modality View Devices Subjects Activities Key features

KTH [72, 73] 2004 2391 RGB Single 1 Camera 25 6 Variations in experimenta-
tion include outdoor, out-
door with scale, outdoor 
with different clothes, and 
indoor setting

UCF101 [74, 75] 2012 13320 RGB Single n/a n/a 101 Variety in terms of actions, 
range of variations in 
camera motion, object 
appearance and pose, 
object scale, viewpoint, 
cluttered background, and 
lighting conditions

HMDB-51 [76, 77] 2013 31838 RGB,S Single n/a n/a 51 Each clip is tagged with a 
category label, an action 
label, and a meta-label 
that describes the clip’s 
property

DHA [78, 79] 2012 357 RGB,D Multiview n/a 23 21 An efficient local spati-
otemporal descriptor for 
recognising actions in 3D 
video

NTU RGB+D [80, 81] 2016 56880 RGB, S, D, IR Multiview 3 40 60 3D skeletal data includes the 
3D coordinates of 25 body 
joints at each frame, while 
RGB videos have a resolu-
tion of 1920 × 1080

Something-Something-v1 
[82, 83]

2017 108499 RGB n/a n/a n/a 174 Massive, meticulously 
labelled video clips of 
people using common-
place items to perform 
commonplace tasks

Kinetics-400 [84, 85] 2017 306245 RGB Single n/a n/a 400 Include interactions between 
people and things, like 
playing an instrument, and 
between people, like shak-
ing hands

MMAct [86, 87] 2019 36,764 RGB, S, Ac, Gyr Egocentric n/a 20 37 Includes four different 
scenarios that cover a wide 
variety of everyday uses, 
from desk-based tasks to 
check-ins

EPIC-KITCHENS-100 
[88, 89]

2020 89979 RGB, Au, Ac Egocentric n/a 45 n/a large-scale dataset recorded 
in first-person (egocen-
tric) view; multimodal, 
naturalistic recordings in 
their habitats
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scale change (s2), outdoors but with different clothes (s3), 
and indoors (s4). The ability of each algorithm to recognize 
actions independent of the background, the appearance of 
the actors, and the scale of the actors are put to the test by 
these variations [90].

3.2.6  HMDB‑51

A new frontier in computer vision research, video recog-
nition, and search are becoming increasingly important as 
nearly one billion videos are viewed daily online. While 
large, static image datasets with thousands of categories 
have received a lot of attention, human action datasets have 
lagged far behind. In this article, we present HMDB com-
piled from a wide range of media, primarily motion pictures 
but also including some data from publicly available sources 
like the Prelinger archive, YouTube, and Google Videos. 
There are a total of 6849 clips in the dataset, and they’ve 
been broken down into 51 different categories of action. 
There are five distinct kinds of action categories: Expres-
sions like smiling, laughing, chewing, and talking are exam-
ples of general facial actions. Smoking, eating, and drinking 
is examples of masticatory facial actions. Cartwheel, clap 
hands, climb, climb stairs, dive, land on your back, backhand 
flip, handstand, jump, pull up, push up, run, sit down, sit up, 
somersault, stand up, turn, walk, and wave is all examples 
of general body movements. Body motions involving the 
use of an object: brushing hair, drawing a sword, dribbling 
a ball, playing golf, hitting a ball, kicking a ball, picking up 
an object, pouring, pushing, riding a bike, riding a horse, 
shooting a bow, firing a gun, swinging a baseball bat, swing-
ing a sword, and throwing. Human interaction body motions 
include fencing, hugging, kicking, kissing, punching, and 
shaking hands [91].

4  Pre‑processing Methodologies

Certain pre-processing techniques must be used before 
feeding data to a deep model to achieve satisfactory perfor-
mance. Here are some common pre-processing techniques 
used:

4.1  Data Segmentation

Typically, the duration of activity exceeds the sampling rates 
of the sensors. That’s why you need more than just a single 
sample from a sensor at a single point in time to accurately 
identify an event. As a result, the segmentation method 
needs to be used to analyse the collected signals rather than 
relying solely on a sample basis. Segmenting data allows 
for individual data points to be associated with a given task 
[92]. Segmenting windows by time, events, or actions are 

the three main types. By contrast, the event-driven windows 
method uses estimation techniques to partition sensor sig-
nals into event-based windows, while time-driven windows 
segmentation splits the signal into many consecutive win-
dows of fixed-size time intervals. Finally, individual activ-
ity windows are identified through action-driven windows 
segmentation. These techniques are sensitive to the window 
size, despite the fact that they are useful for real-time appli-
cations and don’t necessitate any pre-processing steps. Alter-
natively, to address the shortcomings of fixed-size sliding 
window methods, an adaptive sliding window segmentation 
approach for physical HAR using a triaxial accelerometer 
was introduced [93]. By analysing data from the sensor 
signal, the window size can be adjusted. Segmentation is 
a necessary step in video-based human activity recognition 
(HAR). It involves dividing the video into segments, each of 
which represents a single action. Segmentation can be per-
formed manually or automatically. Manual segmentation is 
typically done by a human observer who watches the video 
and identifies the start and end points of each action. This 
can be a time-consuming and labor-intensive process, but 
it can be very accurate. Automatic segmentation methods 
use computer algorithms to identify the start and end points 
of actions. These methods can be faster and more efficient 
than manual segmentation, but they may not be as accurate. 
The best method for segmentation depends on the specific 
application. For example, if accuracy is critical, manual 
segmentation may be the best option. However, if speed 
and efficiency are more important, automatic segmentation 
may be a better choice. In the case of video-based HAR or 
biosignal collection supplemented by the video camera(s) 
recording the whole process, the acquired dataset will be 
segmented by dedicated persons relying on the video. This 
is because manual segmentation is typically more accurate 
than automatic segmentation for this type of data [94, 95].

4.2  Data Scaling

Unless the raw attributes have meaning in the original 
domain, raw data are usually not sufficient for machine 
learning methods [96]. Because deep models typically 
perform best on inputs with low values, we often need to 
rescale the raw data to a certain range to make it usable by 
the models (e.g., between 0 and 1). It is computationally 
expensive and could cause overflow on digital computers if 
a model is trained with excessively large input values [97]. 
Normalization and standardisation are two common methods 
of scaling. The deep learning algorithms excel at processing 
time-series signals for the purposes of feature extraction and 
classification because of the advantages of local depend-
ency and scaling invariance [34]. As a result, there has been 
a recent uptick in interest in using deep learning models 
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like CNN, LSTM, and hybrid models for human activity 
recognition.

4.3  Data Denoising

It is common for sensor data to contain artefacts like errors 
in calibration and operation, problems with placement, back-
ground noise, and concurrent uses. As a result, the generated 
noise can be reduced with the help of data pre-processing 
techniques. Low-pass filter, mean filter, linear filter, wavelet 
filter, and Kalman filter[98] are common denoising tech-
niques. In their analysis, Ignatov et al. found that background 
noise was present during data collection. So, they used a 
method called singular value decomposition to cut down on 
the background commotion [99]. Pre-processing techniques 
for sensor data have been proposed in other studies [100]. 
The authors generated a new signal by incorporating white 
noise as random noise into the desired signal for each input 
signal. White noise dampens the clamour of humans’ kinetic 
actions while keeping low-frequency elements intact.

4.4  Data Label Encoding

Categorical labels are typically used to describe activities 
like walking and shopping; however, deep models require all 
input data to be numeric, so this eliminates them as potential 
sources of information. If we assign an integer value to each 
label, we can easily accomplish this. Since the model may 
try to learn an ordering relationship in categories, integer 
encoding may not perform well. Common practise suggests 
encoding the label with a single “hot” character instead 
[101]. One hot encoding relies on an identity matrix whose 
size is proportional to the number of activity types. Activites 
are represented in the table by rows, each of which contains 
exactly one element with the value 1.

4.5  Feature Selection

Selecting relevant features for classification algorithms 
to use is known as feature selection [102]. Furthermore, 
it simplifies high-dimensional spaces and saves time by 
discarding superfluous details. In representation learning, 
models focus on analysing data to extract a good feature 
set as an alternative to traditional feature selection [103]. 
In order to select a subset of features, filtering techniques 
use the correlation coefficient to rank the original features, 
taking advantage of the variables’ and features’ inherent 
characteristics. The extracted feature subset is not evalu-
ated by a classifier in filter-based feature selection. As 
many classifiers are used to evaluate the selected subsets in 
wrapper methods, it has been shown to achieve better per-
formance than filter methods [104]. Conversely, embedded 

methods pick the best feature subset by determining the 
optimal weights of a function that has shown to produce 
excellent results in the past. While wrapper approaches are 
limited to univariate problems, embedded methods can be 
applied to multiclass and regression issues.

4.6  Data Transformation

Before using the input data to train a deep model, it is 
often helpful to perform certain transformations on the 
data. The input data’s correlations can be lowered with 
the help of transformations. As a generalisation of stand-
ardisation, “whitening” (also known as “sphering”) is a 
linear transformation that returns a vector with the unit 
diagonal white covariance instead of the original vector’s 
covariance. To help deep learning models learn features 
more quickly and accurately, PCA whitening is a common 
preprocessing technique [105, 106]. In order to reduce the 
input data’s correlations, ZCA whitening is another com-
mon preprocessing method. There is a connection between 
PCA whitening and ZCA whitening [107], and the ZCA 
whitening matrix can be obtained by multiplying the PCA 
whitening matrix by an orthogonal matrix. Since a lot of 
HAR sensor data (like accelerometer readings) is typically 
a time series, spectrogram analysis could be useful for cap-
turing variations in the input data. The Fourier transform 
[108] or the wavelet transform [109] can be used to create 
spectrograms, which are time-varying representations of 
the frequency spectrum of the input signal.

5  Deep Learning (DL) Techniques 
for Sensor‑Based HAR

Over the past few years, DL methods have consistently 
outperformed traditional ML methods on a wide variety 
of HAR tasks. Increases in both the quantity and quality of 
available data, the speed with which computing hardware 
can process that data, and improvements in the underly-
ing algorithms are all major contributors to deep learn-
ing’s success. The proliferation of freely available datasets 
online has facilitated the rapid development of complex 
models by researchers and developers. The advent of 
graphics processing units (GPUs) and field-programmable 
gate arrays (FPGAs) has greatly reduced the length of time 
required to train elaborate and large models [110, 111]. 
Finally, technological progress in optimization and train-
ing methods has speed up the learning procedure. Here we 
will go over some of the deep learning-based sensor-based 
HAR initiatives that have been made.
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5.1  Deep Belief Networks (DBNs)

Among the earliest and most promising deep models for 
HAR, DBNs stand out. The authors of [112] present a DBN-
based method for activity detection in voice signals. DBNs 
with four hidden layers were used by the authors of [113] 
to detect routines in a smart home. The authors of [114] 
introduced the DBN method for facial expression recogni-
tion, which consists of three separate layers. Some research-
ers used EEG data in conjunction with a DBN to create a 
system for identifying feelings (see [115]). DBNs, unlike 
other directed generative models, are able to infer the states 
of hidden units with just a single forward pass [116]. The 
obtained weights can be used to initialise any number of 
feature-detection layers in a classification network. DBNs 
have existed for some time, but they are rarely employed due 
to the challenges inherent in both directed and undirected 
models, such as the inability to perform inference to mar-
ginalise out the hidden units and the inability to determine 
the partition function of the top two layers [117].

5.2  Deep Boltzmann Machines (DBMs)

The factorial nature of the conditional distribution over a 
single DBM layer is made possible by the fact that a DBM 
can be represented as a bipartite graph [119]. DBMs are 
easier to implement and implement, but they provide more 
accurate posterior approximations [117]. The log probability 
of the training data has a set of variational bounds [120] that 
cannot be explicitly optimized in DBNs. DBMs are distinct 
in that all the hidden units in a single layer are conditionally 
independent given the other layers, making it possible to 
optimize the variational bounds. Some DBM-based works 
have been completed for HAR so far. When it comes to rec-
ognizing gestures, transportation modes, and indoor/outdoor 
activities, Bhattacharya and Lane [121] used a three-layer 
model composed of RBMs. For automatic activity recogni-
tion, Plötz et al. [122] presented a DBM-based method for 
learning features from data. To perform a variety of audio 
sensing tasks (such as ambient scene analysis, emotion rec-
ognition, stress detection, and speaker identification), Lane 
et al. [123] proposed a deep model made up of three layers 
of RBMs. As for mobile HAR, Radu et al. [124] presented a 
DBM learning method that incorporates multiple modalities.

The fact that a DBM can be represented as a bipartite 
graph [119] allows for the factorial nature of the condi-
tional distribution over a single DBM layer. DBMs offer 
more precise posterior approximations [117] while being 
simpler to implement and use. Because of these variational 
bounds [120], DBNs are unable to perform an explicit opti-
mization of the log probability of the training data. DBMs 
are unique because it is possible to optimise the variational 
bounds because all the hidden units in a single layer are 

conditionally independent given the other layers. Existing 
work for HAR makes use of DBM. In [121], a three-layer 
RBM model was used for recognising gestures, transpor-
tation modes, and indoor/outdoor activities. In [122], the 
authors presented a DBM-based method for learning features 
from data that could be used for automatic activity recogni-
tion. It was proposed in [123] that a deep model consisting 
of three layers of RBMs be used to perform a wide range of 
audio sensing tasks, including ambient scene analysis, emo-
tion recognition, stress detection, and speaker identification. 
In [124], the authors presented a DBM learning approach 
for mobile HAR that makes use of several different sensory 
modalities.

5.3  Autoencoder

The mean squared error along with KL divergence are the 
two loss functions that are utilised the most frequently 
when training autoencoders. To classify accelerometer and 
gyroscope sensor data. For the purpose of exploring useful 
feature representations, the authors of [125] introduce an 
autoencoder architecture that makes use of both a sparse 
autoencoder and a denoising autoencoder. Using a freely 
available HAR dataset [42] hosted in the UCI repository, 
authors evaluated the efficacy of the principal component 
analysis (PCA), the Fast Fourier Transform (FFT). The 
results show that the stacked autoencoder provides the great-
est improvement (7%) and the highest accuracy (92.16%). 
(compared to conventional methods using hand-crafted fea-
tures). Another common use for autoencoders is the cleaning 
and de-noising raw sensor data [118, 126, 127], as noise is 
a pertaining issue with the wearable signals as they induce 
obstruction in the ability to learn patterns from them, as 
shown in Fig. 5 . In [126], Mohammed and Tashev looked 
into the feasibility of using sensors sewn into everyday 

Fig. 5  Recognizing human actions through a convolutional neural 
network (CNN). One sensor dataset per convolutional network. Next, 
the fully-connected layer receives the combined convolutional net-
work outputs as input [118]
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garments for HAR. However, they found that the mean sig-
nal-to-noise ratio (SNR) of sensors worn on loose clothing is 
low due to the presence of numerous motion artefacts. Using 
the UCI dataset, Gao et al. [42, 118] investigate the potential 
of stacking autoencoders for de-noising raw sensor data in 
order to enhance HAR. As soon as the denoised signals are 
ready, we use LightGBM (LBG) to categorize the activi-
ties. Authors in [38] present a architecture i.e., Guardian-
Estimator-Neutralizer (GEN) that identify tasks while pro-
tecting the identities of participants based on their gender. 
GEN’s goal is to filter out any potentially sensitive informa-
tion from the raw data and produce a new set of features. 
Data is transformed into an inference-specific representa-
tion by the Guardian, which is built using a deep denoising 
autoencoder. By making educated guesses about what parts 
of the transformed data are sensitive and what parts are not, 
the Estimator guides the Guardian. We try to identify an 
activity without revealing a person’s gender so as to pro-
tect their anonymity. As an optimizer, the Neutralizer aids 
the Guardian in arriving at a transformation function that is 
nearly optimal. To gauge how well the proposed framework 
performs, it is tested on both the existing publically avail-
able MobiAct [128] and a new dataset called MotionSense.

5.4  Convolutional Neural Networks

Convolution layers, pooling layers, detector layers (like 
ReLU layers), and fully connected layers are the four stand-
ard types of layers in a basic CNN. A complex CNN can be 
constructed by stacking these layers. Due to CNNs’ impres-
sive results across many applications, especially in image 
classification, many different types of CNNs have been pro-
posed [129]. CNN, one of the earliest and most successful 
deep learning models, has also seen extensive use in sensor-
based HAR. Using a CNN, Ronao and Cho [130] were able 
to distinguish between six distinct locomotion activities and 
show that their method was superior to MLP, Naive Bayes, 
and SVM. Authors in [131] used a distributed CNN and ana-
lysed the effect of sensor location (such as the legs, body and 
arms) on activity recognition to identify some intermediate-
level activities (e.g., opening a drawer). Improving perfor-
mance, the authors of [132] combined handcrafted time and 
frequency domain features with features generated from a 
CNN, called HAR-Net, to classify six locomotion activi-
ties from smartphone accelerometer and gyroscope signals. 
The authors of [133] have proven that a shallow three-layer 
CNN network can successfully recognise activities occur-
ring locally on a device running on a limited amount of 
system resources. Layers of the network are convolutional, 
fully connected, and softmax. Similarly, authors in [134] 
and in [135] employed a modest layer count (four layers). 
A crucial decision in training CNNs is the selection of the 
loss function to be used. Cross-entropy is typically used for 

classification tasks and mean-squared error for regression. 
In [136] authors propose the first shallow CNN to consider 
cross-channel communication, in contrast to traditional CNN 
models which process input data by extracting and learn-
ing channel-wise features independently. Different chan-
nels within the same layer work together to isolate specific 
features from sensor data. A convolutional neural network 
(CNN) was developed by authors in [137] to identify com-
mon actions and gestures. The authors of [138] presented a 
convolutional neural network (CNN) that uses partial weight 
sharing and full weight sharing for HAR, trained on multi-
modal data (such as accelerometers and gyroscope sensors). 
Using information gathered from mobile devices’ sensors, 
Zeng et al. [134] developed a convolutional neural network 
(CNN) for HAR. Using information gleaned from an accel-
erometer, a magnetometer, a gyroscope, and a barometer, 
authors of [16] proposed using convolutional neural net-
works (CNNs) to identify locomotion activities.

5.5  Recurrent Neural Network (RNN)

Several RNN-based models, such as Continuous Time RNN 
(CTRNN) [141], Independently RNN (IndRNN) [142], and 
Personalized RNN (PerRNN) [143], have been proposed by 
researchers to enhance the effectiveness of RNN models for 
human activity recognition. In contrast to earlier models that 
only took into account a single dimension of time-series 
input, as shown in Fig. 6, the CNN layer of the CNN + RNN 
model developed by the authors in [139] receives stacked 
multisensor data from each channel for fusion. To solve the 
domain adaptation issue brought on by session-to-session, 
sensor-to-sensor, and subject-to-subject variations, Ketykó 
et al. [144] employ a recurrent neural network. Residual net-
works have the advantage of being much easier to train than 
convolutional networks because gradients can pass through 
the addition operator more directly. Gradients are not hin-
dered by residual connections, and the layer outputs may be 
improved with their help. The accuracy of a model trained 
with raw accelerometer and gyroscope data is improved from 
80% to 92% by combining LSTM with batch normalisation, 
as proposed in [145], while the harmonic loss function is 
proposed in [146]. Activity recognition with data from mul-
tiple wearable sensors is proposed in [147], where a convo-
lutional neural network (CNN) and long short-term memory 
model (LSTM) are suggested. RNNs have been widely used 
for HAR because activity recognition can be viewed as a 
sequential problem. Although RNNs can be used as genera-
tive models [148], they are more commonly thought of as 
a type of discriminative model. The discriminative RNNs 
are employed in the field of HAR. It is trained using super-
vised methods, which aim to reduce a cost function associ-
ated with network output and its associated label. Using a 
deep recurrent neural network (DRNN) made up of LSTMs, 
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Murad and Pyun [149] were able to recognize actions from 
a variety of publicly available datasets. They proved that 
the one-way DRNN performed better than both the two-
way and the cascaded versions. The authors of [150] also 
used an LSTM-based DRNN for human activity recognition 
based on acceleration signals. The authors of [151] used a 
HAR method to show that LSTM networks working together 
produce better results than those working alone. RNNs are 
typically fed raw time series data from IMUs and EMGs 
[152, 144]. Besides the raw time series data [153], RNNs 
usually take in both raw time series data and unique features 
as inputs. Similar performance for gesture recognition was 
achieved when training an RNN on raw data or with simple 
custom features, as demonstrated by the authors of [154].

5.6  Generative Adversarial Networks

As collecting labelled data in HAR is difficult and expensive, 
GANs and their variants have great potential for widespread 
use in HAR but have only been used in a small number of 
works so far. Using GANs could drastically lessen the time 
spent on gathering labelled data [155]. While GAN has seen 
a lot of success in a variety of settings, the initial implemen-
tation has a few issues, including gradient vanishing, lack of 
diversity, and unstable training. For this reason, numerous 
improvements upon the first GAN [156] have been proposed. 
In tests, GAN has proven its ability to produce synthetic 
sensor data that is both realistic and well-balanced. Using 
GANs with a tailored network, Wang et al. [157] generated 
synthetic data from the publicly available HAR dataset. In 
addition, the researchers improved performance by balanc-
ing out the initial imbalanced training set through methods 
including oversampling and the incorporation of synthetic 
sensor data into the training process. They created genuine 
data of various pursuits in [158, 140] as shown in Fig. 7. 
To combat the dramatic performance drop when pre-trained 
models are tested against unseen data from new users, GAN 
has been widely applied in transfer learning in HAR due to 
its ability to generate new data. Because it would be imprac-
tical to collect data for each new user, [159] is an effort that 
used a GAN to perform cross-subject transfer learning for 
HAR. Recent studies on sensor-based HAR that employed 
deep learning methods are summarised in Table 3.

6  Deep Learning Methods for Image/
Video‑Based HAR

Human action is a set of coordinated movements that occurs 
over space and time. The literature provides a wide variety of 
definitions of action [161–163]. Here, “an action” refers to 
a single movement or a series of movements carried out by 
one or more people. Individual actions are seen as snapshots 

of human dynamics, each of which begins and ends at a 
specific point in time. Given an image sequence containing 
one or more actions, human action recognition attempts to 
assign an action name to each frame or sequence of frames. 
Recognition of human actions is typically a multi-step pro-
cess, with the first two steps focusing on human detection 
and segmentation. The goal of those tiers is to learn how to 
detect and isolate the ROIs in the video that corresponds 
to still or moving human figures. The next level involves 
extracting the visual information of actions and represent-
ing it using features. Then, the action recognition system 
uses these features to make sense of everything that’s hap-
pening. Thus, it is possible to view action recognition as a 
classification problem based on the features used. Human 
action recognition systems have evolved over the years, with 
earlier attempts relying on frame-by-frame analysis methods 
like shape matching techniques [164], and more recent stud-
ies focusing on Spatio-temporal analysis of human motions.

Human action recognition is just one area where multiple 
DL architectures have been proposed and proven to achieve 
state-of-the-art results. Here, we outline the most pivotal DL 
architectures for recognising human actions.

6.1  Multi‑stream Network

Two-stream convolutional neural networks are a rela-
tively new but increasingly popular method, with the 
first stream dedicated to the spatial features of a video 
and the second to its temporal aspects. The spatial stream 
does action recognition in the form of sparse optical flow, 
while the temporal stream does action recognition from 
still images [165]. In the end, late fusion is used to com-
bine the two streams; this approach to action recognition 
has been shown to be superior to handcrafted approaches. 
The procedure was developed by Carreira et al. [166] and 
implemented with Inception-V1. Before reaching Incep-
tion-final V1’s average pooling layer, the spatial and tem-
poral streams travelled through the network’s 3D convolu-
tional layer. The goal of the ConvNet stream of motion is 
to differentiate between actions that involve similar pose 
changes but differ in velocity or orientation. Consider the 
differences between those two common forms of trans-
portation: walking and running, and pushing and pulling. 
These kinds of motions are managed by the movement 
ConvNet. The source of the current is the geometric centre 
of human-inhabited areas. Finally, the hinge loss classi-
fier is applied to all three streams to reliably categorise 
people’s actions. There was also a parallel effort in [167]. 
The Spatiotemporal Distilled Dense-Connectivity Network 
(STDDCN) model was proposed for HAR from video data 
by Hao et al. [160], as shown in Fig. 8. In part, this net-
work was influenced by [168], which employs a similar 
strategy of knowledge distillation and dense connectivity. 
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The goal of this model is to investigate the interplay 
between different features and streams of visual infor-
mation, such as appearance and motion. Spatio-temporal 
feature relationships at feature representation layers are 
strengthened through the dense network in a more explicit 
manner. Both streams can talk to the final layers thanks to 
knowledge distillation within and between them. To miti-
gate the high computational cost of accurately computing 
optical flow, the authors of [169] attempted to simulate 
the knowledge of the flow stream during training in order 
to avoid using optical flow during testing. This was done 
so that optical flow wouldn’t be used in any of the tests. 
One network is trained using optical flow data, while the 
other network is trained using motion vectors extracted 
from compressed videos with no additional computation 
required in [169]. For this purpose, the teacher model’s 
generated soft labels were used to supplement the train-
ing of the student network and thus facilitate knowledge 
transfer. Unlike [169], the trainable flow layer proposed 
by Piergiovanni and Ryoo [170] can detect motion without 
computing optical flows. STDDCN is able to acquire high-
level ordered spatiotemporal features thanks to its novel 
architecture. From RGB, Depth, and skeleton joint posi-
tions, [171] propose a fusion method with two 3D Con-
volutional Neural Networks (3DCNN) and a Long Short 
Term Memory (LSTM) network. To distinguish between 
activities performed with one or more limbs, the authors in 
[172] proposed a 2D convolutional neural network (CNN)-
based algorithm.
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Fig. 6  The structure of the HConvRNN network. [139]
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6.2  Sequential Network

Sequential networks based on convolutional neural networks 
(CNNs) have a unified data pipeline (either a single stream 
or a stacked one). Comparable to traditional convolutional 
networks, this 3D ConvNet architecture takes a more organic 
approach to video modelling by incorporating Spatiotempo-
ral filters. Because of the unique properties of this network 

architecture, hierarchical representations of Spatio-temporal 
data can be built from the ground up[165].

New architecture for a two-stream convolutional neural 
network using long-short-term spatiotemporal features is 
presented by Varol et al. [173]. (LSF CNN). The goal of 
this network is to speed up and improve upon the process 
of recognising human action from video data. Two smaller 
networks were combined to form this larger one. An initial 

Fig. 7  Structure and organization of ActivityGAN’s generator module [140]

Fig. 8  STDDCN’s fundamental pipeline, used for identifying activity in videos [160]
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LT-Net, or long-term spatiotemporal features extraction net-
work, takes the RGB frames as inputs and processes them 
over time. To outperform a model that uses three independ-
ent CNN streams [174, 175], Zheng et al. [176] introduce a 
cross-modal architecture for human activity recognition. The 
first step in this model is to extract the information from the 
various modalities and map it into a shared subspace. The 
features are then combined after they have been aligned, 
creating representations that are correlated, consistent, and 
complimentary. The learned features are used as input to the 
classifier in the final layer, which is responsible for the actual 
action recognition. To train a regular 3D convolutional neu-
ral network (CNN), the MARS method [177] suggests using 
two different learning strategies. It functions on one RGB 
frame that is a direct analogue of the video stream. As a 
result, it reduces the cost of computing optical flow during 
testing. In order to evaluate the performance of a standard 
3D convolution network, Yang et al. [178] propose an Asym-
metric 3D CNN model that employs asymmetric single-
direction 3D convolution architecture [179]. The capability 
of feature learning is improved in this model by the Asym-
metric 3D convolutions network. Incorporating multi-scale 
3D convolution branches, this model is a collection of local 
3D convolutional networks or MicroNets. An asymmetric 
3D-CNN deep network is built with these MicroNets to 
efficiently carry out the action recognition task. Authors of 
Principal Component Analysis Network (PCANet) propose 
a method for choosing a subset of frames from each action 
[180]. Concurrently, a feature vector is computed for each 
frame based on the PCANet’s training data. The Whiten-
ing Principal Component Analysis (WPCA) algorithm is 
then applied to the combined feature vectors to reduce their 
dimensionality [181]. To enable HAR on videos with poor 
spatial resolution, the authors of [182] proposed two video 
super-resolution methods to produce high resolution vid-
eos. These 4K videos were used as input into a spatial and 
temporal model to determine action category. By learning 
different types of information (e.g., spatial and temporal) 
from the input videos through separate networks and then 
performing fusion to get the final result, two-stream 2D 
CNN architectures allow traditional 2D CNNs to efficiently 
manage the video data and achieve high HAR accuracy 
[11]. When it comes to effectively modelling the temporal 
information at the video level, temporal sequence modelling 
networks like LSTM can make up for the inefficiencies of 
these architectures.

6.3  RNN‑LSTMs

RNN-LSTM’s main proposition is in their modeling of the 
long-term contextual information of temporal sequences. 
This benefit makes RNN LSTM one of the best sequence 
learners for time-series data, including visual information 

of human action. Because RNNs’ hidden layers contain 
recurrent connections, they can be deployed for temporal 
data analysis. Due to the vanishing gradient problem, how-
ever, the vanilla RNN has difficulty modelling the temporal 
dependency over longer time periods. In order to model the 
long-term temporal dynamics of video sequences, the major-
ity of modern methods employ gated RNN architectures like 
LSTM [183–185]. The LSTM network’s performance on 
the human action recognition task has been shown to be 
highly robust by Grushin et al. [186] using the hand-crafted 
feature HOF [187]. Evidence supports CNNs’ ability to learn 
features from unlabeled data. For this reason, the works of 
Singh et al. [188], Wu et al. [189], Baccouche et al. [190], 
Ng et al. [191], Li et al. [192], Wang et al. [193], and Chen 
et al. The primary goal of these works is to extract motion 
features from input video using industry-standard CNN 
models like AlexNet [194], VGGNet [175], or GoogLeNet 
[195]. Next, an RNN-LSTM network is fed the results from 
the CNN so that sequences can be labeled with previously 
learned features. Even though RNN-LSTMs have been 
proposed in multiple studies as a comprehensive learning 
framework for skeleton-based action recognition, the afore-
mentioned work only employs them for sequence classifica-
tion. Improvements in HAR performance for LSTM-based 
frameworks can also be attributed to the incorporation of 
attention mechanisms, such as spatial attention [196, 197], 
temporal attention [198, 199], and combined spatial and 
temporal attention [200, 201]. Research conducted by Du 
et al. [202], Li et al. [203], and Liu et al. [204]. Using depth-
sensor-provided 3D human skeleton sequences, RNNLSTMs 
are able to directly learn motion features and classify them 
into categories. The efficiency of these strategies is illus-
trated by experiments on state-of-the-art datasets. Action 
recognition using multi-source data was also investigated by 
Mahasseni et al. [205], who employed a parallel architecture. 
Unsupervised training is used to teach an RNN-LSTM how 
to interpret 3D sequences of human skeletons. Simultane-
ously, a CNN-equipped RNN LSTM is trained on 2D video. 
The system’s performance is enhanced by comparing the 
results.

6.4  GNN or GCN

As a result of their expressive power, graph structures have 
recently sparked a renewed interest in employing learning 
models for analysis of graphs [11, 206]. Skeleton data cannot 
be adequately modelled by using RNNs to process a vector 
sequence or CNNs to process 2D/3D maps of the body’s 
joints, as these representations do not capture the complex 
spatio-temporal configurations and correlations of the joints. 
This provides support for the idea that topological graphs 
are a more apt representation for the skeletal data. Many 
GNN and GCN-based HAR methods [207, 208] have been 
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proposed because the skeleton data can be represented as a 
graph with edges and nodes.

In more recent times, research into GCN-based HAR has 
started to pick up some steam [209–212]. Using GCNs as 
a basis for a skeleton-based HAR system. Spatial-temporal 
GCNs, also known as ST-GCNs, were first presented to 
the public by the authors in [208]. These GCNs have the 
ability to automatically learn both spatial and temporal pat-
terns from skeleton data. We were able to generate action 
representations with robust generalisation capabilities for 
HAR by first estimating pose from the input videos and 
then processing the data using spatio-temporal graphs. This 
allowed to generate action representations for HAR. Because 
implicit joint correlations have been overlooked in previous 
works [208], the authors of [213] proposed an Actional-
Structural GCN (AS-GCN), combining action links along 
with structural links into a generalised skeleton graph. The 
reason for this is that an AS-GCN combines actional links 
and structural links into one. High-order dependencies were 
represented by structural links, and latent dependencies on 
actions were captured by actional links. Peng et al. [214] 
used a neural architecture search scheme to decide on their 
GCN’s architecture so that they could more effectively 
investigate the implicit joint correlations. In particular, they 
used a Chebyshev polynomial approximation to broaden 
the search space, enabling the implicit capture of joint cor-
relations based on multiple dynamic graph sub-structures 
and higher-order connections. Further, integrated context 
information was used to model long-range dependencies, as 
shown in [215]. With a cross-domain spatial residual layer 
and a dense connection block based on ST-GCN for learning 
global information, the authors of [216] were able to suc-
cessfully capture the spatio-temporal information. Skeleton 
and node trajectories from a skeleton sequence are fed to 
a spatial graph router and a temporal graph router, respec-
tively. Using a skeleton-joint generative adversarial network 
(ST-GCN), the authors of [217] were able to classify newly 
generated skeleton-joint connectivity graphs. With the inten-
tion of developing a reliable feature extractor. The authors 
of [218] combined a multi-scale aggregation scheme that 
eliminated entanglements with a spatial-temporal graph con-
volutional operator called G3D.

In [220], authors introduced joint semantics at a high level 
for HAR. The mechanisms of attention were used in [219, 
221] to extract global dependencies and information with 
discriminatory power as shown in Fig. 9. To further reduce 
the computational costs of GCNs, the authors of [222] devel-
oped a Shift GCN that swaps out regular graph convolutions 
for shift graph operations and lightweight point-wise convo-
lutions. In this vein, the authors of [223] proposed a multi-
stream GCN model that merges different types of inputs like 
joint positions, motion velocities, and bone features early on, 
and then uses distinct convolutional layers and a compound 

scaling strategy to significantly reduce redundant trainable 
parameters while increasing the model’s capacity. By con-
trast, the symbiotic GCNs proposed by the authors in [224] 
can do both action recognition and motion prediction at the 
same time. For simultaneous performance of action recogni-
tion and motion prediction, the proposed Sym GNN utilises 
a multi-branch multi-scale GCN. This allows for a mutually 
beneficial relationship between the two pursuits.

6.5  Stacked Denoising Autoencoders (SDAs)

For deep learning, SDA is a must-have tool. Vincent et al. 
[225] first introduced this idea; it is an extension of a clas-
sical autoencoder [226]. The weights of an SDA are tuned 
with a back-propagation algorithm, and the architecture 
is built by stacking multiple autoencoders together [227]. 
Each autoencoder undergoes a greedy “unsupervised pre-
training” procedure in which it is trained incrementally. A 
supervised learning algorithm for recognition tasks will take 
the SDAs’s output as its input representation after it has been 
learned. In 2007, Huang et al. [228] presented the first suc-
cessful application based on the encoder-decoder model for 
object recognition tasks. A few years after the publication of 
Huang et al.’s model [228], Baccouche et al. [229] proposed 
an autoencoder-based solution for learning sparse spatio-
temporal features. When compared to methods employing 
hand-crafted features, experimental results on the KTH 
[90] and GEMEP-FERA datasets [230] were superior. Fur-
thermore, autoencoder-based methods have been proposed 
by [231–233]. For instance, authors in [233] used Kinect 
[234] skeleton data to build a 3-layer SDA architecture for 
human action recognition. Similar research using an SDA 
model to learn skeleton feature for human body pose clas-
sification was conducted by Budiman et al. [231]. Xie et al. 
[240] used an SDA architecture with three hidden layers to 
learn contour features from a single depth frame in order 
to recognise human action. In [232], Hasan et al. presented 
an autoencoder-based framework for continuously learn-
ing human activity models from streaming videos. First, a 
sparse autoencoder will take a streaming video with some 
annotated activities and extract space-time interest points 
(STIP) [235] from the motion. However, SDAs have one 
major drawback when dealing with massive datasets: they 
take an extremely long time to train. Two 3D convolutional 
neural networks (CNNs) were used as the generator and 
joint discriminator in an adversarial framework presented by 
Mehta et al. [236]. The thermal data and optical flow were 
fed into the generator network, and the joint discriminator 
then attempted to tell the reconstructed data apart from the 
real. Recent research has focused on using deep learning 
to extract HAR from the CSI signal. Discriminative fea-
tures for a deep sparse auto-encoder can be learned from 
CSI streams, as proposed by authors in [237]. With the CSI 
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signal converted to radio images, the authors of [238] fed 
them into a deep sparse auto-encoder to learn discrimina-
tive features for HAR. A novel variant of SDAs, dubbed 
“mSDA,” was proposed by Chen et al. [239] to get around 
this restriction. On the same dataset, mSDA was shown to 
achieve parity with SDA’s performance while requiring 450 
times less time to train. Utilizing the mSDA, Gu et al. [240] 
trained a mSDA network for multi-view action recognition. 
In order to generate features for each camera view, a mSDA 
is first trained using all of the available camera views. The 
collected features from each camera view are then combined 
into a single integrated representation that can be fed into 
a classifier. The state-of-the-art recognition performance 
was demonstrated by testing the model on three benchmark 
multi-view action datasets. Table 4 provides a summary 
of some of the most recent research on image/video-based 
HAR that made use of deep learning techniques.

7  Performance Metrics

Accuracy, precision, recall, F1-score, confusion matrix, and 
accuracy/loss are the algorithm evaluation indicators that 
were utilized in this experiment. The following are some 
definitions that pertain to both of the aforementioned clas-
sification issues. Some common performance metrics used 
to assess the efficacy of HAR models is listed below.

7.1  Accuracy and Error Rate

The percentage of correct predictions relative to the total 
number of data examples is a common metric for evaluating 
a classification system’s efficacy. This is how it is defined 
more specifically:

Related to accuracy is the error rate, which measures how 
many incorrect predictions were made relative to the total 
number of data examples. following is a description of it:

It is important to keep in mind that accuracy and error rate 
are not appropriate measures to use in situations where the 
data are very imbalanced (Fig. 10).

7.2  Precision and Recall

Precision and recall are another popular pairing of classifica-
tion metrics. To calculate accuracy, we divide the number of 

(1)accuracy =
tp + tn

tp + fp + tn + fn

(2)error =
fp + fn

tp + fp + tn + fn
= 1 − accuracy.

confirmed positive cases (human presence) by the sum of all 
confirmed positive cases.

The recall rate is calculated by dividing the number of 
true positive predictions by the sum of all true positive 
predictions.

Precision tells us how well a model does in terms of false 
positives, while recall tells us how well it does in terms of 
false negatives [242].

7.3  F‑Measure

It may be challenging to assess the impact of each model 
parameter using both precision and recall. One way to 
address this issue is with F-measure, which takes the har-
monic mean of the two metrics. Specifically, it is described 
as follows:

7.4  True Positive Rate

When calculating a test’s sensitivity, one uses the true posi-
tive rate (tpr), which is the percentage of positive cases that 
were correctly identified relative to the total number of posi-
tive cases.

7.5  False Positive Rate

The false positive rate, also called the fall-out rate, is the 
percentage of false negatives relative to the total number of 
true negatives.

7.6  ROC

Visualizing the performance of a classifier can be accom-
plished with the help of a ROC graph, that shows how 
the true positive rate is related to the false positive rate as 

(3)precision =
tp

tp + fp

(4)recall =
tp

tp + tn

(5)F − measure = 2 ⋅
precision ⋅ recall

precision + recall

(6)tpr =
tp

tp + fn

(7)fpr =
fp

fp + tn
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shown in fig. 11. It offers more nuanced insights than simple 
numerical measures like accuracy or error rate.

7.7  AUC 

Another performance indicator is the area under the ROC 
curve (AUC). Area under the curve (AUC) is a single scalar 
value that depicts classification performance in contrast to 
the ROC curve’s two-dimensional representation [244]. The 
value of AUC can be anywhere between 0 and 1, and the 
area covered by guessing at random is half of that. The AUC 
value should be increased whenever possible for improved 
classification performance.

7.8  Confusion Matrix

Each column of the error matrix represents a classifier’s pre-
diction for the sample it was given. Indicating whether or 
not multiple categories are muddled can be done with ease 
thanks to the second matrix, where each row expresses the 
real category to which the version belongs. As shown in 
fig. 12, authors of [245] regularise the confusion matrix and 
convert the predicted value and the real value in the matrix 
into corresponding proportions so that the data sizes of the 
two datasets can be compared easily.

7.9  Accuracy and Loss Map

Reaction to fluctuating loss and accuracy while training a 
neural network model. Values for precision and error will 
be generated at the end of each epoch. The training of the 
network model can be visually reflected by plotting the accu-
racy diagram and the loss diagram. The trend can be used 
to judge the quality of the model’s training, spot temporal 
outliers (like overfitting or underfitting), and fine-tune the 
model over time.Ta
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8  Applications

This section discusses the significance of HAR in several 
different applications, including video analysis and retrieval, 
visual surveillance, HCI, education, medicine, and abnormal 
activity recognition.

8.1  Surveillance and Security

When an observer is not physically present at the recording 
location, they can still keep an eye on things with the help 
of a video surveillance system. Video can be analysed in 
real time to perform surveillance tasks, or it can be stored 
and analysed at a later time. Abnormal activity detection 
and gamer behaviour analysis are two other applications of 

Fig. 10  Comparision of the 
relative error of various models 
on HAR data sets [241]

Fig. 11  Ensem-HAR [243] model’s ROC curve on the WISDM data-
set Fig. 12  Evaluation of the proposed model’s [245] confusion matrix 

using data from the UCI-HAR dataset
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video surveillance technology. There are many recent devel-
opments in the field of user activity recognition, with sur-
veillance being one of the most prominent examples. Recent 
studies [246] have concentrated on the use of cameras to 
record images or videos and the application of various algo-
rithms to identify patterns of activity for the purposes of sur-
veillance. In their paper [246], Deng et al. presented a hierar-
chical graphical model for identifying individuals and GAR 
in a surveillance scene that relies on deep neural networks. 
Problems with public safety, such as large-scale emergency 
management in the event of an evacuation, can be mitigated 
through the use of crowd monitoring. The effect of local 
interactions on the efficacy of evacuation was the subject 
of research presented by Braun et al. [247] . The authors 
of [248] described methods that use pedestrian behaviour 
to infer and visualise crowd conditions from GPS location 
traces. During city-wide mass gatherings, the method was 
used to detect developing, potentially critical crowd situ-
ations at an early stage. Because video surveillance is an 
important application for a variety of reasons related to secu-
rity, it is essential to categorise activities as either typical or 
abnormal [249]. A technique for manually keeping an eye 
out for anomalous behaviour in crowded places like grocery 
stores, city squares, and college campuses was proposed by 
Mohan et al. [250]. PCA and CNN eliminate the need for 
laborious manual processes like false alarms and pinpoint 
the exact location of a video anomaly. PCA and SVM clas-
sifier are used to identify anomalous events in individual 
frames. Most surveillance-based security systems employ 
activity learning, monitoring, and recognition to address sus-
picious behaviour and identify potential dangers. For the 
purposes of surveillance and security monitoring, vision-
based activity recognition employs the use of cameras. It 
has become popular due to its capacity for visually analys-
ing patterns and trends [251]. Jiang et al. [252] proposed a 
method for real-time pedestrian detection that first extracts 
static sparse features using a fast feature pyramid, and then 
uses sparse optical flow to obtain sparse dynamical features 
between frames. Adaboost utilises a combination of these 
two kinds of features to make accurate classifications. The 
best experimental results were obtained on the TUD data-
set. Automatic tracking and detection of criminal or brutal 
activities in videos was proposed by Basha et al. [253] using 
a CNN-DBNN. Features extracted from frames by CNN are 
sent to the discriminative Deep Belief Network (DDBN).

8.2  Healthcare and Rehabilitation

The capacity for diagnosis and data collection in the medi-
cal and rehabilitation fields has been significantly enhanced 
by HAR. Wearables have become an indispensable tool 
for doctors in assessing and monitoring patients’ health 
because of their ability to record vital signs, store data, and 

transmit that information to hospitals and other medical 
facilities. Specifically, many publications have detailed dif-
ferent approaches to monitoring and assessing the signs and 
symptoms of Parkinson’s disease (PD) [254, 255]. Many 
people’s lives are cut tragically short by pulmonary diseases 
like COPD, asthma, and the coronavirus simian immunode-
ficiency virus (COVID-19). Coughing is a common symp-
tom of pulmonary diseases, and recent works have used 
wearables to detect this symptom [256–258]. Because of 
their increased susceptibility to illness, the elderly have long 
been a focus of healthcare reform efforts. The detection of 
falls and other abnormal behaviours in the elderly requires 
constant monitoring with automatic surveillance systems. 
In [259], a method is mentioned for modelling the actions 
of those with dementia (such as Alzheimer’s and Parkin-
son’s). Vanilla RNNs, Long Short-Term Memory, and Gated 
Recurrent Units are all types of RNNs used for anomaly 
detection in the elderly with dementia (GRU). Methods for 
assessing depressive symptoms using wrist-worn sensors 
[260] and for monitoring infants for stroke using wearable 
accelerometers [261] have also been introduced in other 
works. Electromyography (EMG) sensors have been widely 
used to detect muscle activities and hand motions. This has 
resulted in improved prosthesis control for individuals who 
have missing or have damaged limbs [262, 263]. Equipment, 
such as wearable devices, can be placed on the body of the 
person to be monitored in real time to recognise a specific 
feature, such as falls, gait, and breathing disorders. However, 
the person being tracked may find these gadgets intrusive 
or forget to wear them. Taylor et al. [264] showed that a 
non-invasive method can detect human motion in a near-
real-time scenario. To further evaluate the RF algorithm’s 
performance while in either a standing or seated position, 
Taylor et al. [264] generated a dataset of radio wave signals 
with software-defined radios (SDRs).

8.3  Emotional Calculation

The seven basic emotions-happiness, anger, sadness, 
thought, grief, fear, and surprise-are all manifestations of 
emotion, which is a more nuanced and long-lasting physi-
ological evaluation and experience of human attitude. Emo-
tion computing entails primarily the following activities and 
processes: determining an individual’s emotional state and 
its relationship to their physiology and behaviour; using a 
wide range of sensors to collect data on the behavioural 
characteristics and physiological changes associated with an 
individual’s current emotional state (including voice signals, 
facial expressions, body postures, and other forms of body 
language; pulse; skin electricity; brain electricity; and olfac-
tory signals); and analysing the mechanism by which emo-
tions are triggered and processed[33]. Users’ physiological 
signals related to emotional changes can be captured in real 
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time by emotionally interactive intelligent systems via smart 
wearable devices, and when the system is monitoring users’ 
large emotional fluctuations, it can regulate users’ emotions 
in real time to avoid health hazards or make health care sug-
gestions. The use of computational emotion in distance edu-
cation has the potential to enhance the effectiveness of com-
puter-assisted human learning by piqueing students’ interest 
and facilitating more effective learning. In online shopping, 
the system can record the customer’s interest in products and 
automatically analyse their preferences based on their eye 
movement, focus, and other parameters while they browse 
design solutions. A new context-aware multimodal senti-
ment analysis framework was proposed by Dashtipour et al. 
[265] to integrate sentiment across modalities using fusion 
techniques at both the decision-level (late) and the feature-
level (early). Recent research has made use of a variety of 
physiological parameters, such as EEG, ECG, EMG, photo-
electron plethysmography (PPG), body temperature, facial 
features, and more [266, 267]. To estimate scores of good 
and bad effects, Hssayeni et al. [268] created a multi-modal 
physiological data fusion framework by using deep CNN 
to collect motion and physiological signals collected from 
wearable devices (such as respiration (RESP), electrocar-
diogram (ECG), electromyogram (EMG), and electrodermal 
activity (EDA). In doing so, they looked into two different 
types of data fusion met (gradient augmentation trees and 
convolutional neural networks). Data fusion was expanded to 
include electrooculography by Khezri et al. [269]. Wearable 
sensors record heart and respiratory activity, and Mohino 
Herranz et al. [270] analysed this data to determine three 
distinct emotions: apathy, sadness, and disgust.

8.4  Education

The capacity to recognise human actions depicted in vid-
eos is of tremendous value in the contexts of both learning 
and instruction. Through the analysis of student activities 
captured on video, it may be possible to recognise human 
behaviour and implement automated attendance track-
ing in educational institutions. Taking attendance manu-
ally can be a time-consuming process, during which the 
instructor may not be able to monitor what is going on in 
the classroom due to time constraints[271]. Because we 
now have the technology to do so, we are able to use a 
system that can monitor attendance automatically and in 
real time inside of the classroom. Authors in [272] sug-
gests developing an automatic attendance monitoring sys-
tem by making use of the Viola-Jones algorithm. Students 
and their movements in and around the classroom, such as 
entering and exiting, are logged in [273] which also keeps 
track of the classroom’s layout. Because it can identify 
faces and track motion, the system can also recognise and 
identify actions. This capability comes from its ability to 

recognise motion and facial expressions. The Haar cas-
cade classifier is utilised in order to recognise a person’s 
face, and in order to train the system, a combination of 
the eigenfaces and fisherfaces algorithms is utilised. The 
motion analysis process necessitates the utilisation of three 
auxiliary modules, namely body detection, tracking, and 
motion recognition. In order to take attendance, it is nec-
essary to make assumptions regarding the capacity of the 
classroom as well as the lighting.

8.5  Assisted Living

The importance of assisted living systems, which allow 
patients or the elderly some measure of autonomy, is grow-
ing. Smart environments and smart homes are the focus of 
these kinds of applications [32]. The need to worry about 
people’s personal information makes cameras inconven-
ient. This is why surveillance cameras have been gradually 
being replaced by ambient, wearable, and RF-based sen-
sors. The smart home is outfitted with a wide variety of 
Internet of Things (IoT) devices that coordinate their efforts 
to improve residents’ ease of use, comfort, entertainment, 
privacy, and safety [274]. In order to create useful smart 
home services, activity recognition of residents as they go 
about their daily routines is essential. It’s crucial for low-
ering healthcare expenditures [275], making at-home care 
and comfort possible [276], and cutting down on energy 
use [277]. In order to tell apart the various uses of a shared 
space, the authors of [278] implemented Indoor Mobility 
(IM) and FuzzyEn. More so, to ensure maximum relevance 
and minimum redundancy, the authors of [279] used a back-
propagation neural network technique to pick the relevant 
features in MAR in the smart home. Both the execution time 
and the accuracy of the activity recognition were improved 
with the proposed method. For automatic health monitoring, 
Wilson et al. [280] presented a system that makes use of the 
relationship between location and activity. Wang et al. [281] 
proposed a method for MAR of Activities of Daily Living 
(ADLs) based on sensor reading, which can be used to keep 
an eye on senior citizens as they go about their day in a smart 
home. In a similar vein, Gu et al. [282] proposed an innova-
tive activity model grounded in emerging patterns that could 
recognise users in both single- and multi-user settings, with 
the latter model being able to capture user interaction.

9  Recent Advances

The most recent developments in the field of HAR, as well 
as the most significant contributions made to it, are dis-
cussed in this section.
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9.1  Parameter Efficient Transfer Learning (PETL)

Using pre-training on massive datasets, NLP researchers 
have developed large-scale models like BERT [285], GPT-3 
[286], and PaLM [287]. Both [288]) and [289] provide a 
high-level summary of the various existing PETL tech-
niques, such as Prefix-tuning, Adapter, LoRA, and Prompt-
tuning. Using PETL methods, large-scale pre-trained 
language models have been successfully adapted to down-
stream NLP tasks like translation, question and answering 
and reading and comprehension. As a result of the success 
of these PETL techniques in natural language processing 
(NLP), researchers are beginning to look in the opposite 
direction and apply them to vision tasks; for instance, VPT 
employs prompt-tuning, and AdaptFormer makes use of an 
adapter as show in Fig. 13. Besides prompt-tuning, [290] 
also proposed a prompt matcher for semantic segmentation. 
The multimodal model tuning strategy necessitates training 
a new pre-trained model and may not smoothly apply to 
pre-trained vision models, but fine-tuning vision-language 
pre-training models has been proposed [291]. It shows prom-
ising performance via text prompts (e.g., text category label) 
[283].

9.2  Temporal Understanding of Neural Networks

Working memory has traditionally been implemented in the 
field of neural engineering through the use of recurrent con-
nections, leading to the development of what are now called 
Recurrent Neural Networks (RNN). Following the success 
of RNNs, more complex memory cells were proposed, such 
as LSTM [292] and LMU [293], which further enhance the 
memory capacity of ANNs and its training via backpropa-
gation. Recently, attention networks and their Transformer 
architectures [294] have proven successful at solving tem-
poral processing tasks like sequence transduction [295], 

time series forecasting [296], and video action recognition 
[297]. Instead of presenting events in chronological order as 
they occur, these networks collect data over a period of time 
(or the entire sequence), which is then processed in a batch 
mode. By accumulating stimuli over time and then feeding 
them to the network as a single input, these methods can be 
viewed as an implementation of working memory outside 
of the neural network. For most temporal tasks today, the 
most precise systems are those based on Transformer ANNs 
[298].

9.3  Audio‑Visual Representation Learning

The use of audio-visual correspondence (AVC) to facilitate 
autonomous learning has also been investigated in the con-
text of the auditory modality [299, 300]. Simply put, AVC 
is the task of determining whether or not a given video clip 
and its accompanying short audio clip belong to the same 
sequence. It has been demonstrated that similar tasks, such 
as temporal synchronisation [301] between audio and video, 
audio classification [302, 303], spatial alignment prediction 
between audio and 360 degree videos [304], and optimal 
combination of self-supervised tasks [305], are useful for 
learning efficient multi-modal video representations [284] 
as shown in Fig. 14. As a form of cross-modal instance dis-
crimination, contrastive learning has been investigated in 
other works [306–308].

9.4  Multi‑dataset Co‑Training

Image detection [309, 310] and segmentation [311] are just 
two examples of the types of tasks where multi-dataset co-
training has been investigated in the past. Multiple propos-
als [312, 313] have been made to train on merged versions 
of video datasets. Results tend to improve with increasing 
dataset size. The use of multiple datasets at once is likely 
to mitigate the negative impact of dataset bias, and the use 
of multiple datasets to increase data size and improve final 
performance [314]. To combat the potential for bias in the 
training data, OmniSource [315] includes web images as 
part of the training dataset. For self-supported pretrain-
ing and fine-tuning on downstream datasets, VATT [316] 
makes use of supplemental multi-modal data. Even in the 
final tuning phase, CoVeR [85] combines image and video 
training, and the results show a significant improvement in 
performance compared to training on individual datasets. 
The scope of PolyViT [317] is expanded to include training 
with image, video, and audio datasets of varying sampling 
sizes. In this paper, we propose a straightforward method (no 
multi-stage training, no complex dataset-wise sampling and 
hyper-parameter tuning) for training multi-action datasets, 
without the need for images or any other supplementary data 
[318].

Fig. 13  The visual PETL methods in one coherent overview. The 
trainable parameters they introduce to the various nodes of the back-
bone model are implemented in different ways [283]
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9.5  Self‑supervised 3D Action Recognition

In order to learn 3D action representations without any 
external supervision, many previous works have proposed 
various methods. Autoencoder-based models are proposed in 
[319], and in LongT GAN an additional adversarial training 
strategy is proposed. This method of learning latent rep-
resentation through sequential reconstruction is based on 
the generative paradigm. To predict and categorise skeleton 
sequences, P &C [320] also trains an encoder-decoder net-
work. The authors also propose strategies to weaken the 
decoder, placing more demands on the encoder, so that 
more robust and distinguishable features can be learned. 
MS2L [321] integrates multiple pretext tasks in order to 
learn a better representation, in contrast to the previously 
mentioned methods which only adopt a single reconstruc-
tion task. Newer attempts [322, 323] have introduced con-
trastive learning based on momentum encoders, leading to 
improved performance. The first of these to conduct cross-
modal knowledge mining is CrosSCLR [324]. Discovers 
false positives and rebalances training samples based on the 
context differences between skeleton modalities. However, 
since accurate initial representation is crucial for the suc-
cessful positive mining in CrosSCLR, it is necessary to train 
in two phases [325].

10  Discussion and Challenges

In the last two decades, human action recognition has risen 
to prominence as a major area of study in computer vision. 
In particular, the advent of DL models and developments 
in parallel computing techniques, such as GPU computing, 
have ushered in a plethora of new possibilities in this area. 
There have been numerous DL-based methods developed 

and used for a wide range of human action recognition appli-
cations. Over the past few years, human action recognition 
has jumped from recognising actions in a controlled envi-
ronment using small size benchmark datasets to recognis-
ing actions in realistic videos using very large-scale bench-
marks. There would have been less progress without the use 
of DL methods. The field of HAR is expanding rapidly, but 
there are still some obstacles that, if solved, would make the 
field even better and encourage more novel HAR techniques 
to be implemented. These difficulties and prospects in HAR 
are discussed here.

10.1  Collecting Labeled Data

Lack of large-scale labelled datasets is a major obstacle to 
training robust Human-Activity Recognition models (HAR). 
As labelling massive amounts of data is a time-consuming 
and costly endeavour, unsupervised and semi-supervised 
learning techniques have emerged to learn useful features 
from data without the aid of labels [326]. It has been shown 
that generative deep models (such as AEs and GANs) can 
benefit from unsupervised data, but they are not directly 
applicable for HAR [110]. There is also promising poten-
tial in the development of semi-supervised deep models 
and active deep models [327], which are able to function 
with a reduced amount of labelled data. Building new deep 
models that can be taught with limited labelled data is an 
urgent task. Due to this difficulty, most HAR data collection 
efforts [68] are conducted on a relatively small scale, in a 
controlled or semi-controlled setting, leading to models that 
are not transferable to the real world. Combining generative 
and discriminative models into a single framework, called a 
hybrid model [328, 329] , shows great promise. While there 
have been some studies, they are all very early in their stages 
of development.

Fig. 14  There are no transitions between the initial and final states due to the lack of interactions. Representations can be learned, that are sensi-
tive to the shift in visual state caused by interactions by sampling from moments of interaction (MoI), as indicated by the red box [284]
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10.2  Robustness

The robustness and reliability of models is gaining more 
and more attention as a central issue in the community [33]. 
Multi-sensory systems, which combine the strengths of dif-
ferent kinds of sensors, are increasingly popular as a means 
of increasing robustness [330]. DeepFusionHAR is a pro-
posed architecture by authors in [331] that combines manu-
ally crafted features with deep learning extracted features 
from multiple sensors to identify commonplace and athletic 
activities. Using the sensors already present in smartphones 
and smartwatches, authors in [332] proposed a multi-sen-
sory approach to classifying 20 complex actions and 5 basic 
actions. Utilizing an accelerometer, gyroscope, magnetom-
eter, microphone, and GPS, Pires et al. [333] demonstrated 
a mobile application on a multi-sensor mobile platform for 
activity classification in daily life. In some applications 
[334], multi-sensory networks are combined with attention 
modules to train on the most representative and discrimi-
native sensor modality for distinguishing human activities.

10.3  Multi‑modality Learning

To improve HAR, many have proposed using multi-modal 
learning techniques, such as multi-modal fusion and cross-
modal transfer learning. Due to their complementary nature, 
multi-modality data fusion improves HAR performance, and 
co-learning can be used to address the issue of insufficient 
data for some modalities. Few-shot learning methods [335, 
336] are one such method. Despite the fact that HAR has 
only been tried with a small number of shots [337, 338]. 
Given the importance of resolving data scarcity issues in 
many real-world scenarios, more sophisticated few-shot 
action analysis has yet to be fully explored.

10.4  Hybrid HAR

Despite the flexibility afforded by hybrid approaches, which 
can combine features and pre-processing steps, the high 
computational complexity of the target system may hinder 
both real-time and lengthy video processing. Long vid-
eos and real-time applications that require constant video 
streaming may experience issues due to these constraints. 
The computational expense of training the model is a dif-
ficulty of hybrid HAR [271].

10.5  Privacy Preservation

Users are starting to worry about their privacy [27]. In 
general, people are less willing to agree to data collection 
from a sensor if that sensor has a higher inference poten-
tial. Several works, such as the anonymizing autoencoder 
[339] and the GEN architecture [38], propose methods 

for human activity classification that are less invasive to 
people’s privacy. It is possible to train replacement auto 
encoders to replace values that indicate non-sensitive 
inferences with features that correspond to sensitive infer-
ences, as in the case of time-series data. Features that can 
be used to identify a specific person are obscured in these 
works, while those that are shared by different activities 
or movements are kept intact [111]. For learning problems 
with privacy concerns, federated learning is a promising 
new method [340, 341]. As a result, a global model can 
be learned collectively without users having to share their 
personal information. To boost the efficiency of the fed-
erated learning system, Xiao et al. [342] implemented a 
federated averaging technique in conjunction with a per-
ceptive extraction network.

11  Conclusion and Future Direction

Because of its significance, HAR has been the subject of 
extensive study over the past few decades, and researchers 
have employed a wide range of data modalities, each with 
their own unique characteristics, to accomplish this goal 
[11]. Identifying human actions in wearables has opened 
up a wealth of possibilities for tracking and enhancing 
our daily lives. The use of AI and ML has been crucial 
to the development of wearables that support HAR. With 
the advent of DL, activity recognition performance has 
reached new heights in wearables-based HAR [111]. When 
it comes to identifying and categorising human actions and 
making predictions about human behaviour, deep learning 
(DL) based approaches and other techniques have proven 
to be the best option at the present time [343]. The accu-
racy of the HAR model was enhanced by using CNNs at 
the frame level instead of the conventional hand-crafted 
manual feature-based extraction methods. In the future, 
3D-CNNs enhanced CNN’s accuracy by applying and pro-
cessing a batch of frames simultaneously. In order to effec-
tively incorporate the temporal component of the videos, 
many cutting-edge HAR models have begun using RNNs 
and LSTMs. The Two Stream Fusion technique outper-
formed C3D without the need for the additional param-
eters required by C3D [165].

Despite the great development in the field of HAR along 
with deep learning, there still remains few open problems 
for better real-world applications, including the deployment 
of DNNs, domain adaptation, complex activity recognition 
etc,. Methodical network and sufficient training data for gen-
eralizability are the most important and prominent require-
ments involving deep-learning approaches. Some of the most 
interesting and potential directions for future research are 
as follows.
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11.1  Event‑Based Datasets

Commercial adoption of event-based sensors is still in 
its early stages, which prevents the collection of massive 
amounts of event-based data. Many datasets used in machine 
learning today are manufactured in a lab from simulated data 
or data captured within frames [298]. Recording existing 
frame-based datasets with a neuromorphic camera yielded 
three neuromorphic classification datasets: N-MNIST [344], 
N-Caltech101 [345], and DVS-CIFAR10 [346]. These tech-
niques generated motion via saccadic eye movements, which 
provided the neuromorphic camera with the requisite bright-
ness changes, thereby simulating biological vision. Using 
a pan-tilt platform, an Asynchronous Time-based Image 
Sensor [347] was relocated in the first two data sets. In the 
third data set, a fixed DVS camera [348] was used to capture 
a moving target image. Still, using data from a real-world 
acquisition is the ideal choice when creating event-based 
systems. At present, most native neuromorphic datasets are 
still relatively straightforward in comparison to conventional 
frame-based ones.

11.2  Cross‑Modal Mutual Distillation

There is abundant supplementary data between skeleton 
modalities for use in 3D action recognition. For unsuper-
vised 3D action representation learning, however, the ques-
tion of how best to model and use this data persists as a 
significant obstacle. In recent years, thanks to developments 
in human pose estimation algorithms [349, 350], skeleton-
based 3D human action recognition has gained popularity 
due to its portability and invulnerability to environmental 
factors. Several well-known pretexts have been extensively 
studied in the literature [321, 351, 320] to learn robust and 
discriminative representation, including motion prediction, 
jigsaw puzzle recognition, and masked reconstruction. While 
integrating multimodal information [352, 353] is crucial to 
enhancing the performance of 3D action recognition, this 
aspect of cross-modal interactive learning is largely over-
looked in early contrastive learning-based attempts [321, 
354].

11.3  Video‑Based Self‑supervised Learning

It’s not easy to learn representations based on video. Select-
ing an appropriate SSL loss is the first obstacle. Multiple 
methods [355] have tried to learn representations that are 
independent of object transformations and viewpoints. How-
ever, representations that are sensitive to these deformations 
are necessary for many tasks further down the pipeline. 
Audio-based representation learning is another option that 
has been explored using multi-modal data [302, 356]. While 
these methods can produce invariant representations, their 

overarching goal is to harmonise audio and visual features in 
a single location. The second difficulty is managing the fact 
that state-of-the-art video-based SSL methods like Kinetics 
[166] rely on the human curation of video datasets. These 
methods are made to work with carefully chosen clips that 
show a single action or interaction between two objects. As 
opposed to the large egocentric datasets of daily activities, 
which typically contain unfiltered real-world data [284].

11.4  Model Generalizability

High generalizability is achieved when a model continues 
to perform well when presented with new data. Overfitting 
occurs when a model performs well on the training data 
but poorly on new data. These days, researchers are work-
ing hard to make HAR models more applicable in a wide 
variety of contexts [357, 58]. It is one of the main goals of 
generalizability studies in HAR to develop models that can 
be applied to a more extensive sample, but doing so typi-
cally necessitates extensive data and complicated models. 
DL-based HAR generally outperforms and generalises better 
than other types of methods when dealing with situations 
where high model complexity and data are not bottlenecks. 
New training methods, such as invariant risk minimization 
[358] and federated learning methods [359], can adapt and 
learn predictors across multiple environments, which is an 
unexplored avenue of generalizability. The incorporation of 
these domains into DL based HAR could not only increase 
the generalizability of HAR models, but do so in a manner 
that is not dependent on any particular model [111].

11.5  CNNs and Vision Transformers

In all computer vision tasks involving images and videos, 
CNNs serve as the standard backbones. To boost accuracy 
and efficiency, many novel convolutional neural architec-
tures have been proposed (e.g., VGG [175], ResNet [360] 
and DenseNet [361]). Despite CNNs’ continued domi-
nance, Vision Transformers have proven to be a significant 
advancement in computer vision. To classify images, Vision 
Transformer (ViT [362]) uses the Transformer architecture 
directly, with promising results. Over the past few years, ViT 
and its variants [363–365] have produced remarkable results 
in the processing of still images and moving videos.
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