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Abstract
This review article provides a comprehensive analysis of the optimization techniques used in a wide range of engineering 
applications. The comparison of various approaches such as Response surface methodology (RSM), Genetic algorithm 
(GA) and Artificial neural network (ANN) towards optimization problems is widely elaborated. The factors that affect the 
optimization using various techniques are addressed along with the safety precautions to be followed in a sequential man-
ner to achieve a better optimization model. Furthermore, the coupling of two distinct algorithms (RSM-GA, ANN-GA) are 
explained and this hybrid approach provides a better localizing of the optimal point with a higher accuracy.

1  Introduction

Optimization commonly referred as a mathematical tech-
nique with a combination of scientific ideas and strategies 
for resolving a quantitative problem in various engineering 
fields [1, 2]. The term “Optimization” emerged as a result of 
the finding that quantitative issues in different engineering 
domains share a significant mathematical foundation with 
wide features occurring in common. Due to this similarity, 
the principle of optimization and its techniques can be used 
for designing and solving a wide range of problems. There 
are various steps to be understood by the researchers before 
addressing the optimization problem. It involves determining 
the requirement for optimization, allocating design varia-
bles, developing constraints and goal functions, establishing 
variable boundaries, selecting an appropriate optimization 
technique, and ultimately attaining the desired solution [3]. 
The process of determining the input variables that produce 
a function’s maximum or minimum output is referred to 
as optimization. The continuous function optimization is 
one of the most widely occurring optimization problems in 
machine learning where both the input and output arguments 
are numerical values [4]. There are different algorithms 

available for optimization [5] which are categorized based 
on the informational data provided regarding the target func-
tion and towards the usage of gradient function. At the early 
stage, the optimization problems were solved based on the 
gradient information such as Bisection method, Gradient 
Descent and Newton’s method [6]. Some of these algo-
rithms can be used only for single input variable whereas 
others can be used for more than one input variable but with 
the existence of only a single global optimum. Generally, 
the gradient is obtained as a first step from the objective 
function which then performs the search of optimum value 
based on the step size. The step size used in the optimization 
algorithms affect the speed and accuracy of the results. A 
lower step size requires many data points but performs with 
a slower running rate and a higher step size runs more rap-
idly with fewer data points. Further, a lower step size results 
in minimal error on detecting the optimal point compared to 
higher step size. Thus, a lower step size is usually preferred 
in order to avoid the zigzag movement of the search space, 
thereby missing the probability of identifying the optimal 
point [7]. The major disadvantage with lower step size is a 
higher computation time which can be avoided by reducing 
the search space involved in the optimization algorithm.

Later, for complex objective functions where it was too 
difficult to find the derivatives, methods that were not reliant 
on gradient information (direct algorithms, stochastic, and 
population algorithms) were utilized [8]. The existence and 
accessibility of fast computing software are also one of the 
major reasons for the wide growth in different algorithms 
introduced towards the optimization problems [9]. In 1951, 
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Box and Wilson introduced the technique named Response 
Surface Methodology (RSM) which examines the relation 
between various input parameters with its associated output 
response [10]. The fundamental objective of RSM was to 
find the best response through a series of design experiments 
which are planned sequentially. The developers adopted a 
second-degree polynomial to perform this task although 
they were aware about the rough estimate. Still, they tried to 
explore as it was so simple for its evaluation and usage with 
less fact available about the mechanism. Later, researchers 
were much involved in developing a higher-level technique 
to provide an optimal solution that could solve a problem 
faster than the traditional algorithms and ended up in gener-
ating metaheuristic algorithms.

Metaheuristic algorithms in general, direct the search 
process by examining the search space to find the global 
optimum in lieu of local optimum values [11–13]. On the 
basis of search process criteria, metaheuristic algorithm is 
classified into (i) Metaphor based (or) Population based and 
(ii) Non-metaphor based (or) Neighborhood based algo-
rithm. Succinctly, population based algorithm make use 
of multiple solutions in the process of searching whereas 
neighborhood based algorithm make use of single solution 
by means of local search [14, 15]. Variable neighborhood 
search (VNS), Tabu search (TS), Microcanonical annealing 
(MA), Guided local search (GLS) etc. are the popular neigh-
borhood-based algorithms. On the other hand, Population 
based algorithms are nature inspired algorithms that could 
handle high dimensional optimization problems [16, 17]. 
This is sub-categorized into (i) Evolutionary computation, 
(ii) Swarm intelligence, (iii) Physics inspired algorithm, and 
(iv) Human inspired optimization algorithm. Evolutionary 
algorithms adopt the laws of natural evolution to provide 
a global optimum with significant and unbiased results. In 
this, population is initially created, and the algorithm param-
eters such as reproduction, crossover, mutation, and survivor 
selection are applied to obtain the optimal solution until it 
meets the termination criteria. Genetic Algorithm (GA), 
Genetic programming (GP), Differential evolution (DE), 
Evolutionary programming (EP), Evolutionary statistics 
(ES) are some of the notable evolutionary algorithms [18, 
19]. Swarm Intelligence adopt the natural aspects of birds 
and mammals. Particle swarm optimization (PSO), Arti-
ficial bee colony (ABC), Honey bee mating optimization 
(HBMA), Ant colony optimization (ACO), Firefly algorithm 
(FA), Glow-worm algorithm (GWA), Dolphin optimiza-
tion algorithm (DOA), Bat algorithm (BA), Cuckoo search 
(CS), Shuffled frog leaping algorithm (SFLA), Lion based 
algorithm, Monkey based algorithm, Wolf based algorithm, 
are the widely accepted swarm intelligence algorithms [20, 
21]. All the above-mentioned swarm intelligence-based 
algorithms work on the natural behavior of each organism 
taken into account. It has its pros in finding faster optimal 

solution but delivers the local optimum values than converg-
ing to a global optimum because of its search process in a 
small space rather than in a large space [22]. Physics based 
algorithms adopt the laws of nature such as (i) Newton’s 
law of gravitation, (ii) Quantum mechanics, (iii) Theory of 
Universe—Big Bang theory of expansion and Big Crunch 
theory where all matters are pulled by black hole, (iv) Elec-
tromagnetic systems, (v) Electrostatic systems—Coulomb’s 
law, Gauss law, Newtonian law of Mechanics, Superposition 
principle of Electrostatics, (vi) Glass demagnetization, (vii) 
Galaxies. Simulated Annealing (SA), Gravitational search 
algorithm (GSA), Galaxy based search algorithm (GBSA), 
Charged system search (CSS), Atom search optimization 
(ASO), Sine Cosine algorithm (SCA), Henry gas solubility 
optimization (HGSO), Equilibrium optimizer (EO) [23, 24]. 
Strategy based on human’s problem-solving intelligence, 
potential to comprehend, rationale, acquiring knowledge, 
ability to grasp and withhold ideas, supervisory and mana-
gerial powers etc. were set as basic inputs to build Human 
inspired optimization algorithms (HIOA). Many algorithms 
have been developed recently by acquiring the latest trends 
in human society. HIOAs such as Corona virus herd immu-
nity optimization (CHIO), League championship algorithm 
(LCA), Harmony search (HS), Forensic based investigation 
optimization (FBIO), Political optimizer (PO), Teaching 
learning based optimization (TLBO), Heap based optimizer 
(HBO), Battle royale optimization (BRO), Human urbaniza-
tion algorithm (HUA) are currently in research for solving 
optimization problem [22, 25–28].

After a span of 9 years since the introduction of RSM, 
Genetic algorithm (GA) gained importance with major 
research from Holland in 1960’s [29]. As the name suggests, 
this algorithm was based on the natural selection theory from 
Charles Darwin. This algorithm was the first technique to 
adopt the system using multiple operators (crossover, recom-
bination, mutation, and selection). Each of these operators 
forms a crucial role of the genetic algorithm model in terms 
of problem resolution. Compared to conventional algorithms, 
the genetic algorithm can handle complex objective functions 
parallelly. Since then, it has become popular not only in the 
field of biotechnology but also in the various other engineer-
ing fields (electrical, mechanical, aeronautical. etc.) where 
the optimization problems were more common [30, 31]. 
Along with the RSM and GA techniques, the artificial neu-
ral network (ANN) was also in its field of research in early 
nineteenth century [32]. Initially, only neurons with a single 
layer were used for its research until 1980. It was the work 
of Werbos on backpropagation which improved the neural 
network towards optimization problems [33]. At the begin-
ning, only a specific activation functions were used for training 
the neural networks but then after the boom of deep learning 
technologies in 2010, there are multiple training algorithms 
and activation functions which efficiently modeled the system 
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[34]. There are certain drawbacks associated with these indi-
vidual optimization techniques. The RSM has its restrictions 
with its user defined boundary conditions [35] while the GA 
involves multiple operators with higher computational time for 
its optimization. The training of ANN for its optimal model 
with different algorithms still requires more inspection for its 
better validation of response [36]. The above-mentioned algo-
rithms are widely used for optimization problems in different 
fields separately and now the concept of coupling two differ-
ent algorithms (RSM-GA, ANN-GA) are also tested for its 
performances in improving the accuracy. The coupling of two 
methods for optimization problems can deal with the problems 
exhibiting several local minima in the fitness function with its 
quick convergence towards the optimal solution [37, 38]. The 
main objective of present paper is to understand the principles 
of different algorithms towards the optimization problems, the 
parameters involved, logic of identifying the optimum point 
within its search space with a comparison of results from vari-
ous domains of engineering.

2 � Discussions

2.1 � Response Surface Methodology

Response surface methodology, in accordance with the 
design of experiments implies the relationship between the 
response/output variables of interest and the associated/input 
variables through a set of mathematical and statistical tech-
niques. Since its inception in the early 1950s, it has been 
at the forefront in research and industrial experimentation 
fields [39, 40]. Here, the response is the dependent variable 
and the parameters that affect the response are the inde-
pendent variables. Optimization process through RSM is 
obtained through certain stages which is described in Fig. 1. 
Even though the relationship between them is concealed, it 
can be approached by a low degree polynomial model which 
is represented as

where y is the response and the function X1,X2,X3 …… ..Xn 
is the independent variable with � as coefficient and e is the 
experimental error [41]. From Eq. (1), determining the func-
tion f  implements the prediction of response for any values 
of X that are not included in the experiment. The representa-
tion of f (X1,X2,X3 …… ..Xn) is called a response surface. 
The approximation of the response function is called RSM. 
However, if the function f  is known, then the values of X 
can be obtained by the calculus method to give the optimum 
response. But, in most of the scenario, the mathematical 
form of function f  is unknown. In these cases, the method of 
approximation is applied within the stipulated experimental 
region by the polynomial degree.

(1)y = f
(

X1,X2,X3 …… ..Xn

)

� + e

This method of approximation happens when the inde-
pendent variables are fed as inputs and the corresponding 
outputs (response) are estimated according to the speci-
fied function that exhibits between the response and the 
independent variables. It then analyses the values of inputs 
with respect to the responses and performs the approxi-
mation in order to determine the optimum response. The 
approximation model technique does this work. Hence, 
if there exists a linear relationship between response and 
input values then the method of approximation is a linear 
model, whereas if there are highly non-linear outputs with 
respect to input values, then it follows the cubic model 
approximation technique. Likewise, few model approxima-
tion techniques are available and will be executed based 
on the input and response values. The optimum response 
within the experimental region is found out by eliminat-
ing the low significant terms and by minimizing the fitting 
errors that occurs during the application of approximation 
model technique. This can be done by sequential replace-
ment, stepwise replacement, and exhaustive search meth-
ods [41, 42]. If the function takes the degree of 1, then it 
is known as first degree model. In this model, the response 
obtained is linear fashion with the independent variables 
and is given by Eq. (2) [43, 44]

Fig. 1   Flow chart of RSM
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On the other hand, the function with two degrees is 
known as second degree model. In this second degree model, 
the response obtained is in the form of curvature which is 
represented as Eq. (3) [45, 46].

2.1.1 � Experimental Designs for Fitting the Model

From a set of unorganized data, getting the accurate fitting 
of response designs is quite computationally complex and 
involves the precision approach for estimating the response. 
In such cases, designs for fitting the model could be a better 
option wherein the independent variables of any combina-
tions can be fed as input for generating the data in estimating 
the response [47, 48]. The designs for first- and second-
degree models helps in analyzing the correctness of the 
response and the region of appropriate response within the 
experimental region. The first degree designs available in 
the literature are (i) 2 k factorial design, (ii) Plackett Burman 
design, (iii) Simplex design [49, 50]. The second degree 
designs include (i) 3 k factorial designs, (ii) Central com-
posite designs, (iii) Box-behnken design [51, 52] (Table 1). 
Second degree model takes the general form of Eq. (3) as 
mentioned in the manuscript. It is noticeable that the second-
degree model contains (i) linear terms, (ii) pure quadratic 
terms and (iii) interaction terms. This second order model 
is used when there exists a response surface in the form of 
curvature. The response obtained using this second degree 
model can be in any one of the standard shapes (referring 
to surface 3D plot). For example, an upward curve indicates 
that the model has found the apparent maximum value, and 
a bowl shaped curve indicates the apparent minimum value 
and there also exists a minimax system where they exhibit 
both minimum and maximum behaviour. The logic behind 
this optimization is the analogy of Taylor series (used to 
approximate the complex functions). First order Taylor 
series is analogous to first order regression model, and sec-
ond order Taylor series is analogous to second order regres-
sion model [53].

Response surface methodology (RSM) is a key optimi-
zation approach and it has undergone substantial progress 
to address the concerns in multiple engineering domains. 
Based on the observational data reviewed from various lit-
eratures [47], around 14.7% of research works in engineer-
ing have used RSM as its optimization tool. Among them, 
a few research works have been discussed in this Section. 
The saline wastewater treatment adopting electrochemical 

(2)y = �0 +

n
∑

i=1

�i + e

(3)y = 𝛽0 +

n
∑

i=1

𝛽i +

n
∑

i=1

𝛽iix
2

i
+
∑

n
∑

i<j=2

𝛽ijxixj + e

oxidation process was studied towards the removal of 
chemical oxygen demand (COD) and total organic carbon 
(TOC) efficiency [74]. The experiments were performed 
considering the parameters of pH, applied voltage, salt 
concentration and reaction time used for the process. The 
prediction of the model adopted was higher than 0.95 
towards the output responses and it was inferred to a bet-
ter tool for identifying the optimal parameters towards the 
wastewater treatment. The effectiveness of biodiesel as an 
alternative fuel for compression ignition engines has been 
researched for many years but still the commercialization 
of biodiesel as a fuel is constrained due to higher cost 
involved. Kusum oil has been utilized to make improved 
biodiesel [75] using the process of transesterification to 
address the aforementioned concerns. The yield in the bio-
diesel along with other physio-chemical properties were 
the responses and the experimental model was predicted 
better using RSM model and was found to be acceptable 
as per ASTM6751 standard listed for biodiesel. Coal is 
one of the most predominant energy resources in the world 
due to higher availability and its affordability towards the 
prices. Due to scarcity in the higher-grade coals, the lower 
grade coals must be used to meet the energy demands of 
the present load conditions. The lower graded coal has a 
significant impact on the process towards higher ash and 
moisture content, thus Behera et al. [76] investigated the 
process of reducing ash content from lower grade coal 
with variables such as temperature, time and acidic con-
centrations. The optimization was carried out using central 
composite design (CCD) methodology and it was inferred 
that acidic concentrations was more effective in minimiz-
ing the ash content compared to impact on time and tem-
perature. Nanofluids are currently the most relevant field 
for researchers due to its widespread use in business as 
well as in technology for its improvement in heat transfer. 
Hatami [77] formulated a wall to understand the impact of 
nanofluids from improving heat transfer mechanism using 
RSM model to obtain an increased Nusselt number. The 
findings of the research concluded an optimized diameter 
upto 1.0 can enhance the natural heat convection with 
better Nusselt number. The depletion of petroleum-based 
resources has not only brought a change in the modes of 
transport from moving towards electric vehicles but also 
led to the development of alternative fluids for transformer 
applications. Any new fluids before being introduced 
into transformer should be tested for its better dielectric 
properties. Thus, the transesterification of Pongamia Pin-
nata oil (PPO) was performed considering reaction time, 
temperature and catalyst where its response towards the 
breakdown voltage, viscosity and fire point were mod-
elled using RSM [78]. The quadratic equation was used 
for its responses which resulted in better significance on 
the analysis of variance (ANOVA) and could be used as 
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a suitable tool for optimizing the parameters involved in 
transesterification of insulating oils towards transformer 
applications.

2.2 � Genetic Algorithm

Genetic algorithm is a stochastic search algorithm that 
adopts the principle of “survival of the fittest” and the elimi-
nation of unfitted individuals. Since GA is adopted from the 
principle of natural selection and reproduction from biologi-
cal processes in nature, there are many terms in GA that are 
comparable with the biological terms. As defined by the 
natural biological process, optimization involved in GA are 
random. However, GA let us to set the level for randomiza-
tion and have control over it [79–81]. The following terms 
can be understood from Fig. 2. (1) Population, (2) Chromo-
some, (3) Genes, (4) Allele.

Population is all possible solutions for the specified prob-
lem represented by the set of individual chromosomes, com-
putationally represented as bit strings (assignment of binary 
numbers to the chromosome). In that, one possible solution 
(a bit) to the specified problem denotes chromosome, which 
is comprised of genes. The value given to each gene repre-
sents the allele [82]. In addition to that, population in actual 
(or) real system must be converted to the population that is 
easily understood in the computational space. Genotype and 
Phenotype are the two terminologies that represent the popu-
lation in computing system and the population in actual sys-
tem respectively. Encoding and Decoding are the mapping 

systems that transforms from phenotype to genotype and 
from genotype to phenotype in a design space respectively 
(Fig. 3).

The general structure of GA (Fig. 4) for solving opti-
mization problems start with the random initialization of 
population and each of the chromosomes in population is 
evaluated by fitness function and follows the termination 
path to reach the optimal solution. If the termination criteria 
are not met by the chromosomes, then new population is 
generated by applying the GA operators such as selection, 
crossover, mutation [83]. It is then evaluated by fitness func-
tion and checked for its termination criteria to obtain the 
optimal solution. The process of generation of new popula-
tion with the help of GA operators occur until the termina-
tion criteria is satisfied. This is the general framework of GA 
[82]. Naturally, GAs has a large number of parameters that 
must be modified to achieve the optimal performance for 
any optimization challenge.The important parameters that 
one should know for performing any optimization problems 
using GA are (i) Fitness function, (ii) selection, (iii) Crosso-
ver, and (iv) Mutation.

2.2.1 � Fitness Function

It is one of the main input parameters that defines the opti-
mization problem. In other words, it is the only informa-
tion available for solving the problem [84]. For any kind 
of optimization, say for instance minimization or maximi-
zation problem, fitness function is needed to evaluate the 

Fig. 2   Primary terminologies in 
Genetic Algorithm

Fig. 3   Mapping systems in 
Genetic algorithm
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individual chromosome in a population which ultimately 
gives a fitness score. This fitness score helps in finding out 
the best individual chromosome for giving optimal solu-
tions or improvisation by successive iterations using GA 
operators [85, 86]. The fitness function for each problem 
is different. According to the stated problem, a particular 
fitness function should be applied. The trickiest element 
of creating a challenge for genetic algorithms is coming 
up with a fitness function for the given situation. Error 
measures like Euclidean distance and Manhattan distance 
are frequently employed as the fitness function for clas-
sification tasks involving supervised learning. Whereas 
basic functions can be employed as the fitness function 
for optimisation problems, such as the sum of a group of 
computed parameters relevant to the problem domain. In 
simple terms, fitness function can be explained as shown 
in Eq. (4).

For instance, y = 2
(

x2 − 3x
)

where fitness function is 
2
(

x2 − 3x
)

 . This indicates that the output variable y is 
dependent on x variable and in order to know at what 
value of x , the function y is minimized or maximized, 
optimization is performed and the plausible way of solv-
ing is through GA. The value of x is represented as the 
solution which can be either identified as the solution for 
maximization or minimization problems. For any optimi-
zation problems, fitness function takes the value of each 
parameter that is known to contribute the output i.e., it 
can be a sum of all individual parameters that contribute 

(4)Function y = f (x)

towards a positive output or it can take parameters that 
have positive and negative effects on the output. In the 
fitness equation, square terms take the positive coefficient 
whereas the individual term takes a negative coefficient. 
In optimization problems, objective value is same as fit-
ness function that is of great importance in determining 
the output or response, provided the factors affecting the 
response is specified in the equation [87]. Hence to get the 
global optimum value, each solution is evaluated through 
the fitness function. The best solution after fitness func-
tion evaluation is then subjected to genetic operators such 
as crossover and mutation [88]. Recently, many methods 
have been implemented in promoting the accuracy of fit-
ness function evaluation in finding the global optimum. A, 
K-means index (KMI), Partition separation index (PSI), 
Separation index (SI), Davis–Bouldin index (DBI), fuzzy 
c-means index (FCMI) [89, 90], Gaussian process [91], 
Artificial neural network (ANN) [84].

2.2.1.1  Selection  It is the essential parameter in choosing 
the best solution after fitness function evaluation. It is also 
referred as reproduction operator [92] because production 
of new individuals depend on the selection criteria and the 
possible solutions are obtained through reproduction and 
crossover [93]. The general strategy employed during the 
process of selection is that the individual with the highest 
fitness score is selected and copied for creating new popula-
tion whereas the individual with least fitness score is elimi-
nated [81]. But it is not assured that the highest fitness score 
always builds the global optimum solution. To the contrary, 
the least fitness score individual can also contribute reach-

Fig. 4   Structure of Genetic 
Algorithm
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ing towards the optimum. Having said that, an appropriate 
selection strategy must be employed such that the least fit-
ness score individual is not completely eliminated and is 
taken into account for selection [94]. The selection operator 
is used to choose solutions from the current population to 
build the next population of solutions, which serves as the 
foundation for the algorithm’s subsequent iteration. How-
ever, variety from crossing and mutation must be balanced 

with selection. Strong selection will result in the dominance 
of highly fit individuals in the population, diminishing the 
diversity necessary for innovation and advancement. On 
the other hand, extremely weak selection may cause overly 
sluggish evolution [53]. Selection methods that are avail-
able in literatures are (i) Roulette wheel selection, (ii) Sto-
chastic universal sampling, (iii) Linear rank selection, (iv) 

Table 2   Selection techniques/methods in Genetic algorithm

Selection method Description References

Roulette wheel selection (i) Also known as fitness proportional selection
(ii) In this selection method, the wheel containing different individual is spun and a fixed pointer is 

placed for selection
(iii) The wheel is partitioned according to the size of the individual i.e., larger the size of indi-

vidual, larger area it takes in the wheel and vice versa. So, when the wheel is spun selecting the 
larger area is of higher probability

(iv) The process of selecting individual proceeds till the smallest individual is pointed
(v) Therefore, the probability of individual selection is directly proportional to the fitness function 

score and is given by
Pi =

fi
∑n

j=1
fj
 (5)

where fi is the fitness score of ith individual and N is the size of population

[93, 95]

Stochastic universal sampling (i) Variant of Roulette wheel selection which was developed to overcome the convergence of solu-
tion at local optima in roulette wheel selection

(ii) In this, N equally spaced pointers are employed for selection where N is the number of indi-
viduals to be selected and the space between the pointers is given by 1/N

(iii) However, the individual is partitioned according to the size like in the case of roulette wheel 
selection

(iv) Hence, random individual is selected based on the position of pointer

[96, 97]

Linear rank selection (i) In this method, each individual is assigned a rank based on the fitness score
(ii) Consider a population of size N, rank N is given to the best individual followed by N-1, N-2, 

…1 to the least individual
(iii) This method also overcome the convergence issue to local optima
(iv) The probability of selection is given by
Pi =

Ranki

N(N−1)
 (6)

[94, 98]

Exponential rank selection (i) his method follows the same procedure of linear rank selection for assigning ranks to the indi-
vidual

(ii) However it differs in the selection probability criteria
(iii) Here, probability is exponentially expressed and is given by
Pi =

CN−i

∑N

j=1
CN−j

 (7)

where C is the base of exponent; 0 < C < 1
(iv) Compared to linear rank selection, the chance of eliminating the least individual is consider-

ably less, thereby leading to select global optima

[94, 95, 99]

Tournament selection (i) Most prominent selection technique in genetic algorithm
(ii) In this technique, N individuals in a population are selected at random and are ranked based on 

the fitness score
(iii) The number of N individuals are referred as tournament size
(iv) The highest fitness score of individuals from the tournament size gets selected for further 

process
(v) Hence, larger the tournament size, higher is the chance of selecting the highest fitness score 

individual, thereby leading to eliminate the lowest fitness score individual
(vi) In most cases, tournament size is kept as 2 (Binary tournament selection) to avoid the conver-

gence to local optima

[94, 99]

Truncation selection (i) One of the simplest techniques that is based on the fitness scores of the individuals
(ii) Truncation threshold is the main factor in selecting the individuals which ranges from 50%-10%
(iii) This percentage denotes the proportion of population to be selected and any individual below 

this threshold is eliminated
(iv) This often results in stuck with local optima

[100–102]
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Exponential rank selection, (v) Tournament selection, (vi) 
Truncation selection [93, 95] (Table 2).

2.2.1.2  Crossover  After the selection of best individuals, 
crossover genetic operator is applied in order to create a 
new individual that derives the properties of best individu-
als (Umbarkar and Sheth). In simple terms, production of 
new offspring from the best parents by means of exchanging 
the genes is referred as crossover. This finds an advantage in 
finding out the new individual whose characteristics are way 
better than their parents. There are many classifications of 
crossover operators available in the literature which is rep-
resented in Fig. 5 [103–108].

2.2.1.3  Mutation  Mutation is an evolution operator that 
helps in modifying the genes in a chromosome after the 
crossover operator is applied [109]. This holds true because 
at times, the new individual produced from crossing over 
may stuck at local optima, even if their parents are the best 
individual. Mutation operator finds advantage in genetic 
algorithm by exploring the search space when the crossover 
operator makes use of it to find the best individual. Here, 
the individual is modified based on the mutation probability 

[110]. By enabling mutation operator, it is known that the 
diversity of the entire population is maintained and avoids 
the convergence to local optima [111]. In literature, there 
are different types of mutation operators but is not limited to 
the mutation operators in Table 3.

The genetic algorithm has undergone extensive research, 
testing, and use in numerous engineering domains. It not 
only offers an alternate approach to problem-solving, but it 
also outperforms the other conventional approaches in the 
majority of the issues studied [122]. Many of the real-world 
issues of determining the best parameters could be chal-
lenging for conventional approaches, but they are perfect 
for genetic algorithms [123]. Over the past few decades, 
many intrusive modeling techniques have been formulated 
for granular soils. This has led to a significant increase in 
the difficulty of choosing an acceptable model with the 
required features based on standard testing and with an effi-
cient method for determining the factors involved in geo-
technical fields. So, in order to examine an appropriate sand 
model, Jin et al. [124] investigated the suitable parametric 
detection of both drained and undrained testing process. The 
estimation of minimal objective parameters along with lower 
strain levels were determined based on the GA optimization 
where the experimental and simulation results provided a 

Fig. 5   Classification of crossover operators
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Table 3   Types of mutation operators in genetic algorithm

S. No. Mutation operators References

1 Insertion mutation: In this, a gene in a chromosome is selected and randomly inserted into a new location, thereby shifting 
the entire frame of genes that was originally present in that particular location

 

[112, 113]

2 Inversion mutation: A subset of genes between two positions are reversed and placed in that position

 

[114, 115]

3 Scramble mutation: In this, subset of genes is selected, scrambled and placed either in the same position or in a new posi-
tion

 

[113]

4 Bit flip mutation: A common form used in binary encoding. The bits 0 and 1 are replaced in the chromosome by 1 and 0

 

[116, 117]

5 Swap mutation: In this, the genes are interchanged with each other

 

[118, 119]

6 Random resetting mutation: Random values from the given range is applied to the existing genes

 

[120, 121]
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good correlation. Reverse osmosis (RO) has a broad range of 
industrial applications as a separation technique in compari-
son with traditional thermal processes [125]. The pilot-scale 
model for RO have been tested for its removal of chlorophe-
nol from the waste-water [126] and the optimization using 
GA was created with the objective of increasing the chlo-
rophenol rejection and minimizing the operating pressure 
conditions. The findings indicated a chlorophenol rejection 
of upto 26.57% with its pressure maintain within its limits. 
Algal biofuels are gaining popularity in the effort of cutting 
down the carbon emissions in the environment, but it is still 
unclear on how the fuel generations are sensitive to differ-
ent variables [127]. Azari et al. [128] studied the impact 
of different parameters (aeration, time, light intensity, pH) 
towards the rate of CO2 biofixation of Chlorella vulgaris. 
The prediction of experimental dataset achieved using GA 
was around 93% and the same model is to be understood for 
large scale experimented to know the limitation of the tech-
niques towards the commercial scale of biofuels. Introducing 
the renewable energy generations (solar, wind) into the grid 
using power electronic devices needs a perfect synchroniza-
tion and thus the smart grids are developed which provide a 
better metering of load at the distribution level and indicat-
ing the level of harmonics at the transmission levels [129]. 
The integration of different generations is to be allocated 
with economic loading and Arabali et al. [130] have used 
the integration of solar and wind generations along with 
energy storage devices on meeting the HVAC loading. The 
suggested methodology using GA optimization is a perfect 
tool for energy management which can be used by the utility 
companies to combine the different energy generations on 
meeting the various loads such as residential, commercial, 
and industrial feeders with an optimal cost.

2.3 � Artificial Neural Network

The Artificial neural network (ANN) performs the functional 
relation between the input and output similar to the bio-
logical neural system in the human body [131]. The inter-
connection of different neurons is processed through wide 
range of layers. The typical architecture of ANN model with 
single hidden layer is shown in Fig. 6. The ANN involves 
three different layers: first layer is the input layer where the 
experimental data points are provided to the network, the 
second layer is known as hidden layer where the input neu-
rons are allowed to perform transformations using an acti-
vation function and the third layer is the output layer which 
calculates the responses from the network. Depending on 
the regression performance, the number of hidden layers can 
be increased to improve the accuracy. With increase in the 
hidden layer, the complexity of the model also increases. So, 
generally the researchers test the network with an optimum 
level of hidden layers [132] to reduce the difficulty involved 

in the formulating the objective function and at the same 
time maintain a higher precision. The ANN performs train-
ing, validation and testing process from the input and output 
data informations. Each of these steps could be assigned 
with certain percentage from informational database to per-
form the neural network. Mostly, the training phase requires 
a higher information compared to validation and testing 
phases [133, 134]. From the neural network formed, the 
Eq. (8) could be defined as:

where ni is the number of neurons in the input layer, nh is 
the number of neurons in the hidden layer, f1 and f2 are the 
functions used between input layer to hidden layer and hid-
den layer to output layer, W1 and W2 are the weights between 
input layer to hidden layer and hidden layer to output layer, 
a and b are the bias added to the weights in the input and 
hidden layers, X indicates the input variables and Y  is the 
output responses respectively.

The human brain works for each second on categorizing 
the informations as useful and non-useful groups. Similar 
phenomenon is exhibited in ANN where the segmentation 
process helps in utilizing the required information with 
the activation function module [135]. The main role of the 
activation function is to convert the input variables which 
are weighted along with a bias towards the hidden layer or 
output layer. The different hidden layers in the neural net-
work will utilize the similar activation function while the 
output layer using a different activation depending on the 

(8)

Y =

nh
∑

j=1

{

f2

[

W2j,1 ∗

{

ni
∑

i=1

nh
∑

j=1

f1
(

Xi ∗ W1i,j + aj
)

}]

+ b

}

Fig. 6   Typical Architecture of ANN model
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prediction of the neural network model [136]. Without the 
use of activation function, the neural network would only 
perform a linear transformation from the weights and bias 
added to the input variables. Thus, the activation function 
will introduce a non-linearity in network during its feedfor-
ward propagation. There are different activation functions 
(Binary step function, linear activation function, non-linear 
activation functions) which are used in ANN [137, 138]. 
The binary step function compares the input with a thresh-
old value to determine the activation process and the linear 
activation function is termed as no activation function since 
it only does linear transformation towards the input vari-
ables [139]. Both binary step function and linear activation 
function has a gradient as zero and constant value which 
has no relation towards the input variables, and hence could 
not be used for backpropagation [140]. Further, irrespective 
of the number of hidden layers used, the neural network is 
reduced to a single layer when the activation function is lin-
ear. The non-linear activation function overcomes the above 
limitations by allowing backpropagation due to its gradi-
ent information and makes it feasible to determine which 
weights present in the input neurons could be modified to 
provide a better prediction of the output response [141]. The 
different non-linear activation functions used in the neural 
network are sigmoid or logistic function, hyperbolic tangent 
function, Rectified Linear Unit and Exponential Linear Unit 
[34, 141]. Among the above-mentioned functions, the sig-
moid and hyperbolic tangent functions are widely used. The 
non-linear activation functions are used in the hidden layer 
whereas the linear activation functions are used in output 
layer. The ANN is a supervised machine learning techniques 
that uses different training algorithms such as Levenberg 
Marquart (LM), Bayesian regularization (BR) and Scaled 
Conjugate algorithm (SCG) for training the network [142, 
143]. LM algorithm is the fastest training algorithm with 
higher requirement of memory space. BR algorithm mini-
mises the combination of squared errors and weights to iden-
tify the perfect model for its generalization of network. SCG 
algorithm uses gradient techniques for its update on weights 
and bias which are more efficient towards large problems 
with lesser memory requirement than Jacobian calculations 
involved with LM and BR algorithms. Each of these algo-
rithms formulates a unique methodology on framing the 
ANN model that affects the precision during training process 
[144] which is brief discussed below:

2.3.1 � Levenberg Marquart Algorithm

The Levenberg–Marquardt algorithm was developed to oper-
ate on loss functions that takes the form of sum of squared 
errors and it functions without calculating the correct Hes-
sian matrix. On the contrary, it utilizes the Jacobian matrix 
and gradient vector for its calculation. The approximation 

of Hessian matrix (HLM) with a second order derivatives 
and gradients ( g ) is shown in Eqs. (9) and (10) once the 
parametric function takes the shape of sum of squares [145].

where J is the Jacobian matrix which involves the first order 
derivative of error involved in the network regarding the 
bias and input weights, � is the regularizing parameter, I is 
the identity matrix and e represents error obtained from the 
network. The parameter � forms a major role in the func-
tioning of LM algorithm. If � is set to zero, then Eq. (9) of 
LM algorithm approaches the Newton method and if � is 
assigned a larger value, the LM algorithm are effective as a 
gradient descent algorithm [146]. It is much simpler to cal-
culate the Jacobian matrix compared to Hessian matrix using 
a conventional backpropagation method. The LM algorithm 
utilizes these approximations towards the Hessian matrix 
calculation in the Newtons method for updating the values at 
each iteration. The network performance towards error will 
be reduced during each iteration and this approach of LM 
algorithm accelerates the convergence and makes it very fast 
while training the neural network compared to traditional 
gradient methods [147].

2.3.2 � Bayesian Regularization Algorithm

Bayesian regularization (BR) algorithm based on Bayes’ 
theorem is a mathematical process that converts a non-linear 
regression into a statistical problem [148]. The benefits of 
Bayesian regularized artificial neural network (BRANN) is 
the predictions towards the model to be more robust elimi-
nating the need for validation procedures. These networks 
provide solution to a wide number of problems involved in 
quantitative structure activity relationship models. They 
are challenging to overtrain because data techniques offer a 
Bayesian objective criterion for ceasing the training. They 
are especially difficult to overfit due to the BRANN’s ability 
to calculate and train on a variety of useful network charac-
teristics or weights, effectively turning off those that are not 
significant. The number of weights in a traditional neural 
network algorithm is typically much larger than BRANN 
[142]. The Bayesian regularization (BR) algorithm adjusts 
the input bias and weights in accordance with the optimi-
zation from LM algorithm [149]. A perfect generalization 
of the network is created by minimizing the weights and 
squared errors. The network weights are being introduced in 
the fitness function (F(�)) as shown below [150]:

(9)HLM = JTJ + �I

(10)g = JTe

(11)F(�) = �E� + �ED
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where E� and ED are the sum of squared network weights 
and errors with � and � representing the parameters of 
the objective function. Once the optimum values of these 
parameters have been identified, the algorithm is switched 
towards LM technique for its calculation on Hessian matrix 
and updated weights are used for the minimization of objec-
tive function.

2.3.3 � Scaled Conjugate Algorithm

The conjugate gradient algorithms execute their searches 
in a way that generally leads to a convergence faster than 
the steepest descent method despite maintaining the error 
minimization attained in the previous iterations [151]. 
The calculation of step size is performed using line search 
method rather than the computation of Hessian matrix for 
determining the optimal distance to advance in the direction 
of search space. Further, the step size will be altered during 
each iteration such that it minimizes the objective function 
in the direction search of the conjugate gradient. In addi-
tion to line search method, there are various methods that 
can be used for estimating the step size. The concept was 
to integrate the conjugate gradient methodology towards 
the LM algorithm which was studied by Moller [152] and 
was determined as Scaled Conjugate Algorithm (SCG). The 
effectiveness of this algorithm depends on the parameters 
involved in designing the model which is modified at each 
successive iteration and thus provides a significant benefit 
compared to algorithms based on line-search.

Researchers from different engineering domains have 
started adopting the ANN for optimization and classification. 
The prediction of flash floods being one of the major disas-
ters for the humans depends on different parameters (wave 
pattern, wind speed, precipitation intensity) and its forecast-
ing on floods with a perfect sensing rate was studied using 
LM, BR and SCG algorithms [153]. The performance on 
non-linear data information provided a better result with BR 
algorithm compared to LM and SCG. In a similar manner, 
the stock prices in the Indian market which holds a finan-
cial data was understood using ANN with three different 
algorithms [154]. The prices which are dynamic in nature 
is more difficult for its prediction showed a 99.9% accuracy 
on the different algorithms from the initial dataset whereas 
a significant drop of 3 to 4% was observed for data informa-
tion over a period of 15 min. Amalanathan et al. [155] have 
studied the impact of ageing on transformer insulation and 
its classification using Principal component analysis (PCA) 
and Artificial neural network. From the observations, the 
authors have concluded that ANN provides a better accu-
racy towards the interpretation of trained network compared 
to PCA. Similarly, the ANN regression model have been 
used for predicting of viscosity of nanofluids using three 
different algorithms (LM, BR, SCG) and inferred that LM 

algorithm provided a better prediction than the other tech-
niques [156]. The effect of trash content and truck-related 
air emissions have been investigated using geographic infor-
mation system (GIS) along with ANN model [157], and a 
higher performance was observed only when the maximum 
values for combined wastes and trash were less prominent 
in the input data statistics on wastages. Banerjee et al. [158] 
have understood the wastewater treatment using graphene 
oxide nanoplatelets with its characterization on toxicity and 
evaluation on optimal amount of safranin performed using 
ANN model. From the findings, 99.8% removal of dye was 
achieved after 2 h of treatment with the safranin solution 
of 50 mg/L maintained at a pH and temperature of 6.4 and 
300 K respectively. Ghosal et al. [159] used the ANN model 
for optimizing the depth of CO2 LASER-MIG welding used 
for alloy containing aluminum and magnesium. The algo-
rithm used backpropagation for training the network using 
both BR and LM techniques with its optimization results 
correlating well with the experimental values. Ranade et al. 
[160] have used the approach of hybrid chemistry to estimate 
the oxidation of hydrocarbons at high temperatures resulting 
from experiments on pyrolysis using ANN. The usage of 
ANN technique for identifying the reaction rates at an early 
stage led to a reduction in chemical reactions occurring at 
the pyrolysis stage. The chlorophyll model which is one of 
the precautionary methods to limit the onset the algal bloom 
was investigated for its optimization using ANN to reduce 
the expenses incurred on the marine ecosystem [161]. The 
biodiesel production from algae oil is gaining more impor-
tance in the recent years due to higher amount of oil content 
and better productivity. Thus, the transesterification of algal 
oil at low temperatures towards the production of biodiesel 
was experimented and analyzed using both RSM and ANN 
[162]. It was inferred that regression analysis provided a 
better prediction from the ANN model compared to RSM.

2.4 � RSM‑GA

The response surface methodology (RSM) combines the 
design of experiments (DOE) along with statistical meth-
ods for creating and optimizing empirical models. In the 
recent years, the search space based on genetic algorithm 
[163] from the polynomial equation generated from RSM is 
gaining more importance in the deep learning methodolo-
gies. The idea of finding the optimal point in a problem is 
done after the completion of response surface model where 
the GA search algorithms is incredibly effective [164]. The 
integration of RSM with GA for the selection of near opti-
mal target value have been demonstrated by Khoo and Chen 
in the early twentieth century [165]. The researchers devel-
oped an outline on the hybrid prototype model to deal with 
single and multi-response variables with various constraints. 
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The flowchart indicating the working of RSM-GA model is 
shown in Fig. 7.

Initially, the independent variables and dependent output 
response are added to the RSM model with individual range. 
The design experiments are formulated based on central 
composite design (CCD) as discussed in Sect. 2.1. Once the 
experiments are performed, the regression analysis is per-
formed and tested for the analysis of variance (ANOVA) to 
understand the difference between the predicted and actual 
results. The quadratic equation depending on the number 
of variables is generated which is then optimized using GA 
using suitable parameters such as population size, mutation 
function, crossover fraction and selection function. The 
algorithm iterates until it reaches the tolerance limit and 
maximum number of generations. The isolation of fungus 

producing proteases from microorganism was assessed with 
different parameters (temperature, sucrose and pH) to yield 
a maximum enzyme using hybrid RSM-GA optimization 
model [166]. The highest enzyme production was observed 
at pH of 8 with its temperature maintained between 30 and 
60 °C. Sabry et al. [167] investigated the impact of tensile 
strength on aluminum material in frictional stir welding pro-
cess in underwater considering the diameter, rotating and 
travelling speed as its input variables. The hybrid model of 
RSM and GA observed a higher accuracy compared to its 
individual optimization which improved the issue involved 
with the welding process in the pipeline. Hasanien et al. 
[168] developed a design for the cascaded control of power 
conversion unit using Taguchi method and studied the effect 
of the design parameters during fault conditions in the grid 

Fig. 7   Flowchart of RSM-GA 
model



4846	 A. Susaimanickam et al.

1 3

using RSM-GA. On comparing both Taguchi method and 
RSM-GA, the transient responses were found to better in 
the former compared to later due to larger design experi-
ments. The flocculation process has been induced in micro-
algae using alkali [169] where the multi-objective optimiza-
tion gave lower values of input variables yielding a higher 
efficiency while using RSM model. To the contradict, the 
RSM-GA model results in higher values for both the input 
variables and on the efficiency of microalgae. Similarly, the 
waste water treatment using iron electrode pairs towards the 
removal of turbidity was experimented [170] with multiple 
variables such as intensity of current, time for settling and 
electrolysis process, and temperature. An increase of 3% in 
the turbidity removal was inferred from hybrid model (RSM-
GA) compared to the optimization performed using RSM 
model separately. The problems involved in the real time 
applications often involve multiple responses where GA can 
be well adapted with RSM model in finding the near feasi-
ble solutions. Thus, this hybrid combination of RSM and 
GA provides a better optimization strategy in solving issues 
for problems involving large number of input variables and 
output responses.

2.5 � ANN‑GA

The neural network model developed based on the relation 
between input and output variables depends on the training, 
number of hidden layers with multiple trial and error meth-
odologies adopted until a higher prediction in the experi-
mental dataset is being obtained. The coupling of ANN with 
GA was introduced in order to attain a higher precision in 
finding the optimum point from the search space [171, 172]. 
The ANN trained using a feedforward or backpropagation 
algorithm is used to identify the fitness function which cou-
pled with GA formulates the objective function towards 
optimization problem. It is possible to create the best ANN 
model for usage in a specific problem using a variety of GA 
techniques. GA is used to improve interpretation, topology, 
feature selection, training, and weights associated with ANN 
[173]. The major problem involved with ANN is deciding 
the optimal configurations required for the network such 
as number of layers, neurons in the hidden layer and acti-
vation functions. There is no clear methodology used for 
architecture settings involved in ANN where its coupling 
with GA can create a better optimal design thereby improv-
ing its reliability and performance of the network [174]. 
It is well known that improvement in the ANN model is 
achieved in finding its optimal weights. The ANN coupled 
with GA can be used to identify the optimum weights where 
the probability of termination towards local minima using 
gradient descent method is overcome with its convergence 
to global minimum value [175]. Further, selecting a suitable 
input dataset is an important issue with ANN model where 

its coupling with GA identifies the required input dataset 
reducing their dimensional space and statistically improv-
ing their selection accuracy better than traditional methods 
[176]. Thus, ANN performs well in coherence with GA in 
finding the optimal model and approximating the param-
eters to increase their efficiency. Figure 8 shows the steps 
involved in formulating the ANN-GA model. Initially, the 
ANN model creates the input layer and output layer with 
optimized number of hidden layers chosen and trained with 
a suitable algorithm as mentioned in Sect. 2.3.

The model is allowed for its training until a higher R2 
value is obtained. If a very lower precision is obtained, 
then network is trained again with a modification of 
weights and bias in a suitable neuron of hidden layer and 
output layer [177]. Once a better prediction of network is 
being created with lower mean square error, the weights, 
bias and activation functions used for transformations are 
formulated to obtain the required objective function. This 
functional equation is then optimized using GA with a 
suitable constraints (lower bounds, upper bounds, non-
linear constraints) and algorithm settings [178]. The iter-
ation is continued until a lower tolerance in finding the 
optimal point is being reached else the GA parameters 
(selection, mutation and crossover) are to be reverted back 
for its modifications. Bahrami et al. [179] investigated the 
design towards the inflow of groundwater using hybrid 
coupling methods ANN-GA and simulated annealing tech-
niques. Among the different hybrid algorithms, the ANN-
GA observed a better correlation which was helpful for 
mining engineers to approach an effective management 
towards the controlling of water in mining. The starting 
of combustion in engines considering the mixture of air 
and fuel along with ignition timing was trained with neu-
ral network and its optimization results using GA tech-
nique enhanced the performance of neural network [180]. 
The coal fired power plant contributes a major part in the 
generation of electrical energy throughout the world. The 
parameters affecting the power generation (pressure, tem-
perature, air ratio for fuel) was optimized using ANN-GA 
method [181] and a better plant efficiency was obtained 
due to the reduction of fuel consumption. The transformer 
which is responsible for reliable electrical supply from 
the generation towards distribution unit involves differ-
ent faults during its operational life time. The identifica-
tion of faults based on the dissolved gas performance and 
ANN-GA modelling has provided a better classification 
of faults which is helpful for insulation engineers [182]. 
Bülbül et al. [183] determined the risk involved with rein-
forced concrete buildings from the database on 329 build-
ings in Bitlis, Turkey with the hybrid coupling of ANN-
GA. The initial population of GA was performed as the 
first step where its initial parameters (population number, 
selection and mutation rate, iterations) govern the network 
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parameters (number of input layers, hidden layers, acti-
vation, and training function) of ANN. The fitness value 
of each gene used for generating the ANN structure was 
performed for selection, cross-over and mutation process 
to identify the most successful gene towards the hybrid 
model. The proposed hybrid model provided a better net-
work parameter (98% accuracy) in identifying the earth-
quake risks involved in RC buildings which is not possible 
with the traditional trial and error methodology. Smaali 
et al. [184] experimented the degradation of Azithromycin 
(AZM) which was considered as one of the major drug 
used during the pandemic situation of COVID 19. The 
Like-Fenton experiment was used for identifying the AZM 

degradation rate considering the impact of various factors 
such as pH, initial concentrations, doses of FeSO4 and 
NaClO). The optimization process was performed using 
the ANN-GA algorithm to identify the conditions leading 
to maximum AZM degradation. The ANN-based model 
was first determined with additional responses developed 
from central composite design (CCD) for higher accuracy 
which then coupled with GA determined the conditions 
towards maximum AZM degradation rate. Thus, the non-
linear regression analysis provided a better model with 
ANN-GA algorithm which could be a major alternative 
towards pharmaceutical industry. The nanotechnology 
that has got its applications towards various engineering 

Fig. 8   Flowchart of ANN-GA 
model
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fields, where the prediction on the density of nanofluids 
with respect to several parameters (temperature, volume 
fraction, density of base fluid) is now possible using 
hybrid ANN-GA model [185]. Thus, the hybrid coupling 
of ANN-GA model could provide a better optimization 
result compared to individual algorithm models. Neverthe-
less, the training of ANN towards the dataset can impact 
the optimization problem performed with GA. Hence, a 
suitable model framed through the ANN is a precautionary 
measure to be followed in this hybridization which should 
be considered by the deep learning researchers before per-
forming the optimization.

3 � Future Perspective and Conclusions

Optimization is one of the key parameters required in the 
different applications of engineering domains. The tech-
niques used for implementing the optimization (RSM, GA 
and ANN) can result in different accuracies based on the 
problems involved within the search space. Despite being 
effective, capable of handling issues involving numerous 
design variables, taking interaction effects into account, 
and requiring minimum parameter modification, RSM only 
provides local optimal solutions. The problem of creating 
the objecting function along with multiple operators in GA 
makes them computationally complex. Further, the selection 
method used for fitness function evaluation should yield a 
result without premature convergence. The optimal design 
of ANN model with required neurons in the hidden layer and 
appropriate activation function is tedious process requiring 
trial and error methods with its training and testing to be 
validated with multiple algorithms. Thus, using a technique 
called hybridization, which combines two separate algo-
rithms (RSM-GA and ANN-GA), it is possible to overcome 
the above limitations involved with the individual optimi-
zation methods. In addition, the hybrid statistical approach 
is known to increase the accuracy of the process variables 
and responses in detecting the global optima involved in the 
optimization process compared to traditional single tech-
niques. Hybrid statistical approach is known to increase the 
accuracy of process variables and responses when compared 
to traditional single techniques. Thus, these optimization 
strategies could be useful for the engineers working in the 
various technical fields and may pave the way for real time 
applications.
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