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Abstract
The water is the main pivotal sources of irrigation in agricultural activities and affects human daily activities such as drink-
ing. The water quality has a significant impact on various aspects and thus this review aims to addresses existing problems 
related to water quality prediction methods that have been found in the literature. We explore numerous quality parameters 
incorporated in the modelling process to measure the quality of water. Furthermore, we review the commonly adopted arti-
ficial intelligence-based models which have been utilized to forecast the water quality. 83 studies published from 2009 to 
2023 were selected and reviewed based on their success in modelling and forecasting the water quality in multiple regions. 
We compared these articles in terms of parameters, modelling algorithms, time scale scenarios, and performance measure-
ment indicators. This paper is beneficial to researchers that have interests to conduct future studies related to water quality 
forecasting. Additionally, we discuss a variety of modelling methods such as deep learning (DL) that have proven to boost 
the efficiency compared to traditional machine learning (ML) models. As a result, the hybrid-DL models were found to 
outperform other models such as standalone ML, standalone DL, and hybrid-ML. This study shows a significant limitation 
of the data-hungry DL models which require a big data size for modelling. Hence, at the end of this review study, we discuss 
the potential of some methods such as generative adversarial networks (GANs) and attention-based transformer to open the 
door for water quality prediction improvement. GAN has shown promising performance in other domains for synthetic data 
generation. The potential usage of GAN for water quality domain can overcome the limitations of lack of data and enhance 
the performance of the predictive models reviewed in this study. Similarly, transformer was found to be state of the art model 
for time series prediction and thus it can be good candidate to predict water quality.

1 Introduction

River water is the main pivotal sources of irrigation in agri-
cultural activities and affects human daily activities such as 
drinking. It is essential to forecast the future quality of river 
water using machine learning models. The Water Quality 

Index (WQI) of a river is dependent on the various quality 
parameters. There are various quality parameters presented 
in the literature for water. Hence, researchers have utilized 
numerous combinations of parameters with various machine 
learning models to forecast the water quality of a river and 
the results were promising. They used total dissolved solids, 
chlorophyll a, total suspended solids, turbidity, and blue-
green algae phycocyanin with different machine-learning 
models including extreme learning machine regression, sup-
port vector machine regression, Gaussian process regres-
sion, linear regression, and partial least-squares regression 
to predict the mentioned variables [1]. In another study, 
physicochemical parameters such as concentrations of 
 Ca2+,  Mg2+,  Na+,  SO42− and  CI− were used as inputs to 
obtain the salinity of the river water [2]. Researchers uti-
lized different predictive models namely standalone machine 
learning (ML), deep learning (DL), and hybrid models to 
forecast river water quality. The input data were monitored 
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and obtained from each country’s research center and they 
were collected in various scenarios such as hourly, every 
4 h, daily, and monthly [3–7]. According to all the previous 
research works, a more user-centric approach is required to 
mitigate the water quality issues using user-friendly tools 
and an interactive environment [8]. They found that there 
was no way for identifying the best network structure for 
forecasting the parameters of water quality [9, 10].

The artificial intelligence approaches have been con-
sidered and applied across many countries to forecast the 
parameters of water quality. Among the regular models uti-
lized are ML models followed by the hybrid model and DL 
models. The Deep learning methods were not commonly 
used in prediction because they require a vast amount of data 
in training stage. In other words, the performance of deep 
learning models is highly dependent on the amount of data. 
To evaluate the predictive models, the performance indi-
cators such as correlation coefficient  (R2), Mean Absolute 
Percentage Error (MAPE), Mean Squared Error (MSE), and 
Mean Absolute Error (MAE) were used. The comparisons 
between different models to predict river water quality has 
discovered that DL models performed better than the ML 
modal in research works conducted in China [11]. However, 
other studies showed that hybrid-machine learning models 
were more accurate [2, 12, 13] and thus sometimes they 
outperformed deep learning models [14]–[16].

This study aims to review the research works carried 
out for forecasting the water quality from 2009 to 2023. A 
summary of the modelling approaches used in the respec-
tive studies is presented. The performance of the predictive 
models used for this purpose is compared and evaluated. 
Additionally, the input water parameters used to train and 
test the models are validated and examined by calculating 
the performance indicators. The limitations of current water 
quality prediction methods and future research works are 
highlighted in this paper. Moreover, this paper proposes to 
utilize the deep-learning-based generative model called Gen-
erative Adversarial Networks (GANs) which have not been 
employed yet for water quality prediction.

Several contributions are included in this review study 
as follows:

1. We present 83 studies related to water quality prediction 
published recently in many countries.

2. Various methods that have utilized various input param-
eters such as chemical and meteorological are explored 
to show the possible combinations of input parameters 
and their impact on water quality prediction.

3. Various modelling algorithms including machine learn-
ing, deep learning, and hybrid models that have been 
used in numerous research articles are demonstrated to 
highlight the advantages and drawback of them to model 
water quality outputs for forecasting task.

4. We present several time scale scenarios such as hourly, 
daily, weekly, and monthly that usually research arti-
cles are used to conduct the experiments and analyze 
the results.

5. Numerous performance evaluation matrices RMSE, 
MSE, MAE,  R2 that have been utilized in reviewed 
studies are described to highlight their advantages and 
limitations.

2  Research Methodology and Literature 
Review

2.1  Research Methodology

The search engine, Google Scholar was used in the prelimi-
nary step of this study to search for the relevant scientific 
research articles. After that, the results shown by the search 
engine were filtered and analyzed according to the relevancy 
of the keywords which were “water quality” and any equiva-
lent meaning of the word “prediction”. Only research articles 
that contained the keywords were considered. Based on the 
findings of this study, much research works published in 
recent years were observed. Based on our humble knowl-
edge, there is no comprehensive reviews published on water 
quality estimation. As a result, in this paper, we are looking 
for an answer for an open question which is “What is the best 
network structure to predict the water quality parameters” 
[9]. Hence, it is critical to perform an analysis on the most 
recent predictive models and algorithms including data pre-
processing and prediction.

The search equation for water quality prediction in 
Google Scholar insertion was identified. Several combi-
nations of keywords were applied to compose this search 
equation:

Where A1 and A2 are “river water quality”, and “water 
quality index”, respectively. On the other hand, B1, B2, B3, 
and B4 are: “modelling”, “forecasting”, “prediction”, and 
“machine learning”, respectively. The research articles were 
selected from 2009 to 2023.

Figure 1 illustrates the process of filtering and selecting 
the articles for this review. Where nos stands for number of 
studies. A total of 83 articles were selected from 801 articles 
that matched the search equation from the database. Further-
more, 44 articles were rejected due to duplication, and 674 
articles were disregarded from this study because they were 
not about water quality forecasting or their main findings 
were not relevant to water quality prediction. 

The articles reviewed in this review study were selected 
to cover experiments focused specifically on water quality 

(A1 OR A2) AND (B1 OR B2 OR B3 OR B4)
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prediction. We found 83 research articles as shown in 
Table 1 and Fig. 1. Most of these articles were published 
in the last 5 years as shown in Fig. 2. Additionally, we 
selected to review these articles because they used various 
input parameters to predict the water quality as clear in 
Table 2. As can be seen, the input parameters are divided 
into meteorological inputs and chemical inputs. The origin 
country that the study was located is illustrated in Fig. 3. 
Furthermore, these articles were selected to cover numer-
ous modelling algorithms such as traditional machine 
learning (ML), ensemble learning (EL), deep learning 
(DL), and hybrid models as shown in Table 3 and Fig. 7. 
Finally, the selection of articles considers also covering 
various performance metrics such as RMSE, MAE, R2 
with various output paraments required to be predicted 
in several scenarios including hourly, daily, weekly, and 
monthly as can be seen in Table 4.      

Fig. 1  Flow chart of process of selecting articles

Table 1  Ranking of selected journals

Journal Quantity 
of articles

Journal of hydrology 8
Water 7
Sustainability 5
Environmental science and pollution research 4
Science of the total environment 4
Journal of environmental management 3
Complexity 2
Environmental pollution 2
IEEE access 2
Marine pollution bulletin 2
Neural computing and applications 2
Water research 2
Water supply 2
Advances in civil engineering 1
Ain shams engineering journal 1
American water works association 1
Applied bionics and biomechanics 1
Applied water science 1
Biointerface research in applied chemistry 1
Chemosphere 1
Ecological indicators 1
Ecological informatics 1
Ecological modelling 1
Engineering applications of artificial intelligence 1
Engineering applications of computational fluid mechan-

ics
1

IAES international journal of artificial intelligence 1
International journal of environmental science and 

technology
1

Journal of American science 1
Journal of cleaner production 1
Journal of environmental chemical engineering 1
Journal of environmental science and engineering B 1
Journal of geophysical research: oceans 1
Journal of King Saud University—engineering sciences 1
Materials today: proceedings 1
Mathematical and computer modelling 1
Modeling earth systems and environment 1
Nature environment and pollution technology 1
Photogrammetric engineering and remote sensing 1
Process safety and environmental protection 1
Processes 1
Regional studies in marine science 1
Scientific reports 1
Stochastic environmental research and risk assessment 1
The Egyptian journal of remote sensing and space science 1
Water quality research journal 1
Water science and engineering 1
Others 5
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2.2  Literature Review

The selected articles focused on water quality prediction, 
the input parameters, and the performance indicators to 
evaluate the results. These 83 research articles were from 
46 journals. The number of articles selected per journal 
from the highest to the lowest was shown in Table 1. The 
most selected articles were from the journal of Hydrol-
ogy with a quantity of 8, followed by Water journal with 
7 articles, and Sustainability journal with 5 articles. Next, 
Environmental Science and Pollution Research journal 
and Science of The Total Environment journal contained 
4 articles each whereas the journal of Environmental Man-
agement had 3 articles. The journals which had 2 articles 
were Complexity, Environment Pollution, IEEE Access, 
Marine Pollution Bulletin, Neural Computing and Appli-
cations, Water Research and Water Supply. And the rest 
of the journals have 1 article. The year 2022 showed most 
reviewed articles as shown in Fig. 2. A summary of the 
research work on water quality prediction is tabulated in 
Table 2. The table includes the location of the studies, the 
data size (initial and end dates) used to train the predic-
tive model and the water quality input parameters utilized. 
The water quality input parameters used in these studies 
can be classified into 2 categories which are chemical and 
meteorological.

Figure 2 shows the reviewed studies that were selected 
to predict the water quality. These studies were grouped by 
the location where the experiments were conducted. As can 

be seen, the majority of researches related to water quality 
prediction were done in China and India.

Figure 3 demonstrates a bar chart of the countries where 
the studies were located to forecast the water quality. China 
was ranked the top in estimating water quality, followed by 
India, Malaysia and Iran. The studies conducted in these 4 
countries covered more than half of the reviewed articles. 
Another 20 countries covered the remaining studies were 
Algeria, Australia, Bangladesh, Czech Republic, Germany, 
Ghana, Greece, Hong Kong, Iraq, Ireland, Italy, Kenya, 
South Korea, New Zealand, Pakistan, Spain, Taiwan, Tur-
key, USA, and Vietnam. Figure 4 shows the general frame-
work that was usually found in the reviewed studies for 
water quality modelling including various parameters such 
as chemical and Meteorological, preprocessing techniques, 
and modelling algorithms.

The pre-processing techniques have been considered as 
important stage before modelling process. Usually, water 
or river data have missing values that result from limita-
tions in sensors. Therefore, identifying these missing val-
ues and handling them is significant to clean the data to 
be prepared for further processing. In literature, several 
statistic methods have been used for filling missing val-
ues in data. Additionally, several values are unreal and 
far from their actual values. These values are considered 
as outliers and required to be detected in early stages to 
avoid any mistakes in modelling process. Furthermore, 
the values of water input parameters do not have same 
scale. In other words, some values are large and other are 

Fig. 2  Annual number of articles published
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Table 2  Research works on water quality prediction

References Country Initial date End date Water quality input parameters

Emamgholizadeh et al. [17] Iran 1995 2011 EC, pH, Ca, Mg, Na, TUR,  PO4,  NO3,  NO2

Asadollah et al. [18] Hong Kong 1987 2017 BOD, COD, DO, EC,  NO3,  NO2, PO, pH, T, TUR 
Haghiabi et al. [19] Iran 1960 2018 T, pH, EC,  HCO3−1,  SO4−2, CL, TDS,  Na+,  Mg+2,  Ca+2

Lu et al. [20] USA 2019 2019 T, DO, pH, SC, TUR, FDOM
Ahmed et al. [21] Pakistan 2009 2012 T, TUR, pH, TDS
Zhou [22] China 2015 2019 DO, NH3-N, CODCr, pH, ORP, EC, TUR, WL, WT, P, WS, LI
Khan et al. [8] USA 2014 2014 C, SC, DO, TUR 
Hayder et al. [23] Malaysia 1997 2017 DO, BOD, COD, pH, NH3-NL, SS
Najah Ahmed et al. [9] Malaysia 2009 2010 T, COND, SAL,  NO3, TURB,  PO4, CL, K, Na, Mg, Fe, E-coli
Liu et al. [11] China 2016 2018 pH, DO, C, TUR, CODMn, NH3-N
Baek et al. [24] South Korea 2016 2017 TP, TN, TOC
Barzegar et al. [2] Iran 1983 2011 K+,  Ca2+,  Mg2+,  SO42−,  CL−

Tiwari et al. [13] India 1996 2012 pH, C, CI, DO,  BOD5, TDS, Ss, AMN, N, TP, FC
Jin et al. [25] China 2014 2014 NH3-N, TURB, EC
Isiyaka et al. [26] Malaysia 2006 2013 DO, BOD, COD, SS, pH, TUR, DS, NH3-NL, Fe, AS, Ca, Mg, Coli, 

E.Coli
Liu et al. [27] China 2010 2010 DO, pH, EC, WT, WS, SR, AT
Li et al. [16] China 2017 2018 PI, pH, TP, DO
Sani Gaya et al. [6] India 1999 2012 DO, pH, BOD, NH4, WT
Ouma et al. [28] Kenya 2006 2011 T, DO, pH, TP, TUR, TN, EC, TSS, Fd
Bui et al. [12] Iran 2012 2018 BOD, COD, DO, pH, TS, FC,  PO4,  NO3, TU, EC
Khoi et al. [29] Vietnam 2010 2017 T, pH, DO, BOD, COD, TUR, TSS, C,  NH4,  PO4

Alqahtani et al. [30] Pakistan 1975 2005 HCO3, Ca2,  SO4, pH, MG2, CL, NA, TDS, EC
Peterson et al. [1] USA 2016 2017 BGA-PC, Chl-a, TSS, TUR, TDS
Ziyad Sami et al. [31] Taiwan 1987 2015 WT, BOD, Fe, TOC
Izhar Shah et al. [32] Pakistan 1975 2005 Ca, Mg, Na, Cl,  SO4, pH,  HCO3, TDS, EC
Kisi et al. [33] India 1999 2009 AMM, TKN, WT, TC, FC, pH, COD
Melesse et al. [34] Iran 1980 2016 pH,  HCO3

−,  CL−,  SO4
−2,  Na+,  MG2+,  Ca2+, Q, TDS

Hameed et al. [35] Malaysia 2001 2010 DO, BOD, COD, NH3-N, SS, PH
Ahmed et al. [36] Bangladesh 2010 2012 N, Al, H, TS, TDS, pH, TUR, K, DO, BOD
Maier et al. [37] Germany 2017 2017 Chl-a, GA, Di, CDOM, TUR 
Heddam et al. [38] US 2002 2016 TE, pH, SC, DI
Ömer Faruk [39] Turkey 1996 2004 WT, Br, DO
Sattari et al. [40] Iran 1967 2011 Ph, CI, Ca, Mg, Na, SAR, SO4,  HCO3

Abba et al. [41] India 1999 2010 DO, pH, BOD, NH3, T, WQI
Yan et al. [42] China 2015 2021 pH, DO, PI, COD,  BOD5,  NH3-N, PET, VP, TOP, CY, SOx, AS
Malek et al. [43] Malaysia 2005 2020 BOD, DO, COD, NH3-N, pH, TSS, T, EC, Sal, Tur,  NO3,  PO4, E.Coli
Huang et al. [44] China 2013 2014 DO, pH, EC, WT,  NH4

+-N
Najwa et al. [45] Malaysia 1891 2019 BOD5, K, Mn, Fe, P, S, Si, Che, Mg, TS, DS, So, CL, Fl, NH3,  NO3

−, Na, 
pH, Clr, Tur, C, H, Al, Ca, TSS

Xuan et al. [46] China 2003 2008 WT, Pb, DO
Olyaie et al. [5] Iran 2008 2009 pH, EC,  HCO3, TDS, TSS, TUR,  NO3,  PO4, Na, NH3, DO, BOD
Than et al. [47] Vietnam 2010 2014 T_Air, sunshine, rainfall, humidity, tauter, pH, Do, Coli, TUR, EC
Singh et al. [48] India 1994

2002
1999
2005

pH, T-Alk, T-Hard, TS, COD, NH4-N,  NO3-N, Cl,  PO4, K, Na

Ye et al. [49] China 2017 2018 P, N, BOD,  NH4-NO3, COD
Azad et al. [50] Iran 2001 2015 EC, TDS, SAR, CH, TH, pH, Na
Chou et al. [51] Taiwan 1995 2016 SWT, BOD, COD, DO, NH-3N, SS
Elkiran et al. [52] India 1999 2012 DO, pH, BOD, COD, Q, NH3, WT
Chen et al. [53] China 2012 2018 pH, DO,  NH3-N, CODMn
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bounded. Therefore, scaling these input parameters can 
speed up the modelling process and produce more robust 
modelling results. Several features or input parameters are 
correlated and some of these parameters have no roles in 
modelling process, and thus removing these features can 
enhance the prediction. When large number of parameters 
used, reducing these parameters by selecting only subset 
of them is the good solution for prediction improvement. 

The feature selection process can be engineered or learned 
considering modelling algorithm. For example, in conven-
tional ML algorithm, feature engineering is well known 
stage before modelling. On the other hand, deep learning 
model targets to learn features automatically to improve 
the prediction. Applying general ML methods without 
pre-processing techniques is behind the prediction per-
formance degradation.

Table 2  (continued)

References Country Initial date End date Water quality input parameters

Ly et al. [54] South Korea 2011 2020 COD, BOD, TOC, TSS, TP, DTP,  PO4, TN, DTN,  NH3,  NO3, Chla, T, 
DO, pH, EC, FColi, TColi, P, Q

Ahmed et al. [55] Pakistan 2012 2019 pH, DO, C, TU, Fcoli, T
Zanoni et al. [56] Italy 1994 2014 As,  SO4, CI, Ec, Tw, DO
Uddin et al. [57] Ireland 2019 2019 Temp, pH, DO, TON, AMN, MRP,  BOD5, TRAN, CHL, DIN
Al-Sulttani et al. [58] Iraq 2004 2013 T, Tur, pH, EC, Alk, Ca, COD,  SO4, TDS, TSS, BOD
Gazzaz et al. [59] Malaysia 1997 2005 T, pH, C, TUR, DS, SS, TS, Na, K, Ca, Mg, Cl,  PO4-P,  NO3-N,  NH3-N, 

DO, BOD, COD, As, Zn, Fe, E. coli, TC
Kouadri et al. [60] Algeria 1999 2020 EC, TH, pH, TDS, HCO3, Ca, Mg, Na, K,  SO4, CI,  NO3

Anmala et al. [61] USA 2002 2002 FC, TUR, pH, C, Sal, TDS, DO, TSS, Ortho  PO4, TP,  SO4,  NH4-N, 
 NO3-N

Chen et al. [14] Australia 2015 2020 Temp, pH, DO, EC, Chl-a, Tur
Ma et al. [62] China 2002 2020 TSS, Chl-a
Adusei et al. [63] Ghana 2019 2019 pH, TDS, DO, TU, Alk
Othman et al. [64] Malaysia 1997 2007 DO, COD, BOD, pH, AN, SS
Bhoi et al. [65] India 2013 2020 pH, DO, BOD, TC
Aldhyani et al. [66] India 2005 2014 DO, pH, C, BOD, N, FC, TC
Lee et al. [67] Korea 2007 2020 TP, SS
Li et al. [68] Iraq 2004 2013 TDS, BOD, CI, K, DO, EC, Na, Mg, Alk, pH, Ca,  PO4,  NO3, TH,  SO4

Fijani et al. [69] Greece 2012 2013 Chl-a, DO
Kumar et al. [70] Hongkong 1997 2016 TU
Ho et al. [71] Malaysia 2000 2010 DO, BOD, COD, SS, pH,  NH3-N
Koranga et al. [72] India 2018 2019 pH, TU, TDS
Yan et al. [4] China 2018 2019 T, pH, DO, BOD, NTU, COD-Mn,  NH4-N, TP, TN
Sha et al. [15] China 2015 2020 DO, TN
Uddin et al. [73] Ireland 2020 2020 CHL, DO, MRP, DIN, AMN, BOD, pH, TEMP, TON, TRAN, SAL
Gómez et al. [74] Spain 2017 2019 Chl-a
Alizadeh et al. [3] USA 2010 2014 DO, TEMP, SA
Zhu et al. [75] China 2020 2020 ChlT-a, TU, DO
Saberioon et al. [76] Czech Republic 2017 2018 Chl-a, TSS
Xu et al. [77] New Zealand 1995 2018 FIB
Deng et al. [78] Hongkong 1975 2019 Chl-a,  BOD5, TIN, DO, pH,  PO4, SDD, Temp
Al-Adhaileh et al. [79] India 2005 2014 DO, pH, C, BOD, N, TC, FC
Khullar et al. [80] India 2013 2019 WT, DO, pH, AMM, COD, BOD, COND, TC, FC
Latif et al. [81] Taiwan 1986 2014 NH3, Mg,  NO3, TDS, T-hardness
Kogekar et al. [82] India 2016 2020 DO, BOD
Wang et al. [83] China 2009 2018 NH4

+-N
Garabaghi et al. [84] Turkey 2004 2014 Year, Month, Station, Temp, pH, EC, DO, COD,  BOD5,  NH4,  NO3,  NO2, 

 PO4,  Cl−, Fe, Mn,  Na+,  SO4, TDS
Jiang et al. [85] China 2019 2019 pH, Temp, C, SS,  BOD5, COD,  NH4+-N, TN, TP
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3  Classification of Studies

Numerous types of input data can be used to make a predic-
tion about water quality indices. Structured data that can 
be arranged and tabulated were used in each work. Many 
publications that have been reviewed used chemical inputs 
for prediction. Additionally, meteorological data were also 
utilized for prediction. Furthermore, other research works 
used combining of both chemical and meteorological inputs. 
The types of input data that were utilized to estimate the 
river water quality index in the research papers are shown 
in Fig. 5.

3.1  Chemical Inputs

Lakes, rivers, oceans, and even groundwater can be bet-
ter understood by chemical input used for analysis. It also 
demonstrates the maximum degree of pollution that can be 
absorbed by a body of water without causing harm to the 
aquatic ecosystem, its inhabitants, and anyone drinking the 
water. Some of the examples of chemical parameters utilized 
are pH, alkalinity, chloride, and others that are appropri-
ate. Biochemical oxygen demand  (BOD5), fluoride, salinity, 
manganese, potassium, calcium, iron, chemicals, sulphate, 
chloride, silica, magnesium, pH, phosphate, nitrate, ammo-
nium, and are among the 25 water quality factors included in 
the modelling of the SVMs and ANN as inputs [45]. These 
inputs were used to predict the dissolved solids, total solids 
as well total suspended solids.

3.2  Meteorological Inputs

Meteorological inputs are parameters related to the study 
of the atmosphere and its phenomena, notably as a way of 
predicting the weather. For instance, relative humidity, tem-
perature, and solar radiation. Because it influences so many 
other aspects of weather, the temperature is the single most 
influential factor in both meteorology as well as ecology. 
Air temperature, humidity, sunshine, and rainfall were used 
together with a few chemical inputs such as pH, dissolved 
oxygen, turbidity and electric conductivity. According to the 
author, priority targets that had field-measurable parameters, 
readily accessible statistical data, and a substantial effect on 
water quality were used to narrow down the list of potential 
predictor factors [48]. Prediction of water quality charac-
teristics according to temperature, dissolved oxygen, pH, 
total phosphorus, turbidity, and trophic level (position of an 
organism in the food chain); electrical conductivity (EC), 
total dissolved solids (TSS), and discharge; and nutrient 
budget (balance between crop inputs and outputs) [28].

4  Water Quality Index Modeling Techniques

In this section, we discuss various water quality modelling 
techniques. Water quality index (WQI) prognosis modelling 
methodologies are summarized in the Fig. 6.

Because the review is about applying machine learn-
ing methods to predict water quality, we targeted various 

Fig. 3  Article frequency grouped by the country where the study was located
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Table 3  The methods used in 
each research article

References ANN SVM MLR ANFIS EM DT DL Hybrid O

Emamgholizadeh et al. [17] ✓ ✓
Asadollah et al. [18] ✓ ✓ ✓
Haghiabi et al. [19] ✓ ✓ ✓
Lu et al. [20] ✓ ✓ ✓ ✓
Ahmed et al. [21] ✓ ✓ ✓ ✓ ✓ ✓
Zhou [22] ✓ ✓ ✓
Khan et al. [8] ✓
Hayder et al. [23] ✓
Najah Ahmed et al. [9] ✓ ✓ ✓ ✓
Liu et al. [11] ✓ ✓ ✓
Baek et al. [24] ✓ ✓
Barzegar et al. [2] ✓ ✓ ✓ ✓
Tiwari et al. [13] ✓ ✓ ✓
Jin et al. [25] ✓ ✓ ✓
Isiyaka et al. [26] ✓ ✓
Liu et al. [27] ✓ ✓ ✓
Li et al. [16] ✓ ✓ ✓ ✓
Sani Gaya et al. [6] ✓ ✓ ✓
Ouma et al. [28] ✓ ✓
Bui et al. [12] ✓ ✓ ✓
Khoi et al. [29] ✓ ✓ ✓ ✓
Alqahtani et al. [30] ✓ ✓ ✓
Peterson et al. [1] ✓ ✓ ✓
Ziyad Sami et al. [31] ✓ ✓ ✓ ✓
Izhar Shah et al. [32] ✓ ✓
Kisi et al. [33] ✓ ✓ ✓
Melesse et al. [34] ✓ ✓ ✓ ✓
Hameed et al. [35] ✓
Ahmed et al. [36] ✓
Maier et al. [37] ✓ ✓ ✓
Heddam et al. [38] ✓ ✓ ✓
Ömer Faruk [39] ✓ ✓ ✓
Sattari et al. [40] ✓ ✓
Abba et al. [41] ✓ ✓ ✓ ✓
Yan et al. [42] ✓ ✓ ✓ ✓
Malek et al. [43] ✓ ✓ ✓ ✓ ✓
Huang et al. [44] ✓ ✓ ✓
Najwa et al. [45] ✓ ✓ ✓
Xuan et al. [46] ✓ ✓ ✓ ✓
Olyaie et al. [5] ✓
Than et al. [47] ✓ ✓
Singh et al. [48] ✓
Ye et al. [49] ✓ ✓ ✓
Azad et al. [50] ✓ ✓ ✓
Chou et al. [51] ✓ ✓ ✓ ✓
Elkiran et al. [52] ✓ ✓ ✓ ✓ ✓
Chen et al. [53] ✓ ✓ ✓
Ly et al. [54] ✓ ✓ ✓ ✓
Ahmed et al. [55] ✓ ✓ ✓
Zanoni et al. [56] ✓ ✓
Uddin et al. [57] ✓ ✓ ✓
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techniques that can be used for water quality forecasting. 
These techniques are divided into traditional machine learn-
ing (ML), ensemble learning (EL), deep learning (DL), and 
hybrid models. ML methods [90] include decision tree (DT), 
k nearest neighbor (KNN), multi-layer perceptron (MLP), 
support vector machine (SVM), multiple linear regression 
(MLR), and adaptive neuro fuzzy inference system (ANFIS). 
To produce more powerful model, a combination of several 
models has been used under ensemble learning such as ran-
dom forest (RF) bagging, gradient boosting (GB), and stack-
ing of models. On the other hand, deep learning methods 
have been found to produce superior performance when big 
data is available. They contain deep neural network (DNN), 
convolutional neural network (CNN), and recurrent neural 
network (RNN) such as long-term short memory (LSTM). 
Furthermore, hybrid models have been used to boost the 
performance using various techniques. Some additional 

algorithms that cannot be simply classified into any of the 
aforementioned groups were labelled by a (O) classification 
system. The Modelling algorithms used in each research 
article are summarized in Table 3. Additionally, statistics on 
how often various modelling strategies have been employed 
in published studies are shown in Fig. 7 to highlight the fre-
quency of using each AI method in research articles between 
2009 and 2023.

The selection of each method depends on various factors 
such as data size (small to large), hidden pattern complexity 
(easy to difficult to learn), and data type (spatial or tem-
poral). With small datasets that have few features, usually 
traditional ML methods and ensemble learning give good 
performance with availability of patterns hidden inside the 
data. Increasing number of features with more complex pat-
terns was behind the need to use DNN or CNN to learn 
features before the mapping to prediction. Having a time 

Table 3  (continued) References ANN SVM MLR ANFIS EM DT DL Hybrid O

Al-Sulttani et al. [58] ✓ ✓ ✓
Gazzaz et al. [59] ✓
Kouadri et al. [60] ✓ ✓ ✓ ✓ ✓
Anmala et al. [61] ✓
Chen et al. [14] ✓ ✓ ✓
Ma et al. [62] ✓
Adusei et al. [63] ✓ ✓ ✓
Othman et al. [64] ✓
Bhoi et al. [65] ✓ ✓ ✓ ✓
Aldhyani et al. [66] ✓ ✓
Lee et al. [67] ✓ ✓ ✓
Li et al. [68] ✓ ✓ ✓
Fijani et al. [69] ✓ ✓ ✓
Kumar et al. [70] ✓ ✓ ✓ ✓
Ho et al. [71] ✓
Koranga et al. [72] ✓ ✓
Yan et al. [4] ✓ ✓ ✓
Sha et al. [15] ✓ ✓
Uddin et al. [73] ✓ ✓ ✓
Gómez et al. [74] ✓ ✓ ✓
Alizadeh et al. [3] ✓ ✓
Zhu et al. [75] ✓ ✓ ✓
Saberioon et al. [76] ✓
Xu et al. [77] ✓ ✓ ✓ ✓ ✓
Deng et al. [78] ✓ ✓
Al-Adhaileh et al. [79] ✓
Khullar et al. [80] ✓ ✓ ✓ ✓
Latif et al. [81] ✓ ✓ ✓ ✓
Kogekar et al. [82] ✓ ✓ ✓
Wang et al. [83] ✓ ✓ ✓
Garabaghi et al. [84] ✓
Jiang et al. [85] ✓ ✓ ✓
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Table 4  Various scenarios for time scales of the WQI and the evaluation metrics

References Time scale Output Performance indicator

Emamgholizadeh et al. [17] Monthly DO, BOD, COD RMSE, MAE,  R2

Asadollah et al. [18] Monthly BOD, TUR,  PO4 R2, RMSE
Haghiabi et al. [19] Monthly Ca, Cl, Ec, HCO3, Mg, Na, SO4, TDS, 

pH
R2, RMSE

Lu et al. [20] Hourly pH, TUR, FDOM, T, DO, SC MAE, RMSE, MAPE, RMSPE, U1, U2
Ahmed et al. [21] × Temp, TUR, pH MAE
Zhou [22] Hourly DO, NH3-N, CO RMSE, NSE, CR, RB
Khan et al. [8] Every 6 min SC, DO, TU, C MSE, RMSE, R
Hayder et al. [23] Monthly DO, BOD, COD, pH, SS, NH3-NL RMSE, MAPE
Najah Ahmed et al. [9] × pH, SS, AN R2

Liu et al. [11] Daily DO MSE
Baek et al. [24] × TN, TP, TOC NSE
Barzegar et al. [2] Monthly SAL R2, NRMSE, NSC
Tiwari et al. [13] Monthly pH, C, CL, N, AMN, FC RMSE, MSE,  R2

Jin et al. [25] Every 4 h NH3-N, TURB, EC RMSE, MAE, MRE,  R2

Isiyaka et al. [26] × DO, COD, BOD, NH3-NL R2, RMSE
Liu et al. [27] Every 10 min DO, Temp MAPE, RMSE
Li et al. [16] Every 4 h per day PI, pH, TP, DO RMSE, MAE, MAPE, NSEC
Sani Gaya et al. [6] Daily DO, pH, BOD,  NH4, WT MSE, DC, RMSE
Ouma et al. [28] Monthly EC, TP, TN, pH, TEMP R2, RMSE, MAE
Bui et al. [12] Monthly BOD, NO − 3, DO, EC, COD, PO2 − 4, 

TUR, TS, pH
R2, RMSE, MAE, NSE, PBIAS

Khoi et al. [29] Bimonthly Coli, TSS, TUR, COD, BOD,  PO4
3−, 

 NH4
+, pH, DO, T

R2, RMSE

Alqahtani et al. [30] Monthly HCO3,  Cl−,  SO4
2− R2, RMSE, NSE, MAE

Peterson et al. [1] x Chl-a, TSS, TUR, TDS R2, RMSE
Ziyad Sami et al. [31] Monthly DO RMSE, Correlation,  R2

Izhar Shah et al. [32] Monthly TDS, EC R2, RMSE, NSE, MAE
Kisi et al. [33] Monthly COD RMSE, MAE, R
Melesse et al. [34] Monthly Sal NSE, RMSE, MAE, PBIAS
Hameed et al. [35] Monthly DO, BOD, COD, NH3-N, SS, pH R2, RMSE, NE
Ahmed et al. [36] Monthly BOD R, MSE, MAE, E
Maier et al. [37] Summer TUR, CDOM, Chl-a, GA, Di R2, RMSE
Heddam et al. [38] Daily DO R, RMSE, MAE
Ömer Faruk [39] Monthly WT, Br, DO RMSE, MAPE, NSC
Sattari et al. [40] × EC, TDS R, RMSE, MAE
Abba et al. [41] Monthly DO, pH, BOD,  NH3, T DC, RMSE, R
Yan et al. [42] Monthly TOP, DO, COD, PET ACC, P, Re, F1-s, Ka
Malek et al. [43] 4,5 or 6 times per year TSS, NH3N, BOD, COD BA, ACC, CE, P, SP, SEN, FM, AUC 
Huang et al. [44] Weekly COD, TU R,  R2, MAPE, RMSE, MSE
Najwa et al. [45] Daily TSS, DS, TS MSE, RMSE,  R2

Xuan et al. [46] Monthly WT, Pb, DO RMSE, MAPE
Olyaie et al. [5] Monthly DO, BOD RMSE, MAE, r
Than et al. [47] x DO, TEMP, HU, Coli, TUR, EC, pH R2, p
Singh et al. [48] Monthly DO, BOD RMSE, Bias,  R2

Ye et al. [49] Daily COD RMSE, MAPE
Azad et al. [50] × CH, TH R2, RMSE, MAPE
Chou et al. [51] x TEMP, BOD, SS, COD, NH3, SS R, RMSE, MAE, MAPE
Elkiran et al. [52] Monthly DO DC, RMSE
Chen et al. [53] × RF, DCF Precision, Recall, F1-Score
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series with sequential data necessitates the use of RNN and 
LSTM to predict future data related to time.

4.1  Multi Linear Regression (MLR)

In ML, MLR stands out as one of the most basic and stand-
ard algorithms to utilize. The idea behind it is straightfor-
ward, and the method performs reliably. When compared 
to the other models, MLR’s ability to accurately predict 
outcomes was the lowest. Possible explanation: inputs and 
outcomes are strongly intertwined in a nonlinear fashion 

[83]. To simulate the system’s linear interactions, the tried-
and-true MLR approach was utilized. It’s frequently utilized 
to serve as a standard against which other, non-linear models 
can be evaluated. The purpose of employing MLR in this 
research was to provide a standard against which other ML-
based methods could be evaluated [1].

4.2  Artificial Neural Network (ANN)

An artificial neural network was employed as a benchmark in 
this study. The independent variable is multiplied by weights 

Table 4  (continued)

References Time scale Output Performance indicator

Ly et al. [54] Monthly TSI-Chla MAE, F1-s, Re, P
Ahmed et al. [55] × pH, DO, C, TUR, FC, TEMP AccPre Rec, F1-sc
Zanoni et al. [56] Seasonally As, SO4, Cl, Ec, Tw, DO PBIAS, RMSE, NSE, KGE
Uddin et al. [57] × BOD5, MRP, pH Acc, Pren, sensitivity, F1-sc
Al-Sulttani et al. [58] Monthly BOD R2, RMSE, MAE, NSE, d, PBIAS
Gazzaz et al. [59] 7 months in every year DO, BOD, COD, SS, NH3-N, p r, p,  R2, AEE
Kouadri et al. [60] Different time period TDS, TH R, MAE, RMSE, RAE, RRSE
Anmala et al. [61] Monthly FC, pH, C, SAL, TDS, DO R2

Chen et al. [14] Every half-hour DO RMSE, MAE,  R2

Ma et al. [62] Seasonal TSS, Chl-a RMSE, MAPE, MDAPE, MRPE, RMSLE
Adusei et al. [63] x pH, TDS, Al R2, RMSE
Othman et al. [64] At least two time per week DO MAE, Max ABS, Min ABS, RMSE, 

NRMSE, r, NMAE
Bhoi et al. [65] × pH, DO, BOD, TC CA, F1, P, Re
Aldhyani et al. [66] × DO, pH, C, BOD, N, FC, Coli R
Lee et al. [67] Daily TP R, CCC,  R2, MSE, MAE, RMSE, MAPE
Li et al. [68] Monthly WQI R2, d, RMSE, MAPE
Fijani et al. [69] Monthly Chl-a, DO R, RMSE, MAE, BIAS, MAEP, RMSEP, 

LMI, WI
Kumar et al. [70] Monthly TUR R2, R, MAE, RMSE
Ho et al. [71] Every 2 months DO, COD, BOD PA, CP, CR
Koranga et al. [72] × pH, TUR, TDS MAE, MSE, RMSE, RSE
Yan et al. [4] Every 4 h TN, TP, COD-Mn MAPE,  R2

Sha et al. [15] Every 4 h DO RMSE, MAPE, TN, CE, RMSE, MAPE
Uddin et al. [73] × TEMP, pH, CHL, AMN RMSE, MSE, MAE,  R2

Gómez et al. [74] × Chl-a R2, RMSE
Alizadeh et al. [3] Hourly, daily DO R, RMSE
Zhu et al. [75] Monthly Chl-a, DO, TUR errors
Saberioon et al. [76] Seasonal Chl-a, TSS R2, RMSE
Xu et al. [77] × FIB Mean accuracy
Deng et al. [78] Monthly BOD, TIN, DO,  PO4, pH CC, RMSE
Al-Adhaileh et al. [79] × DO, pH, C, BOD, N, FC, Coli MSE, RMSE, Mean error, R
Khullar et al. [80] Monthly BOD, COD MSE, RMSE, MAE, MAPE
Latif et al. [81] Monthly PO4 MAE, RMSE, CC,  R2, MSE, RSR
Kogekar et al. [82] Daily DO, BOD MAE, RMSE, MSE
Wang et al. [83] Monthly NH4

+-N NSE, R, RMSE
Garabaghi et al. [84] monthly pH, DO,  BOD5, EC Acc Pre recall
Jiang et al. [85] 5 time per day pH, TEMP, C R2, RMSE
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and then added to a constant in the intermediate layer, after 
which they are output from the algorithm. The neural net-
work’s concealed layer performs nonlinear processing of 
the data, while the output layer is utilized to create learn-
ing outcomes [43]. In ANN, the signal is transmitted in one 
direction, while errors are relayed in the other direction. The 
output fault is “back propagated”, or sent layer by layer to 
the input layer via the concealed layer [83].

One of the neural networks’ main strengths is that they 
can simulate nonlinear relationships with little prior infor-
mation about those relationships. Several studies advocated 
neural networks as a reliable method for estimating river 
water quality, and they anticipate future applications to 
enhance comprehension of contamination patterns in riv-
ers [5]. For an intelligent early warning system, monitoring 
and predicting water quality metrics using machine learning 
models is essential. It is possible that the suggested optimi-
zation of hyperparameters in the ANN modelling approaches 
may result in adequate prediction accuracy for DO, but this 
might be enhanced by using additional AI models like Ran-
dom Forest and Boosted Tree method [31].

When it comes to constructing a model to comprehend 
the connection between the parameters and their depend-
ency on each other, one research was done to successfully 
addresses the problem of missing variables. The most impor-
tant input parameters have been determined by a thorough 
sensitivity study [64]. A variety of MLP models were built 
and evaluated to find the optimal hidden-layer- and transfer-
function sizes. The complexity of an MLP is determined by 
having more hidden layers which results in more connec-
tions and parameters in the artificial neural network (ANN). 
Similar to MLP, RBF networks were used to model nonlin-
ear data and they were trained in a single stage, rather than 
iteratively [17].

4.3  Support Vector Machine (SVM)

Among supervised machine learning methods, the support 
vector machine family of algorithms is useful for addressing 
issues in both classification and regression [72]. Although 
commonly employed for classification, support vector 
machines (SVMs) can also be utilized for regression [91, 

Fig. 4  Water quality index 
predicting process
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92]. To reduce the number of near misses, SVMs define a 
hyperplane between the classes by seeing data points pro-
jected on a plane and increasing the margin [21]. With the 
help of the structural risk reduction concept, SVM is a model 
that can overcome the issue of overfitting. The SVM model’s 
estimations are derived from a support vector that is a tiny 
sample of the training data [43]. Multiclass classification is 
another issue that it helps to clear up. Maximizing the short-
est distance from the hyperplane to the nearest example is its 
primary objective. More parameters and limitations are used 
in this approach to classify or forecast the classes effectively 
in the multiclass issue [65].

4.4  Adaptive Neuro‑Fuzzy Inference System (ANFIS)

By fusing the power of neural networks with the flexibility 
of a fuzzy inference system, the neuro-fuzzy method can 
learn and adapt to new situations. Any genuine continu-
ous function on a compact set may be approximated with 
FIS to arbitrary precision. When constructing an ANFIS, 
it is also important to carefully pick the most suitable 

membership functions (MFs) [17]. In terms of accuracy 
and precision, the adaptive neuro-fuzzy inference system 
(ANFIS) performed admirably. The Takagi–Sugeno fuzzy 
inference system is the foundation for this artificial neu-
ral network implementation. When analyzing water, this 
model is among the most widely used ones [54].

As an artificial intelligence model, ANFIS can func-
tion beyond the bounds of traditional fuzzy inference and 
ANN. The ANFIS model can deal with complicated non-
linear interactions between input and output since it com-
bines the strengths of ANN and Fuzzy logic. In calculating 
the WQI, it was fared better than the MLR model [6]. To 
help map input space to the desired output region, ANFIS 
utilizes neural network learning techniques and fuzzy rea-
soning across several layers of a feed-forward network. 
The WDT-ANFIS method was introduced to reduce the 
impact of noise on data mining results. The wavelet de-
noising technique ANFIS (WDT-ANFIS) model surpassed 
all the other models in terms of accurately forecasting the 
water quality metrics [9].

Fig. 5  Predictive variable variations
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Fig. 6  Types of algorithms in predicting WQI

Fig. 7  Quantity analysis to show frequency of each algorithm used in reviewed papers
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4.5  Decision Tree (DT)

Due to its ease of use, DT has gained widespread popularity. 
It’s a network, hence it has nodes and links (called “edges”). 
In DT, choices and their consequences are organized in a 
hierarchical framework [55]. Decision trees use a tree-like 
structure to create models for classification and regression. 
When a dataset is used as an input to this model, it is auto-
matically sliced and diced into manageable chunks. A study 
using DT suggested a methodology to provide a faster and 
cheaper method for calculating and forecasting WQIs [71]. 
The outcomes demonstrate the capacity of the suggested 
prediction model to correctly forecast the WQI class.

The tree was constructed by breaking the input data into 
leaf nodes and inner nodes, which may include descend-
ants. If the subset originating from a root node has the same 
intended output values, or if no new values are added to 
the forecast, the operation terminates [65]. When it comes 
to classifying data, the M5 model tree outperforms other 
decision tree models. The model’s emphasis on numbers 
makes it more useful for benchmarking against other mod-
els [33]. The strengths of decision-tree-based model lie in 
its efficiency, versatility, and insensitivity to missing data 
or features. While other machine learning models may be 
faster, on the whole, decision-tree-based models excel in 
making short-term forecasts [43].

4.6  Ensemble Model (EM)

Machine learning ensemble models were used to boost the 
accuracy of predictions. Building an ensemble may be done 
in two ways: alone and together. Bagging and random forest 
(RF) are two examples of independent approaches, whereas 
coordinated methods like gradient boosting (GB) models 
are more of an example of a hybrid approach [53]. The issue 
of dividing a dataset into many classes was also addressed. 
Several decision trees were combined into one larger one 
to do the categorization. The forecast from each tree in the 
forest was aggregated, and the class with the most scores 
was the one that is considered the forest’s output class. It’s a 
quicker and more adaptable technique, however, it does have 
its limitations [65].

Nonetheless, ensemble models based on decision trees, 
such as Random Forest (RF) and Gradient Boosting (GB), 
nearly always perform better than the individual decision 
tree [43]. While both RF and DNN provide extensive lati-
tude to account for non-linear correlations between drivers 
and modelled parameters, doing so carries a risk of overfit-
ting that increases as more drivers are included in the model. 
Authors compared how well they performed by gradually 
introducing new drivers and documenting the performance 
boost that came with it [56]. In GB, they utilized an additive 
model in which model performance increased with repeated 

repetitions. Differentiable loss functions can be optimized 
with this method [72].

The majority of current contests employed this most 
recent algorithm. A differentiable loss function can be opti-
mized using an additive model [21]. To a greater or lesser 
extent, the effectiveness of various ML algorithms vary 
depending on the location in question. Consequently, it is 
a continuing challenge to investigate and design a generic 
ML model for water quality assessment applications [29].

4.7  Deep Learning (DP)

As a deep learning approach, the long short-term memory 
(LSTM) model is well-suited to predicting time-series data 
when the size of the time step is uncertain. In the LSTM 
model, a logistic sigmoid activation function was applied. It 
appeared that this WQI forecasting approach was not widely 
used in the literature [66]. Data relationships and hidden pat-
terns can be revealed by various processing layers in Deep 
Learning network which functions similarly to a human 
brain’s neural network.

Another deep learning model was convolutional neural 
network (CNN). Each neuron in CNN is connected to a fea-
ture extracted from a lower neural layer. CNN can reduce 
the number of computations required and help to prevent 
the overfitting problems. Thus, CNN has been implemented 
in several studies that analyzed the content of digital photo-
graphs [24]. To combat the mediocre accuracy of previous 
scales, they developed a prediction model using LSTM deep 
neural networks and water quality monitoring data for train-
ing and testing [11].

4.8  Hybrid Techniques

Because of the constraints of some algorithms on the pro-
cessing of stochastic data, experts often resort to hybrid 
modelling strategies. The prediction accuracy of a model 
may be greatly enhanced by combining two or more algo-
rithms at various phases of the modelling process. In this 
article, we examined several hybrid machine learning and 
hybrid deep learning models that have been utilized in the 
study of WQI prediction. Due to using long short-term mem-
ory (LSTM) model as a reference point, the transfer learning 
and long short-term memory (TL-LSTM) model was used 
to generate deterministic point predictions when data was 
unavailable. Based on the findings, it is clear that the Mul-
tivariate Bayesian Uncertainty Processor (MBUP) strategy, 
which consists of deep learning and post-processing, was 
successfully identified the complicated dependency structure 
between the model’s output and the observed water quality 
[22].

Water quality characteristics were predicted using 
a three-part hybrid neural network model built from 
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one-dimensional residual convolutional neural networks 
(1-DRCNN) and Bi-directional Gated recurrent units 
(BiGRU). To better capture the local change direction of 
these three parameters and to track their real value fluctua-
tions, the 1-DRCNN-BiGRU hybrid neural network outper-
formed the single reference depth learning technique [4]. 
Predicting water quality data using a hybrid model might be 
an effective option because it is possible to capture more of 
the underlying patterns by mixing many models. The hybrid 
model outperformed both the Auto Regressive Integrated 
Moving Average (ARIMA) and the neural network models 
in terms of accuracy due to its superior recognition of time 
series patterns and nonlinear properties [39].

The model’s fundamental premise is to improve predic-
tion accuracy by minimizing the influence of unimportant 
factors and amplifying the significance of significant factors 
through the adaptive weighting of components in the neural 
network’s hidden layers. For predicting water quality, the 
attention-based LSTM (AT-LSTM) model was better than 
the LSTM model [14].

5  Performance Evaluation Metrics

WQI requires validation data to evaluate the performance of 
the models. The data size may range from minutes interval 
up to more than seasonal data collected for the analysis. The 
time scale refers to the frequency of the collection of the 
water parameter data taken at the stations. The data may be 
taken daily, weekly, or monthly, depending on the design and 
purpose of the studies performed by the researchers. Various 
inputs or independent variables may be used to estimate the 
water quality index. The most common inputs applied are: 
temperature, dissolved oxygen, pH, turbidity and total phos-
phorus. In order to evaluate the model performance under 
various conditions, the models can be designed with vary-
ing inputs. Typically, when evaluating the best predictive 
models, the comparison should be based on the scenario in 
which all inputs were used.

The performance metrics are critical to determine how 
effectively the proposed models can provide predictive val-
ues that are comparable to or closed to the desired actual 
values. In this scenario, it is significant to select relevant 
performance indicators for model evaluation.

Several numbers of performance metrics are available 
to measure the performance of prediction in forecasting 
models. These metrics include coefficient of determina-
tion (R2), Mean absolute error (MAE), root mean square 
error (RMSE) and nash–sutcliffe efficiency coefficient 
(NSE). Most of the reviewed articles have used the R2, 
RMSE, and MAE which were successfully used in studies. 

However, for deeper evaluation of the performance, there 
were other metrics such as global performance indicator 
(GPI), correlation factor (R), Willmott Index of agreement 
(WI) and more.”

The coefficient of determination is a number between 0 
and 1 where a value of 1.0 indicates a perfect correlation. 
R2 is used to explain the relationship between an inde-
pendent and dependent variable and measures how well 
a statistical model predicts an outcome. The limitation of 
R-squared is inability to indicate if a regression model pro-
vides a proper fit to your data. In other words, sometimes 
good model may have a low R2 value. Additionally, it 
cannot inform if the data and predictions are biased or not.

where  R2 = coefficient of determination, RSS = sum of 
squares of residuals, TSS = total sum of squares.

Mean absolute error (MAE) measures the absolute dif-
ference between the model prediction and the target value. 
The lower MAE score leads to better model. MAE is a 
robust and an unbiased estimator which is useful if the 
training data has outliers. The limitations of MAE are that 
MAE is not differentiable at zero. Additionally, it follows 
a scale-dependent measure.

where MAE is mean absolute error, y is target value, 
ŷispredictedvalue, nisnumverofsamples

Root mean square error (RMSE) measures the average 
of squared difference between values predicted by a model 
and the actual values. Lower values of RMSE indicate bet-
ter fit. Opposite to MSE which is highly biased for higher 
error values. RMSE is better in terms of reflecting perfor-
mance when dealing with large error values. The limita-
tion of RMSE is it is prone to outliers.

where RMSE is root mean squared error.
Nash–sutcliffe efficiency (NSE) coefficient is a reliable 

statistic used for assessing the goodness and predictive 
skill of fit of model. It is equal to one minus the ratio 
of the error variance of the modelled time-series divided 
by the variance of the observed time-series. NSE ranges 
between − ∞ and 1.0 (1 inclusive), with NSE = 1 being 
the optimal value. Values between 0.0 and 1.0 are gener-
ally viewed as acceptable levels of performance, whereas 
values < 0.0 indicates unacceptable performance.

(1)R2 = 1 −
RSS

TSS

(2)MAE =

∑n

i=1
��yi − ŷi

��
n

(3)RMSE =

�
∑n

i=1

�
yi − ŷi

�2

n
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where NSE is Nash–Sutcliffe coefficient,  qo is observed 
value,  qs is simulated value, q̂ is average of observed value.

Table 4 presents a summary of various scenarios that the 
reviewed studies have presented. These scenarios are related 
to time scales of data used such as hourly, daily, weekly, and 
monthly. In other words, in daily scenario for example, the 
data collected for one day is used for prediction of future 
data. Additionally, the table indicates numerous performance 
indicators that were mentioned in the reviewed articles to 
evaluate the model prediction capability.

6  Conclusion and Recommendations

The objective of this study was to address the performance 
of the predictive models used in water quality prediction via 
different water parameters based on the results shown and 
the limitations mentioned. This paper has reviewed various 
83 studies that were conducted recently between 2009 and 
2023 to predict water quality index (WQI) using machine 
learning methods. In this review, we identified and catego-
rized various types of modelling algorithms, input paraments 
and outputs. It was found that machine learning techniques 
were effective in simulation and prediction of the water qual-
ity index in many regions around the world. These methods 
have found the connections between water quality index and 
hydrological and meteorological variables without knowl-
edge about physical characteristics of the modelled system. 
In other words, when it is difficult to design a knowledge-
based model, machine learning techniques seem to be useful 
without a need to build physical models for the observed 
system. For a successful estimate of the water quality index, 
studies showed specific steps taken in the modelling process 
such as data preprocessing, dividing data into training, vali-
dation, and testing, and the selection of suitable predictors.

Advancements in modelling techniques employed 
machine learning (ML) and hybrid models in forecasting 
water quality index. In this study, it was observed that hybrid 
models have improved WQI estimation performance sig-
nificantly. Additionally, since DL models has better perfor-
mance than ML models in several studies, the hybrid-DL 
methods may show also superior performance compared 
to the hybrid-ML methods. However, since the studies of 
hybrid-DL models employed for WQI estimation were lim-
ited, the comparison was not done in this review.

Most of the studies were conducted in the Middle East and 
Asian Countries Therefore, we recommend more research 
works on water quality index prediction for regions where 
the availability of surface water is limited, such as in the 
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�
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African continent and parts of Europe and South America. 
For the modelling techniques used in the reviewed works, 
ensemble learning methods were limited, even though they 
are the most accurate methods.

When it is possible to collect large water quality data, 
more powerful algorithms of deep learning models such as 
convolutional neural network (CNN), long-term short mem-
ory (LSTM), and transformer can take place of traditional 
ML methods and produce significant improvement in predic-
tion performance. The recent DL methods, specifically trans-
former [86], may open door to capture the temporal relations 
of history of water quality samples collected previously to 
forecast the future quality value with remarkable perfor-
mance. This transformer uses attention mechanism to allow 
the model to focus on specific samples in data sequence by 
assigning different weights to different data samples applied 
at input. This technique was found to outperform LSTM in 
several applications [87–89].

Generative Adversarial Networks (GANs) have been dis-
cussed and evaluated in several domains and were able to 
give better prediction results. However, research works on 
using GANs a for predicting water quality index and com-
parison with standalone and hybrid models are still required. 
GAN may play a significant role to address the data-hungry 
problem of deep learning models by generating synthetic 
data. The potential benefit from synthetic samples generated 
by GAN can solve problems related to cost of data collec-
tion and lack of data that most of applications suffer from. 
GAN can increase size of data which open doors to utilize 
recent models of deep learning such as CNN, LSTM, and 
transformers for water quality prediction. By GAN, it will 
also be easy to retrieve some of the missing values in the 
history of water values collected in previous years. However, 
using GAN requires powerful machine to train and run the 
GAN model and it requires to fine tune the hyperparameters 
to get the expected performance because GAN is extremely 
sensitive to hyperparameter settings. The conclusions drawn 
from this review analysis can serve as a guidance for future 
studies to enhance the performance of Water Quality predic-
tion using GAN’s generated data followed by the existing 
state-of-the-art methods.

Acknowledgements This research was supported by the Ministry 
of Education (MOE) through Fundamental Research Grant Scheme 
(FRGS/1/2021/TK0/UIAM/03/1).

References

 1. Peterson KT, Sagan V, Sidike P, Hasenmueller EA, Sloan JJ, 
Knouft JH (2019) Machine learning-based ensemble prediction 
of water-quality variables using feature-level and decision-level 
fusion with proximal remote sensing. Photogramm Eng Remote 
Sensing 85(4):269–280. https:// doi. org/ 10. 14358/ PERS. 85.4. 269

https://doi.org/10.14358/PERS.85.4.269


4650 D. Irwan et al.

1 3

 2. Barzegar R, Adamowski J, Moghaddam AA (2016) Application 
of wavelet-artificial intelligence hybrid models for water quality 
prediction: a case study in Aji-Chay River, Iran. Stoch Env Res 
Risk Assess 30(7):1797–1819. https:// doi. org/ 10. 1007/ S00477- 
016- 1213-Y/ METRI CS

 3. Alizadeh MJ, Kavianpour MR (2015) Development of wavelet-
ANN models to predict water quality parameters in Hilo Bay, 
Pacific Ocean. Mar Pollut Bull 98(1–2):171–178. https:// doi. org/ 
10. 1016/J. MARPO LBUL. 2015. 06. 052

 4. Yan J et al (2021) Water quality prediction in the Luan river based 
on 1-DRCNN and BiGRU hybrid neural network model. Water 
13:1273. https:// doi. org/ 10. 3390/ W1309 1273

 5. Olyaie E, Banejad H (2011) Application of an artificial neural 
network model to rivers water quality indexes prediction-a case 
study. J Am Sci 7(1):1545–1003

 6. Sani Gaya M et al (2020) Estimation of water quality index using 
artificial intelligence approaches and multi-linear regression. 
IAES Int J Artif Intell 9(1):126–134. https:// doi. org/ 10. 11591/ 
ijai. v9. i1. pp126- 134

 7. Pham QB, Mohammadpour R, Linh NT, Mohajane M, Pourjasem 
A, Sammen SS, Anh DT, Nam VT (2021) Application of soft 
computing to predict water quality in wetland. Environ Sci Pollut 
Res 28:185–200

 8. Y. Khan and C. S. See, “Predicting and analyzing water qual-
ity using machine learning: a comprehensive model,” 2016 IEEE 
Long Island systems, applications and technology conference, 
LISAT 2016, Jun. 2016, doi: https:// doi. org/ 10. 1109/ LISAT. 2016. 
74941 06.

 9. Najah Ahmed A et al (2019) Machine learning methods for better 
water quality prediction. J Hydrol (Amst) 578:124084. https:// doi. 
org/ 10. 1016/J. JHYDR OL. 2019. 124084

 10. Gao C, Wang Z, Ji X, Wang W, Wang Q, Qing D (2023) Coupled 
improvements on hydrodynamics and water quality by flowing 
water in towns with lakes. Environ Sci Pollut Res 30(16):46813–
46825. https:// doi. org/ 10. 1007/ s11356- 023- 25348-3

 11. Liu P, Wang J, Sangaiah AK, Xie Y, Yin X (2019) Analysis and 
prediction of water quality using LSTM deep neural networks in 
IoT environment. Sustainability 11(7):2058. https:// doi. org/ 10. 
3390/ SU110 72058

 12. Bui DT, Khosravi K, Tiefenbacher J, Nguyen H, Kazakis N (2020) 
Improving prediction of water quality indices using novel hybrid 
machine-learning algorithms. Sci Total Environ 721:137612. 
https:// doi. org/ 10. 1016/J. SCITO TENV. 2020. 137612

 13. Tiwari S, Babbar R, Kaur G (2018) Performance evaluation of two 
ANFIS models for predicting water quality index of river Satluj 
(India). Adv Civil Eng. https:// doi. org/ 10. 1155/ 2018/ 89710 79

 14. Chen H et al (2022) Water quality prediction based on LSTM 
and attention mechanism: a case study of the Burnett River Aus-
tralia. Sustainability 14(20):13231. https:// doi. org/ 10. 3390/ SU142 
013231

 15. Sha J, Li X, Zhang M, Wang ZL (2021) Comparison of forecasting 
models for real-time monitoring of water quality parameters based 
on hybrid deep learning neural networks. Water 13(11):1547. 
https:// doi. org/ 10. 3390/ W1311 1547

 16. Li L, Jiang P, Xu H, Lin G, Guo D, Wu H (2019) Water quality 
prediction based on recurrent neural network and improved evi-
dence theory: a case study of Qiantang River, China. Environ Sci 
Pollut Res 26(19):19879–19896. https:// doi. org/ 10. 1007/ S11356- 
019- 05116-Y/ METRI CS

 17. Emamgholizadeh S, Kashi H, Marofpoor I, Zalaghi E (2014) 
Prediction of water quality parameters of Karoon River (Iran) 
by artificial intelligence-based models. Int J Environ Sci Tech-
nol 11(3):645–656. https:// doi. org/ 10. 1007/ S13762- 013- 0378-X/ 
METRI CS

 18. Asadollah SBHS, Sharafati A, Motta D, Yaseen ZM (2021) 
River water quality index prediction and uncertainty analysis: A 

comparative study of machine learning models. J Environ Chem 
Eng 9(1):104599. https:// doi. org/ 10. 1016/J. JECE. 2020. 104599

 19. Haghiabi AH, Nasrolahi AH, Parsaie A (2018) Water quality 
prediction using machine learning methods. Water Qual Res J 
53(1):3–13. https:// doi. org/ 10. 2166/ WQRJ. 2018. 025

 20. Lu H, Ma X (2020) Hybrid decision tree-based machine learn-
ing models for short-term water quality prediction. Chemosphere 
249:126169. https:// doi. org/ 10. 1016/J. CHEMO SPHERE. 2020. 
126169

 21. Ahmed U, Mumtaz R, Anwar H, Shah AA, Irfan R, García-Nieto J 
(2019) Efficient water quality prediction using supervised machine 
learning. Water 11(11):2210. https:// doi. org/ 10. 3390/ W1111 2210

 22. Zhou Y (2020) Real-time probabilistic forecasting of river water 
quality under data missing situation: deep learning plus post-pro-
cessing techniques. J Hydrol (Amst) 589:125164. https:// doi. org/ 
10. 1016/J. JHYDR OL. 2020. 125164

 23. Hayder G, Kurniawan I, Mustafa HM (2020) Implementation of 
machine learning methods for monitoring and predicting water 
quality parameters. Biointerface Res Appl Chem. https:// doi. org/ 
10. 33263/ BRIAC 112. 92859 295

 24. Baek SS, Pyo J, Chun JA (2020) Prediction of water level and 
water quality using a CNN-LSTM combined deep learning 
approach. Water 12(12):3399. https:// doi. org/ 10. 3390/ W1212 
3399

 25. Jin T, Cai S, Jiang D, Liu J (2019) A data-driven model for real-
time water quality prediction and early warning by an integration 
method. Environ Sci Pollut Res 26(29):30374–30385. https:// doi. 
org/ 10. 1007/ S11356- 019- 06049-2/ METRI CS

 26. Isiyaka HA, Mustapha A, Juahir H, Phil-Eze P (2019) Water 
quality modelling using artificial neural network and multivari-
ate statistical techniques. Model Earth Syst Environ 5(2):583–593. 
https:// doi. org/ 10. 1007/ S40808- 018- 0551-9/ METRI CS

 27. Liu S, Tai H, Ding Q, Li D, Xu L, Wei Y (2013) A hybrid 
approach of support vector regression with genetic algorithm opti-
mization for aquaculture water quality prediction. Math Comput 
Model 58(3–4):458–465. https:// doi. org/ 10. 1016/J. MCM. 2011. 
11. 021

 28. Ouma YO, Okuku CO, Njau EN (2020) Use of artificial neural 
networks and multiple linear regression model for the prediction 
of dissolved oxygen in rivers: case study of hydrographic basin of 
river Nyando, Kenya. Complexity. https:// doi. org/ 10. 1155/ 2020/ 
95707 89

 29. Khoi DN, Quan NT, Linh DQ, Nhi PTT, Thuy NTD (2022) Using 
machine learning models for predicting the Water Quality Index 
in the La Buong River, Vietnam. Water 14(10):1552. https:// doi. 
org/ 10. 3390/ W1410 1552

 30. Alqahtani A, Shah MI, Aldrees A, Javed MF (2022) Compara-
tive assessment of individual and ensemble machine learning 
models for efficient analysis of river water quality. Sustainability 
14(3):1183. https:// doi. org/ 10. 3390/ SU140 31183

 31. Ziyad Sami BF et al (2022) Machine learning algorithm as a 
sustainable tool for dissolved oxygen prediction: a case study of 
Feitsui Reservoir, Taiwan. Sci Rep 12(1):1–12. https:// doi. org/ 10. 
1038/ s41598- 022- 06969-z

 32. Izhar Shah M, Alaloul WS, Alqahtani A, Aldrees A, Ali Musarat 
M, Javed MF (2021) Predictive modeling approach for surface 
water quality: development and comparison of machine learn-
ing models. Sustainability 13(14):7515. https:// doi. org/ 10. 3390/ 
SU131 47515

 33. Kisi O, Parmar KS (2016) Application of least square support 
vector machine and multivariate adaptive regression spline models 
in long term prediction of river water pollution. J Hydrol (Amst) 
534:104–112. https:// doi. org/ 10. 1016/J. JHYDR OL. 2015. 12. 014

 34. Melesse AM et al (2020) River water salinity prediction using 
hybrid machine learning models. Water 12(10):2951. https:// doi. 
org/ 10. 3390/ W1210 2951

https://doi.org/10.1007/S00477-016-1213-Y/METRICS
https://doi.org/10.1007/S00477-016-1213-Y/METRICS
https://doi.org/10.1016/J.MARPOLBUL.2015.06.052
https://doi.org/10.1016/J.MARPOLBUL.2015.06.052
https://doi.org/10.3390/W13091273
https://doi.org/10.11591/ijai.v9.i1.pp126-134
https://doi.org/10.11591/ijai.v9.i1.pp126-134
https://doi.org/10.1109/LISAT.2016.7494106
https://doi.org/10.1109/LISAT.2016.7494106
https://doi.org/10.1016/J.JHYDROL.2019.124084
https://doi.org/10.1016/J.JHYDROL.2019.124084
https://doi.org/10.1007/s11356-023-25348-3
https://doi.org/10.3390/SU11072058
https://doi.org/10.3390/SU11072058
https://doi.org/10.1016/J.SCITOTENV.2020.137612
https://doi.org/10.1155/2018/8971079
https://doi.org/10.3390/SU142013231
https://doi.org/10.3390/SU142013231
https://doi.org/10.3390/W13111547
https://doi.org/10.1007/S11356-019-05116-Y/METRICS
https://doi.org/10.1007/S11356-019-05116-Y/METRICS
https://doi.org/10.1007/S13762-013-0378-X/METRICS
https://doi.org/10.1007/S13762-013-0378-X/METRICS
https://doi.org/10.1016/J.JECE.2020.104599
https://doi.org/10.2166/WQRJ.2018.025
https://doi.org/10.1016/J.CHEMOSPHERE.2020.126169
https://doi.org/10.1016/J.CHEMOSPHERE.2020.126169
https://doi.org/10.3390/W11112210
https://doi.org/10.1016/J.JHYDROL.2020.125164
https://doi.org/10.1016/J.JHYDROL.2020.125164
https://doi.org/10.33263/BRIAC112.92859295
https://doi.org/10.33263/BRIAC112.92859295
https://doi.org/10.3390/W12123399
https://doi.org/10.3390/W12123399
https://doi.org/10.1007/S11356-019-06049-2/METRICS
https://doi.org/10.1007/S11356-019-06049-2/METRICS
https://doi.org/10.1007/S40808-018-0551-9/METRICS
https://doi.org/10.1016/J.MCM.2011.11.021
https://doi.org/10.1016/J.MCM.2011.11.021
https://doi.org/10.1155/2020/9570789
https://doi.org/10.1155/2020/9570789
https://doi.org/10.3390/W14101552
https://doi.org/10.3390/W14101552
https://doi.org/10.3390/SU14031183
https://doi.org/10.1038/s41598-022-06969-z
https://doi.org/10.1038/s41598-022-06969-z
https://doi.org/10.3390/SU13147515
https://doi.org/10.3390/SU13147515
https://doi.org/10.1016/J.JHYDROL.2015.12.014
https://doi.org/10.3390/W12102951
https://doi.org/10.3390/W12102951


4651Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications  

1 3

 35. Hameed M, Sharqi SS, Yaseen ZM, Afan HA, Hussain A, Elshafie 
A (2017) Application of artificial intelligence (AI) techniques in 
water quality index prediction: a case study in tropical region, 
Malaysia. Neural Comput Appl 28(1):893–905. https:// doi. org/ 
10. 1007/ S00521- 016- 2404-7/ METRI CS

 36. Ahmed AAM, Shah SMA (2017) Application of adaptive neuro-
fuzzy inference system (ANFIS) to estimate the biochemical oxy-
gen demand (BOD) of Surma River. J King Saud Univ Eng Sci 
29(3):237–243. https:// doi. org/ 10. 1016/J. JKSUES. 2015. 02. 001

 37. Maier PM, Keller S (2018) Machine learning regression on 
hyperspectral data to estimate multiple water parameters. Work-
shop Hyperspectral Image Signal Process, Evol Remote Sensing. 
https:// doi. org/ 10. 1109/ WHISP ERS. 2018. 87470 10

 38. Heddam S, Kisi O (2018) Modelling daily dissolved oxygen con-
centration using least square support vector machine, multivariate 
adaptive regression splines and M5 model tree. J Hydrol (Amst) 
559:499–509. https:// doi. org/ 10. 1016/J. JHYDR OL. 2018. 02. 061

 39. Ömer Faruk D (2010) A hybrid neural network and ARIMA 
model for water quality time series prediction. Eng Appl Artif 
Intell 23(4):586–594. https:// doi. org/ 10. 1016/J. ENGAP PAI. 2009. 
09. 015

 40. Sattari MT, Joudi AR, Kusiak A (2016) Estimation of water qual-
ity parameters with data-driven model. J Am Water Works Assoc 
108(4):E232–E239. https:// doi. org/ 10. 5942/ JAWWA. 2016. 108. 
0012

 41. Abba SI et al (2020) Implementation of data intelligence models 
coupled with ensemble machine learning for prediction of water 
quality index. Environ Sci Pollut Res 27(33):41524–41539. 
https:// doi. org/ 10. 1007/ S11356- 020- 09689-X/ METRI CS

 42. Yan T, Zhou A, Shen SL (2023) Prediction of long-term water 
quality using machine learning enhanced by Bayesian optimi-
sation. Environ Pollut 318:120870. https:// doi. org/ 10. 1016/J. 
ENVPOL. 2022. 120870

 43. Malek NHA, Yaacob WFW, Nasir SAM, Shaadan N (2022) Pre-
diction of water quality classification of the kelantan river basin, 
Malaysia, using machine learning techniques. Water 14(7):1067. 
https:// doi. org/ 10. 3390/ W1407 1067

 44. Huang M et al (2018) A hybrid fuzzy wavelet neural network 
model with self-adapted fuzzy c-means clustering and genetic 
algorithm for water quality prediction in rivers. Complexity. 
https:// doi. org/ 10. 1155/ 2018/ 82413 42

 45. Rizal NNM, Hayder G, Mnzool M, Elnaim BME, Mohammed 
AOY, Khayyat MM (2022) Comparison between regression mod-
els, support vector machine (SVM), and artificial neural network 
(ANN) in river water quality prediction. Processes 10(8):1652. 
https:// doi. org/ 10. 3390/ PR100 81652

 46. W. Xuan, J. Lv, and D. Xie, “A hybrid approach of support vector 
machine with particle swarm optimization for water quality pre-
diction,” ICCSE 2010—5th International conference on computer 
science and education, final program and book of abstracts, pp. 
1158–1163, 2010, doi: https:// doi. org/ 10. 1109/ ICCSE. 2010. 55936 
97.

 47. Than NH, Ly CD, van Tat P, Thanh NN (2016) Application of a 
neural network technique for prediction of the Water Quality index 
in the Dong Nai River, Vietnam. J Environ Sci Eng B 5:363–370. 
https:// doi. org/ 10. 17265/ 2162- 5263/ 2016. 07. 007

 48. Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural 
network modeling of the river water quality—a case study. Ecol 
Modell 220(6):888–895. https:// doi. org/ 10. 1016/J. ECOLM ODEL. 
2009. 01. 004

 49. Q. Ye, X. Yang, C. Chen, and J. Wang, “River water quality 
parameters prediction method based on LSTM-RNN model,” 
Proceedings of the 31st Chinese control and decision conference, 
CCDC 2019, pp. 3024–3028, Jun. 2019, doi: https:// doi. org/ 10. 
1109/ CCDC. 2019. 88328 85.

 50. Azad A, Karami H, Farzin S, Mousavi SF, Kisi O (2019) Mod-
eling river water quality parameters using modified adaptive neuro 
fuzzy inference system. Water Sci Eng 12(1):45–54. https:// doi. 
org/ 10. 1016/J. WSE. 2018. 11. 001

 51. Chou JS, Ho CC, Hoang HS (2018) Determining quality of water 
in reservoir using machine learning. Ecol Inform 44:57–75. 
https:// doi. org/ 10. 1016/J. ECOINF. 2018. 01. 005

 52. Elkiran G, Nourani V, Abba SI (2019) Multi-step ahead model-
ling of river water quality parameters using ensemble artificial 
intelligence-based approach. J Hydrol (Amst). https:// doi. org/ 10. 
1016/J. JHYDR OL. 2019. 123962

 53. Chen K et al (2020) Comparative analysis of surface water quality 
prediction performance and identification of key water parameters 
using different machine learning models based on big data. Water 
Res. https:// doi. org/ 10. 1016/j. watres. 2019. 115454

 54. Ly QV et al (2021) Application of machine learning for eutrophi-
cation analysis and algal bloom prediction in an urban river: a 
10-year study of the Han River, South Korea. Sci Total Environ 
797:149040. https:// doi. org/ 10. 1016/J. SCITO TENV. 2021. 149040

 55. Ahmed M, Mumtaz R, Mohammad S, Zaidi H (2021) Analysis 
of water quality indices and machine learning techniques for rat-
ing water pollution: a case study of Rawal Dam, Pakistan. Water 
Supply. https:// doi. org/ 10. 2166/ ws. 2021. 082

 56. Zanoni MG, Majone B, Bellin A (2022) A catchment-scale model 
of river water quality by machine learning. Sci Total Environ 
838:156377. https:// doi. org/ 10. 1016/J. SCITO TENV. 2022. 156377

 57. Uddin MG, Nash S, Rahman A, Olbert AI (2023) Performance 
analysis of the water quality index model for predicting water 
state using machine learning techniques. Process Saf Environ Prot 
169:808–828. https:// doi. org/ 10. 1016/J. PSEP. 2022. 11. 073

 58. Al-Sulttani AO, Al-Mukhtar M, Roomi AB, Farooque AA, Khed-
her KM, Yaseen ZM (2021) Proposition of New ensemble data-
intelligence models for surface water quality prediction. IEEE 
Access 9:108527–108541. https:// doi. org/ 10. 1109/ ACCESS. 2021. 
31004 90

 59. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF (2012) 
Artificial neural network modeling of the water quality index for 
Kinta River (Malaysia) using water quality variables as predic-
tors. Mar Pollut Bull 64(11):2409–2420. https:// doi. org/ 10. 1016/J. 
MARPO LBUL. 2012. 08. 005

 60. Kouadri S, Elbeltagi A, Islam ARMT, Kateb S (2021) Perfor-
mance of machine learning methods in predicting water quality 
index based on irregular data set: application on Illizi region 
(Algerian southeast). Appl Water Sci 11(12):1–20. https:// doi. 
org/ 10. 1007/ S13201- 021- 01528-9/ TABLES/9

 61. Anmala J, Venkateshwarlu T (2019) Statistical assessment and 
neural network modeling of stream water quality observations 
of Green River watershed, KY, USA. Water Supply 19(6):1831–
1840. https:// doi. org/ 10. 2166/ WS. 2019. 058

 62. Ma C, Zhao J, Ai B, Sun S, Yang Z (2022) Machine learning based 
long-term water quality in the turbid pearl river Estuary, China. J 
Geophys Res Oceans. https:// doi. org/ 10. 1029/ 2021J C0180 17

 63. Adusei YY, Quaye-Ballard J, Adjaottor AA, Mensah AA (2021) 
Spatial prediction and mapping of water quality of Owabi reser-
voir from satellite imageries and machine learning models. Egypt 
J Remote Sensing Space Sci 24(3):825–833. https:// doi. org/ 10. 
1016/J. EJRS. 2021. 06. 006

 64. Othman F et al (2020) Efficient river water quality index predic-
tion considering minimal number of inputs variables. Eng Appl 
Comput Fluid Mech 14(1):751–763. https:// doi. org/ 10. 1080/ 
19942 060. 2020. 17609 42

 65. Bhoi SK, Mallick C, Mohanty CR (2022) Estimating the water 
quality class of a major irrigation canal in Odisha, India: a super-
vised machine learning approach. Nat Environ Pollut Technol. 
https:// doi. org/ 10. 46488/ NEPT. 2022. v21i02. 002

https://doi.org/10.1007/S00521-016-2404-7/METRICS
https://doi.org/10.1007/S00521-016-2404-7/METRICS
https://doi.org/10.1016/J.JKSUES.2015.02.001
https://doi.org/10.1109/WHISPERS.2018.8747010
https://doi.org/10.1016/J.JHYDROL.2018.02.061
https://doi.org/10.1016/J.ENGAPPAI.2009.09.015
https://doi.org/10.1016/J.ENGAPPAI.2009.09.015
https://doi.org/10.5942/JAWWA.2016.108.0012
https://doi.org/10.5942/JAWWA.2016.108.0012
https://doi.org/10.1007/S11356-020-09689-X/METRICS
https://doi.org/10.1016/J.ENVPOL.2022.120870
https://doi.org/10.1016/J.ENVPOL.2022.120870
https://doi.org/10.3390/W14071067
https://doi.org/10.1155/2018/8241342
https://doi.org/10.3390/PR10081652
https://doi.org/10.1109/ICCSE.2010.5593697
https://doi.org/10.1109/ICCSE.2010.5593697
https://doi.org/10.17265/2162-5263/2016.07.007
https://doi.org/10.1016/J.ECOLMODEL.2009.01.004
https://doi.org/10.1016/J.ECOLMODEL.2009.01.004
https://doi.org/10.1109/CCDC.2019.8832885
https://doi.org/10.1109/CCDC.2019.8832885
https://doi.org/10.1016/J.WSE.2018.11.001
https://doi.org/10.1016/J.WSE.2018.11.001
https://doi.org/10.1016/J.ECOINF.2018.01.005
https://doi.org/10.1016/J.JHYDROL.2019.123962
https://doi.org/10.1016/J.JHYDROL.2019.123962
https://doi.org/10.1016/j.watres.2019.115454
https://doi.org/10.1016/J.SCITOTENV.2021.149040
https://doi.org/10.2166/ws.2021.082
https://doi.org/10.1016/J.SCITOTENV.2022.156377
https://doi.org/10.1016/J.PSEP.2022.11.073
https://doi.org/10.1109/ACCESS.2021.3100490
https://doi.org/10.1109/ACCESS.2021.3100490
https://doi.org/10.1016/J.MARPOLBUL.2012.08.005
https://doi.org/10.1016/J.MARPOLBUL.2012.08.005
https://doi.org/10.1007/S13201-021-01528-9/TABLES/9
https://doi.org/10.1007/S13201-021-01528-9/TABLES/9
https://doi.org/10.2166/WS.2019.058
https://doi.org/10.1029/2021JC018017
https://doi.org/10.1016/J.EJRS.2021.06.006
https://doi.org/10.1016/J.EJRS.2021.06.006
https://doi.org/10.1080/19942060.2020.1760942
https://doi.org/10.1080/19942060.2020.1760942
https://doi.org/10.46488/NEPT.2022.v21i02.002


4652 D. Irwan et al.

1 3

 66. Aldhyani THH, Al-Yaari M, Alkahtani H, Maashi M (2020) Water 
quality prediction using artificial intelligence algorithms. Appl 
Bionics Biomech. https:// doi. org/ 10. 1155/ 2020/ 66593 14

 67. Lee HW, Kim M, Son HW, Min B, Choi JH (2022) Machine-learn-
ing-based water quality management of river with serial impound-
ments in the Republic of Korea. J Hydrol Reg Stud 41:101069. 
https:// doi. org/ 10. 1016/J. EJRH. 2022. 101069

 68. Li J et al (2019) Hybrid soft computing approach for determining 
water quality indicator: Euphrates River. Neural Comput Appl 
31(3):827–837. https:// doi. org/ 10. 1007/ S00521- 017- 3112-7/ 
METRI CS

 69. Fijani E, Barzegar R, Deo R, Tziritis E, Konstantinos S (2019) 
Design and implementation of a hybrid model based on two-layer 
decomposition method coupled with extreme learning machines 
to support real-time environmental monitoring of water quality 
parameters. Sci Total Environ 648:839–853. https:// doi. org/ 10. 
1016/J. SCITO TENV. 2018. 08. 221

 70. Kumar L, Afzal MS, Ahmad A (2022) Prediction of water turbid-
ity in a marine environment using machine learning: a case study 
of Hong Kong. Reg Stud Mar Sci 52:102260. https:// doi. org/ 10. 
1016/J. RSMA. 2022. 102260

 71. Ho JY et al (2019) Towards a time and cost effective approach to 
water quality index class prediction. J Hydrol (Amst) 575:148–
165. https:// doi. org/ 10. 1016/J. JHYDR OL. 2019. 05. 016

 72. Koranga M, Pant P, Kumar T, Pant D, Bhatt AK, Pant RP (2022) 
Efficient water quality prediction models based on machine learn-
ing algorithms for Nainital Lake, Uttarakhand. Mater Today Proc 
57:1706–1712. https:// doi. org/ 10. 1016/J. MATPR. 2021. 12. 334

 73. Uddin MG, Nash S, Mahammad Diganta MT, Rahman A, Olbert 
AI (2022) Robust machine learning algorithms for predicting 
coastal water quality index. J Environ Manag 321:115923. https:// 
doi. org/ 10. 1016/J. JENVM AN. 2022. 115923

 74. Gómez D, Salvador P, Sanz J, Casanova JL (2021) A new 
approach to monitor water quality in the Menor sea (Spain) using 
satellite data and machine learning methods. Environ Pollut 
286:117489. https:// doi. org/ 10. 1016/J. ENVPOL. 2021. 117489

 75. Zhu X, Guo H, Huang JJ, Tian S, Xu W, Mai Y (2022) An 
ensemble machine learning model for water quality estimation in 
coastal area based on remote sensing imagery. J Environ Manag 
323:116187. https:// doi. org/ 10. 1016/J. JENVM AN. 2022. 116187

 76. Saberioon M, Brom J, Nedbal V (2020) Chlorophyll-a and total 
suspended solids retrieval and mapping using Sentinel-2A and 
machine learning for inland waters. Ecol Indic 113:106236. 
https:// doi. org/ 10. 1016/J. ECOLI ND. 2020. 106236

 77. Xu T, Coco G, Neale M (2020) A predictive model of recreational 
water quality based on adaptive synthetic sampling algorithms 
and machine learning. Water Res 177:115788. https:// doi. org/ 10. 
1016/J. WATRES. 2020. 115788

 78. Deng T, Chau KW, Duan HF (2021) Machine learning based 
marine water quality prediction for coastal hydro-environment 
management. J Environ Manag 284:112051. https:// doi. org/ 10. 
1016/J. JENVM AN. 2021. 112051

 79. Al-Adhaileh MH, Alsaade FW (2021) Modelling and prediction 
of water quality by using artificial intelligence. Sustainability 
13:4259. https:// doi. org/ 10. 3390/ SU130 84259

 80. Khullar S, Singh N (2022) Water quality assessment of a river 
using deep learning Bi-LSTM methodology: forecasting and vali-
dation. Environ Sci Pollut Res 29(9):12875–12889. https:// doi. 
org/ 10. 1007/ S11356- 021- 13875-W/ METRI CS

 81. Latif SD et al (2022) Development of prediction model for phos-
phate in reservoir water system based machine learning algo-
rithms. Ain Shams Eng J 13(1):101523. https:// doi. org/ 10. 1016/J. 
ASEJ. 2021. 06. 009

 82. A. P. Kogekar, R. Nayak, and U. C. Pati, “A CNN-BiLSTM-SVR 
based deep hybrid model for water quality forecasting of the river 
Ganga,” Proceedings of the 2021 IEEE 18th India council inter-
national conference, INDICON 2021, 2021, doi: https:// doi. org/ 
10. 1109/ INDIC ON525 76. 2021. 96915 32.

 83. Wang S, Peng H, Liang S (2022) Prediction of estuarine water 
quality using interpretable machine learning approach. J Hydrol 
(Amst) 605:127320. https:// doi. org/ 10. 1016/J. JHYDR OL. 2021. 
127320

 84. F. H. Garabaghi, S. Benzer, and R. Benzer, “Performance evalua-
tion of machine learning models with ensemble learning approach 
in classication of water quality indices based on different subset 
of features,” (2022), doi: https:// doi. org/ 10. 21203/ rs.3. rs- 876980/ 
v2.

 85. Jiang Y, Li C, Sun L, Guo D, Zhang Y, Wang W (2021) A deep 
learning algorithm for multi-source data fusion to predict water 
quality of urban sewer networks. J Clean Prod 318:128533. https:// 
doi. org/ 10. 1016/J. JCLEP RO. 2021. 128533

 86. Attention is all you need. A Vaswani, N Shazeer, N Parmar, J 
Uszkoreit, L Jones, AN Gomez, ... Advances in neural information 
processing systems 30, 2017.

 87. Amanambu AC, Mossa J, Chen Y-H (2022) Hydrological drought 
forecasting using a deep transformer model. Water 14:3611. 
https:// doi. org/ 10. 3390/ w1422 3611

 88. Méndez M, Montero C, Núñez M (2022) Using deep transformer 
based models to predict ozone levels. In: Nguyen NT, Tran TK, 
Tukayev U, Hong TP, Trawiński B, Szczerbicki E (eds) Intelligent 
information and database systems ACIIDS 2022. Springer, Cham

 89. Xu J, Fan H, Luo M, Li P, Jeong T, Xu L (2023) Transformer 
based water level prediction in Poyang Lake, China. Water 15:576. 
https:// doi. org/ 10. 3390/ w1503 0576

 90. Roushangar K, Shahnazi S, Azamathulla HM (2023) Sediment 
transport modeling through machine learning methods: review of 
current challenges and strategies. In: Pandey M, Azamathulla H, 
Pu JH (eds) River dynamics and flood hazards disaster. Resilience 
and green growth. Springer, Singapore

 91. Azamathulla HM, Ghani AA, Chang CK, Hasan ZA, Zakaria NA 
(2010) Machine learning approach to predict sediment load–a case 
study. Clean-Soil Air Water 38:969–976

 92. Wu A, Azamathulla HM, Wu FC (2011) Support vector machine 
approach for longitudinal dispersion coefficients in natural 
streams. Appl Soft Comput 11(2):2902–2905

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1155/2020/6659314
https://doi.org/10.1016/J.EJRH.2022.101069
https://doi.org/10.1007/S00521-017-3112-7/METRICS
https://doi.org/10.1007/S00521-017-3112-7/METRICS
https://doi.org/10.1016/J.SCITOTENV.2018.08.221
https://doi.org/10.1016/J.SCITOTENV.2018.08.221
https://doi.org/10.1016/J.RSMA.2022.102260
https://doi.org/10.1016/J.RSMA.2022.102260
https://doi.org/10.1016/J.JHYDROL.2019.05.016
https://doi.org/10.1016/J.MATPR.2021.12.334
https://doi.org/10.1016/J.JENVMAN.2022.115923
https://doi.org/10.1016/J.JENVMAN.2022.115923
https://doi.org/10.1016/J.ENVPOL.2021.117489
https://doi.org/10.1016/J.JENVMAN.2022.116187
https://doi.org/10.1016/J.ECOLIND.2020.106236
https://doi.org/10.1016/J.WATRES.2020.115788
https://doi.org/10.1016/J.WATRES.2020.115788
https://doi.org/10.1016/J.JENVMAN.2021.112051
https://doi.org/10.1016/J.JENVMAN.2021.112051
https://doi.org/10.3390/SU13084259
https://doi.org/10.1007/S11356-021-13875-W/METRICS
https://doi.org/10.1007/S11356-021-13875-W/METRICS
https://doi.org/10.1016/J.ASEJ.2021.06.009
https://doi.org/10.1016/J.ASEJ.2021.06.009
https://doi.org/10.1109/INDICON52576.2021.9691532
https://doi.org/10.1109/INDICON52576.2021.9691532
https://doi.org/10.1016/J.JHYDROL.2021.127320
https://doi.org/10.1016/J.JHYDROL.2021.127320
https://doi.org/10.21203/rs.3.rs-876980/v2
https://doi.org/10.21203/rs.3.rs-876980/v2
https://doi.org/10.1016/J.JCLEPRO.2021.128533
https://doi.org/10.1016/J.JCLEPRO.2021.128533
https://doi.org/10.3390/w14223611
https://doi.org/10.3390/w15030576

	Predicting Water Quality with Artificial Intelligence: A Review of Methods and Applications
	Abstract
	1 Introduction
	2 Research Methodology and Literature Review
	2.1 Research Methodology
	2.2 Literature Review

	3 Classification of Studies
	3.1 Chemical Inputs
	3.2 Meteorological Inputs

	4 Water Quality Index Modeling Techniques
	4.1 Multi Linear Regression (MLR)
	4.2 Artificial Neural Network (ANN)
	4.3 Support Vector Machine (SVM)
	4.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)
	4.5 Decision Tree (DT)
	4.6 Ensemble Model (EM)
	4.7 Deep Learning (DP)
	4.8 Hybrid Techniques

	5 Performance Evaluation Metrics
	6 Conclusion and Recommendations
	Acknowledgements 
	References




