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Abstract
This research reviewed the functionally graded (FG) structures exposed to mechanical/thermomechanical loading, including 
the porosity effect. The review focuses on the modelling of FGM via different theoretical approaches adopted in the past and 
their responses (static, vibration, and transient) without indicating the detailed mathematical implications and the solution 
methodologies. The present review is majorly divided into three categories of the analysis reported in the published domain 
of the linear and nonlinear static, vibration, and transient deflection, including the stress parameters. Further, an effort has 
been made to discuss the articles from the last decade to show the significant improvements made by the different research-
ers, with a few exceptions. The main findings and subsequent lacunae are summarized to redefine the future course of action 
in graded structural modelling and the challenges related to the experimentation.

1  Introduction

Functionally graded material (FGM) originally invented 
by Japanese scientists in 1984 as an ultrahigh temperature-
resistant material [1]. The FGMs are an advanced form of 
layered composite materials with smooth materials grading 
in one/more directions (Fig. 1) to achieve tailor-made prop-
erties. In general, metal and ceramic are combined to create 
FGMs. Because of poor thermal conductivity, the ceramic 
part of FGM provides resistance to high temperatures, whilst 
a ductile metal part helps in preventing fracture caused by 
thermal stresses [2]. The variation of ceramic and metal in 
the FG structures can be achieved using different grading 
techniques.

1.1 � Type of Gradings in FGM

Different material grading approaches, such as power-law 
(P-FGM), exponential (E-FGM), and sigmoid (S-FGM), 
can be used to achieve the material property variation [3]. 
These grading techniques are capable of computing the 
unidirectional as well as multidirectional variation of FG 
counterparts. Through-thickness variation (unidirectional) of 
material properties using P-FGM (Fig. 2), S-FGM (Fig. 3), 
and E-FGM (Fig. 4) grading can be achieved using Eqs. (1), 
(2) and (3), respectively.

 where, P(z) is material property of FGM. Pc and Pm are 
respective ceramic and metal properties, and nz is transverse 
power exponent.
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Similarly, the bidirectional material property variation [4, 
5] in the FG (P-FGM) structure (Fig. 5) can be computed 
using Eq. (4).

 where, nx is longitudinal power exponent.

1.2 � Porosity in FGMs

During fabrication, porosity defects may be induced into the 
FG structures. In general, even and uneven [6–9] porosities 
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Fig. 1   FG plate with gradual material variation

Fig. 2   Material grading in P-FGM

Fig. 3   Material grading in S-FGM

Fig. 4   Material grading in E-FGM

Fig. 5   Bidirectional ceramic volume fraction variation in P-FGM 
(nx = nz = 1)
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are considered through the panel thickness, as shown in 
Fig. 6. The modified equations for calculating properties of 
the FG panel (P-FGM) introducing even and uneven porosity 
are given in Eqs. (5) and (6), respectively.

Based on the grading direction, pattern and porosity dis-
tribution, the classification of the FGMs is shown in Fig. 7.

1.3 � Theories Used for Analysis of FG Structures

A number of theories, including the classical theory (CLT) 
[10, 11], the first-order shear deformation theory (FSDT) 
[12, 13], and the higher-order shear deformation theory 
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(HSDT) [14, 15], are utilized for analysis of FGM panels. 
The CLT only applies to thin structures since it assumes 
that the transverse normal is inextensible and ignores shear 
deformation [16]. The FSDT holds all the CLT’s assump-
tions, excluding the condition of normality and needs a shear 
correction factor (SCF) [17]. According to earlier research 
[16, 18], the HSDT offers a precise approximation of the 
transverse shear stresses and strains with no SCF consider-
ing fewer assumptions. Apart from the theories mentioned 
above, zigzag theory [19], Carrera’s unified formulation 
(CUF) [20, 21] etc., are also adopted by a few researchers to 
study the structural characteristics of FGMs.

1.4 � Solution Techniques for Structural Analysis

A variety of benchmark solution techniques, i.e. 3D elas-
ticity [22–24], exact [25], analytical method [26], a mesh-
less method [27, 28] etc., are adopted to study the struc-
tural behaviour of the FGMs considering all the real-life 

Fig. 6   Porosity distribution in the FG panel

Fig. 7   Classification of FGM
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situations. However, the above-mentioned techniques are 
capable of analyzing the global responses only, not local 
ones. Therefore, the FE approach is used by most of the 
researchers [9, 12, 29–32], as it is capable of computing 
local as well as global responses.

1.5 � Temperature Distribution (TD) in FGM

Let Tc and Tm be the temperature of ceramic (top) and metal 
(bottom) layers, respectively, and T0 is the ambient tem-
perature. The temperature variation through graded panel’s 
thickness can be considered in three different ways as uni-
form TD [33] as expressed in Eq. (7), linear TD [34] as in 
Eq. (8) and nonlinear TD. The nonlinear TD in the lateral 
direction of FG panel is achieved by utilizing a one-dimen-
sional (1D) heat conduction equation [35] given by Eq. (9).

 where, T0 is ambient temperature and Tcm = Tc − Tm.
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The temperature in Eq. (9) is computed analytically and 
expressed as:

 where, k(z) is thermal conductivity.

1.6 � Temperature‑Dependent Material Properties

The FG structures are exposed to the combined thermo-
mechanical loading in real-time applications. To achieve 
realistic structural responses under thermal environmental 
conditions, the material properties need to be considered 
as TD [2, 36–38] as expressed in Eq. (11). Also, dynamic 
loading is necessary to consider instead of static when 
these structures are exposed to such unlike conditions for a 
longer time. In view of such loading conditions, the defor-
mation characteristics may follow nonlinear behaviour rather 
than linear. The linear model cannot accurately predict the 
responses of such nonlinear problems and thus needs a tech-
nique considering nonlinear effects. Therefore, researchers 
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have developed several solution techniques to estimate the 
nonlinear structural responses with great accuracy, consider-
ing thermal environmental conditions. A brief review of the 
recently published literature on linear/nonlinear static, fre-
quency and transient analysis of the FG panels with/without 
porosity under ambient/thermal environment is presented in 
this article. The review of the literature is divided into three 
major sections, i.e. static, vibration, and transient analysis 
of FG structures.

2 � Static Deflection and Stress Analysis of FG 
Structures

The study of the flexural behaviour of the FG structures is 
important from the design perspective. The deformation 
behaviour is associated with the load-bearing capacity of 
the structures. The structure deformed due to variety of 
loads, i.e. mechanical, thermal, or combined thermome-
chanical load. In this regard, the subsections below present 
the review on the graded panels’ static bending and stress 
analysis under the mechanical/thermomechanical load with/
without considering porosity.

2.1 � Static Deflection and Stress Analysis Under 
Ambient Conditions

2.1.1 � Linear Analysis of Unidirectional FGM

The bending and stress analyses of FG flat panels exposed 
to mechanical load are addressed [20, 21] using Carrera’s 
unified formulation (CUF) and principle of virtual dis-
placements. A 3D elasticity solution is presented [22] for 
the bending and stress analysis of FG plates. A closed-form 
solution was obtained via the extended Kantorovich method 
and CPT [39] for flexural analysis of FGM plates (annu-
lar). The static analysis of FG shells and plates is performed 
using HSDT [40]. A mathematical model is developed based 
on the FSDT to study static and dynamic investigation of 
FG shells [41, 42] and FG carbon nanotube-reinforced 
composites (CNTRC) [43]. Similarly, static and dynamic 
characteristics of the FG elliptical plates are investigated 
using a 3D elasticity theory [23]. A non-uniform rotational 
B-spline (NURBS) based FE technique in conjunction with 
FSDT is used to examine the static and dynamic behaviour 
of FG plates [12]. The static bending analysis of FG CNTRC 
cylinders is performed [28] using a mesh-free method. A 
third-order shear deformation theory (TSDT) is employed 
[44] for bending analysis of FG shell panels. A bending and 
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vibration analysis of FG composite doubly-curved shells is 
carried out by utilizing HSDT kinematic model [45]. Using a 
higher-order beam theory, the bending and frequency behav-
iour of FG layer coated nanobeam is studied [46]. Also, the 
review is presented on the efficiency of nanomaterials for 
solar energy storage systems [47] and machine learning 
applications in additive manufacturing [48].

2.1.2 � Linear Analysis of Bidirectional FGM

The Euler-Bernoulli beam theory (EBBT) has been adopted 
in [49] to compute the flexural responses and the stress val-
ues of 2D FGB. The 2D FGM plates are analyzed in [50] 
using the FEM formulation based on the TSDT kinemat-
ics to compute flexural deflections and the corresponding 
stresses. A NURBS essential function and isogeometric 
analysis (IGA) are used to study the optimum material dis-
tribution for the 2D FGB under static load [51]. Mechanical 
bending and frequency analyses of FG doubly-curved shells 
are performed using 2D and quasi-3D HSDTs [52]. Third-
order beam theory is adopted [27] for the flexural analysis 
of 2D FGB. The effect of moving load on the deflection 
parameters (static and dynamic cases) is performed in [53] 
for the 2D FGB via the FSDT types of deformation kinemat-
ics. Similarly, Timoshenko beam theory (TBT) in associa-
tion with nonlocal strain gradient theory (SGT) has been 
adopted in [54] for the evaluation of deflection values under 
the influence of transverse and axial loading to count the 
static bending and buckling responses of the 2D-FG beam.

2.1.3 � Nonlinear Analysis

Nonlinear bending and frequency responses of FG piezo-
electric plates are analyzed using Mindlin-Reissner plate 
theory/FSDT and Green-Lagrange nonlinear strains (GLNS) 
[55, 56]. A similar analysis is carried out for the FGB using 
TBT and EBBT in the framework of SGT and considering a 
closed-form solution [57]. A differential quadrature method 
(DQM) combined with EBBT and von-Karman nonlinear 
strain terms (VKNS) are utilized in [58] to compute deflec-
tions (nonlinear) and dynamic responses of the exponentially 
graded 2D-FGB. Similarly, the HSDT kinematics in con-
junction with VKNS is adopted in [59] to evaluate nonlinear 
deflections of the FGM plate using the modified radial point 
interpolation technique. A nonlocal SGT in the exponential 
shear deformation beam theory framework is utilized in [60] 
to establish the 2D-FGB model for nonlinear flexural and 
post-buckling analysis.

2.1.4 � Analysis of Porous Structures

The effect of porosity on FGB’s static bending and buckling 
responses is highlighted in [61] using the TBT kinematics. 

A 3D elasticity theory and DQM are utilized [62] for the 
bending and stress analysis of FG auxetic-porous circular 
plates subjected to mechanical load. The porous FG plate 
bending, stress and eigenvalue buckling load parameters are 
investigated through the Chebyshev-Ritz method and FSDT 
framework [63]. A nonlocal SGT is utilized to model the FG 
porous nanotube to investigate nonlinear bending responses 
[64]. The FSDT type of deformation polynomial is adopted 
in [4] to compute the static and eigenvalue characteris-
tics (frequency and buckling) for the 2D FG plate type of 
structure in association with the IGA concept. Later, a four-
unknown type of HSDT kinematic model is developed [65] 
to examine the porous FG nanoshell structural responses 
(bending, frequency and buckling load parameter). Simi-
lar analyses of porous FG nanoplates are performed in [66] 
using nonlocal elasticity and Reissner-Mindlin theory. The 
vibration and/or static bending analysis of FG porous plates 
is performed [67, 68] by employing FEM. The nonlinear 
bending and stability analysis of FGM porous arches is per-
formed using the potential energy method based on EBBT 
[69]. Nonlinear buckling and post-buckling behaviour of FG 
porous panels exposed to axial load are studied [70] using 
Donnell shell theory and VKNS.

2.2 � Static Deflection and Stress Analysis Under 
Thermal Environment

2.2.1 � Linear Analysis of Unidirectional FGM

The thermoelastic bending responses of FG cylindrical 
shells are analyzed [71] using CLT. The bending and stress 
analysis of 3D FG plates under a thermal environment is car-
ried out using DQM and 3D elasticity theory [24]. The IGA 
and modified SGT are adopted in [72] to study the bending 
and buckling characteristics of the FG microplates under 
thermomechanical loads. Bending and vibrational analyses 
of 3D FGM plates under a thermal environment are car-
ried out [73] utilizing 3D elasticity theory and IGA. The 
FSDT is applied [74] for flexural analysis of FG cylindri-
cal nanoshells in a thermal environment. The IGA-FSDT 
approach is adopted [75] for bending and frequency anal-
yses of FGM plates with cutout and exposed to a hostile 
environment.

2.2.2 � Nonlinear Analysis

An analytical approach is presented for the nonlinear bend-
ing analysis of tapered FGB exposed to thermomechanical 
load [26]. Nonlinear static bending and dynamic character-
istics of FG composite beams under hygrothermal [76] and 
thermal [77] environments are investigated using HSDT and 
VKNS. A similar kinematic model, along with nonlinear 
strains, is adopted for flexural analysis of FG composite 
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plates [78] and curved tubes [79] subjected to the thermal 
environment. An analytical approach following the two-
step perturbation technique is adopted in [79] to obtain the 
closed-form solutions for the nonlinear behaviour of the 
FGM tubes. Further, the HSDT, combined with Green’s 
strain, is utilized to investigate the nonlinear bending and 
buckling behaviour of FG plates under thermomechanical 
loading [37]. The static analysis (nonlinear) of FGM shells/
plates under thermomechanical loading is performed [80] 
using CPT. A modified SGT in association with VKNS is 
adopted [81] to examine the nonlinear thermal deformation 
of FG microplates.

2.2.3 � Analysis of Porous Structures

The nonlinear static bending responses of the FG beam 
with porosity under thermal environment are examined 
[82] using Lagrangian FEM and 2D continuum model. The 
effect of porosity on bending and frequency analysis of FG 
plates exposed to a thermal environment is presented [83] 
by employing higher-order shear and normal deformation 
theory (HSNDT). A cell-vertex FEM is developed [84] for 
the thermoelastic bending and stress analysis of FG porous 
structure with TD properties. Nonlinear structural analysis 
of porous FG shallow shell panel with variable grading pat-
terns, subjected to hygro-thermo-mechanical load, is pre-
sented using FSDT and GLNS [85]. Similarly, the nonlin-
ear flexural behaviour of FG porous microplates [30] and 
micro-tubes [86] under a thermal environment is analyzed 
using HSDT and VKNS. The effect of porosity on the FGB’s 
nonlinear deflection is presented [87] using FSDT and non-
linear Green’s strains. Nonlinear buckling and post-buckling 
characteristics of porous FG shells/plates in a thermal envi-
ronment are studied in [88, 89] using classical theory/HSDT 
and VKNS.

It can be observed from the majority of the articles that 
the static deflection/stress analysis of unidirectional FG flat 
panels is performed majorly using lower-order kinematics 
(CPT/FSDT) under ambient conditions. In contrast, the 
analysis of curved structures is limited in number. Also, the 
nonlinearity in most of the published work is introduced via 
von-Karman nonlinear strains. Further, the articles relevant 
to the flexural analysis are considered GT-I grading to com-
pute the effective material properties without considering 
porosity kind of defects.

3 � Vibration Analysis

A brief review on the linear/nonlinear eigenfrequency anal-
ysis of FGM panels under ambient and thermal environ-
ments with and without porosity is presented in this section. 
Additionally, the following subsections have analysed and 

presented numerous mathematical models that were previ-
ously developed to study the aforementioned characteristics 
in the elevated environmental conditions.

3.1 � Vibration Analysis Under Ambient Conditions

3.1.1 � Linear Analysis of Unidirectional FGM

Free vibration characteristics of the FG plate with in-plane 
material grading are examined using CPT [90]. A DQM is 
adopted to examine the vibrational responses of FG circular/
annular plates [91]. Likewise, vibration analysis of the 3D 
FGM Euler-Bernoulli beam is presented using a nonlocal 
SGT [92]. A material optimization of 3D FG plates is per-
formed for vibration and buckling analysis using generalized 
shear deformation theory (GSDT) and IGA [93]. HSDT and 
IGA-based numerical analysis is performed to examine the 
vibrational behaviour of multidirectional plates with vari-
able thickness [14]. Free and forced vibration of the FG 
plate in contact with a turbulent fluid is investigated using 
TSDT [94]. An EBBT is applied for vibrational analysis of 
sandwich FGB [95]. The free vibrational behaviour of 3D 
FG plates and shells (doubly-curved) is studied [96] using 
Eringen’s nonlocal theory (ENT). A damage index based on 
the closed-form of modal flexibility sensitivity is derived in 
[97] for damage identification of FG beams. The vibrational 
behaviour of the sandwich beam is investigated [98] using a 
simulation tool (ANSYS).

3.1.2 � Linear Analysis of Bidirectional FGM

HSNDT and a Petrov-Galerkin method utilized to design 
a 2D FG plate to find the optimal natural frequencies [99]. 
A 3D elasticity solution is provided for the frequency and 
modal displacement analysis of 2D FG curved panels [100]. 
Free and forced vibrations of 2D-FGB with different end-
supports are investigated by utilizing TBT and EBBT [101]. 
A 3D exact shell model and 2D models (FEM and DQM) 
are used to analyze the cylindrical bending in the vibra-
tion analysis of FG shells and plates [25]. A higher-order 
Timoshenko beam element is established to study the vibra-
tional analysis of 2D FGB [102]. Reissner’s theorem has 
been adopted in [103] to analyze the eigenfrequencies of 
2D FG plates. An eigenfrequency analysis of 1D/2D FGB is 
performed using TBT and EBBT in the framework of FEA 
[104]. An IGA is proposed in [105] for the 2D FG plates in 
the fluid medium to investigate the eigenvalues.

3.1.3 � Nonlinear Analysis

A CPT and VKNS used [106] to compute the nonlinear 
eigenfrequencies of the FG plates. A FE model is devel-
oped using FSDT and GLNS for computation of nonlinear 
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frequency responses (NFR) of FG plates integrated with 
piezoelectric patches [29]. Nonlinear frequency and static 
analyses of FG plates are carried out using FSDT and GLNS 
[55]. A Sanders–Koiter theory applied to examine the NFR 
of FG cylindrical shells [107]. A Homotopy perturbation 
method in association with VKNS is adopted for the non-
linear vibration analysis of FG plates [108] and nanobeam 
[109]. Nonlinear vibrations of FG cylindrical shells are 
analyzed by employing Donnell’s nonlinear theory [110]. 
A generalized DQM in conjunction with EBBT is adopted 
for the nonlinear vibration analysis of 2D FGB [111]. Non-
linear vibration of in-plane 2D FG plates with geometrical 
imperfection is investigated [112] using the classic Kirchhoff 
hypothesis and VKNS. A higher-order cubic-quintic model 
is employed to analyze the NFR of 2D FGB [113]. The fre-
quency response of FG plates is studied [114]numerically 
using FSDT and VKNS.

3.1.4 � Analysis of Porous Structures

A TBT in conjunction with nonlinear strain, i.e. VKNS 
adopted in [115] for the nonlinear frequency and post-buck-
ling analysis of FG beams with porosity. Similar theories, 
as discussed earlier, along with the modified couple stress 
theory (MCST), are adopted in [116] to compute the nonlin-
ear vibration analysis of porous 2D FGB. Vibration analysis 
(free and transient) of FG porous annular plates and cylindri-
cal panels is performed [117] using a 3D elasticity theory. 
FSDT and HSDT, along with VKNS employed [118] for 
the investigation of NFR of porous cylindrical panels. The 
imperfection sensitivity in the NFR of 2D porous FGB [119] 
is analyzed using FSDT and VKNS. A sinusoidal shear 
deformation theory is applied to examine the vibrational and 
buckling behaviour of 2D FG sandwich plates [120]. FSDT 
is adopted in [121] for the vibrational analysis of FG porous 
plates. Geometrical nonlinear analysis of porous FG plates is 
performed [122, 123] using GSDT/refined shear deformation 
theory and VKNS. The classical and shear deformation shell 
theories employed in [124] for vibration analysis of porous 
FG shells. An analytical approach was proposed through a 
closed-form solution to study the vibration characteristics. 
A layerwise shear deformation theory/FSDT is applied [125, 
126] for free vibration analysis of the FG porous plates.

3.2 � Vibration Analysis Under Thermal Environment

3.2.1 � Linear Analysis

Vibrational analysis of FGM plates with circular/non-cir-
cular cutouts under a thermal environment is carried out 
using a simulation tool (ANSYS) [127]. A similar analysis 
is performed for FG sandwich plates exposed to a ther-
mal environment considering TD properties and using 

higher-order theory, and establishing the closed-form 
solutions [128]. Further, thermal vibration and buckling 
analysis of thick FG panels are studied [13] using FSDT. 
The frequency characteristics of the FGB with material 
property variation along the longitudinal and lateral direc-
tions are investigated [129] using the CLT considering 
closed-form characteristic equations. A higher-order lay-
erwise theory is adopted to investigate thermally induced 
vibrations of FG flat/shell panels [130]. ENT is applied 
[131] for the vibrational analysis of rotary tapered FGB 
in a thermal environment considering TD material prop-
erties. The thermal vibration and buckling behaviour of 
2D FGB investigated by utilizing EBBT [132]. The effect 
of multidirectional temperature distribution on frequency 
characteristics of the 2D FG microplates is presented [133] 
using TSDT. A 1D-heat conduction equation and Kirch-
hoff’s plate theory are employed to investigate the fre-
quency responses of FGM plates with thermoelastic cou-
pling effect [134]. FSDT kinematics is applied for stability 
and vibrational analysis of initially stressed FGM plates 
under a thermal environment [135].

3.2.2 � Nonlinear Analysis

HSDT and VKNS are utilized for the investigation of NFR 
of FG doubly-curved panels [38, 136], FG CNTRC cylin-
drical shells [137], FGB [138] and FG graphene-reinforced 
composite (GRC) plates [139] under thermal environment. 
Large amplitude frequency and dynamic responses of FG 
doubly-curved shells exposed to a thermal environment are 
investigated using Reddy’s TSDT [140]. Reddy’s HSDT 
and VKNS are employed [141] for the investigation of 
NFR of FG doubly-curved shells in a thermal environment, 
taking into account TD properties. The effect of hygro-
thermal load on the NFR of 2D FGB is presented [142] by 
employing EBBT and VKNS.

3.2.3 � Analysis of Porous Structures

Author’s Year Contributions

Wang and Zu [10] 2017 Geometrical nonlinear vibra-
tional characteristics of FG 
plates with porosity under 
a thermal environment are 
studied.
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Author’s Year Contributions

Zhou et al. [143] 2018 Vibrational and flutter analysis 
of FG plates in a thermal 
environment, including 
the effect of porosity, is 
performed using FSDT 
kinematics.

Ibnorachid et al. [144] 2019 Vibrational responses of 
porous FGB in a thermal 
environment are examined 
using HSDT.

Ebrahimi et al. [145] 2020 The porous FG cylindrical 
shell’s thermal vibration 
and buckling behaviour 
are examined using FSDT 
kinematics.

Ahmed et al. [146] 2021 The dynamic responses of 
porous FG plates in an 
elevated temperature are 
computed using higher-order 
refined plate theory.

Fang, Yin, and Zhang [147] 2022 Vibrational analysis of porous 
FGM plates exposed to 
a thermal environment is 
carried out using FSDT and 
MCST.

Pham et al. [148] 2022 Bending and hygro-thermo-
mechanical vibration analysis 
of an FG porous sandwich 
shell is performed.

The published articles in the field of the eigenvalue (linear/
nonlinear) analysis of the graded structure have already been 
established in many folds. However, it can also be observed 
that the majority of research focuses on numerical model-
ling and effort made to reduce the mathematical calculation. 
Hence, the available studies are approximated nonlinear strain 
in the framework lower-order displacement field considering 
the rotational nonlinearity effect. Additionally, the influences 
of porosity, grading and curvature have not been addressed to 
achieve the final accomplishment of graded structural analysis.

4 � Transient Deflection and Stress Analysis

As discussed earlier, the FG panels are exposed to dynamic 
loading when subjected to a hostile environment. The past lit-
erature for transient analysis of the FG structures with/without 
porosity under ambient/thermal environments is reviewed and 
addressed in the following lines to better understand the struc-
tural analysis.

4.1 � Transient Deflection and Stress Analysis Under 
Ambient Conditions

4.1.1 � Linear Analysis

Transient dynamic and frequency analysis of conical FG 
shells subjected to mechanical shock loading is performed 
using displacement-based layerwise theory and DQM 
[149]. An FE-based model was developed using FSDT for 
transient analysis of conical FG shells subjected to mov-
ing load [150]. A DQM, state space method, and Laplace 
transforms numerical inversion method adopted to exam-
ine the transient characteristics of FG annular plates with 
different end supports [151]. The transient deflection and 
stresses of FG shells are computed using FSDT kinemat-
ics [152]. Similarly, transient responses of FG annular and 
sector plates exposed to circumferentially distributed load 
are computed using FSDT [153]. A quasi-3D theory is 
applied to investigate the dynamic characteristics of the 
sandwich 2D FGB under a moving load [154]. The scaled 
boundary FEM utilized for the dynamic analysis of sand-
wich FGB [32].

4.1.2 � Nonlinear Analysis

A CLT and von Karman-Donnell nonlinearity (VKDN) 
applied [11] for the nonlinear dynamic analysis of cylindri-
cal FG panels. NT responses of FG doubly-curved shells 
are computed by employing CLT [155]. FSDT and GLNS 
utilized for the large deformation-induced static and tran-
sient analysis of curved FGB [156]. A VKNS utilized for 
NT analysis of FG plates exposed to blast loading [157]. 
The nonlinear dynamic behaviour of FG shells is examined 
by employing HSDT in association with GLNS [158]. Simi-
larly, VKNS, in conjunction with HSDT [159] and FSDT 
[160] adopted for NT analysis of flat panels made of FGMs.

4.1.3 � Analysis of Porous Structures

Porosity-dependent NT responses of FG plates are illustrated 
using HSDT and VKNS [161]. The FSDT and VKNS are 
adopted in [162] to study the dynamic characteristics of 
porous 2D-FGM plates under moving load. Similarly, the 
FSDT and VKNS used to examine the porosity effect on 
nonlinear dynamic and frequency responses of FG shells 
with double curvature [163] and FG skew plates [164]. 
Dynamic analysis (linear and nonlinear) of FG conical pan-
els made of porous materials is performed using 2D elastic-
ity theory [165] and DQM in association with FSDT and 
GLNS [166]. Dynamic analysis of FG Porous plates is per-
formed in [167] using FSDT.
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4.2 � Transient Deflection and Stress Analysis Under 
Thermal Environment

4.2.1 � Linear Analysis

Transient analysis of FG shells in a thermal environment is 
presented using elasticity theory [168]. A CLT and DQM 
utilized [169] to compute the transient deflections of FG 
cylindrical shells under dynamic thermal loading. Differen-
tial and Laplace transform methods are adopted to study the 
dynamic responses of the FG spherical shell subjected to 
thermomechanical shock [170]. Assumptions of three plate 
bending theories (Kirchhoff love theory, FSDT and TSDT) 
are incorporated into CLT and non-CLT to study the flex-
ural behaviour of FGM plates under transient thermal load-
ing [171]. A cell-based smooth FEM is proposed in [31] to 
evaluate the deflection parameters under the dynamic load-
ing for graded structure. The thermomechanical deflections 
of graded structures are reported in [172], and the structure 
is modelled via HSDT type of polynomial kinematics. Fre-
quency and transient deflection responses of FGB in a ther-
mal environment are investigated using TBT [173].

4.2.2 � Nonlinear Analysis

NT responses of FG plates and/or shell panels are computed 
using HSDT [15, 174] and FSDT [175, 176] in conjunction 
with VKNS considering thermal environmental conditions. 
A second-order formulation [177] and generalized thermo-
elasticity theory [178] utilized for NT thermal stress and 
wave propagation analysis of TD FG cylinders. A CLT and 
VKDN applied for NT deflection and vibration analysis of 
doubly-curved FG panel with TD properties [36], S-FGM 
spherical shell [179], and FG shell segments [180] under 
elevated temperature. The NT deflection behaviour of the 
S-FGM cylindrical panel under a thermal environment is 
examined using Reddy’s TSDT [181]. Thermo-elastic NT 
analysis of a hollow cylinder made of 2D FGM is investi-
gated using FEM and higher-order Lagrange elements [182]. 
The nonlinear dynamic analysis of double-curved shells of 
FG CNTRC [141] and FG GRC [183] are evaluated under 
thermal loading using HSDT kind of deformation kinemat-
ics and VKNS. The nonlinear dynamics of 2D FGB exposed 
to time-dependent load are studied using TBT and VKNS 
[184]. The NT and buckling analysis of FG shells exposed 
to thermomechanical load considering TD properties are 
performed by utilizing GLNS [185].

4.2.3 � Analysis of Porous Structures

The nonlinear dynamic behaviour of FG plates [161] and 
shells [186] with porosity exposed to thermal and mechani-
cal loading are illustrated using FSDT and VKNS. An 

isogeometric analysis in association with TSDT and VKNS 
is applied to investigate the NT characteristics of the porous 
FG plates exposed to a hygro-thermo-mechanical loading 
[187]. The FG conical panel’s NT and vibrational responses 
in a thermal environment are computed utilizing FSDT and 
VKDN [188].

It is found from the literature presented in the above sub-
sections that the transient analysis of the FGMs is limited 
to plate type of structures only. Also, most of the authors 
utilized CPT and FSDT to develop the numerical model con-
sidering von-Karman nonlinearity. Further, the materials are 
graded in the transverse direction (1D FGM) in a majority 
of the articles, and the effect of porosity, variable grading 
have not been addressed. It has been observed from all the 
reviews that no such attempt has been made in the past to 
evaluate the responses (static deflection/stress, frequency 
and transient deflection/stress) using any kind of experimen-
tal part for the flat/curved kind of FG structure.

5 � Experimental Analysis of FGM

The bending and frequency parameters of the FG beams 
(FGB) are analyzed using third-order zigzag theory and 
validated experimentally [19]. The nonlinear transient (NT) 
experimental study for FG/fiber-metal laminated structures 
is reported in [189] under the influence of blast load and 
verified with a simulation model (ANSYS). Similarly, the 
eigenfrequencies of graded beam structures are investigated 
in [190] and compared with experimental values. The flex-
ural behaviour FG beam made of concrete and high-volume 
fly-ash concrete is analyzed experimentally in [191] and 
found that there is a 12.86 and 3.56% increase in compres-
sive and flexural strength. Experimental and numerical 
analysis of FGM is performed in [192] under static forces. 
The experimental and numerical investigation of process 
parameters on the residual stresses in the Al-Cu FG Mate-
rials is carried out in [193] and found that the number of 
residual stresses decreased by increasing the heat treatment 
temperature, increasing the uniformity between the layers 
and number of layers. Elastic properties of the thermo-
plastic composites with natural fibre (luffa and palm) are 
predicted in [194]. Numerical and experimental deflection 
(static ad dynamic) analysis has been performed in [195] for 
the 2D-FG structures considering the full-scale geometrical 
nonlinear strain.
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6 � Conclusion

A thorough review on static deflection and stress, vibra-
tion, and time-dependent flexural and stress analysis of 
the FG structures is presented in this article. Researchers 
utilize various theories and solution techniques to study 
the structural behaviour of FGMs. Based on the review of 
the published articles, a few shortcomings are highlighted 
and presented below in a pointwise manner.

•	 The structural analysis of 1D FGMs is presented in 
most of the published articles, whereas research rel-
evant to 2D/3D types of grading is negligible in num-
bers.

•	 Furthermore, the majority of the authors computed the 
mechanical/elastic properties of the graded structures 
using the simplest grading rule, Voigt’s model/power-
law material grading. The FGM’s structural analysis 
with sigmoid or exponential grading has received little 
attention.

•	 Numerous articles analyse the FG structures without 
taking porosity into account. The past focus on porous 
FGM structural analysis is limited to linear cases only.

•	 The majority of the research devoted to the structural 
analysis of FG flat panels or any specific geometric 
shape (cylindrical, elliptical etc.).

•	 The VKNS are used in the majority of small-strain 
large-deformation problems, and the use of GLNS 
is limited in number. Furthermore, it is well known 
that the VKNS are inadequate to compute the effect 
of large-deformation behaviour on the structural 
responses.

•	 The structural analysis of the FG materials is performed 
using CPT or FSDT, even though the CPT is limited 
to thin structures. SCF usage is required for the FSDT. 
These theories overpredict the structural stiffness and 
are less accurate in terms of shear deformation through 
the thickness. However, very few articles use HSDT in 
their mathematical models.

•	 The experimental analysis of the graded structure and 
the fabrication processes are received a few attention 
in the published domain.

•	 No study yet has been reported to analyse the doubly-
curved FG panels under elevated environments with 
TD properties, considering variable porosity and grad-
ing patterns.

In order to fully utilize the capabilities of the FG struc-
tures for high-end engineering applications, there is a 
genuine need to develop an efficient mathematical model 
to predict the static and dynamic responses by consid-
ering porosity, thermal environment with TD material 

properties, and large deformation. If the aforementioned 
concerns are taken into account, the FG panel’s design 
and analysis would probably be more reliable in practical 
applications.
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