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Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder that destroys the brain and memory func-
tionalities. In Alzheimer's disease, the brain starts shrinking, and over time it converts into dementia. The diagnosis of 
dementia takes an ample amount of time, around 2.8 to 4.4 years after the first clinical symptoms arise. Alzheimer's disease 
cannot be cured by any pharmacologic therapies (drugs) now on the market. Alzheimer's disease can only be avoided by 
early detection and prompt treatment. This paper proposes deep transfer learning models and MRI (Magnetic Resonance 
Imaging) images to detect the multiple stages of Alzheimer's disease such as "Very-Mild -Demented," "Mild-Demented," 
"Moderate-Demented," and "No-Demented." Data preprocessing and augmentation process are applied, enabling the model 
to detect the correct class of Alzheimer's disease. Then further deep transfer learning models (Resnet50, VGG19, Xception, 
DenseNet201, and EfficientNetB7) are used to classify and predict the early stages of Alzheimer's disease. It is observed that 
the DenseNet201 model performs the best, with a validation accuracy of 96.59%. The performance of Resnet50, VGG19, 
Xception, and EfficientNetB7 models was also recorded with validation accuracy of 93.52%, 95.08%, 89.77%, and 83.20%, 
respectively. The probability curve is then measured and the class-wise prediction of Alzheimer's disease is recorded using 
the area under curves and receiver operating curve (AUC-ROC) in order to analyze it more deeply.

1  Introduction

Alzheimer's disease is an irreversible, progressive neu-
rodegenerative disorder that destroys memory and brain 
functionalities [1, 2]. It is comprised of several symptoms 

like loss of memory & vision, problem in speaking, loss 
of motivation, difficulty in making critical decisions, mood 
swings, etc. [1–3]. It is estimated that approx. 6.5 million 
Americans, over 65 and older have Alzheimer's disease. 
According to the research, there may be 13.8 million cases 
of Alzheimer's by 2060. In 2019, the official death recorded 
due to Alzheimer's disease was 121,499. Between 2020 and 
2021, Alzheimer's disease will rank as the 6th leading cause 
of mortality in the US. Alzheimer's disease increased by 
more than 145% between 2000 and 2019 [4]. The diagnosis 
of dementia is problematic because it takes an ample amount 
of time, around 2.8 to 4.4 years, after the first clinical symp-
toms arise [4, 5]. Patients with advanced Alzheimer's disease 
may suffer a variety of symptoms that evolve over time. The 
severity of the nerve cell injury in various areas of the brain 
is reflected in these symptoms. Alzheimer's disease can be 
categorized on the basis of the degree of damage to nerve 
cells that arise over time as mild, very mild, and moder-
ate. Most persons with moderate Alzheimer's disease can 
operate independently, but they will likely need help with 
daily tasks [6–12]. The moderate stage of Alzheimer's dis-
ease is characterized by personality and behavioral changes, 
including suspicion and agitation, as well as communication 
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and everyday task difficulties. When Alzheimer's disease 
is advanced, people need assistance with daily tasks and 
probably need round-the-clock care. Researchers are still 
struggling to find the proper treatment for Alzheimer's dis-
ease. Alzheimer's disease is not curable with any of the 
pharmacologic therapies (drugs) now on the market. The 
only means of preventing Alzheimer's disease is by early 
detection and prompt treatment [13]. To address the issue 
of early stages detection of Alzheimer's disease, we used 
the MRI (Magnetic Resonance Imaging) image and deep 
transfer learning models in this paper. The Convolution 
Neural Network (CNN) architectures are used to entirely 
avoid the feature extraction process and rely on the CNN 
feature learning process. The transfer learning process is 
used to reusing the already trained model's weights [14, 
15]. The research study has provided accurate, efficient, 
and cost-effective solutions by using a better approach and 
techniques in the current research. The proposed system has 
been designed to detect the multiple stages of Alzheimer's 
disease, such as "Very-Mild-Demented," "Mild-Demented," 
"Moderate-Demented," and "No-Demented." Data pre-pro-
cessing and augmentation techniques are applied, enabling 
the system to detect the correct class of Alzheimer's dis-
ease. This study used the deep learning CNN models that 
helped us to automate the feature extraction process. The 
study used Resnet50, VGG19, Xception, DenseNet201, and 
EfficientNetB7 deep learning models to classify and predict 
all four stages of Alzheimer's disease. It is observed that the 
DenseNet201 model performs the best, with a validation 
accuracy of 96.59%. The performance of Resnet50, VGG19, 
Xception, and EfficientNetB7 models are also recorded 
with validation accuracy of 93.52%, 95.08%, 89.77%, and 
83.20%, respectively. The rest of this paper is laid out as 
follows: Sect. 2 is devoted to related work, which includes 
a review of the available literature and a comparative study. 
The research challenges and gaps in the available literature 
are reviewed in Sect. 3. Section 4 describes the proposed 
system, including the study's objectives, data preprocess-
ing, data augmentation, and the methodology employed in 
the study. The experimental results acquired from the study 
with various performance indicators are the focus of Sect. 5. 
Finally, Sect. 6 discussed the study's pertinent findings and 
potential future improvements.

2 � Background Study

The striking similarities between structural brain imaging 
of a healthy individual, and an Alzheimer's patient, initial 
stages Alzheimer's disease prediction is a challenging issue. 
Initial stages detection of Alzheimer's disease can help old 
people stop the progression of the disease at the initial stage. 
Recently, Machine learning algorithms have been used to 

predict the early stages of Alzheimer's disease. The machine 
learning classification techniques such as Decision Tree, 
Support Vector Machine, Random Forest, Gradient Boost-
ing, and Voting with Open Access Series of Imaging Studies 
(OASIS) data are used to predict Alzheimer's disease [16]. 
Brain imaging techniques such as Positron Emission Tomog-
raphy (PET), Magnetic Resonance Imaging (MRI), and MRI 
biomarkers are used to predict Alzheimer's disease [17]. A 
recent study suggested that deep learning techniques per-
form better than conventional machine learning algorithms. 
Deep learning techniques are more efficient in identifying 
complex and high-dimensional structured data. A hybrid 
stacked auto-encoder along with machine learning is used 
for feature selection in Alzheimer's disease. Deep Learning 
based models such as Convolution Neural Networks (CNNs) 
are practical and efficient in early disease diagnosis [18, 19]. 
CNN model is used along with MRI (Magnetic Resonance 
Imaging) and clinical test data to classify Alzheimer's dis-
ease stages. Stack de-noising auto-encoders are used to 
extract features from clinical data, and 3D-Convolutional 
Neural Network (3D-CNN) for image data analysis [20]. A 
deep learning model is developed to diagnose Alzheimer's 
disease and mild cognitive impairment. This model works 
on the cross-sectional images of the brain [21]. The VGG-19 
model is used along with the Alzheimer's disease Neuro-
imaging Initiative (ADNI) dataset for the detection of Alz-
heimer's disease [22]. Deep learning models like ResNet18 
and DenseNet201 are also used to perform the task of Alz-
heimer's disease multiclass classification [23]. An improved 
State-of-the-art deep learning-based pipeline technique was 
used to classify Alzheimer's disease or not [24]. The deep 
triplet network with a conditional loss function is used to 
overcome the lack of data samples and improve the accuracy 
of the model as well [25]. Recently, Transfer learning tech-
niques based on ResNet50, VGG16, etc., was used to predict 
Alzheimer's disease [26]. Convolution Neural Network-CNN 
is the primary deep learning architecture for the prediction 
and detection of Alzheimer's disease till now. CNN models 
are successfully implemented in the clinical field because of 
less processing time, high accuracy, and the ability to gen-
eralize so that they could be applicable to other healthcare 
applications [27]. Chances of Alzheimer's disease identifica-
tion at preliminary stages can be boosted by incorporating 
advanced deep learning practices by using a combination of 
the different datasets, i.e., Alzheimer Disease Neuroimaging 
Initiative (ADNI), Open Access Series of Imaging Studies 
(OASIS) [28]. A detailed background study of Alzheimer's 
disease is mentioned in Table 1.

Despite several studies on Alzheimer's disease prediction, 
the following research gaps are identified in the background 
study.
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1.	 Developing the Deep Learning model from scratch is 
required substantial training datasets.

2.	 Studies on transfer learning techniques are in initial 
stage.

3.	 Very few studies discussed the early stages of predic-
tion, such as "Very-Mild-Demented," "Mild-Demented," 
"Moderate-Demented," and "No-Demented," of Alzhei-
mer's disease.

4.	 Most of the studies classified Alzheimer's disease in 
binary classification that classifies the disease as “Alz-
heimer's disease” or “No Alzheimer's disease.”

To address research gaps 1 and 2, we have used the 
transfer learning technique that requires less training data-
set. We have classified and predicted Alzheimer's disease 
in "Very-Mild-Demented," "Mild-Demented," "Moderate- 
Demented," and "No-Demented," to address the research 
gaps 3 and 4.

The detailed framework is mentioned in Sect. 3.

3 � Proposed Framework

In this section, a brief description of the dataset and the 
suggested framework has mentioned. Figure 1 mentions the 
sequential framework that was employed in this investiga-
tion. A dataset is gathered and prepared using the suggested 
methods from the publicly available Kaggle dataset reposi-
tory. The in-depth explanation of the dataset is mentioned in 

Sect. 3.1. In the Sect. 3.2, the study described the deep trans-
fer learning technique. Further, data augmentation and data 
split techniques for model validation purposes are elaborated 
in Sect. 3.3. The effective deep learning models ResNet50, 
VGG19, Xception, EfficientNetB7, and DenseNet201 are 
used to classify the subsequent stages of Alzheimer's dis-
ease. Section 3.3.1 mentions a thorough discussion of each 
deep learning model's design. The details of trainable and 
non-trainable parameters are discussed in Sect. 3.3.2. Fur-
ther, accuracy, precision, recall, and f1-score metrics are 
used to gauge and compare the deep learning models' per-
formance (ref. Section Results).

3.1 � Dataset Description

The dataset utilised in this study is composed of 6400 brain 
MRI images of Alzheimer's disease that were retrieved 
from the Kaggle repository. This dataset is further divided 
into four stages, "Mild-Demented," "Moderate-Demented," 
"Non-Demented," and "Very-Mild-Demented," which con-
sists of 896, 64, 3200, and 2240 MRI images, respectively. 
The width and height of all the images are 128 × 128 pixels. 
The Alzheimer's disease dataset is further divided with 80% 
and 20% ratios for the training and validating of the deep 
learning models, respectively. In Fig. 2, samples of the Alz-
heimer's disease dataset are mentioned with their respective 
categories. The distribution of the dataset is drawn using a 
bar graph and mentioned in Fig. 3.

Fig. 1   System design for the early classification of Alzheimer's disease
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The data set is accessible to everyone at https://​www.​kag-
gle.​com/​datas​ets/​sachi​nkuma​r413/​alzhe​imer-​mri-​datas​et.

3.2 � Dataset Augmentation and Split

The image augmentation technique helps to add additional 
training datasets by using minor perturbations to the input 
dataset. The purpose of image augmentation is to increase 
the size of the input image dataset by generating new syn-
thetic training images. Data augmentation improves the 
model training efficiency by adding perturbations to input 

training data, and it also makes the model generalized. All 
the perturbations added to the input dataset retained the 
same labels as the input training data. Figure 4 illustrates 
the augmented dataset. The data augmentation includes the 
image rotation, crop, flip, affine and AdditiveGaussianNoise 
etc. Data splitting is the necessary step to make sure the 
proper training and validation of the learning models. In 
this study, a total of 6400 brain MRI images related to Alz-
heimer’s disease are used. The ratio of these MRI images is 
further split into training and test purposes with 80% and 
20%, respectively.

Fig. 2   Sample dataset of 
Alzheimer’s disease used in this 
study

https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset
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3.3 � Deep Transfer Learning Techniques

Deep learning models have a strong dependency on large 
training datasets because they need a huge amount of dataset 
to understand the latent structure of a dataset. Insufficient 
training dataset leads to poor training, validation, and pre-
diction of the models. However, the collection of the large-
scale dataset is also a complex and expensive process. Trans-
fer learning process helps us to address the problems like 
insufficient training data, identical train test split, and model 
trained from scratch. By transferring information from the 
source domain to the target domain, transfer learning also 
enables us to shorten the training period. A domain in trans-
fer learning is represented by the expression D = (X, P(X)), 
where X is the feature space and P(X) denotes the edge prob-
ability distribution. The task can be written as T = y, f(x), 
where y is label space and f(x) is the target prediction func-
tion. X can be written as x1, x2,…, xn. Another way to think 
of the function f(x) is as a conditional probability function 
P(y | x). So the transfer learning process can be defined as 
the learning task is L

t
 on a given domain D

t
 . We can take 

the help form source domain D
s
 for the learning task L

s
 . We 

have predictive functionF
t
 , the goal of transfer learning is to 

increase the effectiveness of the predictive function F
t
 on a 

given taskL
t
 . Transfer learning transfer the latent knowledge 

from D
s
 toL

s
 , where D

s
 ≠ D

t
 and L

s
≠L

t
 whereas, size of D

s
 

is larger than the D
t
 and N

s
 ≠ N

t
 . Where N

s
 is the number of 

images of source learning task L
s
 and N

t
 number of images 

in targets leaning task L
t
 [44].

For feature extraction in this work, we employed the 
transfer learning method; hence, we rely on the CNN archi-
tecture to automate the feature extraction process. CNN is a 
very versatile automatics feature extractor. If enough images 
are provided to the CNN models, they can learn the set of 
features and solve the given problem [45]. CNN is beneficial 
in getting generic features from a given set of images, but 
we need to tune the network parameters and training strate-
gies to get better results. Figure 5 is illustrated the transfer 
learning process. The network's initial component is trained 
using a sizable training dataset on the source domain. The 
trained network first part is used to train the target domain 
with some fine-tuning in the second half. We used Imagenet 
weights to train the original ResNet50, VGG19, Xception, 
EfficientNetB7, and DenseNet201 models, with over 14 
million images from 1000 different classes. It is a standard 
method for training a deep learning model to learn generic 
features from input images. It can also learn fundamental 
geometric features, corners, textures, etc. Following model 
training, we updated the input layer to support 224 × 224 × 3 
inputs, where 224 × 224 denotes the input images' width and 
height and 3 denotes the number of channels. The Alzhei-
mer's disease dataset is then used to retrain the models. This 
step helps the models pick up characteristics that can later 
be used to identify stages of Alzheimer's disease. The con-
volutional layer weights were improved in the last stage such 

Fig. 3   Data distribution of Alzheimer’s disease stages
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that they remained constant throughout the training of the 
model. To expedite the training process, we kept the features 
gathered from the convolutional layers up until the first fully 
connected layer. Finally, the model is adjusted using hyper-
parameters. The convolution layer employed in the investiga-
tion had a pool size of 7 × 7. The final layer activates using 
"ReLu" and "Softmax." The model optimizer is Stochastic 
Gradient Decent (SGD), with learning rate set to 0.0001, 
momentum set to 0.9, and decay set to 1e−4/epoch. A batch 
size of 64 images has been set for training.

3.3.1 � CNN Model Architectures

Image recognition is the well-known application of deep 
learning models, and Since the advent of deep learning, 
they have been utilized in several picture identification 
applications. The adaptability, predictive power, and grow-
ing accessibility of deep learning models are what lead to 
their success in image identification [46]. We have used 
five deep learning models as “Xception,” “EfficientNetB7,” 
“DensNet201,” “ResNet50,” and “VGG19” in the study and 
discussed as follows.

Fig. 4   Augmentation for MRI 
images
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3.3.1.1  Xception  Xception is also known as the extreme 
version of the Inception model. Xception model outper-
forms InceptionV3 by using a depth-wise divisible convolu-
tional network. Convolution in this model is accomplished 
by first performing a point-wise convolution, followed by a 
depth-wise convolution [47]. Convolution is a process that 
refers to the dot product between the set of learnable param-
eters known as the kernel and the input image’s channel. 
If we have three channels in a given input image, then we 
will have three N × N spatial and a 1 × 1 point-wise convo-
lution to modify the dimension of the input image. This is 
accomplished by performing a point-wise convolution first, 

followed by a depth-wise convolution. This process is inher-
ited from the InceptionV3 model that performs a 1 × 1 con-
volution before doing NxN spatial convolution. It performs 
better than the InceptionV3 model as a result. The Xception 
system's architecture is shown in Fig. 6.

3.3.1.2  EfficientNetB7  The EfficientNetB7 model is 
developed by improving its previously available versions 
of the EfficientNet family. Mobile inverted bottleneck con-
volution serves as the fundamental building piece of the 
initial EfficientNet design (MBConv). The family of Effi-
cientNet architecture included EfficientNetB0 to Efficient-

Fig. 5   Illustrate the transfer learning process
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NetB7. These models have a different number of MBConv 
blocks for each EfficientNet. The idea behind these mod-
els is to scale up the standard model and modify its archi-
tecture. The modification is done by increasing the model 
depth, width, resolution, and size to improve the model 
efficiency. The best performing model from the Efficient-
Net family is EfficientNetB7 which outperforms on Ima-
geNet and is also eight times smaller and six times faster 
than state-of-the-art CNN models [48]. EfficientNetB7 is 
divided into seven blocks based on the filter's size, stride, 
and number of channels. EfficientNetB7 architecture is 
illustrated in Fig. 7.

3.3.1.3  DenseNet201  The Convolutional Neural Network 
is modified to have 201 depth layers in the DenseNet201 
deep learning model [23]. DenseNet201 architecture 
received additional inputs at each layer from its preceding 
layers. Through the concatenation method it sends its own 
feature-maps to higher layers that follow. The collective 

knowledge is received by each layer from the above levels. 
Densenet201 is thinner and more compact with fewer chan-
nels because all preceding layers receive feature maps from 
each layer. The architecture of DenseNet201 is depicted in 
Fig. 8.

3.3.1.4  ResNet50  ResNet50 belongs to the residual net-
work family that uses a method called "residual mapping." 
Residual networks use residual mapping to overcome the 
degradation problem. When the depth is increased in neu-
ral architecture, the accuracy of the Network will also fall, 
called the degradation problem [49]. Instead of assuming 
that the residual network fits a few layers to its proposed 
fundamental mapping, the residual net specifically enables 
a few layers to match a residual mapping. The ResNet50 
architecture is depicted in Fig.  9. There are 48 Convolu-
tional layers in the ResNet50 design, one Max-Pool layer, 
and one Average-Pool layer. Residual networks are used in 
numerous applications because their architecture is simple 

Fig. 6   Architecture of Xception model
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Fig. 7   Architecture of EfficientNetB7 model

Fig. 8   Architecture of DensNet201 model

Fig. 9   Architecture of ResNet50 model
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to optimize, and with the increase in the Network's depth, 
they acquire more accuracy.

3.3.1.5  VGG19  VGG19 is created by the Visual Geom-
etry Group at Oxford university and hence the name VGG. 
VGG19 is the improved version of its predecessors [50]. 
VGG19 has used the fixed size of RGB images as an input, 
which means the shape matrix is (224, 224, 3). Where 
224 × 224 is the width and height, and three represents the 
number of channels. The mean RGB value from each pixel 
was preprocessed by the VGG19 and calculated for the 
entire training set. To maintain the spatial resolution of 
the input image, the VGG19 used 3 × 3 size kernels with 
a stride size of 1 pixel. Using a stride size of 2, the max 
pooling process is carried out over a 2 × 2 matrix. To bet-
ter classify the VGG19 model, nonlinearity and the soft-
max function are handled using the rectified linear unit 
(ReLu). Figure 10 illustrates the architecture of VGG19.

3.3.2 � Model Parameters

Deep learning model parameters are the weights that are 
learnt during the model training. Parameters are weight 
matrices that help deep learning models to train well dur-
ing the model training. Trainable parameters are those 
that are continuously updated during back-propagation 
process whereas, non-trainable parameters are those that 
are not updated during back-propagation process. Depth of 
a network considered as number of layers in the network. 

Table 2 illustrated the trainable and no-trainable param-
eters of deep learning models.

4 � Results and Analysis

The performance of the prediction models was rigorously 
assessed using the accuracy and weighted loss curves.

4.1 � Accuracy

The performance metric most frequently used to assess the 
model's effectiveness in an understandable way is accu-
racy. The specification of the model parameters is used to 
determine a model's accuracy, which is typically reported 
as a percentage (percent). The model's accuracy measures 
how closely the predicted results matched the actual data 
for a certain set of parameters. Figure 10 lists the accuracy 
curves for each deep learning model. The Figure displays 
a line graph that compares the accuracy of several deep 
learning models using train and validation data over time. 
Figure 11’s line graph of training and validation indicates 
that both model training and model validation accuracy are 
consistent across the majority of epochs. While VGG19 at 
250 and DenseNet201 at 125 epochs are stable and have 
achieved 100% accuracy, ResNet50 and Xception model 
training accuracy stabilizes after 250 epochs. While after 
100 epochs, the EfficientNetB7 training accuracy curve is 
not steady. Except for EfficientNetB7, all models exhibit 

Fig. 10   Architecture of VGG19

Table 2   Illustrated the trainable 
and no-trainable parameters

Models Depth Total parameters Trainable parameters Non-trainable 
parameters

ResNet50 107 27,784,580 27,731,460 53,120
VGG19 19 21,075,524 21,075,524 0
Xception 81 25,058,348 25,003,820 54,528
EfficientNetB7 438 69,343,131 69,032,404 310,727
DenseNet201 402 22,256,708 22,027,652 229,056
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Fig. 11   Accuracy curves of a EfficientNetB7, b ResNet50, c VGG19, d Xception and e DenseNet201
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Fig. 12   Loss curves of a EfficientNetB7, b ResNet50, c VGG19, d Xception and e DenseNet201
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stability after 250 epochs when taking validation accuracy 
into account. After 125 epochs, DenseNet201's training and 
validation accuracy stabilized, showing improved prediction 
performance.

4.2 � Loss

The model's performance loss is calculated using the train-
ing and validation sets, and this loss is equal to how well the 

model performs on these two sets. The loss of the model is 
not stated as a percentage, in contrast to the accuracy of the 
model. It represents the total number of errors made in either 
the training or validation datasets. Figure 12 shows the loss 
curves for each learning model. The Fig. 12 shows a line 
graph of the loss recorded by the deep learning models on 
the train and validation data over each iteration. Figure 12 
shows that deep learning models suffered more losses from 
validation data than from training data. The training loss 

Table 3   Deep learning model’s 
average training and validation 
accuracy and loss score

S. no. Model Avg. training 
accuracy (%)

Avg. training 
loss (%)

Avg. validation 
accuracy (%)

Avg. vali-
dation loss 
(%)

1 ResNet50 100 3 93 21
2 VGG19 100 1 94 17
3 Xception 100 4 89 27
4 EfficientNetB7 92 34 82 48
5 DenseNet201 100 2 96 13

Table 4   Depicts the confusion matrices  of  deep learning models  (a)  ResNet50, (b)  VGG19, (c)  Xception, (d)  EfficientNetB7, and  (e) 
DenseNet201 that obtained during performance evaluation process

Classes Mild-Demented Moderate-Demented Non-Demented Very-
Mild-
Demented

(a) ResNet50
Mild-Demented 156 0 9 14
Moderate-Demented 0 12 1 0
Non-Demented 3 0 606 31
Very-Mild-Demented 1 0 24 423
(b) VGG19
Mild-Demented 156 0 13 10
Moderate-Demented 0 12 0 1
Non-Demented 4 0 614 22
Very-Mild-Demented 0 0 13 435
(c) Xception
Mild-Demented 148 0 11 20
Moderate-Demented 1 11 1 0
Non-Demented 7 0 588 45
Very-Mild-Demented 11 0 35 402
(d) EfficientNetB7
Mild-Demented 107 0 29 43
Moderate-Demented 1 5 1 6
Non-Demented 10 0 573 57
Very-Mild-Demented 12 0 56 380
(e) DenseNet201
Mild-Demented 175 0 3 1
Moderate-Demented 0 13 0 0
Non-Demented 1 0 622 17
Very-Mild-Demented 4 0 21 423
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decreased significantly for ResNet50, Xception, VGG19, and 
EfficientNetB7, although some fluctuations and loss can be 
noticed in the validation data. The model has suffered the 
least loss on the training and validation data when compared 
to DenseNet201.

4.3 � Average Training and Validation Accuracy 
and Loss

Five deep learning models' performance is shown in terms 
of model accuracy and loss. In terms of model training and 
validation, the model accuracy and loss scores are calculated 
in a five-fold method. Table 3 lists the deep learning models' 
training and validation accuracies as well as losses sustained 
over various folds. The table shows that, rather than the vali-
dation dataset, the training dataset is where all of the models 
have achieved the target average accuracy score. Compar-
ing the training dataset to the validation dataset, models 
have experienced smaller average losses. The DenseNet201 
model performs best when comparing the classification 
models based on the average training accuracy, with the 
training set achieving 100% accuracy. However, all of the 
classification models perform admirably (90%) in terms of 

training data. DenseNet201 outperforms EfficientNetB7 by 
96% in terms of average validation accuracy, whereas Effi-
cientNetB7 produced the least accurate findings at 82%. All 
the models showed great prediction performance on training 
data, taking into account the loss sustained by the classifica-
tion modes, however the prediction losses progressively rose 
on the validation sets. DenseNet201 had the least validation 
loss, just 13%, whereas EfficientNetB7 suffered the largest 
validation loss, 48%, i.e., poor performance. Thus, it is clear 
that DenseNet201 had the best overall performance in terms 
of prediction results.

4.4 � Confusion Matrix

In the confusion matrix, N stands for the size of the target 
class and NxN is a matrix used to evaluate the performance 
of deep learning models. In the matrix, actual goal values are 
contrasted with predictions made by categorization models. 
To fully comprehend the classification outcomes, we also 
map the average confusion matrices for each of the five clas-
sification models in Table 4.

Table 5   Precision, Recall, F1-score of (a) EfficientNetB7, (b) ResNet50, (c) VGG19, (d) Xception and (e) DenseNet201

Classes Precision Recall f1-score

(a) ResNet50
Mild-Demented 0.97 0.87 0.92
Moderate-Demented 1 0.92 0.96
Non-Demented 0.95 0.95 0.95
Very-Mild-Demented 0.90 0.94 0.92
(b) VGG19
Mild-Demented 0.97 0.87 0.92
Moderate-Demented 1 0.92 0.96
Non-Demented 0.96 0.96 0.96
Very-Mild-Demented 0.93 0.97 0.95
(c) DenseNet201
Mild-Demented 0.97 0.98 0.97
Moderate-Demented 1 1 1
Non-Demented 0.96 0.97 0.97
Very-Mild-Demented 0.96 0.94 0.95
(d) EfficientNetB7
Mild-Demented 0.83 0.60 0.69
Moderate-Demented 1 0.38 0.56
Non-Demented 0.87 0.90 0.88
Very-Mild-Demented 0.78 0.85 0.81
(e) Xception
Mild-Demented 0.89 0.86 0.86
Moderate-Demented 1 0.85 0.92
Non-Demented 0.93 0.92 0.92
Very-Mild-Demented 0.86 0.90 0.88
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Fig. 13   Precision, Recall, f1-score of deep learning models of a EfficientNetB7, b ResNet50, c VGG19, d Xception and e DenseNet201
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4.5 � Comparison of Prediction Performance

In Table 5, we have provided a thorough evaluation of the 
performance of five deep learning models for predicting Alz-
heimer's disease. Precision, recall, and f1-score have all been 
taken into consideration while comparing results. On the 
stages of Alzheimer's disease known as "Mild-Demented," 
"Moderate-Demented," "Non-Demented," and "Very-Mild-
Demented," the DenseNet201 model has shown the best per-
formance. VGG19 and ResNet50 model results have been 
recorded as the second-best performance. In our study, the 
Xception and EfficientNetB7 performed the worst at identi-
fying the stages of Alzheimer's disease. Figure 13 shows the 
full bar graphs that were created to show all model results in 
terms of recall, precision, and f1-score.

4.6 � ROC/AUC Curve

The performance of deep learning models is evaluated 
using the Receiver Operating Characteristic (ROC) curve. 
Instead of using measurements to show model performance, 
ROC uses a graphical representation. The ROC curve is the 
resultant of the True Positive Rate (TPR) against the False 
Positive Rate (FPR) for a classifier at a variety of thresh-
olds. In contrast, Area Under the Curve (AUC) stands for 
the area under the (ROC) curve. The higher value of AUC 
is generally considered as good for a classifier to perform 
the given task. The detailed ROC/AUC graphs have been 
presented in Fig. 14. In the graphs, “Class 0,” Class 1,” 
“Class 2,” and “Class 3” represents the stages of Alzhei-
mer’s disease as “Mild-Demented,” “Moderate-Demented,” 
“Non-Demented,” and “Very-Mild-Demented” respectively. 
The DenseNet201 model has shown the highest AUC val-
ues as “1,” “1,” “0.99,” and “1” for the Alzheimer’s disease 

Fig. 13   (continued)



2427A Review of Deep Transfer Learning Approaches for Class‑Wise Prediction of Alzheimer’s Disease…

1 3

Fig. 14   ROC/AUC curve of a EfficientNetB7, b ResNet50, c VGG19, d Xception and e DenseNet201
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stages “Mild-Demented,” “Moderate-Demented,” “Non-
Demented,” and “Very-Mild-Demented” respectively.

5 � Conclusions

No known cure is available for Alzheimer’s disease, but 
the early prediction of Alzheimer’s disease stages can pre-
vent Alzheimer’s disease from converting into dementia. 
Various deep learning modes such as ResNet50, VGG16, 
Xception, EfficientNetB7, and DenseNet201 are devised 
through transfer learning techniques to predict the early 
stages of Alzheimer’s disease. We also compared the 
performance of deep learning models. As per the results, 
DenseNet201 have been attended the highest level of pre-
diction accuracy and proved that the transfer learning tech-
nique is suitable for the early prediction of Alzheimer’s 
disease. We have attended high-level prediction accuracy 
with less number of MRI images through transfer learning. 
In the future, we will also include clinical data to improve 
the prediction capabilities of deep learning models. Fur-
ther, we will use proposed models to detect other disease 
using MRI images.
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