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Abstract
Self-healing materials (SHEM) have extensive characteristics that significantly influence structural and polymeric compo-
nents’ damage detection and healing behaviour. The composite materials with self-healing capabilities can automatically 
repair themselves after damage and lessen the economic losses. The present work aims to explore the recent successes in these 
endeavours from numerous kinds of research published over the last few years and focuses on methodologies/mechanisms, 
material types, and the excellent abilities of SHEM in various fields. The three objectives of the current article are: (i) to 
deliberate the motivation behind materials that can either extrinsically or intrinsically heal. (ii) investigate research on self-
healing composites, emphasizing several healing systems or mechanisms. (iii) to review the most recent developments and 
applications of self-healing materials in different sectors. Additionally, some of the classifications, computational methods, 
and healing efficiency specific to self-healing materials have been reviewed, and the individual comparisons of self-healing 
techniques are discussed.

Keywords Composite materials · PolymersDamages (cracks and delamination) · Catalyst · Encapsulation (repair, coatings 
and corrosion protection) · Mechanical properties

1 Introduction

  Self-healing materials’ ability to detect damage and repair 
on their own has drawn researchers’ quest in recent years. 
Every year, numerous initiatives are made to create vari-
ous self-healing systems and integrate them into large-scale 
manufacturing with the best possible property-cost relation-
ship. The lightweight and high-toughness fiber-reinforced 
composites are becoming popular in automobiles, aero-
space, wind turbines, high-performance engineering etc. 
The main problem of using these advanced materials with 
internal damages may lead to catastrophic/sudden failure and 
are difficult to detect early and/or repair. To overcome these 
unwanted issues and to improvise the structural durability by 
incorporating self-healing properties into the parent materi-
als. This, in turn, allow these materials/structure to repair 
automatically and restore their final mechanical properties 
or strength. In natural biological systems, the human skin, 
bones, or other components can detect damage and self-heal 
accordingly. Hence, the self-healing is generally relating to 
the medical term like how wounds in plants and animals 
heal on their own. The own healing abilities of plants and 
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animals have inspired the development of composite materi-
als that can repair the damage. These SHEM have been cre-
ated in response to increase durability, reliability, and safety 
demands. The fiber-reinforced composites with self-healing 
abilities are extensively used in aerospace [1], marine [2], 
biomedical [3], and structural [4] applications and advancing 
in several other fields. Applications of self-healing poly-
mers and nanocomposites and their recent developments in 
various fields are discussed, and the product-based insights 
and future prospects of these materials are presented in [5]. 
Over the past two decades, many studies have been explored 
relating to the field of SHEM. The different studies antici-
pated that the self-healing will increase material life, reduce 
maintenance costs, and improve safety and endurance for 
artificial advanced structural materials (composites). Many 
concepts have been advanced to demonstrate the effective-
ness of ceramic, polymer, and metal matrix composite 
materials for designing and creating SHEM. Self-healing 
polymers prolong a material’s life span while improving its 
functionality. Incorporating extrinsic (capsular and vascular) 
self-healing mechanisms will indisputably change the char-
acteristics of composite matrixes [6] .It is essential to com-
prehend such modifications to ensure that the SHEM func-
tions better than the virgin material. Shape memory effects 
(SME) and healing characteristics of SMA are integrated 
to form novel composites like elastic structures embedded 
with nanobeams [7], multi-walled carbon nanotubes [8, 9], 
palm fibres composites [10], natural fibres composites [11], 
FGM skew-Nano plates [12–14], checkerboard reinforced 
composite [15], polyurea coated fibre reinforced composites 
[16], and piezoelectric skins [17]. Materials like FG porous 
silicon nanobeams [18], multifunctional foam plates [19], 
calcium carbonate nanoparticles [20], FGM truncated micro 
shells [21], and honeycomb sandwich beams [22] have been 
explored to an extent for the verification of each constitu-
ent to show their self-healing behaviour for an integrative 
healing agent. The unique sensitivity of nanobeams [23–26], 
plates [27], sheets [28, 29] and shells [30] to compression 
and temperature effects can also be exploited as a potential 
healing agent in composites. In recent years, a gap has arisen 
between capsule-based/vascular self-healing composites and 
intrinsic self-healing materials. Research on capsule/vascu-
lar based is generally focused on the rupture process, healing 
agents, mixing process, and micro-structure manufacturing 
techniques. The work first focused on the three primary self-
healing methodologies and the significant issues and chal-
lenges to each approach. A literature review on the materi-
als used as healing agents in recent years is provided. The 
present review discusses the classifications of self-healing 
materials most commonly utilized for various applications, 
i.e., intrinsic and extrinsic types of self-healing mechanisms. 
These types have been categorized into subdivisions based 
on different criteria such as mode of contact, healing agents, 

catalyst, etc. and discussed in the following sections. There-
fore, the article’s final section discusses the current develop-
ments and applications of self-healing materials in various 
areas.

2  Self‑Healing Materials (SHEM): Overview

2.1  Classification of Self‑Healing Materials (SHEM)

These materials currently use autonomous and non-auton-
omous systems as part of their healing processes. Non-
autonomous materials typically need external stimulation 
to have the desired healing effect, such as light, heat, load, 
etc. However, autonomous SHEM can initiate the self-heal-
ing process without the aid of external triggers or stimuli. 
SHEM based on triggering can generally be classified into 
two types i.e., intrinsic self-healing (without any healing 
agents) and extrinsic healing systems (with healing agents) 
[31]. Detailed classification and generation-wise self-healing 
mechanisms are shown in Figs. 1 and 2.

2.2  Modes of Healing (Interaction)

There are several mechanisms and approaches to obtain-
ing the self-healing criteria to heal the material; basically, 
there are three modes of interaction between one material to 
another material, which are physical, chemical, and supra-
molecular [33].

2.3  Efficiency Of Healing

The factors which are considered for healing efficiency as 
per the mechanical testing are mechanical integrity, strength, 
fracture energy, elastic stiffness, and fracture toughness [34]. 
These parameters evaluate the effectiveness and consider 
how the material will perform after healing. Several tests are 
currently being used to estimate how efficiently the material 
will work after recovery [35]. The efficiency of healing (ten-
sile) for the specimen is given in the following mathematical 
form as same as in the reference [36].

 where, �(Tensile) is the total efficiency (%) and K is the tensile 
strength of the specimen.

2.4  Computational Methods of Self‑Healing 
Materials

Further, the computational tool has been adopted by 
White et  al. [37] to detect the damage and its healing 

(1)�(Tensile) =
Khealed

KVirgin

× 100
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characteristics using the molecular dynamic (MD) for 
the self-healed material. Similarly, studies reported the 
development of a self-healing model using commercial 
finite element simulation software like ABAQUS [38, 39]. 
Additionally, researchers have extended the innovative 
and effective computational methods for fracture/damage 

modelling limited to structural applications, i.e. extended 
finite element method (XFEM) [40–42] and cohesive zone 
approach [43], mesh free method [44, 45], cracking parti-
cle method [46] and screened Poisson’s equation method 
[47].

Self healing Materials 

Extrinsic Self healing 
Mechanism  

Intrinsic Self healing 
Mechanism  

Covalant Intrinsic  Self 
healing Mechanisms  

Non-Covalent Intrinsic  Self 
healing Mechanisms  

Imine Bonds 

Diels Alder Chemistry

Transesterification 
Reactions

Ditelluride Bonds

Diselinede Bonds

Boron based Bonds

Vander Waals Forces

Pi-Pi Stacking

Dipole-Dipole 
interaction

Hydrogen Bonds

Ionic Interactions

Shape Memory 
Alloy(SMA)

Capsule-based Self-healing 
Mechanisms

Vascular Self-healing 
Mechanisms

Microvascular 
networks

Hollow glass fibres

Single 
Microcapsule 

Dual Microcapsule 

Polycondensation 

Epoxy-based System

Microencapsulation 

Single layer Microcapsule 

Dual layer Microcapsule 

Multilayer Microcapsule 

Fig. 1  Classification of self-healing materials [31]

Fig. 2  Generation wise self-
healing mechanisms [32]
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2.5  Intrinsic Self‑Healing (Without Any Healing 
Agents)

In contrast to the extrinsic mode, the intrinsic method is 
capable of multiple reversible self-healings without using a 
self-healing agent. It has a more stable and reliable capabil-
ity than the extrinsic mode and avoids laborious dispersion 
and encapsulation steps [48]. Intrinsic mechanisms are fur-
ther classified as covalent and non-covalent intrinsic self-
healing mechanisms. In the present work, we have reviewed 
one of the most prominent non-covalent intrinsic types of 
self-healing method, which is used in damage detection and 
reversal of strength through shape memory alloy (SMA). 
As there are numerous methods in intrinsic self-healing 
mechanisms, this study mainly concentrated on the healing 
of structural applications with the incorporation of SMA.

2.5.1  Shape Memory Alloy (SMA)

The concept of healing on its own is becoming more popular 
in everyday life, and shape memory alloy fiber (SMA) for 
crack healing in composite structures are playing a vital role 
in commercial sectors. The smart material (SMA) can heal 
the material with its instinctive properties, which encourages 
researchers to conduct added research on these materials 
[49]. SMA wires are combined with a self-healing poly-
mer for the first time, and their influence on the properties 
was examined [50]. The efficacy of these polymers with a 
healing agent is significantly enhanced by embedding SMA 
wires which closes the crack and activate them throughout 
the healing process [51]. Later, new accomplishments have 
been developed in self-healing using SMA have improved 
the efficiency and the quality of the healing. Neuser et al. 
[52] investigated solvent (ethyl phenylacetate, EPA) based 
SHEM combined with SMA and achieved 78% of healing 
efficiency and only 24%; for non-presence of SMA wires. 
The overview of SMA’s healing mechanisms is deliberated 
in [49]. Burton et al. [39] aimed to model composite materi-
als embedded with SMA wires through ABAQUS simula-
tion software. The metal matrix composite is being loaded, 
which causes the crack to propagate through the material 
due to its brittle nature, and the crack also disrupts the SMA 
wires, changing its phase to martensite and allowing recov-
ery stress to develop due to loading. which causes reversal 
of the crack and closes the damage because of its extensive 
shape memory effect. Crack propagation and subsequent 
self-damage healing is implemented. Xue et al.[53] investi-
gated the self-healing behaviour of the cementitious materi-
als using XFEM. Chen et al. [54] conducted an experimental 
analysis of smart composite materials under flexural loads 
to achieve crack healing ability. The intrinsic self-healing 
behaviour of carbon fibre reinforced polymer (CFRP) com-
posite material is examined using ABAQUS modelling [55]. 

The structural strength improvement and damage enhance-
ment is attained by SMA wires [56].

2.6  Extrinsic Healing Systems (With Healing Agents)

Extrinsic self-healing mechanisms are basically divided into 
two main categories i.e., capsule and vascular based self-
healing materials.

2.6.1  Capsule‑Based Self‑Healing Structures

Microcapsules made of capsule-based materials contain 
healing agents. Damage causes the local microcapsules to 
rupture, letting the healing agent stream out and interact with 
a polymer’s embedded catalyst to fill and heal the crack [57, 
58]. Since capsules serve the dual purpose of storing the 
healing agent and drawing the damage, it is due to the reason 
that the interfacial region between the capsule and the poly-
mer is the weak spot in the polymer-based mechanism. It is 
conclusive that self-healing polymer can initiate and carry 
out self-repair on its own with the help of capsules [59].

2.6.1.1 Microencapsulation Method/Ring‑Opening Metath‑
esis Polymerisation (ROMP) Over two decades ago, self-
healing through microencapsulation was introduced by 
White et al. [60]. He presented an autonomic healing con-
cept in composite materials, which attracted many research-
ers to work in this field. In a wide range of materials, micro-
capsule-based mechanisms have proven the most popular 
method of creating self-healing [59]. A healant is deposited 
in discrete microcapsules that are spread throughout the 
matrix [61]. Under the influences of damage, microcap-
sules present in the path of cracks rupture, which releases 
a healing agent and it reacts with hardener to make it heal 
and hard, as shown in Fig. 3. They achieved a very prom-
ising self-healing efficiency by embedding microcapsules 
using Grubbs’ catalyst and healing agent; dicyclopentadi-
ene (DCPD) at particles into a matrix material [62]. Fur-
ther, many improvements have been made to this concept 
to coverup the drawbacks of an existing method [63]. The 
current approach only performs well with larger amounts 
of catalyst (2.5 wt%) for lower weight fractions, the perfor-
mance is inefficient, and the catalyst dispersion rate is poor 
in epoxy. Thus, Grubbs’ catalyst is embedded into the wax 
microspheres, tested for self-healing, and obtained better 
results in terms of healing and efficiency [64]. Additionally, 
many microencapsulation methods have been improvised 
based on the healing agents, and numerous studies have 
undergone with the help of these mechanisms; some of the 
works based on the capsule-based mechanisms have been 
presented in Table 1. There are three types of encapsulation 
concerning layers are: Single layer microcapsule [65, 66], 
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Dual layer microcapsule [67] and Multilayer microcapsule 
[68, 69].

2.6.1.2 Polycondensation To create a polymer, a process 
known as polycondensation links one or more types of 
monomers to form long chains, releasing water or another 
substance in the process [73]. Di-n-butyltin dilaurate 
(DBTL) was used by Cho et al. to develop a polyconden-
sation-based mechanism with a mixture of hydroxyl end-
functionalized poly(dimethylsiloxane)(HOPDMS) and 
poly(diethoxysiloxane) (PDES) serving as the healing 

agent [74]. The efficacy of this type is lesser compared to 
GRUBBS and DCPD catalysts. Though, it has a lower price, 
and a more comprehensive range of applications, making it 
more appropriate for actual use. by utilizing the polycon-
densation mechanism, self-healing coatings [75] and woven 
fiber-reinforced composites [76] have been developed.

2.6.1.3 Epoxy‑Based System The epoxy resin and hardener 
are individually encapsulated and kept inside the compos-
ite matrix in this mechanism. Both forms of capsules erupt 
when a crack appears, and the epoxy and hardener that 
release out are combined to seal the crack [77]. Epoxy-sol-
vent capsule healing systems for polymer composites have 
also been developed [78]. Due to their accessibility, epoxy-
based mechanisms have surpassed ROMP reactions and 
polycondensation-based mechanisms in popularity. Liao 
et  al. [79] examined and summarized the characterization 
and healing performance of the epoxy-based coating.

2.6.2  Vascular Self‑Healing Structures

Vascular self-healing systems incorporate hollow 
microchannels filled with healing agents into the ves-
sel design framework. Hollow microchannels can be 
designed to flow in one, two, or three axes referred to 
as 1D, 2D, or 3D vascular systems [80, 81] The inter-
connection is determined by how the vessels are con-
structed and organized within the composite matrix. 
They work likewise to capsular-based mechanisms in 
that the vessels break down at locally damaged zones, 
allowing the healing agent to be carried to the crack 
and then polymerized [82, 83]. Numerous studies were 
performed based on these networks based on SHEM; 
a few studies based on microvascular and hollo fibres 
have been reviewed and reported in Table 2.

2.6.2.1 Microvascular Networks Vascular SHEM replaces 
the microcapsules with a vascular structure resembling a 
network of tunnels through which numerous functional flu-

Catalyst
Microcapsule

Crack

Fig. 3  Capsule based self-healing mechanism [60]

Table 1  Self-healing mechanisms based on microencapsulation method

Microcapsule type Healing components and agents Working
temp. and curing time

Efficiency (%) Tests conducted Ref.

Single Microcapsule Healing component: Polymeric matrix
Healing agent: 5-ethylidene-2-norbornene (5E2N) with 

CNT and GRUBBS catalyst

ambient 24 h 82% fracture test [70]

Dual micro capsule Healing component: Glass /Carbon fibers + Epoxy 
matrix

Healing agent: Epoxy + Hardener

ambient
24 h

103.4% 101.8% flexural tests [71]

Healing component: Epoxy resin
Healing agentDGEBA (resin) +
polyether amine (hardener)

ambient
24 h

84.5% fracture test [72]
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ids circulate. When a crack appears, and the vascular net-
work is broken, these functional fluids will also occupy the 
gap. A healing agent is a constituent that is stored within a 
capsule or a vascular network [84]. The retrieval process and 
restoration of mechanical properties depend critically on the 
behavior and mechanism of healing agents. Capsule-based 
SHEM is suitable for the repair of small cracks, whereas 
larger damaged areas are healed with the help of vascular 
systems [85]. Toohey et al. [81] Implemented a new micro-
vascular design based on interdigitated dual networks, 
which helped solve the problems related to the exhaustion 
of embedded catalysts and the requirement to replenish sev-
eral healing agents inside these designs. Through the micro-
vascular distribution of a two-part, epoxy-based self-healing 
mechanism, several healing cycles of a single crack in a 
brittle polymer covering are accomplished [86]. The charac-
terization and potential of microvascular-based self-healing 
coatings using DCPD and Grubbs’ catalyst are investigated 
[87]. A direct-tension mechanical experiment examines the 
bituminous material’s potential to self-heal its microvascu-
lar damage using hollow fibers and an oily rejuvenator using 
a wet-spinning approach [88].

2.6.2.2 Hollow Glass Fibres Self-repairing, increased dam-
age visibility biomimetic composite that offers a practical 
solution to regain mechanical strength and draw attention 
to concealed damage following impact damage has been 

developed [89]. Investigations are being conducted into a 
new fiber-reinforced plastic that uses a biomimetic strategy 
to perform its own repair and visual enhancement of impact 
damage by exploiting action from filled hollow fiber [90]. 
The use of self-healing hollow glass fibers (HGF) plies in 
both glass fiber, and carbon fiber epoxy laminates reduce 
damage and reinstate the mechanical strength. Initially, 
the researchers [82, 91, 92] focussed on the development 
of these microvascular networks like hollow glass tubes as 
containers preloaded with an epoxy-based healing agent 
and succeeded accordingly. After being subjected to quasi-
static impact damage, Trask et al. [93] examined the effects 
of embedded HGF on the mechanical characteristics of the 
host laminates as well as the effectiveness of the laminates 
ability to heal. Flexural testing findings have demonstrated 
that the self-repairing ability of a healing resin housed 
within hollow fibers can recover a sizeable portion of flex-
ural strength [94].

Further, hollow fibre networks were filled with polyester 
resin and the appropriate accelerator to enable self-repair as 
well as a UV fluorescent dye to detect sub-critical transverse 
impact damage. 3-point bending tests were used to illustrate 
the capability of self-repairing material, and SEM (scan-
ning electron microscopy) analysis was utilized to verify 
the healing performance [95]. Fifo et al. [96] investigated 
the recovery after damage, i.e., post-damage recovery of 3D 
vascular channels within glass fibre or polyester laminated 

Table 2  Self-healing mechanisms based on vascular type

Vascular type Healing components and agents Working temp. 
and curing time

Efficiency (%) Tests conducted Ref.

Hollow glass fibre / 
Hollow glass tube

Healing component: Bituminous 
composites

Healing agent: oily rejuvenator

30℃
24 h.

80% The tensile strength tests [88]

Healing component: Epoxy + Glass 
fibre

Healing agent: Grubbs cata-
lyst + DCPD

Ambient
24 h.

60% Controlled energy impact test [99]

Healing component: Glass fib-
ers + epoxy composite

Healing agent: Epoxy resin + hard-
ener

70℃
48 h.

42% Tensile tests for different orientations [100]

Microvascular networks Healing component: Epoxy mono-
mer + curing agent

Healing agent: Infiltrating waterborne 
polyurethane matrix

Ambient
3 days

99.34% Tafel polarization tests. [101]

3D Vascular network
Healing component: Glass fiber rein-

forced epoxy
composites
Healing agent: Epoxy resin epichloro-

hydrin hardener

25℃
7 days

89% Tensile test and creep tests [36]

Healing component: Epoxy coating
Healing agent: Grubbs catalyst and 

DCPD

25℃
12 h

70% Four-point bending, fracture tough-
ness test

[81]
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composites. In recent times this method has been further 
improvised by adding SMA wires; due to the produced 
recovery stress in the SMA, which causes fracture closing in 
the sample. The inclusion of SMA strips improved the heal-
ing effects of the composites with randomly oriented short 
HGF subjected to sudden loading [97]. It is more beneficial 
to store the healing agent in the hollow fibre of the compos-
ite material than in the microcapsule for the self-healing 
behavior of the epoxy polymers. This is due to hollow fiber 
containing more self-healing agents than the microcapsule, 
and the hollow fiber does not reduce the strength of epoxy 
polymers. Compared to the microcapsule approach, the hol-
low fiber technique has a more uniform spreading in the 
epoxy polymers, which aids in spreading the healing agent 
without disturbing the material’s mechanical properties [98].

3  Applications of Self‑Healing Materials

Furthering research without a clear idea of its range of 
impact is as unfruitful as doing strenuous work without a 
distinct goal. Self-healing research began in 1970 due to the 
mending of polymer fractures [102]. Materials with self-
healing properties are recently created sophisticated materi-
als with prolonged lives that can fix themselves when they 
undergo injury without needing the physical intervention of 
any type [62, 103]. The development of SHEM is nothing 
more than an enhanced modification of conventional mate-
rials by introducing self-healing capabilities. Self-healing 
materials are used practically in every industry [89, 104], 
including construction/architecture, biomedical, coatings/
paintings, aerospace/automotive [105], electronics, and tex-
tiles etc. These are utilized to minimize maintenance costs, 
extend durability and ensures safety. Although SHEM is one 
of the most promising approaches, they are yet ineffective 
in mending life-scaled damages [106]. Numerous advance-
ments in the emerging technologies are explored in this sec-
tion by assessing various fields of SHEM applications. The 
detailed utility based self-healing materials in various sec-
tors are shown in Fig. 4.

3.1  Electronics

Sensors, actuators, electronic skin, consumer electronic 
devices, and bioinspired robots are examples of electronics 
applications. Due to the significance of conducting mate-
rials in electronic devices like sensors, displays, and stor-
age devices, conducting materials has been the subject of 
active research in recent years. A soft conductive material 
addresses the physical touch requirement that has been the 
focus of the recovery of conductive pathways for existing 
self-healing conductive materials [68]. The electronics and 
semiconductors industry is predicted to develop significantly 

by 2025. SHEM has been used in electronic devices such as 
mobile phones, laptop computers, and desktop computers by 
reputed electronic businesses.

Wearable health monitoring systems are gaining popu-
larity due to their excellent possibilities for portable health 
monitoring devices and broad medical applications. Material 
stretchability is a feature that allows electrical equipment to 
adjust to irregular 3D structures, such as soft and moveable 
entities [107]. Intrinsic stretchy devices offer the potential 
benefit of providing a large area of surface coverage. Self-
healing stretchable electronics can adapt to soft and nonpla-
nar objects as well as align with the movements of biological 
tissues [107, 108]. This allows it to be used in microchip 
technology likely, bio-integrated sensors with optimized 
detecting efficiency and ease for implantable, wearable, and 
prosthetic applications, as well as providing an essential 
procedure for bio-inspired robots and modern user devices. 
Physical sensors are made of polymers to give flexibility and 
allow for monitoring pressure levels as low as a few pascals. 
At room temperature, these sensors are most sensitive [5]. 
There are several forms of self-healing polymeric sensors in 
addition to semi-conductive devices. There have been sev-
eral reports on the potential use of these materials for differ-
ent applications like transparent electrodes, electronic skins, 
and materials of battery electrode binders [109]. Wearable 
(non-invasive) and implantable devices are two prominent 
applications of plastic bioelectronics. Robust self-mending 
hydrogels are used in soft robotics, such as implantable 
or wearable biosensors because they increase mechanical 
performance and shelf life as a result of fatigue or dam-
age repair. Haick et al. [107] have discussed a dynamic soft 
self-healing polymer material (PBPUU) that demonstrated 
good self-healing capabilities in complex underwater set-
tings. Furthermore, the capacity to eliminate any leakages in 
electrically induced by underwater damage made PBPUU a 
greater option for the fabrication of electronic devices, which 
was critical for incorporating flexibility and self-healing 

Fig. 4  Applications of self-healing materials [5]



1048 E. K. Kumar et al.

1 3

ability in electronics [107]. Among the most recent hot 
material under discussion is Polyhedral Oligomeric Silses-
quioxanes (POSS)- based SHEM. These SHEM are desir-
able for next-generation materials with better mechanical 
characteristics that are perfect for sensors because of the 
specific chemistry of the interactions that occur in these 
materials [105]. Cerdan et al. [110] explore the development 
of magnetic self-healing soft actuators whose movement or a 
magnetic field may regulate characteristics. Self-healing of 
soft robotics is a novel discipline that arises as a response to 
soft solids’ essential susceptibility to extreme damage. Due 
to the capacity to repair micro/macro damages, which are 
exposed to a severe actuation environment, it increases the 
soft robot’s performance lifespan and enhances dependabil-
ity compared to traditional robotic systems [111]. They also 
considered merging shape memory with self-healing and 
magnetic characteristics to create improved SMASH (shape 
memory aided self-healing) actuators [112]. Light-emitting 
diodes (LEDs) could be repaired by exposure to a magnetic 
field, and magneto-electric self-healing supercapacitors for 
use as storage devices have also been mentioned [110].

3.2  Construction

In 2017, the most important applications for self-healing 
materials are building and construction in the whole indus-
try, accounting for 27.4% of the total market as mentioned 
by Idumah [5]. Literature mentions the process of self-heal-
ing in concrete can be autogenous [113], based on optimal 
mix composition, or autonomous, when employing extra 
included micro/macro capsules carrying a healing agent and/
or bacteria spore. Super absorbent polymers, Nano poly-
mers, and shape memory alloys are examples of Nano-sized 
self-healing cementitious systems [105, 114, 115]. In 2017, 
the essential applications for self-healing materials were 
building and construction in the whole industry, accounting 
for 27.4% of the total market, as mentioned by Idumah [5]. 
Literature mentions the process of self-healing in concrete 
can be autogenous [113], based on optimal mix composi-
tion, or autonomous when employing extra included micro/
macro capsules carrying a healing agent and/or bacteria 
spore. Super absorbent polymers, Nano polymers, and shape 
memory alloys are examples of Nano-sized self-healing 
cementitious systems [105, 114, 115].

3.2.1  Polymers

Polymer cement, which may be used to extract geothermal 
and fossil energy, is projected to replace conventional well-
bore cement. These innovative polymer-cement composites 
have mechanical stability, ductility, and self-healing proper-
ties [5].

3.2.2  Cements

The growth of self-healing cementitious composites [116] 
that mimic/imitate the behavior of biological living systems 
has piqued the interest of global scientific researchers across 
a wide variety of technical and engineering disciplines, 
with the likely to transform the way concrete buildings are 
planned, designed, and built. The major goal of SHC is to 
decrease midway costs and prevent water intrusion [117].

3.3  Coatings

Tailoring the interaction and topography of droplet splat-
tering and manipulation onto interfaces for the construction 
of non-wetting surfaces is an important phenomenon for 
building microfluidic devices, microreactors, and electronic 
refrigerators.

3.3.1  Polymers

Self-restoration of material properties is effectively 
done in polymer-based compositions, and coatings 
to the polymers are the more practical and sought 
commercial SHEM [104]. Because of the particular 
chemistry of certain of the interactions that occur in 
POSS-based SHEM, they are fascinating next-gener-
ation materials with better mechanical characteristics 
that are ideal for use in super hydrophobic coatings, 
according to Nowacka et  al. [118]. Although it is 
highly desirable, it is still difficult to create epoxy resin 
paint systems that are mechanically durable, quickly 
healable, and recyclable. This sort of supramolecular 
polymer with distinct properties can also be used in 
ant frosting and anti-icing paints for Antarctic pole 
exploration [32].

3.3.2  Metals

Microcapsules that respond to UV dispersion coating are 
being developed for damage healing in space applications 
[119].

3.4  Biomedical

Membranes, micro-actuators, sensors, drug-delivery struc-
tures, and other specialized sophisticated micro-devices are 
made with self-healing microstructural polymers responsive 
to stimulus. Self-healing nanocomposites and natural fiber 
have also piqued the curiosity of researchers in the medical 
field are addressed [11]. This is due to their high potential as 
anticancer medication carriers [120]. Hydrogels show poten-
tial for various environmental and biological applications 
due to DNA biocompatibility. Self-mending hydrogels are 
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classified as soft and resilient hydrogels with strong mechan-
ical characteristics appropriate for minimally invasive (tis-
sue engineering scaffolds, wound dressings, drugs, or cell 
delivery careers) biomedical applications [5]. To improve 
biomedical applications, self-mending hydrogels must 
overcome various hurdles, including the creation of these 
hydrogels with acceptable biocompatibility and mechanical 
qualities. Furthermore, adequate biodegradability control is 
critical in self-mending hydrogels used in tissue engineer-
ing and drug delivery [121, 122]. The unique properties of 
polyhedral silsesquioxnes make them apt raw materials for 
building self-healing and dynamic systems [118]. The topic 
of dynamically cross-linked hydrogels packed with magnetic 
particles, which has received little attention, has promising 
applications in chemotherapy, as well as controlled drug 
release and wound closing.

3.5  Aerospace

This sector requires long-lasting vehicle bodies and parts, 
heavy machinery, and fuel usage without sacrificing safety. 
The general features in demand include corrosion resist-
ance, wear and tear resistance, and increased life. The self-
healing metal matrix composites have great potential for use 
in sliding surfaces like cylinder liners, pistons, CV joints, 
and gears prone to damage from friction, creep, and wear 
between components [112]. Salowitz et al. examined a self-
healing off-eutectic metal matrix alloy with integrated SMA 
fibers and numerous healing processes, including structural 
alignment (setting) and matrix soldering [123].

3.6  Textile

The progress of self-healing and chemical-resistant poly-
mers with unique properties varies according to the applica-
bility, such as superoleophobicity for underwater use. These 
kinds of composites offer good chemical infusion resistance, 
making this material appropriate for usage as self-healing 
electromagnetic interference cloaking fabric in barrier pro-
tection, with an increased lifespan [62, 124, 125].

3.7  Miscellaneous

Self-healing [126] (a) in polymers and their compos-
ites- avoids delamination failure in materials [127], (b) in 
cement-based materials- improves infrastructure structural 
performance, (c) in metals and metal matrix composites 
[128], and (d) in ceramics and ceramic composites- are 
beneficial in high temperature and corrosive situations, 
such as in IC engines [129]. These materials have also 
been pointed out as an apt option for raw materials for 3D 
printing [130]. Self-healing polymer nanocomposites have 
a wide range of applications in various tech industries, 

including armament, biomedical, and space exploration 
[5]. Graphene/polymer composites that self-heal are 
extremely promising intelligent/smart materials [131]. 
Because of its potential to undergo photothermal energy 
transition, graphene can show a significant part in the self-
mending method as a component of self-mending compos-
ites. In this case, graphene serves as an absorbing agent 
(energy) for the speedy and effective translation of solar 
light to temperature energy, improving polymer chains’ 
dispersion over the faulty interface and improving the self-
mending mechanism. The fabrication of graphene-filled 
self-healing composites for various applications has been 
made possible by combining the characteristics of gra-
phene, such as its immense specific surface area, ultrahigh 
conductivity, high antioxidation capabilities, thermal sta-
bility, and conductivity, and outstanding mechanical quali-
ties [108, 125]. These materials are used in many applica-
tions such as turbine injectors, automobiles, spaceships, 
nuclear reactors, and specialized cutting devices. Mag-
netic self-healing hydrogels find applications as excellent 
underwater glues [110]. A polymethacrylamide-carbon 
composite mimics plant photosynthesis, and carbon fixa-
tion from the environment allows it to grow, strengthen, 
and self-repair. In the future, this polymer can be used 
in construction, restoration, or protective coverings, con-
verting greenhouse gases into a carbon-based substance 
that self-reinforces [32]. SHEM has been demonstrated to 
be beneficial in lithium-ion batteries [132] Furthermore, 
researchers have explored all of the possibilities of SHEM 
in fields of applications using various methodologies, and 
some of the studies have been segregated individually 
based on the application and kind of materials used in 
SHEM, as shown in Fig. 5. The detailed analysis of the 
forms explored with respect to the sector-wise are given 
in Table 3.

4  Conclusion

The comprehensive review based on the SHEM’s mecha-
nisms, applications, and classifications has been presented. 
Researchers have recently concentrated on automated heal-
ing processes for various benefits in the realm of applica-
tions, which has sparked interest in these smart materials. 
The current era of SHEM displays improvised performance, 
extended service life, and a smaller environmental impres-
sion, as evidenced by the growing capacity of self-healing 
polymers to get around material constraints and ensure repet-
itive recovery. These advancements were made possible by 
technological improvements and cutting-edge methods used 
in polymers’ design, production, and characterization. The 
following points are deliberated in this study are:
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a. SHEM with intrinsic type is simpler and easier to handle 
than the extrinsic type of healing mechanism, and the 
healing efficiency is higher than extrinsic.

b. The vascular self-healing system is preferable to the cap-
sule-based mechanism because of its excellent uniform 
distribution of healing agents through network tubes, 
which also aids in maintaining consistent mechanical 
properties.

c. Shape memory alloys are the only intrinsic type of self-
healing mechanism apt to the purpose, as they will not 
alter any mechanical property of the material in the heal-
ing process. A lot of work needs to be done in the future 
to accomplish effective utilization.

d. Currently, self-healing materials are becoming more 
common for a wide range of applications; however, 
there are specific areas of SHEM where researchers can 
work and conduct extensive research, such as increasing 

the efficiency of healing and improving healing agent 
movement toward the crack. These SHEM provide a 
clear insight into many areas where the applicability is 
more specific and has no limitations. The concept of 
SHEM has extended as time progresses, giving research-
ers more room to study their healing effectiveness and 
performance.

e. Finally, the research has been continuing in the field 
of extrinsic self-healing hybrid models (combination 
of vascular and microcapsule) and materials, which are 
the future of self-healing mechanisms (fourth genera-
tion models); however, very little literature have been 
published on these types of models, leaving room for 
future research.

Fig. 5  Applications of self-healing materials (based on type of material) [5, 133]

Table 3  Applications of self-healing materials in various sectors

Sector Forms Explored References

Aerospace/Auto-
motive/ Marine

Composite sandwich structures, Nanofibers, Polymer matrix, metal matrix [31, 62, 66, 105, 119, 134–138]

Construction Cementitious materials and composite, polymer matrix, Nano concrete [4, 115, 117, 139–152]
Coatings Metallic complexes, Polymers, Polymer matrix [59, 133, 153–155]
Electronics Polymer blends, Hydrogels, Metal reinforced rubbers, Nanocrystals rein-

forced polymers
[5, 33, 59, 62, 66, 107–111, 133, 156–163]

Biomedical Rubbers, Hydrogels, Nanofibers, Polymers and polymer matrix [31, 108, 110, 120–122, 133, 138, 164–170]
Textiles Polymers, Nanofibers, Metal and nanocrystal reinforced polymers [32, 124, 133, 138, 156, 159, 163, 166, 169]
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