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Abstract
Depletion of fossil fuel, global warming, and their environmental pollution clarify the importance of renewable energy 
sources (RESs). However, high penetration of RESs decreases power systems inertia, hence, the system becomes more sen-
sitive to disturbances. This results in problems with frequency control because it increases the rate of change of frequency 
and may lead to load shedding or tripping of generating units. This paper aims at introducing a comprehensive survey of the 
effects of the increase in RESs on power system inertia and frequency. Different models of wind-driven and photovoltaic 
systems used for frequency control studies have been introduced. The up-to-date effective frequency regulation methods 
which can be used with highly RESs penetrated power systems have been revised and compared. These methods include 
virtual inertia-based methods depending on energy storage devices, de-loading of renewable energy sources, various inertial 
response techniques and demand response at load section including under frequency load shedding and electric vehicles. 
Extensive comparisons among these methods have been carried to guide power system designers, operators, researchers and 
grid codes taskforces in proper incorporation of RESs for frequency regulation of power systems.

1  Introduction

Depletion of fossil fuels and their environmental impacts 
have pushed the development of renewable energy sources 
(RESs) as valuable alternatives. RESs either have no inher-
ent inertia such as photovoltaic (PV)sources, or their iner-
tia is decoupled from frequency variations such as variable 
speed wind turbines (VSWTs) i.e., type 3 and 4 wind tur-
bines (WTs). Therefore, increased integration of RESs in the 
electric power systems may lead to problems with frequency 
control and stability. Modern grid codes, such as the UK 
code [1], encourage the participation of offshore WTs which 
are larger than 50 MW in frequency regulation.

It is very important to continuously maintain the fre-
quency of electrical power systems. Any frequency devia-
tion ( ΔF ) from nominal value is an indication of unbal-
ance between demand and generation. For example, if load 
demand is increased or an outage of any generating units 

occurs, the grid frequency will be decreased and vice versa 
[2]. When electrical power systems based on conventional 
synchronous generators (CSGs) are subjected to any abrupt 
load changes, the stored kinetic energy (KE) in the rotat-
ing rotors will tolerate these load changes until primary and 
secondary frequency control operates [3, 4]. Nowadays, the 
new trend for generating electricity is based on RESs due to 
the depletion problem of fossil fuel and some environmental 
issues such as global warming [5, 6]. Unfortunately, RESs 
are usually operated at maximum power point (MPP) unlike 
some of CSGs which usually contain spinning reserve which 
is used to overcome ΔF and steady state errors, which means 
that the frequency stability of power systems with increased 
penetration of RESs has become worrying [3, 7], specially, 
with the encountered increase in the rate of change of fre-
quency (RoCoF). So, it is very important to develop new 
methods for frequency control to overcome the frequency 
stability problem [8].

Frequency regulation depends on the stored energy due 
the inertia of CSGs. Various studies have been devoted to 
increasing system inertia via virtual inertia sources. For 
example, the authors in [9] introduce and optimize control-
lers to enhance frequency stability of doubly-fed induction 
generator (DFIG) wind farm. While in [10], the authors have 
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discussed frequency regulation through controlling the rotor 
current of DFIG. In [11], the authors have demonstrated the 
role of using derivative controlled virtual inertia of energy 
storage systems (ESSs) and PV systems in enhancing fre-
quency stability. Also, frequency control with RESs under 
load shedding is performed in [8]. In [12, 13], fuzzy logic 
controller is designed to determine the appropriate percent-
age of de-loading of wind farm (WF) in order to regulate 
system frequency. In [14], the authors studied the effect of 
the de-loading method of PV generation on power system 
frequency. Frequency regulation by centralized droop con-
troller is performed for de-loaded permanent magnet syn-
chronous generator (PMSG) offshore WF in [15]. Frequency 
control for PV system in microgrid using direct current (DC) 
link voltage and the de-loading method is introduced in [16].

ESSs with rapid response, high efficiency and large power 
density are suitable for frequency regulation of electric 
grids. A brief overview on ESSs is given in [17]. In [18], 
the authors have discussed the effect of hybrid energy storge 
(HES) on frequency stability of a microgrid. Enhancing fre-
quency stability for an isolated system using an ultracapaci-
tor is found in [19]. In [20], the authors illustrate the dif-
ference between proportional integral derivative (PID) and 
factional order PID (FOPID) controller on ΔF for hybrid 
fractional order power generation and ESSs. Frequency 
regulation with increased penetration of PV systems using 
EESs is studied in [4]. Battery energy storage (BES) for 
frequency control with increased penetration of wind energy 
is demonstrated in [5].

Frequency can be regulated through the inverters of 
RESs. This is achieved by adding a supplementary control 
signal that depends on either ΔF or RoCof. For example, 
frequency control for a microgrid with PV power plant 
using PV inverter is introduced in [21]. While smart PV 
inverter for frequency control of smart grids is justified in 
[22]. In addition to this, modern load management strate-
gies and control techniques are tested for frequency control. 
For example, frequency control for a microgrid using the 
stored energy in electric vehicles (EVs) is studied in [23, 
24]. Some researchers have discussed various algorithms 
and controllers, for example, frequency control of PV con-
nected microgrids using fuzzy logic controllers [25], and 
frequency control for power systems with high penetration 
of RESs using a stochastic fractal optimizer [3]. Figure 1 
summarizes the various methods discussed in literature for 
frequency regulation in the presence of RESs.

The importance of integration of RESs with electrical 
grids and their effects on frequency regulation has attracted 
many researchers, therefore, an extensive published work 
has been found in the literature.

This paper aims to introduce a comprehensive review of 
the effect of high penetration of RESs on frequency regula-
tion of electrical power systems and to compare, evaluate 

and classify methods of mitigation. This work may be a 
guide for future grid codes regulation regarding the partici-
pation of RESs in frequency control.

This paper is organized as follows: Sect. 2 discusses the 
incentives towards 100% RESs power systems and its effect 
on power system inertia and frequency. Modelling of RESs 
which include PV and wind energy is illustrated in Sect. 3. 
Section 4 discusses the effective frequency regulation meth-
ods for power systems with high penetration of RESs. Sec-
tion 5 summarizes and concludes the paper outcomes.

2 � Increased Penetration of RESs in Power 
Systems

Many countries around the world are now moving towards 
complete dependence on RESs and have set their future 
plans to achieve this goal. Therefore, flow of research is 
found in literature to study the effect of high penetration 
of RESs in electric grids on different aspects such as their 
operation and control. This section provides a summary for 
global rush towards replacing conventional energy sources 
by RESs, and a comprehensive review of their effect on 
power system frequency stability.

2.1 � Toward Power Systems with 100% RESs

Extensive research has been done to discuss the problems 
of fossil fuel resources which are running out and a source 
of global warming [26]. The depletion of these resources 
is expected to occur nearly by 2050 to 2060 [27]. Emis-
sions from these resources are mainly due to fuel burning 
during the electric power generation process, while emis-
sions from renewable power plants especially wind and 

Fig. 1   Summary of the methods of frequency support with RESs
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solar power plants are mainly due to the fabricating process 
of power plant equipment (see Fig. 2) [27]. For these rea-
sons, many conferences (like Paris agreement) have been 
organized to reduce these emissions and solve the problem 
of global warming [28]. Moreover, the climate action con-
ference which was held in New York in 2019 by the United 
Nations put goals to achieve. These goals are to decrease the 
greenhouse emissions to 55% before 2029 and to reach zero 
emissions before 2050 [29]. A model which discusses the 
increase in fossil fuel price with depletion while using only 
fossil fuels and fossil fuels integrated with RESs is demon-
strated in [30]. In [31], the authors investigate a method to 
calculate carbon dioxide emissions in Tokyo and its relation 
to wind speed.

Increased penetration of RESs in electric power systems 
will reduce both the carbon dioxide emissions and cost of 
electric power generation [32]. In [33], the authors dis-
cuss carbon concentration, its tax cost and vulnerability of 
climate change, particularly their effects on the extensive 
use of RESs. In [34], the authors conclude (for Egyptian 

grid) that the total cost reduction (fuel and environmental 
cost) can be 220,000$, 1,500,000$ and 2,200,000$ if the 
RESs are 2%, 16% and 22% of the total generation capac-
ity respectively.

In 2016, the global electricity generations were 1096, 
487, 303, 112 and 13.5 GW from hydroelectric, wind, 
PV, biomass and geothermal, respectively [35]. While in 
2019, these values were 1310.3, 622.7, 580.16, 123.8 and 
13.93 GW respectively [36]. Furthermore, it is planned for 
global electricity generation from RESs to reach nearly 
35% before 2030 [35]. There was a significant increase in 
the use of RESs in the European electrical power sector 
from 14.3% (in 2004) to 30.8% (in 2017) [37]. Portugal 
is one of many countries that plan to reach 100% RESs in 
the electric power sector [38]. Its electric grid has a high 
rank in using RESs compared to other European countries, 
it reached 57% RESs in 2016 [39]. Also, it is expected 
for Kazakhstan to reach 100% RESs before 2050 [40]. A 
statistical for global wind and PV increased penetration is 
illustrated in Fig. 3 [36, 41, 42].
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Fig. 2   Maximum carbon dioxide emissions (g/kWh) by different energy source
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2.2 � Power System Inertia and Frequency Stability

Frequency stability of power systems is known as the behav-
ior of power systems against any disturbances which tend to 
reduce frequency of power systems below their nominal value 
[43]. Inertia is known as the time duration of a generator in 
which the generator provides its rated power from its stored KE 
to the power system during disturbances as given by Eq. (1) 
[4, 44]. Solar PV systems do not have rotating masses, hence 
no stored KE, while wind generators have rotating masses 
but decoupled from power systems through power electronic 
devices and MPP techniques. So, the more the RESs pene-
tration in power systems, the more the rated MVA of power 
systems with constant KE and the less the inertia of power 
systems as described by Eq. (2). Increasing RESs, especially 
solar PV and wind energy, has a negative effect on power sys-
tem inertia [45]. Equation (3) shows that lower inertia power 
systems have faster RoCoF and higher frequency nadir ( Fnadir ) 
as demonstrated in Fig. 4 [6, 44]. Figure 4 describes the ΔF 
characteristics extracted from MATLAB/SIMULINK for a pri-
mary controlled synchronous generator with governor speed 
droop 5%, governor time constant 0.2 s, turbine time constant 
0.5 s and is subjected to 0.1 pu power imbalance assuming 
zero load damping factor. Load shedding, nuisance tripping 
of power plants and grid blackout may occur at higher Fnadir 
and RoCoF [46, 47], which are consequences of low inertia 
systems.

(1)H =
J�n

2

2Sn

(2)Hsys =

∑

KE

Ssys

where H is the generator inertia, J is the generator moment 
of inertia, �n is the generator rated speed, Sn is the rated 
MVA of the generator,  Hsys is the power system inertia, Ssys 
is the rated MVA of the power system,  

∑

KE is the summa-
tion of stored KE (in MW.s) in all synchronous generators, 
ΔPm is the change in generator mechanical power, ΔPl is the 
change in electrical frequency independent demand and D is 
the load damping factor.

Many studies have been conducted to investigate how 
increasing RESs affects power systems. In [48, 49], the 
authors discuss the effect of increasing RESs on power sys-
tem reliability. The authors in [50, 51], shed light on the 
effect of renewable distributed generators on the settings 
of protective devices. The effect of increased penetration 
of RESs on power system frequency stability is illustrated 
in [52–55]. While [56] discusses the effect of increasing 
the VSWTs and other factors on the RoCoF of the Croatian 
power system in case of islanding operation. Furthermore, 
a comparison between the frequency response of CSGs and 
WF is demonstrated in [57].

Therefore, the philosophy of participation of RESs in 
frequency has been changed. Recently, new grid codes state 
that RESs must participate in frequency regulation which 
will be discussed in detail in Sect. 4. In Germany, for exam-
ple, if the power system frequency increased to 50.2 Hz, 
the RESs must decrease their output by a rate of 40% of 
their capacity per Hz [58]. On the other hand, some papers 
have been conducted to determine the allowable penetration 
level of RESs especially wind energy such as [59, 60]. The 
flow chart in Fig. 5 describes a criterion for calculating the 
acceptable level of RESs while achieving the standard Fnadir 
for the Korean power system [61]. If the minimum frequency 
( Fmin ) is larger than Fnadir , the power system can accept more 
RESs instead of CSGs, otherwise the limit of RESs can be 
calculated from the previous loop.

3 � Modelling of RESs for Frequency Control

Studying the performance of power systems with high pen-
etration of RESs requires mathematical modelling of these 
RESs [62]. So, the appropriate model of RESs for frequency 
control studies has been discussed in literature. This section 
discusses a literature survey into modelling of PV systems 
and WFs especially VSWTs.

3.1 � Modeling of PV

PV systems convert solar energy into electrical energy. The 
efficiency of conversion is less than or equal 18%. Usually 

(3)
dΔf

dt
=

1

2Hsys

(

ΔPm − ΔPl − DΔf
)

Fig. 4   Frequency deviation characteristics with different values of 
inertia constant
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bulk PV stations are equipped with maximum power point 
tracking (MPPT) techniques [63]. A comprehensive survey 
of MPPT techniques for PV is introduced in [64, 65], and 
PV mathematical modelling are surveyed in [66, 67]. In [68], 
the authors demonstrate the equivalent linearized dynamic 
model of a high penetration of PV energy integrated with 
multi-machine power system. There are different formulas 
in literature that describe the output power of the PV pan-
els. These formulas are summarized in Table 1. A dynamic 
model of frequency droop controller of PV which is vali-
dated by [69] for PV rating larger than 10 MW is shown in 
Fig. 6 with the enabling of governor response, where Freqref 
is the reference frequency, Freq is the actual frequency, 
Pbranch_ref is the branch reference power, Pbranch is the branch 
power, Pcommand is the power command of the controller, 
Ddn is the down regulation droop, Dup is the up regulation 
droop, Ki is the integral gain of the droop controller, Kp is 
the proportional gain of the droop controller, Tp is the time 
constant of the active power filter, Tlag is the time constant 
of plant controller, Pemax , Pemin are the maximum and mini-
mum power error in the droop controller respectively and 
Pmax , Pmin are the maximum and minimum power command 

Fig. 5   Algorithm of determining the acceptable level of RESs for 
achieving frequency stability

Table 1   Summary of various PV solar energy models

Refs Model Nomenclature

[82] Ppv = Ppvstd × r ×
It

Istd
×
(

1 + �p ×
(

Tc − Tstd
))

Tc =
Ta+It×

(

Tc,rot−Ta,rot

It,rot

)

×

(

1−
�c

��
×

(

�c,std(1−�p×Tstd)
��

))

1+(Tc,rot−Ta,rot)×
(

It

It,rot

)

×
(

�p×�c

��

)

Ppv is the PV output power (KW), Ppvstd is the nominal power at standard condition 
(KW), r is the derating factor of the PV (%), It is the solar irradiance ( KW∕m2 ), 
Istd is the standard condition radiation ( KW∕m2 ), �p is the power temperature 
coefficient (%/◦C ), Tc is the actual PV panel temperature ( ◦C ), Tstd is the standard 
condition PV panel temperature ( ◦C ), Ta is the ambient temperature ( ◦C ), Tc,rot is 
the rated operating temperature ( ◦C ), Ta,rot is the ambient temperature at which Tc,rot 
is calculated ( ◦C ), It,rot is the solar radiation at which Tc,rot is calculated ( KW∕m2 ), 
�c is the efficiency of electrical conversion, � is the solar absorptance, � is the solar 
transmittance and �c,std is the efficiency of electrical conversion at standard condi-
tions

[83] PPV = �pv × A × It
�pv = �std × �MPPT ×

(

1 − �p ×
(

Tc − Tstd
))

Tc = Ta +
((

Tc,rot − 20
)

∕800
)

× It × 1000

A is the area of the PV panel ( m2 ), �pv is the efficiency of the PV panel, �std is the 
standard efficiency of the PV panel and �MPPT is the efficiency of the maximum 
power tracking device

[84] Ppv =
Vpv×Ipv×Npv

1000

Ipv = Il − Ir ×

(

e

(

Vpv+IpvRs

apv

)

− 1

)

−
(

Vpv+IpvRs

Rsh

)

Vpv is the voltage of the PV array (V), Ipv is the current of the PV array (A), Npv is the 
number of PV modules, Il is the photogenerated current (A), Ir is the reverse satura-
tion current of the module diode (A), Rs is the series resistance ( Ω ), Rsh is the shunt 
resistance ( Ω ) and apv is the modified ideality factor

[85] Ppv = Ppvmax×It ×
(

1 + �p ×
(

Tc − 25
))

× �conv

Tc = Ta +
((

Tc,rot − 20
)

∕800
)

× It × 1000

Ppvmax is the MPP of the PV at standard conditions (KW) and �conv is the converter 
efficiency

[86] Ppv = Ppvstd×It ×
(

1 + Kt

(

Ta + 0.0256It
)

− Tstd
)

Kt is a constant = −3.7×10−3

[87]

Ppv =

⎧

⎪

⎨

⎪

⎩

Pr

�

R2

RcRstd

�

0 ≤ R < Rc

Pr

�

R

Rstd

�

Rc ≤ R < Rstd

PrRstd ≤ R

R is the solar irradiance factor, Rc is a certain radiation 150 W∕m2 and Rstd is the 
standard radiation 1000 W∕m2

[88] Ppv = −1.69e−10
(

1000It
)4

+ 1.47146e−7
(

1000It
)3

+2.2301e−5
(

1000It
)2

+ 135.8It − 0.89025

[89] Ppv = Ppvstd × Npv ×
(

It

Istd

)

(

1 + �p
(

Tc − Tstd
))
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respectively. Also; the schematic diagram of frequency regu-
lation using overvoltage de-loaded PV based on ΔF is shown 
in Fig. 7 [70], where It is the solar irradiance, Tc is the actual 
PV panel temperature, Vdc−del−ref  is the reference de-loading 

DC voltage, Vdc−meas is the measured DC voltage, PFFR is the 
fast frequency response power signal which is an emulation 
of droop signal of CSGs and Id−ref  is the reference direct axis 
current which control active power through PV converter.

Fig. 6   Illustration of frequency control through PV active power control

Fig. 7   Dynamic modelling of 
frequency regulation using de-
loaded PV

Fig. 8   Configuration diagram of type 3 WT
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3.2 � Modeling of Wind Energy

WFs can be categorized into fixed speed wind turbines 
(FSWTs) and VSWTs. DFIGs are the most common 

generators for VSWTs as they have higher efficiency than 
FSWTs [71, 72]. In DFIGs (type 3 WT), MPP is achieved by 
controlling the rotor speed through controlling rotor current 
by rotor side converter (RSC) [73]. A comparison between 
type 3 and type 4 WT is illustrated in Table 2 [74–77]. In 
[71], the authors discuss the various MPPT techniques for 
WTs.

A comprehensive survey of various modelling categories 
of WT generators is demonstrated in [78]. In [66, 67], a 
review of mathematical modeling of wind power is illus-
trated. The mechanical power of WT ( Pwt ) is shown by 
equations in Table 3. In addition to this, [79] discusses the 
relation between WF output power and wind speed including 

Fig. 9   Configuration diagram of type 4 WT

Table 2   Comparison between type 3 and type 4 WTs

WT type Type 3 Type 4

Generator type DFIG PMSG, EESG or SCIG
% Decoupling Partially decoupled Fully decoupled
Configuration See Fig. 8 See Fig. 9
Dynamic modelling [92] [93]

Table 3   Formulas for output power of WTs

Refs Model Nomenclature

[57, 72] Pwt =
1

2
��r2V3Cp

Cp = 0.5176

(

116

�i
− 5 − 0.4�

)

e
−

21

�i + 0.0068�

1

�i
=

1

0.08�+�
−

0.035

�3+1

� =
�r

V

Pwt is the WT output power, is � is the density of the air, V  is the wind speed, Cp is the 
power coefficient, � is the WT angular speed, r is the length of the WT blade and � is 
the pitch angle of the WT blade

[94]
v = vr

(

h

hr

)�

Pwt =

⎧

⎪

⎨

⎪

⎩

av3 − bPrvci < v < vr
Prvr < v < vco
0otherwise

a =
Pr

vr
3−vci

3

b =
vci

3

vr
3−vci

3

h is a certain hub height,hr is the reference height, vr is the wind speed at hr , v is the 
wind speed at h , Pr is the rated WT power, vci is the cut-in wind speed, vco is the cut-
out wind speed and vr is the rated wind speed

[95]

Pwt =

⎧

⎪

⎨

⎪

⎩

Pr

�

v2−vci
2

vr
2−vci

2

�

vci < V < vr

Prvr < V < vco
0otherwise

[67] Pwt =
1

2
��r2V3�WG

�WG = �t�gb�g

�t is the efficiency of WT, �gb is the efficiency of the gear box and �g is the efficiency of 
the generator

[88] Pwt = −2e−5V6 + 0.001V5 − 0.0155V4

+0.0712V3 + 0.1058V2 + 0.7631V − 1.9152

Pwt(kW), V  ( m∕s)

[96]
Pwt = 5.5e

(

V−13.8

4.6

)2

+ 2.2e

(

V−19.15

3.5

)2
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spatial effect. While the equivalent model of single and 
multi-machine WF is illustrated in [72] including the model 
of wind speed, WT, RSC, grid side converter (GSC) and 
DFIG. Moreover, the equivalent model of DFIG WT is dis-
cussed in [73].The transient stability linearized model of 
VSWT is illustrated in [74]. In [80], the authors illustrate the 
transfer function (TF) of a WF which has 16 WTs. This TF 
relates the output active and reactive power to WF terminal 
voltage and wind speed. While in [81], the authors shed light 
on a standard model (AGC30) for RESs which is used in 
MATLAB/SIMULINK to study both economic dispatch and 
frequency regulation. The dynamic modelling of VSWT and 
its pitch angle and droop controllers are shown in Figs. 10, 
11, 12 respectively [3], where Pe is the WT output electri-
cal power, Hwt is the VSWT inertia constant, �ref  is the ref 
VSWT speed at MPP, Tcom is the command torque, Pcom is 
the command power, �ref  is the pitch angle at rated rotor 
speed, �a is the additional pitch angle which regulate ΔF 
during disturbances and � is the time constant of the pitch 
angle controller.

Extensive work in literature has shed light on modelling 
of type 3 WT since it is the most effective and has active 
power regulation. Equations (4–11) describe the dynamic 

model of DFIG while Figs. 13 and 14 describe the modelling 
of rotor side controller of RSC which controls the output 
active and reactive power of DFIG and grid side controller 
of GSC which controls the voltage of the dc bus and reactive 
power flowing between grid and rotor respectively [72], 
where vgd,vgq,igd,igq are d, q axis voltages and currents of the 
GSC respectively; vd , vq are d, q axis voltages of the grid 
respectively; ird , irq are d, q axis currents of the RSC respec-
tively; vd , , vq, are d, q axis voltages of the rotor respectively; 
and � = 1 −

Lm
2

LsLr
.

WTs can be modeled in detail or simplified [74]. 
Detailed models, especially for the driven generators, 

Fig. 10   Block diagram of VSWT

Fig. 11   Block diagram of 
VSWT pitch angle controller

Fig. 12   Block diagram of VSWT droop controller

Fig. 13   Block diagram of GSC controller of type 3WT
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are important to show the electromagnetic transients, 
however, for frequency studies simplified models can be 
satisfactory. For example in [73], with step variation of 
wind speed from 8 to 14 and back to 8 by 2 m/s steps, 
the results of the simplified model are accurate for both 
steady state and transient response (pitch angle, generator 
angular speed and power) with a time delay between both 
models less than 3% of the H constant of type 3 WT. While 
in [90], for wind speed 8 m/s and 0.1 pu load increasing, 
the results of the simplified model are accurate with small 
deviation in rotor speed and Fnadir compared with the exact 
model. In addition to this, the simplified model is used in 
[91] to test a large network which has more than 30,000 
buses, 2000 SGs, a WF has 468 MW (130 × 3.6 MW WTs). 
The simulation results show that the simplified model is 
accurate for transient stability studies. From the authors’ 
point of view, the simplified WT model is accurate, so it 
is recommended for frequency control studies.

(4)vds = Rsids +
d�ds

dt
− �qs�e

(5)vqs = Rsiqs +
d�qs

dt
+ �ds�e

(6)vdr = Rridr +
d�dr

dt
− �qr�s

(7)vqr = Rriqr +
d�qr

dt
+ �dr�s

(8)�ds = Lsids + Lmidr

where vds , vqs , vdr , vqr are d, q axis stator and rotor voltages 
(V) respectively; ids , iqs , idr , iqr are d, q axis stator and rotor 
currents (KA) respectively; �ds , �qs , �dr , �qr are d, q axis 
stator and rotor magnetic fluxes (Wb) respectively; Rs , Rr 
are stator and rotor resistances ( Ω ) respectively; Ls , Lr are 
stator and rotor self inductances (mH) respectively; Lm is the 
mutual inductance between rotor and stator (mH), �e and �s 
are the rotational and slip speeds (rad/s) respectively.

4 � Efficient Frequency Regulation Techniques

In this section, the common methods for frequency regu-
lation in literature are introduced. These methods depend 
on adding a virtual inertia via energy storage device, de-
loading the RESs to have a spinning power reserve for 
frequency manipulation, using the load demand response 
for interchanging power with smart distribution networks 
and inertial response to support power systems with tem-
porary active power. These.

four principles are widely discussed as follows:

4.1 � Energy Storage Systems

ESSs are considered a good solution to mitigate the prob-
lem of RESs intermittency by satisfying equilibrium 
between load and generation while operating RESs under 
MPPT condition [97–99]. Their techniques can be classi-
fied as follows [97]:

•	 Electrical such as super capacitor energy storage 
(SCES) and superconducting magnetic energy storage 
(SMES).

•	 Electrochemical such as BES and fuel cell energy stor-
age (FCES).

•	 Mechanical such as flywheel energy storage (FWES), 
pumped hydro energy storage (PHES) and compressed 
air energy storage (CAES).

•	 Chemical such as hydrogen energy storage (H2ES).

A review of various ESSs techniques and their effi-
ciency, life time, charging rate, discharging rate and capac-
ity is illustrated in [100]. While [99] discusses a survey 
about HES mainly BES integrated with SCES. A compari-
son between various aspects of different ESSs techniques 

(9)�qs = Lsiqs + Lmiqr

(10)�dr = Lridr + Lmids

(11)�qr = Lriqr + Lmiqs

Fig. 14   Block diagram of RSC controller of type 3WT
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is demonstrated in Table 4 [17, 101–106]. The authors in 
[17] shed light on various ESSs techniques which are used 
to smooth output power of WF. While the authors in [102] 
demonstrate the various control techniques which are used 
with BES to smooth the output power of WF. [103] illus-
trates the various techniques of mechanical ESSs which 
are used in PV and wind plants and their advantages and 
disadvantages. In addition to this, [107] investigates the 
optimal location (from power smoothing point of view) 
of 5 MJ SMES which integrates with renewable power 
systems. The authors in [108] categorize the target of ESSs 
into two classifications.

The power system operator must save a certain reserve 
active power to regulate the frequency of power systems 
during disturbances [104]. Using ESSs not only helps to 
smooth the output of RESs but also introduces frequency 
regulation for power systems during disturbances [109]. 
ESSs play an important role in regulating the frequency 
of power systems with high penetration of RESs as they 
can charge and discharge power into power systems [110]. 
In [111], the frequency regulation is achieved through 
active power control using SCES hybridized with BES 
for a microgrid consisting of a diesel generator and a WT. 
While the authors in [112] demonstrate the effect of BES 
location on power system frequency response due to load 
change at different locations. Moreover, energy control 
of type 3 WT integrated with FCES and SCES is illus-
trated in [113]. While the effect of fast response ESSs 
on frequency stability for Gotland island is illustrated in 
[114]. In addition to this, the authors in [98] investigate 
the effect of load increasing on frequency stability of two 
connected microgrids under different operating conditions 
of super capacitors. The authors in [115], illustrate the 
frequency stability of two-area power system subjected 
to a disturbance under three conditions. While in [116], 
the authors discuss the frequency regulation of a power 
system consisting of a diesel generator and a WT using 
BES under two different operating conditions. In [117], 
the authors investigate transient stability of an offshore 
WF connected to a marine current farm using a FWES 

based PID controller. Moreover, [118] investigates an opti-
mization algorithm to optimize the parameters of SMES 
and PID which are used in secondary frequency control. 
A summary of some studies that have been conducted to 
enhance frequency stability using ESSs is given in Table 5. 
From the authors’ point of view based on the conclusion 
of Tables 4 and 5, the most effective recommendation for 
improving the power system stability especially frequency 
stability is to use BES.

4.2 � De‑loading of RESs

As mentioned earlier, RESs operate under MPPT condition 
which means that they do not have any reserve power to sup-
port frequency contingency event. One method of frequency 
regulation techniques is to de-load RESs which means to 
operate below MPPT to maintain a certain reserve power 
for frequency regulation [14]. The de-loading of PV systems 
is performed by controlling the output PV voltage either 
by under voltage or over voltage as shown in Fig. 15 [14, 
70, 123]. Over voltage de-loading is preferred due to volt-
age stability wise. Figure 15 is extracted from MATLAB/
SIMULINK for a PV model which has a 7.34 short circuit 
current and a 0.6 V open circuit voltage at standard condi-
tions. More details for de-loading of PV is given in [124].

Although de-loading of RESs below MPPT is not an effi-
cient method for frequency regulation, it may be more effec-
tive than ESSs from cost point of view [125]. The efficient 
limits of PV de-loading are discussed in [125]. In [126], a 
cost analysis is carried out to show that the concept of de-
loaded PV is economical when compared to BES for fre-
quency control. So, many studies have been performed to 
illustrate frequency regulation by reserving a certain amount 
of active power using de-loading of RESs. Frequency regula-
tion by active power control of PV system through inverter 
is investigated in [127]. [128] introduces a grid consisting 
of a PV system, a diesel generator and a WT and discusses 
the effect of using droop PV on frequency regulation while 
load is disturbed. While [129] discusses frequency regula-
tion of an isolated microgrid through the de-loading of PV 

Table 4   Comparison between 
various aspects of different 
types of ESSs

Type of ESSs Fast response High energy 
capacity

High efficiency Environ-
mental 
issues

High 
capital 
cost

Long lifetime

SCES √ √ √
SMES √ √ √ √
CAES √ √
PHES √
FWES √ √ √
BES √ √ √ √ √
FCES √ √
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system, the percentage of de-loading is related to the ΔF by 
a boost converter. Moreover, in [123] a microgrid that has 
2688 KW of PV is simulated for frequency response due to 
5% of load change while operating at MPP and de-loaded 
mode. The frequency response of northern Chile isolated 
grid is investigated in [70] for various PV levels and at dif-
ferent de-loading conditions which are MPP, 3% de-loading 
and 5% de-loading of PV. The results show that the level of 
PV slightly affects the frequency response unless the level is 
greater than 20% of the grid capacity. The authors in [126] 
combine the ΔF with the MPP voltage in the de-loading 

criteria of PV. For the previous case study, the authors con-
clude that the de-loading is more cost-effective than ESSs.

On the other hand, WTs can be de-loaded through pitch 
angle control or rotor speed control (over speed or under 
speed), over speed control is recommended due to WT fre-
quency stability issue at under speed operation [130–132]. 
Pitch angle control can be performed by operating the WT 
at a pitch angle close to the optimal value to reserve a cer-
tain amount of power to participate in frequency regulation 
[130]. [133] sheds light on the de-loading of VSWTs in order 
to satisfy power balance and then frequency regulation. The 
authors in [132] shed light on the acceptable range of rotor 
over speed de-loading and pitch angle de-loading based on 
wind speed. Figure 16 illustrates the de-loading technique of 
VSWTs by pitch angle control and rotor speed control [12, 
130, 132]. Figure 16 is extracted from MATLAB for General 
Electric (GE) DIFG 3.6 MW with wind speed 16 m/s. More 
details are given in [134–136] for frequency regulation by 
de-loading of VSWTs either by rotor speed control or pitch 
angle control.

The authors in [12] discuss the frequency regulation of a 
two-area power system penetrated with wind energy using 
de-loading technique based on adaptive PID controller. In 
addition to this, the authors in [137] compare the frequency 
response at various load disturbances while operating type 
4 WT under MPPT condition and de-loading condition. 
While the authors in [138] compare the frequency regulation 
obtained from de-loading of WT while using fixed droop and 
wind speed adaptive droop. Moreover, the authors in [139, 
140] investigate the frequency regulation introduced by tra-
ditional PID controller and adaptive PID controller which 
is based on artificial bee colony (ABC) algorithm. Also, the 
contribution of FOFPID de-loaded tidal plant on frequency 
regulation is discussed in [141] and compared with fixed 
droop, PID droop and fuzzy PID droop. Table 6 discusses 
the effect of de-loading of RESs on the frequency response 
of power systems. Based on the conclusion of various stud-
ies that have been done to improve the power system fre-
quency, the authors prefer and recommend using ESSs rather 
than de-loading RESs from frequency improvement point of 
view although de-loading is more cost-effective than ESSs.

4.3 � Demand Response

Demand response is considered an effective frequency regu-
lation solution at the load side which can be performed by 
under frequency load shedding (UFLS) or by the contribu-
tion of EVs [143]. UFLS is a process of removing a certain 
amount of power system load when an outage of large gen-
erating unit occurs. It is performed to keep balance between 
generated and demand power [8]. It is performed as a last 

Fig. 15   Demonstrates the de-loading of PV system by under voltage 
and over voltage

Fig. 16   Demonstration of de-loading of VSWTs by pitch angle and 
rotor speed control
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solution if the power system reserve power is not sufficient 
for power balancing [8, 143, 144].

The authors in [144] introduce a criterion for UFLS for 
power systems which are penetrated with high RESs and 
integrated with ESSs. While the effect of UFLS on New 
England 39 bus frequency is illustrated in [145]. Moreover, 
in [146] the authors discuss UFLS for a two-area power sys-
tem which has 500 MW of wind energy while considering 
the effect of inertial control of WT. In [144] the authors 
discuss the effect of UFLS on the frequency response of El 
Hierro power system while losing the largest generating unit 
and also discuss the contribution of VSWT in regulating the 
frequency as an alternative for UFLS. In addition to this, 
a criterion of UFLS is performed in [147] which depends 
on load flow and the convergence in errors, voltage viola-
tion and frequency violation. Also, this criterion is tested by 
Monte Carlo simulation.

The parameters of UFLS relay depend on the system ΔF 
and RoCoF [143]. The role of datacenter in the optimiza-
tion process of UFLS relay is illustrated in [148]. While the 
authors in [149] discuss the frequency response of a smart 
grid while using an adaptive UFLS relay which adapts its 
parameters each hour of the day.

Spread of EVs contributes to minimizing greenhouse 
gas emissions [150]. So, many researchers shed light on 
the impact of EVs. In [151], the authors discuss the effect 
of EVs on the emissions of carbon dioxide while integrat-
ing power systems with and without RESs. While [150] 
discusses the smart infrastructure which is required for 
smart EVs. In addition to this, a comprehensive detail 
about EVs, their ESSs and their energy consumption is 
discussed in [152]. Moreover, different EVs topologies 
with RESs based power systems are introduced in [153]. 
While various construction types of EVs are introduced in 
[154]. In addition to this, IEEE 33 bus system is studied 
in [155] as a case study to investigate the reduction in the 
cost of the system and minimizing the degradation of bat-
teries while using EVs with RESs. Moreover, the authors 
in [156] optimize the integration of plug in EVs (PEVs) 
and RESs into power systems and verify the results on 
IEEE 9 bus power system.

EVs play an important role in frequency stability while 
minimizing UFLS at the same time [157]. [158] sheds light 
on the benefits of using both PV and EVs from power system 
stability and quality point of view. Modes of EVs which par-
ticipate in frequency regulation can be classified to vehicle 
to grid (V2G), grid to vehicle (G2V) and EV aggregator 
[158]. Controlling the charging and discharging processes 
of EVs which are operated in G2V and V2G mode can par-
ticipate in the frequency regulation of power systems while 
ensuring satisfaction for EV owner [158–161]. A compre-
hensive survey into V2G mode of EVs with RESs based 
power systems is introduced in [154]. V2G mode is more 

effective than plug in mode from frequency regulation point 
of view, but less effective than plug in mode from battery 
life time point of view [162]. EV aggregator is the com-
munication ring between EV and power system operator 
which manages the charging process of EV and contributes 
to frequency regulation [163]. A Chinese two-area power 
system penetrated with wind energy is studied in [160] and 
discussed with the effect V2G EVs. While [164] discusses 
the effect of PEVs on the load frequency control (LFC) of 
a thermal power system based on two degrees of freedom 
PID. Moreover, a control methodology of EVs contribution 
in frequency regulation based on frequency disturbance and 
state of charge (SoC) is discussed in [165]. The authors in 
[166] illustrate a comprehensive survey about the different 
methods of EV charging and the effect of V2G from power 
system cost point of view. Usually, the droop charging con-
trol of EVs (only charging) is preferred as the discharging of 
EVs reduces battery life time [24]. So, the new trend of EVs 
is to use a secondary battery for frequency regulation [167].

The contribution of EVs in the primary frequency con-
trol of a power system integrated with RESs consisting of 
38 generating units is studied in [168]. While the authors 
in [169] discuss intelligent energy management system for 
vehicle-to-vehicle (V2V) mode which is used to calculate 
the optimal energy supplied to grid to participate in fre-
quency regulation. Moreover, the effect of EVs on the fre-
quency regulation of Egyptian power system is illustrated 
in [170] at different levels of RESs and various load distur-
bances. In addition to this, [171] discusses the contribution 
of 1000 PEVs as an ESS for the frequency regulation of a 
PV grid. From the authors’ point of view, EVs are more 
effective than UFLS based on the summarization which is 
given in Table 7.

4.4 � Inertial Response

Inertial response is to temporarily support power systems 
with a certain amount of active power extracted from 
VSWTs based on the stored KE in the rotating masses of 
rotor and blades of WT. Inertia response is categorized into 
droop control, synthetic inertia and fast power reserve.

Droop control is an emulation of the CSGs’ governor 
which provides additional active power during frequency 
disturbance according to Eq. (12) [4, 57], where ΔP is the 
additional active power released through the WT inverter, 
Rwt is the droop coefficient of WT. However, the fixed droop 
gain is not feasible due to the intermittence of wind energy. 
So, [172] introduces a dynamic droop controller which con-
trol the RSC controller of type 3 WT.

Synthetic inertia is an emulation of the inertial response 
of CSGs (fast primary response) which is used with VSWTs 
to extract KE during frequency disturbances [173]. The ref-
erence power signal of synthetic inertia in [173] depends 
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only on RoCoF, so the frequency could not be recovered to 
its nominal value. While the signal in [174] depends both 
on RoCoF and ΔF , so the frequency could be recovered to 
its nominal value.

Fast power reserve is to support the power systems with 
an additional KE from VSWTs by the overproduction of WT 
for a certain period [57]. The amount of temporary active 
power may reach 20% of the VSWT rating for 10 s or more 
[175]. The rotational speed of WT is reduced due to the 
overproduction process, so this KE is recovered back to the 
WT after the frequency disturbance is mitigated to sustain 
the stability of WT [57] as shown in Fig. 17. One of the fast 
power reserve challenges is that a secondary frequency dip 
(SFD) may occur during the recovering period. The SFD can 
be avoided through increasing the recovery period by con-
trolling the accelerating power ( Pacc ) [57]. SFD can also be 
avoided by adding an additional torque signal which depends 
on the deviation between WT rotating speed at the beginning 
and at the end of the overproduction period [176]. Table 8 
provides a summarization of various inertial response tech-
niques that have been conducted to enhance the power sys-
tem frequency stability.

4.5 � Application of Metaheuristic Optimization 
on Frequency Control

Metaheuristic optimization algorithms differ from each other 
according to their constraints [50]. A summarization of some 
studies that have been conducted to enhance power system 
frequency based on various optimization algorithms for dif-
ferent frequency regulation techniques is given in Table 9.

(12)ΔP = −
ΔF

Rwt

Fig. 17   Illustration of fast power reserve inertia response criterion
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5 � Conclusion

This paper discussed the motivative issues towards the 100% 
use of RESs power systems and its effect on power system 
inertia, ΔF and RoCoF. Moreover, the dynamic modelling 
of PV and various WTs especially type 3 and 4 and their 
controllers which are used for frequency stability study were 
illustrated in this paper. Also, various frequency regulation 
methods, their advantages and disadvantages were dis-
cussed. In addition to this, some metaheuristic optimization 
algorithms were illustrated. Comprehensive comparisons 
between various frequency regulation methods have been 
made in this paper to help researchers and grid operators 
to select the most effective method to optimize the ΔF and 
RoCoF. From the authors’ point of view based on various 
papers conclusion, ESSs especially BES are more effective 
than the de-loading of renewable energy sources from fre-
quency regulation point of view. The authors recommend 
resorting the de-loading of renewable energy sources at 
very high penetrations while the spinning reserve of CSGs 
is not sufficient to support power system frequency distur-
bances. Demand response is considered a good solution to 
regulate frequency, but it requires an excellent communica-
tion infrastructure between generation and demand sectors. 
Various demand response techniques which are UFLS and 
EVs including their advantages and disadvantages were 
introduced in this paper. Inertia response is an excellent, 
cost-effective and fast frequency regulation solution and the 
most spreading technique, but it may cause a SFD during 
the power recovery period as it is a temporary technique. 
Prolongation of the recovery time can avoid the problem of 
SFD. For further studies, the authors recommend studying 
the effect of the prolongation of the recovery time on a wider 
scale and the effect of various electric vehicle topologies on 
frequency stability.
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