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Abstract

In the clinical research, three-dimensional/volumetric anatomical structure of the human body is very significant for diag-
nosis, computer-aided surgery, surgical planning, patient follow-up, and biomechanical applications. Medical imaging pro-
cedures including MRI (Magnetic Resonance Imaging), CT (Computed Tomography), and CBCT (Cone-beam computed
tomography) have certain drawbacks such as radiation exposure, availability, and cost. As a result, 3D reconstruction from
2D X-ray images is an alternative way of achieving 3D models with significantly low radiation exposure to the patient. The
purpose of this study is to provide a comprehensive view of 3D image reconstruction methods using X-ray images, and their
applicability in the various anatomical sections of the human body. This study provides a critical analysis of the compu-
tational methods, requirements and steps for 3D reconstruction. This work includes a comparative critical analysis of the
state-of-the-art approaches including the feature selection along with their benefits and drawbacks. This review motivates the
researchers to work for 3D reconstruction using X-ray images as only a limited work is available in the area. It may provide a
solution for many experts who are looking for techniques to reconstruct 3D models from X-ray images for clinical purposes.

1 Introduction

A human body is a real three-dimensional anatomical struc-
ture. Invasive methods are not always recommendable for
the disease diagnosis and treatment planning of a patient.
Therefore, several imaging modalities are used to visualize
the internal anatomy of the human body such as X-ray, CT
(Computed Tomography), CBCT (Cone-beam Computed
Tomography), Ultra-sound imaging, MRI (Magnetic Reso-
nance Imaging), PET (Positron Emission Tomography), etc.
These modalities provide 2D images as well as 3D images
based on the type of modality. Every imaging modality has
its specific use and applicability for clinical use. X-ray imag-
ing is a popular imaging modality and is widely used to visu-
alize the anatomical structures inside the body. X-ray imag-
ing modality is the most available and low-cost modality
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compared to the other modalities. Therefore, the use of the
X-ray image is very high and acceptable.

However, X-ray images have many drawbacks [1, 2]. The
X-ray image provides the projected 2D view of the real 3D
anatomical structure which may not be much useful for the
radiologist in a few severe cases. The anatomical geometry
is overlapped in X-ray images which may create confusion
to understand the real anatomical structure. The measure-
ments are obtained projected measurements from 3 to 2D
which loses the real measurements. The image calibration
is required to read the X-ray images.

To overcome the drawbacks of the X-ray images [3], 3D
images like CT and CBCT are used for clinical practices [4].
But there are certain drawbacks with 3D images like CT and
CBCT. These imaging modalities are very less available,
costly, and expose the patient to higher radiation compared
to the X-ray images [5]. A conventional way of visualization
of the anatomical volume through the CT scan is shown in
Fig. 1.

To solve the problems of 3D imaging modalities, diag-
nosis and treatment planning can depend on 2D X-ray
images in non-severe cases where radiologists and sur-
geons can understand the 3D anatomy by looking at the
X-ray images. But in serious cases, diagnosis and treat-
ment planning becomes difficult using X-ray images only.
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Fig. 1 3D Imaging and visu-
alization process of Computed
Tomography for the craniofacial
region [14, 15]

X-ray Tube

3D Visualization

Upperairway | [/ SO\ 7y Y TR

Lower airway

Segmented
3D structure

CT Detector

Nasal cavity

Left and right
primary bronchi

Bronchiol

Stack of slices

2D Slice Images

Therefore, many methods were involved that can construct
the 3D image using X-ray images. These methods are over-
coming the drawbacks of 2D as well as 3D imaging modal-
ities and are now available at an early stage. Such methods
are widely required for the possible anatomical regions.

Three-dimensional image construction for an ana-
tomical region is used for the patients in terms of medi-
cal diagnosis, treatment planning, and follow-up [6—10].
There are several diseases associated with different ana-
tomical regions [11] of the human body where image-
based assessment is important (for example., Knee bone
fracture, Femur bone fracture, arthritis, obstructive sleep
apnea syndrome, sinusitis, lesions detections in the chest,
inflammatory diseases, bone fractures, etc.). Diagnostic
images enable the radiologist to view the anatomical struc-
ture of the region to figure out causes of illness, injury and
to confirm a disease [12] with proper follow-up [13].

Thus, 3D construction from X-ray images is the most
favorable solution for visualizing the 3D anatomy of the
patient for clinical analysis. It is cost-effective, widely
available and exposes a patient to less radiation. The num-
ber of radiographs taken should be less in number viz.,
one or two per patient as it is a primary concern of 3D
reconstruction from 2D X-ray images.

In this paper, a comprehensive review of the many
available approaches or techniques for 3D image recon-
struction from X-ray images is presented in further sec-
tions. The requirements, concepts and classifications of
3D reconstruction methods from X-ray images are dis-
cussed. Then their applications, benefits, and drawbacks
are assessed. Finally, the accuracy of various methods is
mentioned. Hence, this review can help researchers in this
field to find the best technique as per their work and needs.
It also makes recommendations or gives ideas to potential
researchers on this subject for their future work.

@ Springer

2 Literature Review

3D imaging modalities such as CT, CBCT has certain
drawbacks for a variety of reasons, as discussed above.
As a result, several studies have been conducted to intro-
duce a computational method that avoids these constraints
yet provides precise 3D information. Various techniques,
methodology, extracted features and reconstruction of an
image are listed in Table 1 as available in the literature.

Initially, a comprehensive and comparative review on
3D medical imaging was presented by Stytz et al. [16]
in 1991. Humbert et al. [17] presented an application of
parametric models for spine reconstruction from biplane
X-rays. The authors performed the two-level reconstruc-
tion. The first level estimates a fast 3D reconstruction of
the bone. The second level was applied for obtaining fine
adjustments to the model for precisely accurate 3d recon-
struction. In the first level, the length of the spinal curve,
the depth of the L1 and L5 endplates were chosen as the
predictors for describing eight other parametric predic-
tors of each vertebra. These eight specific measurements
then infer the 19 important anatomical 3D points for each
parametric vertebra. Approximately 2000 points cloud
model were generated and then projected onto the 2D
plane to view the 3D reconstructed model of the spine. In
the second level, fine adjustment was performed by cor-
recting the anatomical features using the control points of
the vertebral body, which results in a parametric model to
self-improve.

Chaibi et al. [18] used a parametric model to present
a rapid 3D reconstruction method of femur bone from
biplanar X-rays utilizing parametric and statistical models.
The author obtained a simplified personalized parametric
model (SPPM) using geometric features such as cylinders,
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3D points, spheres, etc. (for a femur; the femoral neck-
shaft angle (FNSA), the femoral head and posterior con-
dyles representing spheres) and a full 3D morpho-realistic
personalized parametric model (MPPM) of the lower limb
obtained by correcting the SPPM. The Kriging methodol-
ogy was used for global deformation and local adaptation.
The as-rigid-as-possible deformation method was used
for local adaptation which is based on the moving least-
squares approach. Then 3D image reconstruction method
was applied in two steps; a fast 3D lower limb reconstruc-
tion and a full 3D lower limb reconstruction. This was
the first 3D modeling approach for the whole lower limb
using biplanar X-rays with FT (femoral torsion) and TT
(Angle between Tibial Plates Axis and the Bimalleolar
Axis) calculations.

Cresson et al. [19] tried to overcome the drawback of
overlapping regions to infer the information of location and
shape of the hidden portions of the spine. The algorithm
operates using two iterating processes. The first process uses
a sophisticated 2D/3D registration procedure. Boundary
edges were retrieved from radiographs to create a custom-
ized model of a vertebra. The second process refines the
reconstruction of all quasi sections of the spine by regis-
tering estimates of anatomical features using a statistical
model. The suggested technique can be a dependable alter-
native when compared with state-of-the-art technologies.

Convolution Neural Network (CNN) is an effective solu-
tion in a variety of applications viz; image processing [20,
21], image segmentation [22, 23], pattern recognition [24,
25] and computer vision [20]. The author Kasten et al. [26]
addressed the issues of an absence of heuristic knowledge
and dimensional expansion with conventional differential
layers. It employed a dimensional augmentation technique
where each pair of matching epipolar lines was back-pro-
jected into a two-channeled epipolar plane by bi-planar
X-rays. A 3D structure was produced by combining an aug-
mentation technique with a deep learning architecture. This
method to generate 3D representations of the various bones
maintains the geometric limits of the two views. To achieve
a more robust, accurate and efficient result, domain adapta-
tion is used.

Dixit et al. [27] used a machine learning approach for the
construction of 3D models from 2D X-ray images. Features
extracted are the color, size and depth of the femur bone.
Depth information was used to create a mesh point cloud.
The image was then converted into STL (Stereolithography)
representation. A 3D model was created using CNN.

From X-ray projection images obtained in an upright
position, the author Akkoul et al. [28] created a 3D cus-
tomized model of the femur. The strategy was based on a
two-stage pseudo-stereo matching process. The coordinates
of a 3D contour are determined in the first stage using two
sequential projections. The contours of the proximal femur

obtained is suffi-
cient for diagnostic
purposes in the case
of postural or sco-
liosis evaluation

Conclusion
The accuracy

(between bi-planar X-rays

and CT-scan):
Intermediate model (With-

out Contours)=1.8 mm
previous study by Laporte

et al. 2001 [42]: 2.8 mm

Personalized model (With
(Mean)

contours)=1.6 mm

Shape accuracy:

Results/ Evaluation

Mean Shape difference

Author proposed Model:
1.6 mm (Mean) & A

3D reconstruction of
the stereo matching
landmarks (using DLT
algorithm)

The anatomical atlas
was deformed geo-
metrically (using the
kriging technique)

Technique used

Feature

extracted

Stereo cor-
responding
landmarks
of seven
anatomical
regions

Region recon-
structed
Pelvis Bone

3 Samples of the
femur (including
the pelvis and
superior extrem-
ity) were obtained
from 1 woman and
2 men at the Insti-
tut d’anatomie de
Paris, France

A generic model
obtained from CT
scan reconstruc-
tion of the pelvis
bone that matches
an anatomical
atlas bone struc-
ture

Data / input

To propose and
validate a meth-
odology to attain
a 3D personalized
model based on
bi-planar X-rays

Objective

[41]

Mitton et al. 2006

Table 1 (continued)
S.no References, year
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are derived from the 2D X-ray images. The city-block, the
Euclidian 2D spatial distances and the Chessboard were
compared to match the points of two contours. Then, point
pairs estimated are used to build a collection of three-
dimensional points. The surface model was reconstructed
using a meshing approach from the cloud of points based
on Poisson's equation, resulting in a closed 3D surface. To
compensate for the absence of information and increase the
quality of the rebuilt 3D surface, a 3D reference surface of
the proximal femur was employed in the second stage to
inject extracted points locally into the reconstructed surface.
Thus, in this technique of merging numerous 3D points cre-
ated from a reference model obtained from a CT scan, the
use of an X-ray stereo model in conjunction with a shape
constraint improves accuracy and reduces error.

The statistical shape model (SSM) is a mathematical
model incorporating information on the shape as well as its
variance. Lamecker et al. [40] used a 3D Statistical shape
Model to reconstruct the 3D shape from a few digital X-ray
images. The author extracted the silhouettes from the pro-
jection using statistical shape training model thickness and
the simulated X-rays. The approach optimizes a similarity
measure analyzing the difference between the projections of
the shape model and X-ray images by measuring the distance
between the object silhouettes in the projections.

Zhu et al. [32] constructed 3D geometric surface models
of the human knee joint. This work developed an enhanced
SSM approach for predicting the 3D joint surface model that
only utilizes 2D images of the joint. A total of 40 human
knee distal femur models were used to create the SSM. A
series validation and parametric analysis indicated that the
SSM requires more than 25 distal femur models; each distal
femur should be specified using at least 3000 nodes in space;
and the 3D surface shape prediction should be based on two
2D fluoroscopic images obtained in 45° directions.

Zheng et al. [34] used a 2D/3D reconstruction technique
based on a single image to create a scaled, patient-specific
3D surface model of the pelvis from a single standard AP
X-ray radiograph. This single-image 2D/3D reconstruction
method uses a hybrid 2D/3D deformable registration strat-
egy that combines landmark-to-ray registration with SSM-
based 2D/3D reconstruction.

Ehlke et al. [31] attempted to increase the reliability of
the reconstruction process by considering as much informa-
tion as possible about the anatomy of interest. Deformation
of a volumetric tetrahedral mesh with density information
generated by digitally reconstructed radiographic (DRR)
deformations were projected to represent possible candidates
for patient-specific shapes. Compare the X-ray attenuation
of clinical X-rays with the pixel intensity of virtual X-rays to
find the best candidate. This method transfers computations
from the CPU to the GPU, providing interactive frame rates.

@ Springer

Gamage et al. [37] created a 3D reconstruction of the
bone models using salient anatomical edges and contours
computed from orthogonal radiographs. The method
employs an iterative non-rigid 2D point matching method-
ology as well as thin-plate spline-based deformation. Noise,
outliers, distortion and occlusions don't affect the non-rigid
registration system. This method was unique in that it
encompasses not only the exterior contours but also several
significant inner edges to ensure adaptability to various bone
anatomies and increase customization accuracy.

Gunay et al. [38] provided a cost and time-effective com-
putational technique for generating a 3D bone structure
from numerous X-ray images. When projected onto a two-
dimensional (2D) plane, this technology scales and deforms
a pre-set 3D template bone structure that is clinically normal
and scaled to an average size until the distorted shape gives
an image equivalent to an input X-ray picture. Sequential
quadratic programming (SQP) was used to achieve multi-
dimensional optimization by minimizing the error between
the input X-ray image and the image projected from the
deformed template shape.

Mahfouz et al. [39] provided a methodology for recon-
structing lumbar vertebrae from orthogonal views to obtain
precise contour projections. Reconstruction was performed
by deforming the 3D bone model through a robust 3D-2D
registration technique constrained through extracted 2D
morphometric measurements utilizing biplanar X-ray images
and statistical atlas of bone based on Principal Component
Analysis (PCA).

Karade et al. [30] used Laplacian mesh deformation and
self-organizing maps for an effective and precise 3D femur
bone model reconstruction by reforming a 3D template mesh
model to fit bone shape.

By gathering feature information, performing alignment,
and SSM fitting using CNN, Kim et al. [29] have developed
a superior technique for 3D reconstruction of leg bones using
only front X-ray images. The bounding boxes are recognized
by CNN. In situations where boundary outlines are diffi-
cult to extract, feature ellipses and feature points are used
to recognize boundaries, which unifies feature information
detection and saves time and money over manually defining
feature information. It's also more exact and consistent than
the manual assignment.

Koh et al. [33] used three CT images in combination with
two X-ray images and the free form deformation method for
3D reconstruction of patient-specific femurs. It takes very
little time to complete the bone segmentation of three CT
images, the proposed reconstruction approach can be viewed
as being similarly time and cost-effective as the reconstruc-
tion with X-ray images.

Mitton et al. [41] proposed an accurate 3D personalized
model of the pelvis from biplanar X-rays. The method makes
use of both stereo & non- stereo corresponding landmarks,
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anatomical atlas (prior knowledge) and contour identifica-
tion. The landmarks identified are used to deform the fast
computed initial solution. These retro projected landmarks
on the radiographs are then best matched with the X-rays
contours. Finally, utilizing the corresponding 2D/3D con-
tours as constraints, an elastic 3D surface deformation
mechanism based on the kriging method is used. The fact
that several anatomical characteristics of the pelvis are not
visible on the two radiographic views from which the recon-
struction is performed is a limitation of the approach.

Three-dimensional reconstruction proved to be very
effective and useful for preoperative planning and is becom-
ing more important with time. Despite the number of tech-
niques mentioned above in Table 1 in various literature, the
choice of the method and technology clearly depends upon
the requirement and the region reconstructed.

3 Imaging Requirements of 3D
Reconstruction

Requirements of 3D reconstruction from X-ray images
should be addressed while constructing 3D models, which
are as follows:

i. Acquisition of X-ray image(s): 3D reconstruction from
2D X-ray images can be performed using single X-ray
images [40, 43, 44], two X-ray images [28, 30, 33, 37,
38] or more X-ray images for several anatomical regions
such as femur, tibia, fibula, pelvis and spine. With an
increase in the number of X-ray images, the informa-
tion provided for the reconstruction will be increased.
Figure 2 represents a conventional way of X-ray image
acquisition. A portion of the X-ray beam emerging from
the X-ray tube pass through the person’s body where
they are absorbed by the internal structures and the
remaining are transmitted to a detector. It is then use for
further recording or processing by a computer.

ii. Image Enhancement: X-ray images' are low in
intensity, poor in contrast [47]. The quality of the
X-ray image can be improved by applying image

enhancement [48] to improve the assessment. Many
approaches for improving the quality of X-ray images
have been proposed such as histogram equalization
(HE) [49], adaptive histogram equalization (AHE)
[50], wavelet transform coefficients (WT) [51], and
the unsharp masking method (USM) [52, 53]. Huang
et al. [54] employed an adaptive median filter and a
bilateral filter to suppress mixed noise, which includes
both Gaussian and impulsive noise while keeping the
image structures (edges). After that, gray-level mor-
phology and contrast limiting histogram equalization
(CLAHE) were used to increase the image contrast.
The CLAHE approach enhances fine details, tex-
ture, and local contrast in images. Adaptive contrast
enhancement (ACE) [55] is another well-known local
enhancement method that uses Contrast gains (CG) to
change the high-frequency components of images.

iii. Immobilization during image acquisition: Immobiliza-
tion means fixing a body part to reduce or eliminate
the motion of a patient during the image acquisition
process [5]. During image acquisition, it is necessary
to sustain the rigid relationship between the original
anatomy and the acquisition device. Zheng et al. [56]
developed their new immobilization device including
all the anatomical structures.

4 Steps of 3D Reconstruction from 2D X-ray
Images

There are several types of approaches available for 3D
reconstruction using X-ray images such as based on a
single generic model [17, 41, 57-59], based on statisti-
cal shape and deformation models [60—65]. The former
approaches deform a generic model to build a patient-
specific 3D model, but the SSM-based methods build
an SSM to produce the statistically probable models and
decrease the number of parameters to optimize. Hybrid
approaches [66] combine the SSM-based methods with

Fig.2 Conventional Way of
X-ray Image Acquisition [45,
46]

X-ray Tube

Upper airway

Lower airway

Nasal cavity

Nasopharynx

Laryngopharynx
Larynx Scanning

Direction

Left and right

primary bronchi

Bronchioles

Patient
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Fig.3 General Scheme of 3D
reconstruction of lungs from
X-rays [67-71]

1. 2D X-ray Image
Acquisition & Calibration

2. Edge & Contour
Extraction (Segmentation)

3.2D/2D
Correspondences

5. Shape Deformation

4. Image Registration

generic model-based methods. Steps for doing 2D-3D
reconstruction are as follows and are also shown in Fig. 3:

i. 2D X-rays Image acquisition: Input images for 3D
reconstruction derived from X-ray images can be
obtained by acquiring single X-ray images [40, 43,
441, two X-ray images [28, 30, 33, 37, 38] and more
number of X-ray images for femur, tibia, fibula, pelvis
and spine regions. The amount of information will
increase in 3D reconstruction if the number of X-ray
images increases.

ii. Calibration: Due to the non-uniform magnification
of the X-ray images, calibration is necessary for
obtaining linear measurements. Calibration can be
performed for a radiograph using the scale as avail-
able over the radiograph. The scale present on the top
right corner of the craniofacial lateral image helps to
calibrate the lateral image easily. These linear meas-
urements are important for radiologists, for patients’
diagnosis and treatment planning. The measurement
result can differ if the calibration is not performed cor-
rectly [5].

iii. Contour Extraction (Segmentation): To extract the
edges or contours from the input images, semi-auto-
matic or manual [40, 58] solutions are available. Dif-
ferent methods have been offered by various authors
[28, 34, 65, 72, 73] for precise contours extraction
such as Thresholding based, Region-based segmen-
tation, watershed segmentation, etc. A Canny edge
detector can be applied to detect the edges. The active
Contour method (ACM) provides smooth and closed
contours which are suitable for medical images.

@ Springer

iv. 2D/2D correspondences: The process of identify-
ing correspondences between all points or extracted
contours of two or more X-ray images of the same
scene is known as image correspondences. The point
pair matching or correspondences could be developed
by extracting the points of interest along with some
descriptors and using some (dis)similarity measure
over the descriptors [30]. Pruning the correspondences
by finding the global minimum. Another method could
be finding the iterative distance (Euclidean distance,
city block distance, etc.) between each point to every
point in the other image [28].

v. Registration: Image registration is required in image
analysis applications that include several images of a
scene. It aligns images of a single scene captured from
different angles together to get all the necessary infor-
mation without replication. A rigid registration can
be used to register images that are related by rotation,
translation, or scaling. In the registration of medical
images, a 2D/3D correspondence is built between a
3D model (SSM or Mesh model) and 2D X-ray images
to obtain the best match. The features taken from 2D
X-ray images and those recovered from 3D models led
to the 2D/3D registration. In the Non-rigid image reg-
istration category, the images to be registered include
geometric variations. SOM (Self-organizing method)
is one of the non-rigid registration methodology that
Ferrarini et al. [74] used successfully in their GAME
approach.

vi. Shape deformation: The last step is to deform the tem-
plate in such a manner that when its silhouette vertices
are projected on a 2D plane, its projection contours
resemble the X-ray image contours. There are differ-
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ent types of techniques [75] available for deformation
such as Kriging algorithm, Thin-plate splines defor-
mation, Laplacian and Modified Laplacian [76], Tor-
sional spring method [77, 78], etc.

5 Computational Approaches for 3D
reconstruction from 2D X-rays

Models, anatomical knowledge, architectures and applica-
tions were used to classify 3D reconstruction approaches
as shown in Fig. 4. The categorization of 3D image recon-
struction methods are as follows:

5.1 Based on the Information Utilised
for Reconstruction

Intensity-Based Methods: Intensity-based approaches evalu-
ate the significance of pixel intensities in 2D radiographs
including internal intensity distributions between anatomi-
cal boundaries. To capture the heterogeneity of the region
of interest, volumetric density information is used in the
representation of the 3D anatomical structures. 3D/2D reg-
istrations based on intensity rely entirely on data contained
in voxels and pixels of 3D and 2D images, respectively.
The coinciding points in this method are regarded as corre-
sponding points and the similarity measure is determined via
pixel-wise comparison instead of the distance. Mutual infor-
mation, cross-correlation and a sum of square differences are
the most commonly used similarity measures for DRR-based
3D/2D registrations. One such work of Yao et al. [79] has
developed a deformable density atlas for bone anatomy and
use it in a range of applications, the steps for generating atlas
are as follows:

B th
Based on the asettlll 0:; fe
type of me (()l lo
model used moce .
deformation
Statistical Free Form
Intensity shape Model Deformation
Based
Articulated Hierarchical
anatomical Free Form
Model Deformation

Fig.4 Categorization of 3D reconstruction methods

e Construct Tetrahedral Mesh Models from extracted con-
tours as it is simple, easy to deform and density informa-
tion is also stored in the tetrahedron.

e Apply an analytical density function to each tetrahedron
instead of keeping the density value of each pixel in the
model. As a result, computing the measurements such as
integral, differentiating, interpolating and deforming is
simple.

e Once Tetrahedral Mesh Model is built, apply the defor-
mation technique to it

5.2 Based on the Type of Model Used

Statistical shape modelling: 3D Model built by statistically
analyzing a set of shapes is known as a SSM [32, 60, 63, 80,
81]. The mathematical model contains information on the
shape and its changes. The SSM contains data on the shape
geometry and variances. A Statistical shape model-based
methods are more considered as automated reconstruction
algorithms. These approaches need a large shape learning
database. A Statistical shape modelling system learns from
shape variations of an object or region. The statistical sur-
face model approach was presented by Cootes et al. [82] and
produced a deformable shape template. The approach inte-
grates a priori knowledge about the geometrical shape and
its morphological variability. Cootes et al. [82] introduced
the SSM idea as point distribution models (PDMs), which
are deformable representations that convey the mean shape
as well as shape variations. PDMs are created by performing
a PCA on the locations of landmarks that correlate to differ-
ent shapes. PCA is used to determine the variations in the
positions of the subject's paired points using a covariance
matrix to create an SSM.

A covariance matrix (Cov) is constructed using the sam-
ple set (Si) as in Eq. (1):

Convolutional Point- Based

Neural Stereo Corresponding
SSM & CNN ‘
Network points (SCP)
* Non- Stereo
Gometi Corresponding point
enetic
e SSM & (NSCP)
Algorithm Silhouette

*[ Contour Based

—  Parametric Based
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where S is the population, Sisa population mean, p is the
number of subjects in the sample set starting from I, (x, y,
z) is the nodes of the sample set in three views and n is the
node number of each model. Then the eigenvalues and the
eigenvector of the (Cov) are computed as shown in Eq. (2).

{ eigenvalue = (il, Ay ... /IS), A=Ay Ay 20, )

eigenvector = (Pl, P,... PS),

Using the eigenvalues and eigenvectors, the PCA for sub-
ject models captures geometric features of the models. The
first principal component represents the highest variation
in all models based on direction and location. A new SSM
surface §’ can be obtained via eigen analysis in Eq. (3).

S =MS+MY_ f(4)P;

F4) =a =% 3
M=1%" M,
p =L
where M is a matrix, S is a population mean, P; is an eigen-
vector, a; is a weight vector used to produce a new shape
model (SSM), and M, is a transformation matrix used to shift
the i model in the SSM from its local coordinate system to
the global coordinate system.

Articulated anatomical Models: Articulated statistical
shape models (ASSMs) were first recommended by Heap
et al. [83] as an extended version of the statistical shape
model. It includes a structure of the joint and an analytical
model of a joint to describe the degree of freedom of joint
motion. It allows the model to determine both the shape vari-
ation of individual joint components as well as their usual
range of motion separately. ASSMs are frequently used in
the representation of bones from X-rays. ASSMs convey
relative poses of bones with extra characteristics to repre-
sent diverse postures. An ASSM of the hip joint provided
by Kainmueller et al. [84] used a ball-and-socket joint to
link the relative transformations between the pelvis and the
femur.

5.3 Based on the Method of Model Deformation

Free form deformation: Deformation techniques apply an
adaptable deformation to a template model without tak-
ing into account any statistical data. A geometric approach
called free-form deformation (FFD) [85] is used for basic
deformations of rigid objects. It is built on the concept of
enclosing a template inside a cube (lattice or hull) and alter-
ing it when the cube deforms. The control lattice is designed
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to be perpendicular to the model's principal ray. This idea
is called hyper-patches, which are analogues of parametric
curves like Bezier curves [86, 87], B-splines [88, 89], or
NURBs [90, 91]. The template shape deforms until it pro-
duces an image similar to the X-ray image when projected
onto the 2D plane. 3D template model within the lattice
can be modified by changing the control volume param-
eters until its projection boundary fits the region contours
retrieved from the X-ray images. The FFD-based technique
demonstrated by Koh et al. [33] used volumetric data in the
form of sparse CT data.

Hierarchical Deformation: The control lattice in hierar-
chical deformation [38] is hierarchically segmented in the
regions. The distortion is applied to each region separately
until the template projection resembles the X-ray image
contours. Gunay et al. [38] demonstrated a technique of
Hierarchical FFD. The bounding box is repeatedly split into
smaller boxes, each of which was individually adjusted to get
a form that is closest to the desired shape. Carl Shimer [92]
describes the FFD block as a cubic structure with a hyper
patch on each face. The vectors (S, T, and U) were used to
represent the three sides. The FFD block was defined as an
array of (3/+ 1) X 3m + 1) X (3n + 1) hyper patches. This
is essentially a stack of 1 X m X n hyper.

e To complete, create the lattice space which is a local
parametric coordinate system within the FFD block. The
lattice space is defined as follows in Eq. (4):

X(s,t,u) =Xy + S+ 1T +ulU.X, 4)

where X (s, , u) is the local coordinate system's origin, while
S, T, and U are the edges of the FFD block. Any point inside
the lattice0 < s < 1,0 < ¢ < 1land0 < u < 1is valid. The fol-
lowing equation Eq. (5) is used to define the control points
on the lattice:

io, J K
P,=X,+-S+<T+=U 5
ik 0Ty m n )

where P,_-/-k is a control points, (S, T and U) are the edges of
the FFD block and (I, m and n) are the integer component.

e After determining the points, the hyper patch deforms by
moving the control points and [ X s,m X t, n X u are save
as is, it, andiu to determine the location of the hyper patch
within the FFD block.

e Local coordinate of the system is determined by Eq. (6):

(u,v,w) = (Is — is, mt — it, nu — iu) (6)

e Calculating position of deformed lattice by putting
back the (u, v, w) values into the hyper patch formula in
Eq. (7):
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where B(u) is a blending function, P are three-dimensional
control points,

The FFD transformations will apply to all neighboring
regions that tend to deform the object. These approaches
appear to be good alternatives, but they are not adequately
useful in areas where the noise level is high and the use-
ful data is difficult to distinguish. The FFD approach is
constrained by the fact that it ignores the topology while
deforming it.

5.4 Based on the Architecture Used

Convolutional Neural Network: CNN has lately demon-
strated its effectiveness in a variety of applications, including
image segmentation and classification. CNN for 3D recon-
struction used by Kasten et al. [26] developed a dimensional
expansion method that back-projects each pair of related
epipolar lines into a two-channeled epipolar plane using bi-
planar X-rays. This representation was combined with a deep
learning architecture that generates 3D representations of a
bone. The procedure followed by the Kasten et al. [26] was
as follows:

e For training purposes: Each pair of X-ray images was
coupled with aligned ground truth. X-ray images were
created by drawing DRRs from annotated CT scans.

e For controlling the loss function of each training sample;
a spatial 3D Distance Weight Map (DWM) with a size
equal to the ground truth volume and its value on voxel i
was determined by Eq. (8):

DWM(i) = <_—(’)>

D=14+yeexp - (8

where d is a distance transform that describes the distance
between each voxel and each bone surface, and y=8, =10
were constants for all the training samples.

e Then, DWM was used for weighting the voxel-wised
cross-entropy loss.

e An unsupervised reconstruction loss was specified to
align the network prediction of the bone’s probability
map with the input X-ray images.

e The overall Loss function is Eq. (9):

Loss = (Loss

reconstruction — LOSSCE) (9)

N =

CNN as a feature Detection: CNN could be used for auto-
matic feature analysis [27]. The approach by Kim et al. [29]
extends automation by doing automatic feature analysis of

femur bone using CNN. The structure's position and shape
can be simply determined in the X-ray image as feature ele-
ments. The femur's feature information compensates two
proximal feature points, five distal feature points, and one
ellipse, which is the distinctive shape of the femoral head.
For feature information detection, two CNN-based modules
were used: YOLO (You only look once) v3 [93] and Faster
R-CNN [94] with ROI (Region of Interest) alignment. The
image was fed into these two CNNs, which subsequently
gives a bounding box as an output.

Genetic Algorithm (GA): The GA method is popular
in the field of Artificial Intelligence because of its speedy
search capability and resilience technique [95]. The algo-
rithm operates in the form of a population, which evolves
several viable solutions over a while (generations) until
it finds the most suitable individual (solution) [96]. Mah-
fouz et al. [39] employ a genetic algorithm in conjunction
with their 3D-2D score metric as an optimization technique
to optimize the population, form and alignment of X-ray
images for the reconstruction of lumbar and femur bone. The
procedure used by Mahfouz et al. was as follows:

e Automatic morphometric and surgical axis measurements
were performed on the bone for the registration process
to assess the shape and size of the bone.

e An atlas bone model was aligned with the X-ray images
that provide the initial position.

e The initial population of bone models was created by
combining the initial position with the average model.

e Then, a genetic algorithm was used in conjunction with
a pose score metric as a selection function along with
crossover and mutation. It will improve the population's
structure and alignment with the X-ray images.

e Once the genetic algorithm has converged to a rigid
alignment, the second optimization stage has reached.

e The best member of the population was used as a genetic
dopant.

e After the alignment and registration; affine transforma-
tions (rotation, translation and scaling) are applied for
deformation.

5.5 Hybrid Methods:

This method was derived through the combination of differ-
ent approaches. Although these methods have some proper-
ties with the preceding methods, their qualities distinguish
them as a separate class known as hybrid methods. This
class's methods can have a variety of attributes depending
on how they're combined and used. The Kadoury et al. [97]
work is an example of a hybrid approach. He presented a
method for biplanar spine reconstruction that integrated sta-
tistical and image-based methodologies. Their hybrid 3D
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reconstruction method merged statistical knowledge with
information derived from images.

5.6 Based on the Anatomical Knowledge Used
for Reconstruction

Point-Based Approaches: Point-based approaches work by
recognizing and matching points on radiographs. Point-
based methods are divided into SCP (Stereo-Corresponding
Points) and NSCP (Non-Stereo Corresponding Points).

Stereo-Corresponding Point-Based Techniques: SCP
technique is implemented by identifying stereo correspond-
ing points (SCPs) in radiographs.

(a) The first step is to find the points in two X-ray images
that correlate to each other.

(b) Then, rebuilt in 3D using methods such as Discrete Lin-
ear Transform (DLT).

The DLT approach can be used to find linear mappings
between any two data sets if there are a certain amount of
corresponding data points between them. The number of
SCPs used determines the quality of the results. The more
SCPs used, the better the results [98] but finding more SCP
results is a slow process. Pearcy et al. [99] used SCP and
generate 3D data using the DLT algorithm. Bony forma-
tions with no visible edges are not suited for SCP-based
approaches. Aubin et al. [98] use this method for vertebra
reconstruction utilizing more points (21 SCPs and 6 SCPs
for each vertebra in each radiograph for comparison). The
results were better with 21 SCPs but time-consuming. This
approach is constrained by a number of matching anatomical
landmarks on radiographs.

Non-Stereo Corresponding Point-Based Techniques: To
overcome the limitation of the SCP-based approach, the
NSCP based method (only points visible on a single radio-
graph which are having no correspondence with another
image) is introduced as an improvement. This method is
based on the idea that the NSCP is the part of the line con-
necting the X-ray source and the point projection in one
view. Steps could be as follows:

(a) The first step in the NSCP method is to calculate the
initial solution. The anatomical area of the general
model is specified.

(b) The 2D contours are then manually identified on the
radiograph. The original 3D model is used to generate
2D contours from each radiograph. The target surface
is then projected on the 2D plane.

(c) The 2D relationship between two given points is based
on the distance between points and contour derivation,
so 2D and 3D contours match. Then the initial response
is optimized in the next step.
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(d) Finally, the optimal solution is transformed by applying
the Kriging algorithm to it. The depth finding model
used in the kriging algorithm as described by Keaoma-
nee et al. [100] is depicted in Eq. (10) and Eq. (11),
respectively:

%
y=c0+c1<1—e‘7> (10)

vo (38 1% s <
y=dtalis 15 )iosa

Co> lf&ij >a

1)

where ¢, called nugget and ¢, called sill and range a are
kriging parameters determined empirically and 6 is a semi-
variance used to describe the degree of spatial dependency
between two points (correspondence between 3D model
point and 2D X-ray point).

(e) Finally, the reconstructed shape is obtained by repeat-
ing the last step until the distance between the two
given points is greater than the given accuracy value.

The NSCP-based approach for 3D spine reconstruction
has been proposed by Mitton et al. [101]. Calibration was
performed according to the detected spots. The Shape was
then reconstructed in 3D (using the DLT method).

Parametric Based: Parametric modeling adjusts the shape
of model geometry by changing the dimensional values.
Instead of employing a whole set of points as in SSM, para-
metric models examine anatomical descriptive parameters
(DPs) taken from the surface of interest [102]. Depending
on the structure considered, the parametric model consists
of several geometric primitives such as lines, spheres, points
and circles. For example, parametric spine models consist of
points and axes. Humbert et al. [17] suggested a parametric
technique based on transverse and longitudinal inferences
for the 3D reconstruction of lumbar and thoracic radiographs
[103]. The procedure is stated as follows:

e The parameters used are: length (curvature of the spine),
depth, the width of the curve passing through the center
of the vertebral body, the location along the spine curve
of each vertebral endplate.

e These are all then used to build a parametric model of the
spine.

e The parametric model was then back-projected on the
X-ray plane to visualize the 3D geometry of the required
structure.

Contour-Based Methods: Point-based methods cannot be
employed for structures with continuous shapes such as the
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knee joint due to their time-consuming and non-reproducible
nature. Instead of using points, a deformable generic model
with matching contours is used. The non-stereo correspond-
ing contour (NSCC) method's principle is to link identifiable
2D contours from radiographs to 3D contour. The steps are
as follows:

e Calculate the initial point to initiate contours segmenta-
tion manually or automatically.

e Manually identify 2D outlines on radiographs of the ana-
tomical area of interest from a generic model.

e On the corresponding radiograph, 3D contours of the
model surface are projected. Then, for each radiograph,
2D contours should be extracted from the 3D initial solu-
tion object.

e After that, an association between these two set points is
conducted. This 2D association is built on point-to-point
distances and contours. This allows for the creation of a
correlation between the 2D and 3D contours.

e The initial solution is then optimized in the next stage.

e The final step is to deform the optimum solution using
the Kriging technique as described by Laporte et al. [57].

e The reconstructed object is achieved by iterating as long
as the distance between two specified points is greater
than a predetermined accuracy value.

For 2D/3D reconstruction, non-statistical geometric
parameters using the contour-based method have been pro-
posed by Zeng et al. [104] and Karade et al. [30]. Karade
et al. proposed a novel template reconstruction algorithm
that preserves the local properties of the template shape dur-
ing transformation. Karade et al. [30] used Laplacian surface
deformation (LSD) to reconstruct 3D structure from two
X-ray images (taken in Mediolateral (ML) and Anteroposte-
rior (AP) directions). Compared to other deformation algo-
rithms such as FFD or TPS (Splines in Sheet Metal), LSD
is easier to build and takes less computation time. The input
parameters used in the algorithm were:

e Simulated contours of femur X-ray images derived from
perspective ML (Medio Lateral) and AP (Anterior—Pos-
terior) views.

e Projections of the 3D model (derived from CT data of the
femur).

e The 3D model of the bone in the form of a 3D mesh with
triangular elements from a clinically normal person. The
model was a 3D point cloud and its projection was also
a 2D image plane point cloud.

As an output, the template model will be rebuilt into a
form that fits the input contours of the 2D image. There
were three steps for reconfiguring the template model. The
first stage involves aligning the template with the input

contours. The second stage was to determine the 2D-3D
correlation between input contour points (in both the ML
and AP planes) and silhouette vertices. In the third step,
SOM non-rigid registration was used to find the 2D-2D cor-
respondences between projection contours of the model and
the input contours to finally have the 2D-3D correspond-
ences. The steps involved in the process as mentioned by the
Karade et al. [30] are as follows:

“Let ‘K’ be the total number of input contours with p be
the k" input contour (k=1, 2... K).

Calculate the distance between template projection con-
tours and input contours as Eq. (12):

diw = llPg =PI (12)

where M =total number of template projection points with
(m=1,2... M;) and p¢ = mth template projection contour
point and p{= k™ input contour point.

The best match between template projection contours
and input contours was considered as pfv ey ( DEATESL O

the input contour”) was selected as Eq. (13):
plvjvinner : dk,winner = min(dk,m) (13)

Each template projection contour point was updated as
Egs. (14), (15), (16), (17) and (18):

plr’r: =pfn + l(t) Xn(p[v)vinner’pi) X (pi _[)};1) (14)

(1) = 0.5 + 15,5, X (0.1 = 0.5) (15)

where, Lo = currentiterationnumber [ totalnumberofiterations and

distyinnerm

(D e ) = €2 (16)
disrwinner,m = ”plvjvinner - p[,;” (17)
and,

0 =3+ 15, X (0.1 = 3.0) (18)

SOM output was the adapted template projection contour
points (pP) onto the input contour. The 2D-2D correspond-
ence gives the required 2D-3D correspondence because
the template projection contour points are directly associ-
ated with the silhouette vertices (projection)”. The template
mesh was deformed using LSD as per the estimated 2D-3D
correspondences. The template was deformed such that the
projections of the template's silhouette on both image planes
(ML and AP) have the same shape as the corresponding
input contours. Laplacian surface deformation as a tem-
plate deformation approach retains mesh topology and
shape properties. As an output, the deformed mesh with its
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silhouette vertices updated to its desired final positions, so
that its projection matches the shape of the input contours.

This approach can be applied to the problem of cavities
that are not clearly seen when viewed perpendicular to the
imaging direction. This approach by Karade et al. [30] may
be used in any area of the skeleton.

6 Evaluation of 3D Reconstruction Methods
of the Literature Surveyed

In terms of the aforementioned features, each recom-
mended approach in this review paper has some benefits
and drawbacks that should be evaluated before implemen-
tation. Not one method can be chosen as the best for all
applications as every method has its pros and cons which
make them useful as per the situation and need. Table 2
describes various 3D reconstruction methods for different
structures along with their computation time, accuracy
and validation technique used by authors as mentioned
in the literature.

7 Challenges In 2d/3d Reconstruction
Techniques:

Even though the reconstruction of a 3D model from 2D
X-rays images has received a lot of attention in recent
years. Yet, the suggested methods commonly suffer from
one or more of the following practical challenges:

i. Relevant Dataset: Relevant dataset related to the
region of interest is not easily available. To evolve
the 3D reconstruction method, one/multiple X-ray
images along with CT/CBCT is required from the
same patient. Multiple X-ray images and the CT/
CBCT from the same patient are generally not availa-
ble in clinics due to the nature of images i.e., radiation
exposure to the patient and overlapping area through
multiple images. To acquire such type of clinical data
for perspective studies is not ethical. Therefore, this
is a major challenge to work in this area.

ii. Feature extraction: Extraction of contours from radio-
graphs is a complex procedure typically performed
manually [105] or semi-automatically [35, 40]. Man-
ual segmentation of the anatomy is time-consuming,
takes more effort and requires expertise. As the opera-
tor has to manually outline the contours of the anat-
omy on the radiograph. Semi-automatic segmentation
requires an expert to mark the landmarks using the
software.
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iii. Large Dataset: When using deep learning algorithms
for 3D reconstruction, a bigger dataset of X-ray
images for training is usually required which is not
easily available [106, 107]. Mostly 3D/2D registration
approach is based on DRRs which are simulated X-ray
projection images because of the difficulty of getting
a real dataset.

8 Discussion

Different authors have employed a variety of strategies for
3D reconstruction of the anatomy of interest utilizing one,
two or more X-ray images. This review paper includes some
of them that are often used for 3D reconstruction. This paper
also includes the steps used for the 3D reconstruction and
challenges encountered during reconstruction. Although
researchers continue to develop new approaches, the core
requirements for 3D reconstruction remain the same for
all the techniques. 3D imaging modalities such as CT and
CBCT rely solely on X-ray images. 3D image reconstruc-
tion from X-ray images can be used to overcome the draw-
backs associated with 3D images like CT and CBCT such as
cost and exposing the patient to higher radiation compared
to the X-ray images. Some reconstruction approaches use
single X-ray images only, while others use X-ray images
along with silhouette-based models, mathematical models
and deformation model techniques. Silhouette-based [108]
reconstruction approaches are easier to use and are more
reliable, that is why many researchers choose to utilize this
approach in their work. 3D template deformation method
uses shape information as a template model, which is then
transformed using the contour information collected from
the calibrated X-ray images. FFD has also emerged as an
option for template deformation for developing 3D struc-
ture reconstruction applications. However, the FFD with few
control points is not effective in preserving the fine features
of the shape. Hierarchical FFD (for accurate shape match-
ing) is a more complex and time-consuming approach com-
pared to FFD, but it does not ignore the topology of the
anatomy. Feature-based methods are mostly used compared
to intensity-based methods; the features used are contours,
points and parameters. The point-based procedures are
dependent on the operator's expertise. On multi-view radio-
graphs, it's difficult to precisely detect and match points. As
a result, point-based approaches do not guarantee repeat-
ability. Furthermore, due to the limited number of corre-
sponding anatomical landmarks identifiable on radiographs,
SCP based methods have limited accuracy when used. Point-
based approaches cannot be employed for structures with
continuous form because of the lack of anatomical landmark
points. The time taken for 3D reconstruction using this pro-
cedure is roughly 2—4 h due to the necessary identification
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of points. Thus, these approaches are time-consuming. This
would be a significant drawback that should not be over-
looked, particularly in therapeutic applications and in severe
cases. For a quick and reliable 3D reconstruction, parametric
techniques are ideal. They increased the algorithms' resil-
ience and convergence. This method results are improved
by repeatability. The intensity-based method [60] is used
to optimize the similarity between real radiographs and
DRR. A volume-based statistical shape and intensity model
(SSIM) developed by Ehlke et al. [31] was used to provide
additional information on the volumetric bone density of
the 3D model. Besides, deep learning methodologies are
also nowadays gaining popularity among researchers. Deep
learning algorithms learn by constructing a more abstract
representation of data, the model extracts feature automati-
cally and produces greater accuracy outcomes [106]. On a
more precise level, the techniques are separated into deep
learning, silhouette-based, single X-ray based, feature-based,
intensity-based procedures and model deformation-based.
Then there are hybrid approaches. If hybrid strategies are
applied consistently, they can enhance the outcomes [109].
Concerning the above characteristics, each approach recom-
mended by the author in the literature has some advantages
and disadvantages to consider before implementation. It
is not possible to choose the best one for all applications.
Table 3 shows all these 3D reconstruction methods, each
with its own set of benefits and limitations. It should be
noted that some of the approaches discussed utilized the
EOS system for image acquisition rather than typical radi-
ography equipment. EOS (Electro-Optical System) device
[110-112] can be an alternative between 2D radiographs and
3D CT scans at lower radiations but it is not readily available
to all clinicians. Its cost is also dependent upon the anatomy
of interest. This has an impact on the accuracy and speed of
reconstruction approaches. If EOS systems are used, more
time may be saved. Photogrammetry for building 3D mod-
els from radiography images has also been suggested as a
potential alternative technique due to its accuracy and low
irradiating dose. Various photogrammetry-based approaches
for 3D image reconstruction from X-ray images have been
proposed and evaluated in [113-115]. DRR images gener-
ated from the perspective projection of a three-dimensional
image onto a two-dimensional plane can be used to create
a relevant dataset of the anatomy of interest, but it does not
guarantee the method's applicability in real scenarios. Less
radiation dosage and low computation cost with little user
supervision are important factors for the acceptability of 3D
reconstruction approaches. 2D/3D reconstruction methods
have the potential to take a place of CT or CBCT imaging in
a non-severe case, if they didn't have access to CT or MRI
equipment. The choice of this reasonably inexpensive and
conveniently accessible method will be advantageous. Fur-
thermore, a patient's implied risk of cancer can be decreased

@ Springer

by reducing their exposure to ionizing radiation (compared
to CT & CBCT). Reconstruction of 3D patient-specific mod-
els from X-ray images is, therefore, an essential and power-
ful approach in medical imaging and is worthy of further
investigation.

9 Conclusion

This review critically analyses the various available
approaches for the reconstruction of 3D anatomical struc-
tures from X-ray images. The pros and cons of each method
were analyzed along with the steps of reconstruction. The
techniques of 3D reconstruction can be used for any ana-
tomical region of the human body provided the applicability
and complexity of the anatomical region.

Even with the implementation of various methods, there
is still scope to solve this challenging problem and improve
the required precision in the measurements. CT and CBCT
images are commonly used for obtaining a volumetric view
of the anatomical structure. However, due to their difficulty
in accessibility, high cost and high radiation exposure, robust
methods are still required for the construction of 3D mod-
els from X-ray images to use in clinical analysis. Further
research and analysis tools are required more specifically
for each of the human anatomical region.
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