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Abstract
In the clinical research, three-dimensional/volumetric anatomical structure of the human body is very significant for diag-
nosis, computer-aided surgery, surgical planning, patient follow-up, and biomechanical applications. Medical imaging pro-
cedures including MRI (Magnetic Resonance Imaging), CT (Computed Tomography), and CBCT (Cone-beam computed 
tomography) have certain drawbacks such as radiation exposure, availability, and cost. As a result, 3D reconstruction from 
2D X-ray images is an alternative way of achieving 3D models with significantly low radiation exposure to the patient. The 
purpose of this study is to provide a comprehensive view of 3D image reconstruction methods using X-ray images, and their 
applicability in the various anatomical sections of the human body. This study provides a critical analysis of the compu-
tational methods, requirements and steps for 3D reconstruction. This work includes a comparative critical analysis of the 
state-of-the-art approaches including the feature selection along with their benefits and drawbacks. This review motivates the 
researchers to work for 3D reconstruction using X-ray images as only a limited work is available in the area. It may provide a 
solution for many experts who are looking for techniques to reconstruct 3D models from X-ray images for clinical purposes.

1 Introduction

A human body is a real three-dimensional anatomical struc-
ture. Invasive methods are not always recommendable for 
the disease diagnosis and treatment planning of a patient. 
Therefore, several imaging modalities are used to visualize 
the internal anatomy of the human body such as X-ray, CT 
(Computed Tomography), CBCT (Cone-beam Computed 
Tomography), Ultra-sound imaging, MRI (Magnetic Reso-
nance Imaging), PET (Positron Emission Tomography), etc. 
These modalities provide 2D images as well as 3D images 
based on the type of modality. Every imaging modality has 
its specific use and applicability for clinical use. X-ray imag-
ing is a popular imaging modality and is widely used to visu-
alize the anatomical structures inside the body. X-ray imag-
ing modality is the most available and low-cost modality 

compared to the other modalities. Therefore, the use of the 
X-ray image is very high and acceptable.

However, X-ray images have many drawbacks [1, 2]. The 
X-ray image provides the projected 2D view of the real 3D 
anatomical structure which may not be much useful for the 
radiologist in a few severe cases. The anatomical geometry 
is overlapped in X-ray images which may create confusion 
to understand the real anatomical structure. The measure-
ments are obtained projected measurements from 3 to 2D 
which loses the real measurements. The image calibration 
is required to read the X-ray images.

To overcome the drawbacks of the X-ray images [3], 3D 
images like CT and CBCT are used for clinical practices [4]. 
But there are certain drawbacks with 3D images like CT and 
CBCT. These imaging modalities are very less available, 
costly, and expose the patient to higher radiation compared 
to the X-ray images [5]. A conventional way of visualization 
of the anatomical volume through the CT scan is shown in 
Fig. 1.

To solve the problems of 3D imaging modalities, diag-
nosis and treatment planning can depend on 2D X-ray 
images in non-severe cases where radiologists and sur-
geons can understand the 3D anatomy by looking at the 
X-ray images. But in serious cases, diagnosis and treat-
ment planning becomes difficult using X-ray images only. 
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Therefore, many methods were involved that can construct 
the 3D image using X-ray images. These methods are over-
coming the drawbacks of 2D as well as 3D imaging modal-
ities and are now available at an early stage. Such methods 
are widely required for the possible anatomical regions.

Three-dimensional image construction for an ana-
tomical region is used for the patients in terms of medi-
cal diagnosis, treatment planning, and follow-up [6–10]. 
There are several diseases associated with different ana-
tomical regions [11] of the human body where image-
based assessment is important (for example., Knee bone 
fracture, Femur bone fracture, arthritis, obstructive sleep 
apnea syndrome, sinusitis, lesions detections in the chest, 
inflammatory diseases, bone fractures, etc.). Diagnostic 
images enable the radiologist to view the anatomical struc-
ture of the region to figure out causes of illness, injury and 
to confirm a disease [12] with proper follow-up [13].

Thus, 3D construction from X-ray images is the most 
favorable solution for visualizing the 3D anatomy of the 
patient for clinical analysis. It is cost-effective, widely 
available and exposes a patient to less radiation. The num-
ber of radiographs taken should be less in number viz., 
one or two per patient as it is a primary concern of 3D 
reconstruction from 2D X-ray images.

In this paper, a comprehensive review of the many 
available approaches or techniques for 3D image recon-
struction from X-ray images is presented in further sec-
tions. The requirements, concepts and classifications of 
3D reconstruction methods from X-ray images are dis-
cussed. Then their applications, benefits, and drawbacks 
are assessed. Finally, the accuracy of various methods is 
mentioned. Hence, this review can help researchers in this 
field to find the best technique as per their work and needs. 
It also makes recommendations or gives ideas to potential 
researchers on this subject for their future work.

2  Literature Review

3D imaging modalities such as CT, CBCT has certain 
drawbacks for a variety of reasons, as discussed above. 
As a result, several studies have been conducted to intro-
duce a computational method that avoids these constraints 
yet provides precise 3D information. Various techniques, 
methodology, extracted features and reconstruction of an 
image are listed in Table 1 as available in the literature.

Initially, a comprehensive and comparative review on 
3D medical imaging was presented by Stytz et al. [16] 
in 1991. Humbert et al. [17] presented an application of 
parametric models for spine reconstruction from biplane 
X-rays. The authors performed the two-level reconstruc-
tion. The first level estimates a fast 3D reconstruction of 
the bone. The second level was applied for obtaining fine 
adjustments to the model for precisely accurate 3d recon-
struction. In the first level, the length of the spinal curve, 
the depth of the L1 and L5 endplates were chosen as the 
predictors for describing eight other parametric predic-
tors of each vertebra. These eight specific measurements 
then infer the 19 important anatomical 3D points for each 
parametric vertebra. Approximately 2000 points cloud 
model were generated and then projected onto the 2D 
plane to view the 3D reconstructed model of the spine. In 
the second level, fine adjustment was performed by cor-
recting the anatomical features using the control points of 
the vertebral body, which results in a parametric model to 
self-improve.

Chaibi et al. [18] used a parametric model to present 
a rapid 3D reconstruction method of femur bone from 
biplanar X-rays utilizing parametric and statistical models. 
The author obtained a simplified personalized parametric 
model (SPPM) using geometric features such as cylinders, 

Fig. 1  3D Imaging and visu-
alization process of Computed 
Tomography for the craniofacial 
region [14, 15]
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1 3

3D points, spheres, etc. (for a femur; the femoral neck-
shaft angle (FNSA), the femoral head and posterior con-
dyles representing spheres) and a full 3D morpho-realistic 
personalized parametric model (MPPM) of the lower limb 
obtained by correcting the SPPM. The Kriging methodol-
ogy was used for global deformation and local adaptation. 
The as-rigid-as-possible deformation method was used 
for local adaptation which is based on the moving least-
squares approach. Then 3D image reconstruction method 
was applied in two steps; a fast 3D lower limb reconstruc-
tion and a full 3D lower limb reconstruction. This was 
the first 3D modeling approach for the whole lower limb 
using biplanar X-rays with FT (femoral torsion) and TT 
(Angle between Tibial Plates Axis and the Bimalleolar 
Axis) calculations.

Cresson et al. [19] tried to overcome the drawback of 
overlapping regions to infer the information of location and 
shape of the hidden portions of the spine. The algorithm 
operates using two iterating processes. The first process uses 
a sophisticated 2D/3D registration procedure. Boundary 
edges were retrieved from radiographs to create a custom-
ized model of a vertebra. The second process refines the 
reconstruction of all quasi sections of the spine by regis-
tering estimates of anatomical features using a statistical 
model. The suggested technique can be a dependable alter-
native when compared with state-of-the-art technologies.

Convolution Neural Network (CNN) is an effective solu-
tion in a variety of applications viz; image processing [20, 
21], image segmentation [22, 23], pattern recognition [24, 
25] and computer vision [20]. The author Kasten et al. [26] 
addressed the issues of an absence of heuristic knowledge 
and dimensional expansion with conventional differential 
layers. It employed a dimensional augmentation technique 
where each pair of matching epipolar lines was back-pro-
jected into a two-channeled epipolar plane by bi-planar 
X-rays. A 3D structure was produced by combining an aug-
mentation technique with a deep learning architecture. This 
method to generate 3D representations of the various bones 
maintains the geometric limits of the two views. To achieve 
a more robust, accurate and efficient result, domain adapta-
tion is used.

Dixit et al. [27] used a machine learning approach for the 
construction of 3D models from 2D X-ray images. Features 
extracted are the color, size and depth of the femur bone. 
Depth information was used to create a mesh point cloud. 
The image was then converted into STL (Stereolithography) 
representation. A 3D model was created using CNN.

From X-ray projection images obtained in an upright 
position, the author Akkoul et al. [28] created a 3D cus-
tomized model of the femur. The strategy was based on a 
two-stage pseudo-stereo matching process. The coordinates 
of a 3D contour are determined in the first stage using two 
sequential projections. The contours of the proximal femur Ta
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are derived from the 2D X-ray images. The city-block, the 
Euclidian 2D spatial distances and the Chessboard were 
compared to match the points of two contours. Then, point 
pairs estimated are used to build a collection of three-
dimensional points. The surface model was reconstructed 
using a meshing approach from the cloud of points based 
on Poisson's equation, resulting in a closed 3D surface. To 
compensate for the absence of information and increase the 
quality of the rebuilt 3D surface, a 3D reference surface of 
the proximal femur was employed in the second stage to 
inject extracted points locally into the reconstructed surface. 
Thus, in this technique of merging numerous 3D points cre-
ated from a reference model obtained from a CT scan, the 
use of an X-ray stereo model in conjunction with a shape 
constraint improves accuracy and reduces error.

The statistical shape model (SSM) is a mathematical 
model incorporating information on the shape as well as its 
variance. Lamecker et al. [40] used a 3D Statistical shape 
Model to reconstruct the 3D shape from a few digital X-ray 
images. The author extracted the silhouettes from the pro-
jection using statistical shape training model thickness and 
the simulated X-rays. The approach optimizes a similarity 
measure analyzing the difference between the projections of 
the shape model and X-ray images by measuring the distance 
between the object silhouettes in the projections.

Zhu et al. [32] constructed 3D geometric surface models 
of the human knee joint. This work developed an enhanced 
SSM approach for predicting the 3D joint surface model that 
only utilizes 2D images of the joint. A total of 40 human 
knee distal femur models were used to create the SSM. A 
series validation and parametric analysis indicated that the 
SSM requires more than 25 distal femur models; each distal 
femur should be specified using at least 3000 nodes in space; 
and the 3D surface shape prediction should be based on two 
2D fluoroscopic images obtained in  450 directions.

Zheng et al. [34] used a 2D/3D reconstruction technique 
based on a single image to create a scaled, patient-specific 
3D surface model of the pelvis from a single standard AP 
X-ray radiograph. This single-image 2D/3D reconstruction 
method uses a hybrid 2D/3D deformable registration strat-
egy that combines landmark-to-ray registration with SSM-
based 2D/3D reconstruction.

Ehlke et al. [31] attempted to increase the reliability of 
the reconstruction process by considering as much informa-
tion as possible about the anatomy of interest. Deformation 
of a volumetric tetrahedral mesh with density information 
generated by digitally reconstructed radiographic (DRR) 
deformations were projected to represent possible candidates 
for patient-specific shapes. Compare the X-ray attenuation 
of clinical X-rays with the pixel intensity of virtual X-rays to 
find the best candidate. This method transfers computations 
from the CPU to the GPU, providing interactive frame rates.

Gamage et al. [37] created a 3D reconstruction of the 
bone models using salient anatomical edges and contours 
computed from orthogonal radiographs. The method 
employs an iterative non-rigid 2D point matching method-
ology as well as thin-plate spline-based deformation. Noise, 
outliers, distortion and occlusions don't affect the non-rigid 
registration system. This method was unique in that it 
encompasses not only the exterior contours but also several 
significant inner edges to ensure adaptability to various bone 
anatomies and increase customization accuracy.

Gunay et al. [38] provided a cost and time-effective com-
putational technique for generating a 3D bone structure 
from numerous X-ray images. When projected onto a two-
dimensional (2D) plane, this technology scales and deforms 
a pre-set 3D template bone structure that is clinically normal 
and scaled to an average size until the distorted shape gives 
an image equivalent to an input X-ray picture. Sequential 
quadratic programming (SQP) was used to achieve multi-
dimensional optimization by minimizing the error between 
the input X-ray image and the image projected from the 
deformed template shape.

Mahfouz et al. [39] provided a methodology for recon-
structing lumbar vertebrae from orthogonal views to obtain 
precise contour projections. Reconstruction was performed 
by deforming the 3D bone model through a robust 3D-2D 
registration technique constrained through extracted 2D 
morphometric measurements utilizing biplanar X-ray images 
and statistical atlas of bone based on Principal Component 
Analysis (PCA).

Karade et al. [30] used Laplacian mesh deformation and 
self-organizing maps for an effective and precise 3D femur 
bone model reconstruction by reforming a 3D template mesh 
model to fit bone shape.

By gathering feature information, performing alignment, 
and SSM fitting using CNN, Kim et al. [29] have developed 
a superior technique for 3D reconstruction of leg bones using 
only front X-ray images. The bounding boxes are recognized 
by CNN. In situations where boundary outlines are diffi-
cult to extract, feature ellipses and feature points are used 
to recognize boundaries, which unifies feature information 
detection and saves time and money over manually defining 
feature information. It's also more exact and consistent than 
the manual assignment.

Koh et al. [33] used three CT images in combination with 
two X-ray images and the free form deformation method for 
3D reconstruction of patient-specific femurs. It takes very 
little time to complete the bone segmentation of three CT 
images, the proposed reconstruction approach can be viewed 
as being similarly time and cost-effective as the reconstruc-
tion with X-ray images.

Mitton et al. [41] proposed an accurate 3D personalized 
model of the pelvis from biplanar X-rays. The method makes 
use of both stereo & non- stereo corresponding landmarks, 
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anatomical atlas (prior knowledge) and contour identifica-
tion. The landmarks identified are used to deform the fast 
computed initial solution. These retro projected landmarks 
on the radiographs are then best matched with the X-rays 
contours. Finally, utilizing the corresponding 2D/3D con-
tours as constraints, an elastic 3D surface deformation 
mechanism based on the kriging method is used. The fact 
that several anatomical characteristics of the pelvis are not 
visible on the two radiographic views from which the recon-
struction is performed is a limitation of the approach.

Three-dimensional reconstruction proved to be very 
effective and useful for preoperative planning and is becom-
ing more important with time. Despite the number of tech-
niques mentioned above in Table 1 in various literature, the 
choice of the method and technology clearly depends upon 
the requirement and the region reconstructed.

3  Imaging Requirements of 3D 
Reconstruction

Requirements of 3D reconstruction from X-ray images 
should be addressed while constructing 3D models, which 
are as follows:
i. Acquisition of X-ray image(s): 3D reconstruction from 

2D X-ray images can be performed using single X-ray 
images [40, 43, 44], two X-ray images [28, 30, 33, 37, 
38] or more X-ray images for several anatomical regions 
such as femur, tibia, fibula, pelvis and spine. With an 
increase in the number of X-ray images, the informa-
tion provided for the reconstruction will be increased. 
Figure 2 represents a conventional way of X-ray image 
acquisition. A portion of the X-ray beam emerging from 
the X-ray tube pass through the person’s body where 
they are absorbed by the internal structures and the 
remaining are transmitted to a detector. It is then use for 
further recording or processing by a computer.

 ii. Image Enhancement: X-ray images' are low in 
intensity, poor in contrast [47]. The quality of the 
X-ray image can be improved by applying image 

enhancement [48] to improve the assessment. Many 
approaches for improving the quality of X-ray images 
have been proposed such as histogram equalization 
(HE) [49], adaptive histogram equalization (AHE) 
[50], wavelet transform coefficients (WT) [51], and 
the unsharp masking method (USM) [52, 53]. Huang 
et al. [54] employed an adaptive median filter and a 
bilateral filter to suppress mixed noise, which includes 
both Gaussian and impulsive noise while keeping the 
image structures (edges). After that, gray-level mor-
phology and contrast limiting histogram equalization 
(CLAHE) were used to increase the image contrast. 
The CLAHE approach enhances fine details, tex-
ture, and local contrast in images. Adaptive contrast 
enhancement (ACE) [55] is another well-known local 
enhancement method that uses Contrast gains (CG) to 
change the high-frequency components of images.

 iii. Immobilization during image acquisition: Immobiliza-
tion means fixing a body part to reduce or eliminate 
the motion of a patient during the image acquisition 
process [5]. During image acquisition, it is necessary 
to sustain the rigid relationship between the original 
anatomy and the acquisition device. Zheng et al. [56] 
developed their new immobilization device including 
all the anatomical structures.

4  Steps of 3D Reconstruction from 2D X‑ray 
Images

There are several types of approaches available for 3D 
reconstruction using X-ray images such as based on a 
single generic model [17, 41, 57–59], based on statisti-
cal shape and deformation models [60–65]. The former 
approaches deform a generic model to build a patient-
specific 3D model, but the SSM-based methods build 
an SSM to produce the statistically probable models and 
decrease the number of parameters to optimize. Hybrid 
approaches [66] combine the SSM-based methods with 

Fig. 2  Conventional Way of 
X-ray Image Acquisition [45, 
46]
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generic model-based methods. Steps for doing 2D-3D 
reconstruction are as follows and are also shown in Fig. 3:

 i. 2D X-rays Image acquisition: Input images for 3D 
reconstruction derived from X-ray images can be 
obtained by acquiring single X-ray images [40, 43, 
44], two X-ray images [28, 30, 33, 37, 38] and more 
number of X-ray images for femur, tibia, fibula, pelvis 
and spine regions. The amount of information will 
increase in 3D reconstruction if the number of X-ray 
images increases.

 ii. Calibration: Due to the non-uniform magnification 
of the X-ray images, calibration is necessary for 
obtaining linear measurements. Calibration can be 
performed for a radiograph using the scale as avail-
able over the radiograph. The scale present on the top 
right corner of the craniofacial lateral image helps to 
calibrate the lateral image easily. These linear meas-
urements are important for radiologists, for patients’ 
diagnosis and treatment planning. The measurement 
result can differ if the calibration is not performed cor-
rectly [5].

 iii. Contour Extraction (Segmentation): To extract the 
edges or contours from the input images, semi-auto-
matic or manual [40, 58] solutions are available. Dif-
ferent methods have been offered by various authors 
[28, 34, 65, 72, 73] for precise contours extraction 
such as Thresholding based, Region-based segmen-
tation, watershed segmentation, etc. A Canny edge 
detector can be applied to detect the edges. The active 
Contour method (ACM) provides smooth and closed 
contours which are suitable for medical images.

 iv. 2D/2D correspondences: The process of identify-
ing correspondences between all points or extracted 
contours of two or more X-ray images of the same 
scene is known as image correspondences. The point 
pair matching or correspondences could be developed 
by extracting the points of interest along with some 
descriptors and using some (dis)similarity measure 
over the descriptors [30]. Pruning the correspondences 
by finding the global minimum. Another method could 
be finding the iterative distance (Euclidean distance, 
city block distance, etc.) between each point to every 
point in the other image [28].

 v. Registration: Image registration is required in image 
analysis applications that include several images of a 
scene. It aligns images of a single scene captured from 
different angles together to get all the necessary infor-
mation without replication. A rigid registration can 
be used to register images that are related by rotation, 
translation, or scaling. In the registration of medical 
images, a 2D/3D correspondence is built between a 
3D model (SSM or Mesh model) and 2D X-ray images 
to obtain the best match. The features taken from 2D 
X-ray images and those recovered from 3D models led 
to the 2D/3D registration. In the Non-rigid image reg-
istration category, the images to be registered include 
geometric variations. SOM (Self-organizing method) 
is one of the non-rigid registration methodology that 
Ferrarini et al. [74] used successfully in their GAME 
approach.

 vi. Shape deformation: The last step is to deform the tem-
plate in such a manner that when its silhouette vertices 
are projected on a 2D plane, its projection contours 
resemble the X-ray image contours. There are differ-

Fig. 3  General Scheme of 3D 
reconstruction of lungs from 
X-rays [67–71]
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ent types of techniques [75] available for deformation 
such as Kriging algorithm, Thin-plate splines defor-
mation, Laplacian and Modified Laplacian [76], Tor-
sional spring method [77, 78], etc.

5  Computational Approaches for 3D 
reconstruction from 2D X‑rays

Models, anatomical knowledge, architectures and applica-
tions were used to classify 3D reconstruction approaches 
as shown in Fig. 4. The categorization of 3D image recon-
struction methods are as follows:

5.1  Based on the Information Utilised 
for Reconstruction

Intensity-Based Methods: Intensity-based approaches evalu-
ate the significance of pixel intensities in 2D radiographs 
including internal intensity distributions between anatomi-
cal boundaries. To capture the heterogeneity of the region 
of interest, volumetric density information is used in the 
representation of the 3D anatomical structures. 3D/2D reg-
istrations based on intensity rely entirely on data contained 
in voxels and pixels of 3D and 2D images, respectively. 
The coinciding points in this method are regarded as corre-
sponding points and the similarity measure is determined via 
pixel-wise comparison instead of the distance. Mutual infor-
mation, cross-correlation and a sum of square differences are 
the most commonly used similarity measures for DRR-based 
3D/2D registrations. One such work of Yao et al. [79] has 
developed a deformable density atlas for bone anatomy and 
use it in a range of applications, the steps for generating atlas 
are as follows:

• Construct Tetrahedral Mesh Models from extracted con-
tours as it is simple, easy to deform and density informa-
tion is also stored in the tetrahedron.

• Apply an analytical density function to each tetrahedron 
instead of keeping the density value of each pixel in the 
model. As a result, computing the measurements such as 
integral, differentiating, interpolating and deforming is 
simple.

• Once Tetrahedral Mesh Model is built, apply the defor-
mation technique to it

5.2  Based on the Type of Model Used

Statistical shape modelling: 3D Model built by statistically 
analyzing a set of shapes is known as a SSM [32, 60, 63, 80, 
81]. The mathematical model contains information on the 
shape and its changes. The SSM contains data on the shape 
geometry and variances. A Statistical shape model-based 
methods are more considered as automated reconstruction 
algorithms. These approaches need a large shape learning 
database. A Statistical shape modelling system learns from 
shape variations of an object or region. The statistical sur-
face model approach was presented by Cootes et al. [82] and 
produced a deformable shape template. The approach inte-
grates a priori knowledge about the geometrical shape and 
its morphological variability. Cootes et al. [82] introduced 
the SSM idea as point distribution models (PDMs), which 
are deformable representations that convey the mean shape 
as well as shape variations. PDMs are created by performing 
a PCA on the locations of landmarks that correlate to differ-
ent shapes. PCA is used to determine the variations in the 
positions of the subject's paired points using a covariance 
matrix to create an SSM.

A covariance matrix (Cov) is constructed using the sam-
ple set (Si) as in Eq. (1):
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Fig. 4  Categorization of 3D reconstruction methods
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where S is the population, S is a population mean, p is the 
number of subjects in the sample set starting from I, (x, y, 
z) is the nodes of the sample set in three views and n is the 
node number of each model. Then the eigenvalues   and the 
eigenvector of the (Cov) are computed as shown in Eq. (2).

Using the eigenvalues and eigenvectors, the PCA for sub-
ject models captures geometric features of the models. The 
first principal component represents the highest variation 
in all models based on direction and location. A new SSM 
surface S′ can be obtained via eigen analysis in Eq. (3).

where M is a matrix, S is a population mean, Pj is an eigen-
vector, aj is a weight vector used to produce a new shape 
model (SSM), and Mi is a transformation matrix used to shift 
the ith model in the SSM from its local coordinate system to 
the global coordinate system.

Articulated anatomical Models: Articulated statistical 
shape models (ASSMs) were first recommended by Heap 
et al. [83] as an extended version of the statistical shape 
model. It includes a structure of the joint and an analytical 
model of a joint to describe the degree of freedom of joint 
motion. It allows the model to determine both the shape vari-
ation of individual joint components as well as their usual 
range of motion separately. ASSMs are frequently used in 
the representation of bones from X-rays. ASSMs convey 
relative poses of bones with extra characteristics to repre-
sent diverse postures. An ASSM of the hip joint provided 
by Kainmueller et al. [84] used a ball-and-socket joint to 
link the relative transformations between the pelvis and the 
femur.

5.3  Based on the Method of Model Deformation

Free form deformation: Deformation techniques apply an 
adaptable deformation to a template model without tak-
ing into account any statistical data. A geometric approach 
called free-form deformation (FFD) [85] is used for basic 
deformations of rigid objects. It is built on the concept of 
enclosing a template inside a cube (lattice or hull) and alter-
ing it when the cube deforms. The control lattice is designed 
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to be perpendicular to the model's principal ray. This idea 
is called hyper-patches, which are analogues of parametric 
curves like Bezier curves [86, 87], B-splines [88, 89], or 
NURBs [90, 91]. The template shape deforms until it pro-
duces an image similar to the X-ray image when projected 
onto the 2D plane. 3D template model within the lattice 
can be modified by changing the control volume param-
eters until its projection boundary fits the region contours 
retrieved from the X-ray images. The FFD-based technique 
demonstrated by Koh et al. [33] used volumetric data in the 
form of sparse CT data.

Hierarchical Deformation: The control lattice in hierar-
chical deformation [38] is hierarchically segmented in the 
regions. The distortion is applied to each region separately 
until the template projection resembles the X-ray image 
contours. Gunay et al. [38] demonstrated a technique of 
Hierarchical FFD. The bounding box is repeatedly split into 
smaller boxes, each of which was individually adjusted to get 
a form that is closest to the desired shape. Carl Shimer [92] 
describes the FFD block as a cubic structure with a hyper 
patch on each face. The vectors (S, T, and U) were used to 
represent the three sides. The FFD block was defined as an 
array of (3l + 1) × (3m + 1) × (3n + 1) hyper patches. This 
is essentially a stack of 1 × m × n hyper.

• To complete, create the lattice space which is a local 
parametric coordinate system within the FFD block. The 
lattice space is defined as follows in Eq. (4):

where X(s, t, u) is the local coordinate system's origin, while 
S, T, and U are the edges of the FFD block. Any point inside 
the lattice 0 < s < 1, 0 < t < 1and0 < u < 1 is valid. The fol-
lowing equation Eq. (5) is used to define the control points 
on the lattice:

where Pijk is a control points, (S, T and U) are the edges of 
the FFD block and (l, m and n) are the integer component.

• After determining the points, the hyper patch deforms by 
moving the control points and l × s,m × t, n × u are save 
as is, it, andiu to determine the location of the hyper patch 
within the FFD block.

• Local coordinate of the system is determined by Eq. (6):

• Calculating position of deformed lattice by putting 
back the (u, v,w) values into the hyper patch formula in 
Eq. (7):

(4)X(s, t, u) = X0 + sS + tT + uU.X0

(5)Pijk = X0 +
i

l
S +

j

m
T +

K

n
U

(6)(u, v,w) = (ls − is,mt − it, nu − iu)
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where B(u) is a blending function, Pijk are three-dimensional 
control points,

The FFD transformations will apply to all neighboring 
regions that tend to deform the object. These approaches 
appear to be good alternatives, but they are not adequately 
useful in areas where the noise level is high and the use-
ful data is difficult to distinguish. The FFD approach is 
constrained by the fact that it ignores the topology while 
deforming it.

5.4  Based on the Architecture Used

Convolutional Neural Network: CNN has lately demon-
strated its effectiveness in a variety of applications, including 
image segmentation and classification. CNN for 3D recon-
struction used by Kasten et al. [26] developed a dimensional 
expansion method that back-projects each pair of related 
epipolar lines into a two-channeled epipolar plane using bi-
planar X-rays. This representation was combined with a deep 
learning architecture that generates 3D representations of a 
bone. The procedure followed by the Kasten et al. [26] was 
as follows:

• For training purposes: Each pair of X-ray images was 
coupled with aligned ground truth. X-ray images were 
created by drawing DRRs from annotated CT scans.

• For controlling the loss function of each training sample; 
a spatial 3D Distance Weight Map (DWM) with a size 
equal to the ground truth volume and its value on voxel i 
was determined by Eq. (8):

where d is a distance transform that describes the distance 
between each voxel and each bone surface, and γ = 8, σ = 10 
were constants for all the training samples.

• Then, DWM was used for weighting the voxel-wised 
cross-entropy loss.

• An unsupervised reconstruction loss was specified to 
align the network prediction of the bone’s probability 
map with the input X-ray images.

• The overall Loss function is Eq. (9):

CNN as a feature Detection: CNN could be used for auto-
matic feature analysis [27]. The approach by Kim et al. [29] 
extends automation by doing automatic feature analysis of 
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femur bone using CNN. The structure's position and shape 
can be simply determined in the X-ray image as feature ele-
ments. The femur's feature information compensates two 
proximal feature points, five distal feature points, and one 
ellipse, which is the distinctive shape of the femoral head. 
For feature information detection, two CNN-based modules 
were used: YOLO (You only look once) v3 [93] and Faster 
R-CNN [94] with ROI (Region of Interest) alignment. The 
image was fed into these two CNNs, which subsequently 
gives a bounding box as an output.

Genetic Algorithm (GA): The GA method is popular 
in the field of Artificial Intelligence because of its speedy 
search capability and resilience technique [95]. The algo-
rithm operates in the form of a population, which evolves 
several viable solutions over a while (generations) until 
it finds the most suitable individual (solution) [96]. Mah-
fouz et al. [39] employ a genetic algorithm in conjunction 
with their 3D-2D score metric as an optimization technique 
to optimize the population, form and alignment of X-ray 
images for the reconstruction of lumbar and femur bone. The 
procedure used by Mahfouz et al. was as follows:

• Automatic morphometric and surgical axis measurements 
were performed on the bone for the registration process 
to assess the shape and size of the bone.

• An atlas bone model was aligned with the X-ray images 
that provide the initial position.

• The initial population of bone models was created by 
combining the initial position with the average model.

• Then, a genetic algorithm was used in conjunction with 
a pose score metric as a selection function along with 
crossover and mutation. It will improve the population's 
structure and alignment with the X-ray images.

• Once the genetic algorithm has converged to a rigid 
alignment, the second optimization stage has reached.

• The best member of the population was used as a genetic 
dopant.

• After the alignment and registration; affine transforma-
tions (rotation, translation and scaling) are applied for 
deformation.

5.5  Hybrid Methods:

This method was derived through the combination of differ-
ent approaches. Although these methods have some proper-
ties with the preceding methods, their qualities distinguish 
them as a separate class known as hybrid methods. This 
class's methods can have a variety of attributes depending 
on how they're combined and used. The Kadoury et al. [97] 
work is an example of a hybrid approach. He presented a 
method for biplanar spine reconstruction that integrated sta-
tistical and image-based methodologies. Their hybrid 3D 
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reconstruction method merged statistical knowledge with 
information derived from images.

5.6  Based on the Anatomical Knowledge Used 
for Reconstruction

Point-Based Approaches: Point-based approaches work by 
recognizing and matching points on radiographs. Point-
based methods are divided into SCP (Stereo-Corresponding 
Points) and NSCP (Non-Stereo Corresponding Points).

Stereo-Corresponding Point-Based Techniques: SCP 
technique is implemented by identifying stereo correspond-
ing points (SCPs) in radiographs.

(a) The first step is to find the points in two X-ray images 
that correlate to each other.

(b) Then, rebuilt in 3D using methods such as Discrete Lin-
ear Transform (DLT).

The DLT approach can be used to find linear mappings 
between any two data sets if there are a certain amount of 
corresponding data points between them. The number of 
SCPs used determines the quality of the results. The more 
SCPs used, the better the results [98] but finding more SCP 
results is a slow process. Pearcy et al. [99] used SCP and 
generate 3D data using the DLT algorithm. Bony forma-
tions with no visible edges are not suited for SCP-based 
approaches. Aubin et al. [98] use this method for vertebra 
reconstruction utilizing more points (21 SCPs and 6 SCPs 
for each vertebra in each radiograph for comparison). The 
results were better with 21 SCPs but time-consuming. This 
approach is constrained by a number of matching anatomical 
landmarks on radiographs.

Non-Stereo Corresponding Point-Based Techniques: To 
overcome the limitation of the SCP-based approach, the 
NSCP based method (only points visible on a single radio-
graph which are having no correspondence with another 
image) is introduced as an improvement. This method is 
based on the idea that the NSCP is the part of the line con-
necting the X-ray source and the point projection in one 
view. Steps could be as follows:

(a) The first step in the NSCP method is to calculate the 
initial solution. The anatomical area of   the general 
model is specified.

(b) The 2D contours are then manually identified on the 
radiograph. The original 3D model is used to generate 
2D contours from each radiograph. The target surface 
is then projected on the 2D plane.

(c) The 2D relationship between two given points is based 
on the distance between points and contour derivation, 
so 2D and 3D contours match. Then the initial response 
is optimized in the next step.

(d) Finally, the optimal solution is transformed by applying 
the Kriging algorithm to it. The depth finding model 
used in the kriging algorithm as described by Keaoma-
nee et al. [100] is depicted in Eq. (10) and Eq. (11), 
respectively:

where c0 called nugget and c1  called sill and range a are 
kriging parameters determined empirically and � is a semi-
variance used to describe the degree of spatial dependency 
between two points (correspondence between 3D model 
point and 2D X-ray point).

(e) Finally, the reconstructed shape is obtained by repeat-
ing the last step until the distance between the two 
given points is greater than the given accuracy value.

The NSCP-based approach for 3D spine reconstruction 
has been proposed by Mitton et al. [101]. Calibration was 
performed according to the detected spots. The Shape was 
then reconstructed in 3D (using the DLT method).

Parametric Based: Parametric modeling adjusts the shape 
of model geometry by changing the dimensional values. 
Instead of employing a whole set of points as in SSM, para-
metric models examine anatomical descriptive parameters 
(DPs) taken from the surface of interest [102]. Depending 
on the structure considered, the parametric model consists 
of several geometric primitives such as lines, spheres, points 
and circles. For example, parametric spine models consist of 
points and axes. Humbert et al. [17] suggested a parametric 
technique based on transverse and longitudinal inferences 
for the 3D reconstruction of lumbar and thoracic radiographs 
[103]. The procedure is stated as follows:

• The parameters used are: length (curvature of the spine), 
depth, the width of the curve passing through the center 
of the vertebral body, the location along the spine curve 
of each vertebral endplate.

• These are all then used to build a parametric model of the 
spine.

• The parametric model was then back-projected on the 
X-ray plane to visualize the 3D geometry of the required 
structure.

Contour-Based Methods: Point-based methods cannot be 
employed for structures with continuous shapes such as the 

(10)� = c0 + c1

(
1 − e

−

�ij

a

)

(11)𝛾 =

⎧
⎪⎨⎪⎩

c0 + c1

�
3

2

𝛿ij

a
−

1

2

𝛿3
ij

a3

�
, if 𝛿ij ≤ a

c0, if 𝛿ij > a
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knee joint due to their time-consuming and non-reproducible 
nature. Instead of using points, a deformable generic model 
with matching contours is used. The non-stereo correspond-
ing contour (NSCC) method's principle is to link identifiable 
2D contours from radiographs to 3D contour. The steps are 
as follows:

• Calculate the initial point to initiate contours segmenta-
tion manually or automatically.

• Manually identify 2D outlines on radiographs of the ana-
tomical area of interest from a generic model.

• On the corresponding radiograph, 3D contours of the 
model surface are projected. Then, for each radiograph, 
2D contours should be extracted from the 3D initial solu-
tion object.

• After that, an association between these two set points is 
conducted. This 2D association is built on point-to-point 
distances and contours. This allows for the creation of a 
correlation between the 2D and 3D contours.

• The initial solution is then optimized in the next stage.
• The final step is to deform the optimum solution using 

the Kriging technique as described by Laporte et al. [57].
• The reconstructed object is achieved by iterating as long 

as the distance between two specified points is greater 
than a predetermined accuracy value.

For 2D/3D reconstruction, non-statistical geometric 
parameters using the contour-based method have been pro-
posed by Zeng et al. [104] and Karade et al. [30]. Karade 
et al. proposed a novel template reconstruction algorithm 
that preserves the local properties of the template shape dur-
ing transformation. Karade et al. [30] used Laplacian surface 
deformation (LSD) to reconstruct 3D structure from two 
X-ray images (taken in Mediolateral (ML) and Anteroposte-
rior (AP) directions). Compared to other deformation algo-
rithms such as FFD or TPS (Splines in Sheet Metal), LSD 
is easier to build and takes less computation time. The input 
parameters used in the algorithm were:

• Simulated contours of femur X-ray images derived from 
perspective ML (Medio Lateral) and AP (Anterior–Pos-
terior) views.

• Projections of the 3D model (derived from CT data of the 
femur).

• The 3D model of the bone in the form of a 3D mesh with 
triangular elements from a clinically normal person. The 
model was a 3D point cloud and its projection was also 
a 2D image plane point cloud.

As an output, the template model will be rebuilt into a 
form that fits the input contours of the 2D image. There 
were three steps for reconfiguring the template model. The 
first stage involves aligning the template with the input 

contours. The second stage was to determine the 2D–3D 
correlation between input contour points (in both the ML 
and AP planes) and silhouette vertices. In the third step, 
SOM non-rigid registration was used to find the 2D-2D cor-
respondences between projection contours of the model and 
the input contours to finally have the 2D-3D correspond-
ences. The steps involved in the process as mentioned by the 
Karade et al. [30] are as follows:

“Let ‘K’ be the total number of input contours with pc
k
 be 

the kth input contour (k = 1, 2… K).
Calculate the distance between template projection con-

tours and input contours as Eq. (12):

where M = total number of template projection points with 
(m = 1, 2… M;) and pc

m
 = mth template projection contour 

point and pc
k
 = kth input contour point.

The best match between template projection contours 
and input contours was considered as pp

winner
 (“nearest to 

the input contour”) was selected as Eq. (13):

Each template projection contour point was updated as 
Eqs. (14),  (15),  (16),  (17) and (18):

where,  tfrac = currentiterationnumber∕totalnumberofiterations and

 and, 

SOM output was the adapted template projection contour 
points  (pp’) onto the input contour. The 2D–2D correspond-
ence gives the required 2D–3D correspondence because 
the template projection contour points are directly associ-
ated with the silhouette vertices (projection)”. The template 
mesh was deformed using LSD as per the estimated 2D–3D 
correspondences. The template was deformed such that the 
projections of the template's silhouette on both image planes 
(ML and AP) have the same shape as the corresponding 
input contours. Laplacian surface deformation as a tem-
plate deformation approach retains mesh topology and 
shape properties. As an output, the deformed mesh with its 

(12)dk,m = ‖pc
k
− pp

m
‖

(13)p
p

winner
∶ dk,winner = min

(
dk,m

)

(14)pp
�

m
= pp

m
+ l(t) × n

(
p
p

winner
, pp

m

)
×

(
pc
k
− pp

m

)

(15)l(t) = 0.5 + tfrac × (0.1 − 0.5)

(16)n
(
p
p

winner
, pp

m

)
= e

distwinner,m

2×�2

(17)distwinner,m = ‖pp
winner

− pp
m
‖

(18)� = 3 + tfrac × (0.1 − 3.0)
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silhouette vertices updated to its desired final positions, so 
that its projection matches the shape of the input contours.

This approach can be applied to the problem of cavities 
that are not clearly seen when viewed perpendicular to the 
imaging direction. This approach by Karade et al. [30] may 
be used in any area of the skeleton.

6  Evaluation of 3D Reconstruction Methods 
of the Literature Surveyed

In terms of the aforementioned features, each recom-
mended approach in this review paper has some benefits 
and drawbacks that should be evaluated before implemen-
tation. Not one method can be chosen as the best for all 
applications as every method has its pros and cons which 
make them useful as per the situation and need. Table 2 
describes various 3D reconstruction methods for different 
structures along with their computation time, accuracy 
and validation technique used by authors as mentioned 
in the literature.

7  Challenges In 2d/3d Reconstruction 
Techniques:

Even though the reconstruction of a 3D model from 2D 
X-rays images has received a lot of attention in recent 
years. Yet, the suggested methods commonly suffer from 
one or more of the following practical challenges:

 i. Relevant Dataset: Relevant dataset related to the 
region of interest is not easily available. To evolve 
the 3D reconstruction method, one/multiple X-ray 
images along with CT/CBCT is required from the 
same patient. Multiple X-ray images and the CT/
CBCT from the same patient are generally not availa-
ble in clinics due to the nature of images i.e., radiation 
exposure to the patient and overlapping area through 
multiple images. To acquire such type of clinical data 
for perspective studies is not ethical. Therefore, this 
is a major challenge to work in this area.

 ii. Feature extraction: Extraction of contours from radio-
graphs is a complex procedure typically performed 
manually [105] or semi-automatically [35, 40]. Man-
ual segmentation of the anatomy is time-consuming, 
takes more effort and requires expertise. As the opera-
tor has to manually outline the contours of the anat-
omy on the radiograph. Semi-automatic segmentation 
requires an expert to mark the landmarks using the 
software.

 iii. Large Dataset: When using deep learning algorithms 
for 3D reconstruction, a bigger dataset of X-ray 
images for training is usually required which is not 
easily available [106, 107]. Mostly 3D/2D registration 
approach is based on DRRs which are simulated X-ray 
projection images because of the difficulty of getting 
a real dataset.

8  Discussion

Different authors have employed a variety of strategies for 
3D reconstruction of the anatomy of interest utilizing one, 
two or more X-ray images. This review paper includes some 
of them that are often used for 3D reconstruction. This paper 
also includes the steps used for the 3D reconstruction and 
challenges encountered during reconstruction. Although 
researchers continue to develop new approaches, the core 
requirements for 3D reconstruction remain the same for 
all the techniques. 3D imaging modalities such as CT and 
CBCT rely solely on X-ray images. 3D image reconstruc-
tion from X-ray images can be used to overcome the draw-
backs associated with 3D images like CT and CBCT such as 
cost and exposing the patient to higher radiation compared 
to the X-ray images. Some reconstruction approaches use 
single X-ray images only, while others use X-ray images 
along with silhouette-based models, mathematical models 
and deformation model techniques. Silhouette-based [108] 
reconstruction approaches are easier to use and are more 
reliable, that is why many researchers choose to utilize this 
approach in their work. 3D template deformation method 
uses shape information as a template model, which is then 
transformed using the contour information collected from 
the calibrated X-ray images. FFD has also emerged as an 
option for template deformation for developing 3D struc-
ture reconstruction applications. However, the FFD with few 
control points is not effective in preserving the fine features 
of the shape. Hierarchical FFD (for accurate shape match-
ing) is a more complex and time-consuming approach com-
pared to FFD, but it does not ignore the topology of the 
anatomy. Feature-based methods are mostly used compared 
to intensity-based methods; the features used are contours, 
points and parameters. The point-based procedures are 
dependent on the operator's expertise. On multi-view radio-
graphs, it's difficult to precisely detect and match points. As 
a result, point-based approaches do not guarantee repeat-
ability. Furthermore, due to the limited number of corre-
sponding anatomical landmarks identifiable on radiographs, 
SCP based methods have limited accuracy when used. Point-
based approaches cannot be employed for structures with 
continuous form because of the lack of anatomical landmark 
points. The time taken for 3D reconstruction using this pro-
cedure is roughly 2–4 h due to the necessary identification 
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of points. Thus, these approaches are time-consuming. This 
would be a significant drawback that should not be over-
looked, particularly in therapeutic applications and in severe 
cases. For a quick and reliable 3D reconstruction, parametric 
techniques are ideal. They increased the algorithms' resil-
ience and convergence. This method results are improved 
by repeatability. The intensity-based method [60] is used 
to optimize the similarity between real radiographs and 
DRR. A volume-based statistical shape and intensity model 
(SSIM) developed by Ehlke et al. [31] was used to provide 
additional information on the volumetric bone density of 
the 3D model. Besides, deep learning methodologies are 
also nowadays gaining popularity among researchers. Deep 
learning algorithms learn by constructing a more abstract 
representation of data, the model extracts feature automati-
cally and produces greater accuracy outcomes [106]. On a 
more precise level, the techniques are separated into deep 
learning, silhouette-based, single X-ray based, feature-based, 
intensity-based procedures and model deformation-based. 
Then there are hybrid approaches. If hybrid strategies are 
applied consistently, they can enhance the outcomes [109]. 
Concerning the above characteristics, each approach recom-
mended by the author in the literature has some advantages 
and disadvantages to consider before implementation. It 
is not possible to choose the best one for all applications. 
Table 3 shows all these 3D reconstruction methods, each 
with its own set of benefits and limitations. It should be 
noted that some of the approaches discussed utilized the 
EOS system for image acquisition rather than typical radi-
ography equipment. EOS (Electro-Optical System) device 
[110–112] can be an alternative between 2D radiographs and 
3D CT scans at lower radiations but it is not readily available 
to all clinicians. Its cost is also dependent upon the anatomy 
of interest. This has an impact on the accuracy and speed of 
reconstruction approaches. If EOS systems are used, more 
time may be saved. Photogrammetry for building 3D mod-
els from radiography images has also been suggested as a 
potential alternative technique due to its accuracy and low 
irradiating dose. Various photogrammetry-based approaches 
for 3D image reconstruction from X-ray images have been 
proposed and evaluated in [113–115]. DRR images gener-
ated from the perspective projection of a three-dimensional 
image onto a two-dimensional plane can be used to create 
a relevant dataset of the anatomy of interest, but it does not 
guarantee the method's applicability in real scenarios. Less 
radiation dosage and low computation cost with little user 
supervision are important factors for the acceptability of 3D 
reconstruction approaches. 2D/3D reconstruction methods 
have the potential to take a place of CT or CBCT imaging in 
a non-severe case, if they didn't have access to CT or MRI 
equipment. The choice of this reasonably inexpensive and 
conveniently accessible method will be advantageous. Fur-
thermore, a patient's implied risk of cancer can be decreased 

by reducing their exposure to ionizing radiation (compared 
to CT & CBCT). Reconstruction of 3D patient-specific mod-
els from X-ray images is, therefore, an essential and power-
ful approach in medical imaging and is worthy of further 
investigation.

9  Conclusion

This review critically analyses the various available 
approaches for the reconstruction of 3D anatomical struc-
tures from X-ray images. The pros and cons of each method 
were analyzed along with the steps of reconstruction. The 
techniques of 3D reconstruction can be used for any ana-
tomical region of the human body provided the applicability 
and complexity of the anatomical region.

Even with the implementation of various methods, there 
is still scope to solve this challenging problem and improve 
the required precision in the measurements. CT and CBCT 
images are commonly used for obtaining a volumetric view 
of the anatomical structure. However, due to their difficulty 
in accessibility, high cost and high radiation exposure, robust 
methods are still required for the construction of 3D mod-
els from X-ray images to use in clinical analysis. Further 
research and analysis tools are required more specifically 
for each of the human anatomical region.
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