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Abstract
In this review, some of the latest applicable methods of machine learning (ML) in additive manufacturing (AM) have been 
presented and the classification of the most common ML techniques and designs for AM have been evaluated. Generally, 
AM methods are capable of creating complex designs and have shown great efficiency in the customization of intricate 
products. AM is also a multi-physical process and many parameters affect the quality in the development. As a result, ML 
has been considered as a competent modeling tool for further understanding and predicting the process of AM. In this work, 
most commonly implemented AM methods and practices that have been paired with ML methods along with their specific 
algorithms for optimization are considered. First, an overview of AM and ML techniques is provided. Then, the main steps 
in AM processes and commonly applied ML methods, as well as their applications, are discussed in further detail, and an 
outlook of the future of AM in the fourth industrial revolution is given. Ultimately, it was inferred from the previous papers 
that the most widely applied AM techniques are powder bed fusion, direct energy deposition, and fused deposition mod-
eling. Also, there are other AM methods which are mentioned. The application of ML in each of the renowned techniques 
are reviewed more explicitly. It was found that, the lack of training data due to the novelty of AM, limitations of available 
materials to be applied in AM methods, non-standardization in AM data and process, and computational capability were 
some of the constraints of the application of ML in AM methods.

1 Introduction

1.1  Additive Manufacturing

The practice of manufacturing has been one of the key com-
ponents of human development and progress through the 
ages. Some of the most significant methods include metal 
forming, machining, joining, casting, powder metallurgy, 
and three-dimensional printing or additive manufacturing 
(AM) [1]. AM is already in high demand in many industries 

such as aerospace and medical engineering [2, 3]. Moreover, 
considered to be an integral aspect leading to industry 4.0 
[4]. In medical applications, AM has become the most com-
monly applied manufacturing method in hearing aid gadgets, 
dental implants and prosthetic bones and cartilages [5]. With 
the availability and commercialization of this technology, 
even novice, non-technical household applications have been 
reported to be functional and practical for either mainte-
nance or self-customization [6]. The methods used in AM 
can create objects with sophisticated geometries layer after 
layer [7–17]. Although there are distinct methods under the 
class of AM, generally the process steps of each method 
follow the same stages and each step of different methods 
of AM fall under the same process step as depicted below 
(Fig. 1) [18]. 

The most applied AM methods are powder bed fusion 
(PBF), direct energy deposition (DED), and binder jetting 
(BJ) [19]. A classification of AM processes is presented 
below (Fig. 2) [20]. Each technique is different in terms of 
used material, layer formation and printed product. For each 
material and manufacturing method, different measures and 
considerations need to be taken to finish the product and to 
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achieve the highest quality. The considerations and steps 
required to establish a solid database are distinctive based 
on their difference in printing. Therefore, sampling, testing 
and material analysis in 3D printing methods are explained. 
Since each printing method is chosen based on the properties 
and applications of printed parts, properties differ in terms 
of surface smoothness, strength, durability, dimension pre-
ciseness and geometrical complexity [21].

Overall, AM has lots of distinct advantages over tradi-
tional manufacturing methods. However, the preliminary 

parameters are quite hard to tune since they may signifi-
cantly affect the microstructure of parts being printed and 
the overall quality of printed objects. Understanding process 
structure property performance (PSPP) relationship for 3D 
printing by using novel numerical and analytical modeling 
is a hurdle on its own, and nowadays, artificial intelligence 
(AI), particularly machine learning (ML) and neural net-
works (NN), are capable of performing advanced regression 
analyses and complex pattern recognition without the need 
to create analytical and physical models [22]. In this review, 

Fig. 1  The process steps in AM 
[18]

Fig. 2  Classification of notable methods of AM [20]
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the aim is to identify and discuss the applications of ML in 
some commonly used AM processes. The general process 
is depicted in Fig. 3 and gives an intuition of how these two 
methods could work together along with their functionalities 
and considerations[23]. The application of ML techniques, 
identification of challenges and advantages, and possibility 
of improvement in future works as well as the integration of 
these two concepts (ML and AM) are of utmost importance 
for a thorough understanding. Also, different provisions need 
to be considered for the maintenance of the aforementioned 
AM installments due to rapid growth of AM. Therefore, to 
tackle this shortcoming, a practice known as prognostics and 
health management (PHM) which is a combined practice of 
state monitoring for refining the accessibility and compe-
tence of high-value industrial apparatus and plummeting the 
maintenance expenses [24].As it happens, a method known 
as quantum ML technique is very helpful for health monitor-
ing purposes of the installments and other approaches which 
will be discussed in the AM outlook section of the paper. 
Conventional ML methods are shown to be not competent 
when it comes to handling large amounts of data in real-
time [25].

In the following, AM methods are evaluated as a prelimi-
nary introduction for painting a general picture regarding the 
capabilities of different AM methods.

1.1.1  Powder Bed Fusion

PBF is a state-of-the-art AM method that has progressed 
through many research works and advancements in indus-
try [26]. PBF is subdivided into laser beam melting (LBM) 
or laser powder bed fusion (LPBF), electron beam melting 
(EBM) and selective laser sintering (SLS). Generally, in 
PBF, energy source directly melts and sinters the materi-
als which are typically in powdered form [27]. Both metal 
and polymer-based procedures can be implemented for end-
use manufactured parts and typically, this method is very 
demanding in terms of energy consumption [28]. Figure 4 
[29] shows the aforementioned process. LPBF is particularly 

Fig. 3  Graphical representation 
of the steps taken in the applica-
tion of ML in AM [23]

Fig. 4  Laser powder bed fusion device setting [29]
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one of the well-established methods which has made notable 
progress to become fully commercialized [30–32].

1.1.2  Directed Energy Deposition

DED technique allows manufacturing objects by liquidizing 
materials while being deposited. This method is mostly used 
for metallic powders. DED can be easily paired with con-
ventional subtractive methods for machining. Furthermore, 
DED is very applicable in maintenance and repairing since it 
has high deposition rate that could be used in repairing large 
components [33, 34]. This process generates three-dimen-
sional parts by melting materials as it is placed by means 
of intense thermal energy such as electron beam, laser, or 
plasma arc. A scaffold system or robotic arm operates both 
energy source and material nozzle. A portable compartment 
is fixed along with a laser emitting source. Metal powder is 
concurrently directed into the nozzle to the required area; 
laser melts the powder which is then solidified to form a 
layer. Portable compartments are not fixed at specific axes 
and have the freedom to move along different orientations. 
Some of the notable hindrances are low building resolution 
of manufactured parts, high cost of manufacturing, and sup-
portless structures [35]. Figure 5 shows a DED laser process 
[36].

1.1.3  Material Extrusion/Fused Deposition Modeling

FDM, sometimes referred to as fused filament fabrication 
(FFF), (Fig. 6) method is extensively used for manufactur-
ing geometrically complex objects in a noticeably short time 
span to suit customer needs [37]. With control and command 
over processing parameters due to the enhanced capabil-
ity of operating machines, customized biomedical parts are 
becoming easier to produce [38]. In FDM, an uninterrupted 

strand of a thermoplastic polymer is used to 3D print layers 
of materials. The process of FDM is generally described 
as the extrusion of heated feedstock plastic filaments via a 
nozzle tip to deposit multiple layers onto a platform to build 
up the structure layer after layer from a digital CAD model 
of the part [19, 39]. However, FDM full-scale use is com-
promised by limited materials available in the market. As a 
result, it is important to fix process parameters in the stage 
of fabrication [40, 41].

1.1.4  Vat‑photopolymerization

Vat-photopolymerization (VATP) methods are considered 
as one of the low-cost AM processes in terms of required 
energy input [43, 44]. Moreover, this method has been very 
effective because of its high resolution and printing speed, 
especially in drug delivery and bespoke medical devices 
[45]. The very essence of material formation is based on 
a chemical process known as photopolymerization, which 

Fig. 5  Laser DED installment 
[36]

Fig. 6  Fused deposition modelling process of polymer material [42]
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occurs under light exposure in photocurable polymers 
resulting in cross-linking of the material to a 3D form. 
Some different approaches include mask-image-projection-
based stereolithography, laser writing stereolithography, 
and continuous light interface process (CLIP) [46–50]. In 
this section, we put CLIP approach under scope due to its 
potential for continuous AM and discrete layer segmenta-
tion. In CLIP approach, the most important parameter to 
monitor is continuous elevation speed which is shown by 
letter V in Fig. 7. Non-accurate speed elevation results in 
poor bonding of solidified materials if CLIP is too fast and 
adhesion to oxygen preamble window occurs if CLIP is too 
slow. The knowledge behind the proper elevation speed is 
mostly derived from experimental data and because printing 
geometry differs for each design purpose. The data from the 
empirical trial and error methods could not always be help-
ful, thus propelling researchers to consider data-driven and 
ML approaches to set the right parameters for each design 
[51].

1.1.5  Jetting Based AM Processes

Several distinct jetting processes based on the classifica-
tion made by ASTM [53] are binder jetting and material 
jetting. In general, droplets of build material are jetted to a 
build platform similar to two dimensional inkjet printing, 
either jetted countinusly or with drop on demand method. 
Material, and for binder jetting, liquid bonding agent, is 
jetted to bind powder materials. While both material jet-
ting and binder jetting share some similar traits, they have 
their own applications, advantages and strategies. Material 
jetting is very accurate with a minimum amount of waste 
and a variation of material parts and hues of color could 
be printed under one process, but there are only waxes 
and some polymers that could be used as print material 
whereas in binder jetting, a plethora of materials with 
much better and reliable mechanical properties such as 
metals, ceramics and polymers are used. Furthermore, 

in binder jetting method, there are many possibilities in 
the creation of parts with different mechanical properties 
while material jetting method does not have this important 
advantage [54].
i. Binder Jetting

BJ printing is a process where a binder material and a 
base material which are typically powder, are treated. Liq-
uid binders are extended through a jetting nozzle which is 
referred to as inkjet printer. Inkjet printers spread powders 
and powdered materials are selectively combined into a 
solidified layer; needless to say the bound layer is only two 
dimensional [55].

 ii. Material Jetting

Material jetting (MJ), was first established by Objet 
Geometries Ltd. in 2000 and was later adopted by the 
company Stratasys in 2012 [56]. In accordance with the 
standards set by ISO/ASTM52900, the printing method is 
explained as droplets selectively deposited from the feed-
stock. There are variances between the steps printing devices 
operate based on, but the general process remains the same. 
This method has other variations such as Electrohydrody-
namic jet printing, where instead of heat, pneumatic or piezo 
electric force is used. The electrical field exerts the liquid out 
of the nozzle, which helps immensely in printing electronic 
apparatuses [57]. In order to store the photopolymer materi-
als, an air-excluding tanker is implemented to exert deposits 
of aforementioned materials from the tank to the nozzle to 
form a very thin layer on the construction platform. After-
ward, ultra violet (UV) light with wavelengths of 190 and 
400 nm is used as post-processing for curing [58, 59]. When 
curing is done, the construction platform is lowered until a 
certain layer thickness is achieved and then, the process gets 
repeated until the desired part is constructed. Furthermore, 
the support materials for overhung parts are a sort of gel-
like material that can be removed by sonication in a vat of 
sodium hydroxide, heating, or waterjet [60, 61]. Figure 8 
shows how MJ operation takes place [62].

Fig. 7  A CLIP process for prototyping microneedle species. The orientation of the most important parameter ‘V’ is shown in orange [52]
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1.1.6  Sheet Lamination

Sheet lamination (SL) is a sub-branch of AM which was 
coined by Helisys of Torrance, in 1991. SL is sometimes 
also referred to as selective deposition lamination. However, 
the most prominent mode of SL is ultrasonic AM, which 
could have steps of other manufacturing techniques such 
as CNC milling, ultrasonic welding, and laminated object 
manufacturing. Generally, in SL methods, to make parti-
tions, cuts are made via laser and contrariwise, In order to 
make bonds between sheets, typically ultrasound waves 
are implemended [63]. Figure 9 depicts how the process is 
undertaken [64].

This method mostly consists of a mechanism in which 
sheets are directed above the build platform. A roller which 
acts as a heater applies the necessary pressure to attach the 
sheet above to the one below. After performing laser cut 
to the layer, build platform is lowered to the thickness of 
the pre-existing sheet, which is mostly between 0.002 and 
0.020 inches. Thus, one iteration is completed and another 

sheet advances on the top. The former sheet is deposited, 
while the platform rises again and the roller heating source 
enforces pressure to make another bond. As mentioned, 
this method has a number of names used by academia and 
industry. To the best of the authors knowledge, there is no 
explicit research done relating to the optimization of SL by 
ML and data-driven approaches. In general, it is shown that 
SL has high fabrication speed and there is no need for sup-
port structures. It also has low warping and internal stress. 
Moreover, multi-material and multi-color modes can be 
used. However, the shortcomings of this approach which 
require further study and improvement, are high amount of 
waste creation and issues with removing support entrapped 
in internal cavities. Moreover, thermal cutting produces 
harmful gasses and the lamination is likely to happen due to 
the heat of laser [63].

1.2  Machine Learning

ML techniques function as a medium for understanding 
complex patterns. Visual words and histogram of oriented 
gradients (HOG) are some of the features that are used in 
ML for image analysis [65]. These features mostly fall in 
the unsupervised category, hindering the proper consistency 
of the outcome of recognition task. In this approach, ML 
applies NN and convolutional deep neural network (CDNN) 
methods with the aid of supervised learning. This method 
picks up underlying patterns that could not be identified eas-
ily by automatic image processing. This method, which is 
exclusively inspired by the visual cortex of brain, has proven 
to be effective in inspection, motion detection, etc. [66–68]. 
While implementing ML, some assumptions are considered 
initially. The underlying premises and assumptions applied 
to develop an ML model need to be thoroughly understood 
to avoid any misconception. Figure 10 shows a classification 

Fig. 8  A general depection of a 
material jetting process [62]

Fig. 9  A sheet lamination installment [64]
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of some of the most important assumptions in this type of 
modeling.

ML models should be applied according to the assump-
tions considered in the model. Thus, resulting in a thorough 
assessment of the development of the model [69]. It is often 
believed that when a machine changes its configurations 
over time in a way that it performs better and more opti-
mally, it has articulated learning behavior. Changes could 
vary between enhancement of an already applicable system 
or developing a totally new system. What a machine con-
siders to change based on its experience could be a set of 
data or a structure of a program relating to the feedback it 
receives from its interaction with external information. ML 
is a branch of AI relating to changes that perform objec-
tives in a more efficient way and it is associated with the 
AI. These tasks could be prediction, forecasting, diagnoses, 
robot control or planning Based on most classifications, ML 
could be classified into three paradigms (Fig. 11) [70].

1.2.1  Supervised ML

Supervised learning is the most commonly implemented 
ML method. In this method, ML models need to learn 
functions in a way that inputs fit the outputs. Then, the 
function reveals information from categorized training 
data and each input is related to its assigned value. The 
algorithm embedded in a ML model is capable of making 
novel observations never made before or uncovering pat-
terns in a training data set [71]. Some considerations need 
to be made and some initial steps are required in order to 
perform this task [72–74].

• Acquiring a dataset and data processing
• Feature selection (target variable)
• Splitting the dataset (training, cross-validation, testing)
• Hyperparameter tuning and prediction

Fig. 10  Types of assumptions 
in ML

Fig. 11  Main paradigms of ML 
[70]
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Figure 12 shows the structure of a supervised ML model 
[72]. One of the most approached predictive statistical anal-
ysis in supervised method is linear regression [75]. Each 
analysis is carried out by a specific algorithm which should 
be chosen with prior knowledge based on linearity or non-
linearity of the problem. However, by comparing error met-
rics of each regression, best algorithm could be identified 
[76].

In the following, the aforementioned steps are discussed 
in more detail.
i. Dataset acquisition and processing

Data acquisition can be regarded as a concept where 
physical events that happened in real world gets transformed 
into electrical signals, converted, and scaled in digital format 
for further analysis, processing, and storage within the com-
puter memory storage. In general data acquisition systems 
are not only for gathering data but also for operating on 
the data [77]. Having complete data is very important for 
ML models to perform better and get a robust analysis [78]. 
Nowadays, DL models can even operate as good as real oph-
thalmologists in detecting diabetic eye issues from an image, 
all owning to the computational power of models and large 
amount of data to train the models [79]. With moderniza-
tion and new fields of science used in the industry, lack of 
prior data is a problem that should be dealt with, particu-
larly with deep learning models that require even more data 
than traditional ML. Initially, data acquisition approaches 
are used to harvest, augment, or generate of novel data sets. 
Afterwards, data labeling should be done and then, training 
the already achieved or improve the labeling and accuracy of 
the gathered dataset. In this aspect, ML engineers and data 

scientists and data managers should work together. In the 
following, a diagram of steps in data collection, acquisition 
and processing is presented (Fig. 13) [80].

 ii. Target variable selection

As the name indicates, the target variable is the feature 
that we aim to get or achieve in the ML task. Whether clas-
sification or regression, the features should be clear, such as 
the target variable. Target variables in the form of labeled 
targets are the pivotal point where supervised ML algorithms 
use historical data to pick apart patterns and discover rela-
tions amongst the other unknown features of the dataset and 
the set target variable. Without properly labeled data, super-
vised ML tasks would not be able to plot data to outcomes 
[81].

 iii. Splitting the dataset

Based on most references and as a convention, it is under-
stood that it is best to split the dataset to prevent overestima-
tion and overfitting. In the following, we discuss the most 
noticeable sets of grouping: training set, cross-validation 
set, and testing test. The training test is mostly the largest 
set. The model trains based on the insight that it gains from 
the data that is fed from the training set. The training set is 
basically the subset of the whole data set available. In this 
phase, we can forecast the weights, the bias of the model if 
it’s a NN. Therefore, we can optimize the hyperparameters, 
which are the parameters that control the initial setting of the 
system. They are immensely important because after setting 
them, they cannot be changed like the weights or biases or 
the parameters of the system. In the cross-validation phase, 

Fig. 12  General schematic 
diagram of a supervised ML 
model processing data related to 
cancer [72]
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we estimated the loss function or error of the system, and 
therefore minimizing it to get the best prediction. And then 
finally, we use the testing set, which is the smallest of the 
aforementioned sets and results in a non-bias result because 
the testing data are new to the model. This stage acts as a 
close simulation to a real life occurrence and demonstrates 
how the model would operate in a real situation [82].

 iv. Hyperparameter tuning and prediction

Hyperparameters are very important due to the fact that 
they should be set before each iteration, and they define 
the very fundamentals of an ML model, unlike process 
parameters that can be manipulated while data learning 
process is in process. In the case of a DNN, a part of it 
is determining the number of hidden layers, nods, neu-
rons, step size, and batch size. One needs to differentiate 
between the hyperparameters that are related to the algo-
rithm, such as the aforementioned step size, batch size, and 
the ones that are related to the structure of the model, such 
as the number of hidden layers, method of nods connecting 
to each other and the number of nods. As is maintained, 
hyperparameters are constant while in operation, but pro-
cess parameters can change. The progression to tuning or 
optimization of hyperparameters could be achieved when 
enough number of tests runs and trials are undertaken. 
The pace of training of a DL model is determined by the 
rate of convergence. There are methods known as super 
convergence methods where the crucial foundations of 
super-convergence Are training with a singular learning 
rate cycle and a hefty maximum learning rate [83, 84]. 
By comparison of the results of the test runs and making 
vigilant comparisons to real values of each data iteration, 

the accuracy of the model can be evaluated, and there-
after, we gain insight as to find the best values for the 
system to make a better combination of hyperparameters 
and more accurate predictions. A hyperparameter metric 
is a personal specification of a single target variable that 
is specified by choice of a human operator. The model 
accuracy is defined by a metric value and, therefore, can 
be determined if it is maximization or minimization that 
is the desired goal for our specified metric to fulfill [85].

1.2.2  Unsupervised ML

Methods classified as unsupervised ML are capable tools 
for the detection of similarities, thus drawing conclusions 
out of unclassified data by clustering them based on their 
similarities. When high dimensional problems are needed 
to be dealt with, these methods act fantastically in terms of 
finding correlations and patterns in such unclustered and 
vast environments and their visualization of many clusters 
that they classified. Furthermore, telling irrelevant inputs in 
models apart and eventually finding ways to produce materi-
als under the same conditions and with the same quality are 
some features of unsupervised ML [86].

In industrial applications, a specific type of unsupervised 
ML, known as unsupervised transfer learning (UTL), has 
been found to be effective such that it could be considered 
as a robust anomaly detector that could be updated based on 
changing operating conditions. Needless to say, these mod-
els need comprehensive datasets [87]. Also, unsupervised 
learning could be used in cases where cyber-physical attack 
uncovering in AM is required [88].

Fig. 13  Study landscape of data 
collection for ML [80]
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1.2.3  Reinforced ML

ML approaches are very effective in dealing with repetitive 
tasks. Reinforced learning (RL) is very capable in the envi-
ronments that machines are gathering field knowledge. There 
is no specific need for direct programming, and no human 
intervention is involved. The way this process undergoes is 
by defining objectives for the machine as rewards in the case 
of positive progress and punishments should the machine 
regresses away from the set objective. Figure 14 is a general 
workflow of a RL agent [89].

As the illustration above shows, there is an iteration 
shown as the observation phase Ot , in this iteration, every-
thing that needs to be observed and acknowledged by the 
agent will be monitored and unveiled and the consensus is 
that there will be no information which will be concealed 
in this iteration. The embedded policy within the learning 
process signifies the agent’s decisions and reaction to the 
observation that it conveyed. There are typically two form 
of policies, deterministic and stochastic. A deterministic 
policy is a precise action over a current state of observation 
a = �(.|Ot) . Contrariwise, a stochastic policy is a distribu-
tion of actions over a current state of observation a = �(Ot). 
Moreover, a reward signal is the objective of the RL problem 
and it’s directly influenced by the ongoing observation state 
and the actions taken in r = R(Ot, a) . The ultimate aspira-
tion of the system is to maximize the reward it accumulates 
and maximization of the return rate Gt with discount rate 
γ ∈ [0 1].

Modelling of the environment allows for a deeper under-
standing and accurate postulation as to how the environment 
would behave. The dynamics of the environment could be 
mnemonically expressed as P, that could be either determin-
istic (Ot = p(Ot, a)) or stochastic Ot = p(Ot, a) [90].

There are many possible applications of this ML 
approach, for instance if we consider an engineering design 
process, each decision taken in the process of design could 
have either positive or negative impact depending on the 
design objective. Numerous actions and approaches will 
be taken until the satisfactionary results will be achieved 
and each one of them has their rewards or punishments in 
the development of the process. There have been numerous 
reports of novel applications of RL method. In robotics, RL 
is a promising prospect for optimization and further enhanc-
ing robotic manipulations [90]. RL models are still some-
what considered as black box models. However, with meth-
ods to elucidate the intricate decision making of RL models 
and agent’s behavior, RL models could help in acquiring 
scientific insight on the complex approaches it takes [91]. 
In a study in order to make Corrections in the framework 
for process control of robotic wire arc AM (WAAM) RL 
was used and the results signified that by using RL, learning 
architecture can be used in conjunction with real parts print-
ing giving better chance of in-situ study, therefore minimiz-
ing the obligatory training time and material depletion. The 

(1)Gt = Rt + 1 + �Rt + 2 + �2Rt + 3 +…

Fig. 14  Generic depiction of 
process steps of a reinforced 
ML model [89]
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proposed learning framework is applied on an actual robotic 
WAAM system and empirically assessed [92].

1.2.4  Evaluation of ML Model Performance

In ML model performance, availability of data is an impor-
tant factor. Tasks regarding voice recognition, natural lan-
guage processing or image recognition have vast data avail-
ability, and in contrast, in a field like bio-informatics where 
data acquisition tasks are very hard to come by and are gen-
erated at quite a high price. In ML, there are three particular 
options to tackle the model evaluation (predictor). Independ-
ent dataset test, cross-validation test, and re-substituting. In 
the independent dataset approach for model evaluation, all 
the data sets are divided in a random fashion between two 
uneven parts, meaning that one part is deliberately smaller 
and the other larger, reason being that the larger part is des-
ignated as the training data and the smaller part for the final 
testing of the model. This approach is sometimes referred to 
as sub-sampling as well. The method however, operates on a 
small testing pool of datasets, which would result in volatile 
results on each testing evaluation. In simple terms, in each 
test, the results could be different from one another, which 
will result in inconsistency in results between real life results 
and test results, often higher or lower. In the resubstituting 
test, there is no difference between the testing pool and the 
training pool of data, and that becomes problematic as the 
model evaluation results are often far too optimistic and not 
very accurate. For example, a 99% accuracy could mean that 
the model is overestimated and rendered inoperable in real 
applications. The next type of model evaluation is known 
as cross-validation. Even though all the data available are 
used for testing, the way they are used are far more differ-
ent compared to the resubstituting test, such that the whole 
data set is haphazardly divided in an arbitrary segmenta-
tion, denoted as ‘n’ part of equal magnitude. Furthermore, 
the testing and training operation will be carried out for ‘n’ 
times and in an arbitrary number of times where the objec-
tive is reached, denoted as ‘kth’ time, the ‘kth’ part will be 
used as the testing set while the remaining n-1 parts are still 
in training, and finally, after n rounds, every set of samples 
are used for testing phase for just once and by averaging the 
whole forecasting results over all the dataset, a better result 
for evaluation would be achieved (Fig. 15) [93].

Some other important measures of accuracy and preci-
sion of an ML model are described by confusion matrix and 
it could be expressed in four statements, as false negative 
(FN), false positive (FP), true negatives (TN), true positives 
(TP). Accuracy is therefore defined by how truthful the pre-
diction of a model is. And it can be calculated as,

Precision is the amount of correct/ true positive cases 
divided by the number of real (true positive + false posi-
tive) examples forecasted by the classifier. The recall is 
the number of true positive instances divided by the num-
ber of predicted (true positive + false negative) instances 
by the classifier [94].

1.2.5  Deep Learning and Neural Networks Approach

In the past 40  years, ML and deep learning (DL) 
approaches to ML have proven to be very efficient and 
have made a huge impact in multiple industries [95]. Over-
all, both ML and DL belong to the much broader science 
of AI. The reason deep learning is addressed by this name 
is merely because of the multiple numbers of layers incor-
porated between the input layer, which is the first layer, 
and the last layer, which is the output layer [96]. Conven-
tional NN models or multi-layer perceptrons have a sin-
gular nature that makes them well suited for binary prob-
lems via feeding them given inputs, which is inspired by 
the human’s brain learning and perception pattern. Dong 

(2)
Accuracy (Acc) = (True Positives + TrueNegatives)

∕Total Samples count

(3)Total Samples count(N) = TP + TN + FP + FN

Fig. 15  A depiction of n-fold cross-validation [93]
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et al. [97] generally break DL models down as ‘merely 
a great many classifiers working organized, which are 
grounded on linear regression followed by some activa-
tion functions. A variation of DL, known as convolutional 
neural networks (CNN), is proven to be very suitable for 
image recognition tasks. Image recognition data are multi-
layered data and are well designed for such tasks [98]. 
This DL method has been applied in many different fields 
[99–102]. For the case of 3D topology optimization [103], 
a CNN method known as one-shot has been successfully 
used [104] . Furthermore, because of the broad usage and 
variety of applications of DL models, the following will 
be dedicated to the breakdown of different DL models. 
Additionally, Recurrent neural networks (RNN) are very 
complicated and intricated due to the fact that aside from 
the inputs that they are fed with, an internal addition task 
is also carried out, which is nothing but some older inter-
nal tasks which are recognized as a part of the output for 
the system [105].
i. Classical neural networks (multi-layer perceptrons)

Conventional NN models or multi-layer perceptrons have 
a singular nature that makes them well suited for binary 
problems via feeding them given inputs, which is inspired by 
the human’s brain learning and perception pattern. Figure 16 
[106] depicts genesis of the aforementioned models. This 
method was initially developed by an American psychol-
ogy practitioner by the name of Frank Rosenblatt in 1958. 
Typically, a NN model with two sets of inner layers is a 
classical NN.

This method is best used for its adaptability and flexibility 
to different types of data, regression or classification task, 
under the condition when a real set of values are fed to it as 
inputs and are also very well implemented for datasets that 
are in the form of vectors or matrices [107, 108].

 ii. Convolutional neural networks

CNN can be considered as a more complicated and 
advanced form of classic NN. Capable of more complex pre-
processing and data computation, these models have been 
used for image processing and handwritten digits (Fig. 17) 
[109] for the most part. However, it can also reach satisfac-
tory results with non-image data as well. How this model 
makes its calculations is that the initial layers will pick apart 
traits like curves, edges, and lines of an image, the layers in 
between will group and assemble them and the final layers 
will recreate the image from the scratch all over. Moreover, 
there are some aspects where we can differentiate the CNN 
from its classic counterpart. Namely, the CNN models do 
not have to be directly connected to all out puts from the pre-
vious layers; or in other words, they have local connections. 
Second, the overlapping of input fields, within each layer. 
the neurons have the same weight in the whole layer and 
instead of the sigmoid function, it uses a non-linear function 
known as rectified linear function (RLF). Pooling layers will 
be combined with convolutional layers and the nominaliza-
tion layers will be existent to keep the received signals in 
each level at the desired level. Overall, backpropagation will 
be used for training [110, 111].

 iii. Recurrent neural network

Recurrent neural networks (RNN) are very complicated 
and intricated due to the fact that aside from the inputs that 
they are fed with, an internal addition task is also carried 
out, which is nothing but some older internal tasks which 
are recognized as a part of the output for the system (Fig. 18) 
[105]. Therefore, the RNN treats a part of its output as input 
for the next reoccurring step, and we could postulate that 
this is where the origin of the name Recurrent came from. 
The embedded algorithm selects the part of the output that 
is going to be used as an input. This internal state is also 
referred to as memory. This extra step as memory has proven 

Fig. 16  A single artificial neu-
ron [106]
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to be very effective in chronological data, such as audio, text, 
time series, and allows to handle data and inputs of different 
sequence span. The long-short term memory (LSTM) and 
the gated recurrent unit (GRU) are some the famous algo-
rithm applied and for accounting in for the inference on an 
output, only the network's output after the last phase of step 
is applied. Time series forecast has many applications in 
astro-and geophysics where many stimulating systems have 
unseen conditions that cannot be determined due to their 
novelty and need past observations to be determined [112].

1.2.6  Common Loss Functions in Machine Learning

During the recent decades, ML methods have achieved 
great feats and one of the most influential aspects of this 
achievement is the performance of their corresponding 
algorithms. As a result, one of the functions that keeps the 
algorithms in check is known as the loss function. In this 

section, we discuss some of the most pragmatic and known 
loss functions in ML. Basically, ML algorithms could be 
grouped in two sets, supervised and unsupervised. Within 
the supervised learning set, the most important tasks to 
be carried out are regression and classification tasks. In 
regression, a continuous value is under scope, but a dis-
crete target value in classification tasks. In simple terms, 
the common objective of regression tasks is to learn about 
an arbitrary function f(x) that derives the minimum loss 
value related to all training data. Table 1 compares math-
ematical statement for regression and binary classification 
tasks [113].

Furthermore, it is noteworthy to bear in mind that each 
loss function results demand a different ML approach. For 
example, the famous support vector machine (SVM) algo-
rithm[114] needs the hinge loss to operate, exponential 
loss [115] leads to the classic boosting method, and logis-
tic loss function lead to logistic loss function. The logistic 

Fig. 17  A CNN sequence to classify handwritten digits [109]

Fig. 18  A RNN, where x rep-
resent the input words from the 
text, y represent the predicted 
next words and h hold the info 
for the former input words [105]
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loss function is a classification-oriented loss function that 
is very prominent in ML problems and the mathematical 
expression for logistic regression goes as follows:

where (x, y) ∈ D is a set of data containing a great number 
of arbitrary labels, y is a label assigned to an example, and 
owning to the fact that logistic regression is a classifica-
tion task, then y should be 1 or 0, and y∕ is the estimated 
value which could be any value between 0 and 1 [116]. Also, 
another important loss function that is very useful and worth 
mentioning is the cross-entropy loss function. This particular 
type of loss function is very useful for probability estimating 
of rare instances and stochastic environments and networks 
[117]. This powerful method has been nominated for appli-
cations such as importance sampling and optimal control 
[118] and probability density estimation [119].

2  Application of ML in AM

So far, the most commonly used ML method is super-
vised learning. This is due to its convenience in applica-
tion and the fact that AM processes encompass several 
variables and complexities, which is a hurdle in exploiting 
full potential and advantages of ML. However, other ML 
methods are tested and implemented as well. For example, 
reports of using RL for toolpath optimization [120], unsu-
pervised learning for anomaly detection [121], as well as 
finding trends in high dimensional data sets, constructing 
an analytical map of features detected in a manufacturing 
process, out of the inputs to the output responses for dif-
ferent problems, and finding patterns in dimensionally vast 
environments, are available [122]. ML models are clas-
sified as surrogate models and they are capable tools for 
studying non-linearities and could deliver good results with 
both simulated or experimental datasets [123]. Generally, 
ML modeling is often considered as surrogation modeling 
that could significantly speed up numerical simulation 

(4)Log Loss =
∑

(x,y)∈D
−ylog

(
y∕
)
− (1 − y)log

(
1 − y∕

)

development [50]. Nonetheless, numerical methods such as 
finite element methods are quite common for the modeling 
of parameters such as heat source, feedstock, and melt pool 
dynamics [124–126]. Finite volume methods could also be 
implemented [127]. However, there are records of modifi-
cations on finite element analysis to best suit 3D printing 
process, such as quit/inactive method and other variations 
[128–130]. The most important aspect of ML is that it can be 
tuned by training data. In the case of AM, since it is a com-
plex multi-physics process and a complex progression, there 
are many variables and parameters at play and therefore, 
considerable investments have been authorized to develop 
databases enriched with data informatics applicable within 
ML framework combined with legacy physics-based and 
Integrated Computational Materials Engineering (ICME). 
this combination had resulted in the development of tools 
to make predictive analysis regarding crack propagation 
due to fatigue and the nucleation, one example is known as 
DigitalCloneⓇ for AM which in a broader sense, is merely 
an ICME tool [131]. Consequently, this results in models 
with better process-structure property. Accurate grouping of 
each iteration of designed experiments improves and opti-
mizes materials and designs [132]. ML models could only be 
efficient if it is fed with proper training data. Generally, the 
steps needed to be taken in an AM process could be divided 
into four major steps (Table 2) [133] and each step requires 
different considerations along its distinct ML method and 
algorithms. Considering the classifications presented in 
Fig. 19 [134], related common ML methods to the main 
process steps of AM are further described in Table 2.

2.1  AM Design

Typically, design for AM is a topic that could be divided 
into two segments; object design and the optimization of 
AM design. Also, owing to the novelty of the AM design, 
different materials and geometries need to be studied. Over-
all, matters related to topology optimization, design feature 
recommendation, shape deviations, material analysis for 
AM, and cost estimation fall within the scope of AM design. 
Therefore, studies regarding the aforementioned topics will 

Table 1  Regression task compared with classification in mathematical terms [113]

ML task Regression task Classification task

Mathematical expression
minf (x)

n∑
i=1

l
�
f (xi) − y(i)

�
+ R�(f ) minf (x)

n∑
i=1

l
�
yif

�
xi
��

+ R�(f )

Components f(xi)-y(i) represent deviation of target value from the resultant 
value

l represents the loss function

yif
(
xi
)
 represents devieation between the 

hyperplane and f
(
xi
)

l represents the loss function
R� , is a regularization term to hinder overfitting R� , is a regularization term to hinder overfitting

yi is the label of xi
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be discussed in this section. The shape and dimensions of 
any desired part are among the initial phases that must be 
measured and considered. How efficiently and optimally the 
geometry of a shape is designed could go a long way and 
has major influences on price and even environmental pol-
lution. An example of the importance of an optimal shape 
design is predominant in aeronautics, where reducing the 
volume of the material while still maintaining the quality 
and reliability can result in less fuel consumption. This can 
result in cheaper flights, less pollution, and lighter overall 
aeronautics [135]. One of the capabilities of AM methods is 
creating complex geometries and designs with intricate lat-
tice structures. Also, the mass distribution of material [136, 
137] in a part is well controlled and engineered in an AM 
design process. This new frontier of design poses its own 
challenges, including overhung structures [138, 139].

2.1.1  Topology Optimization

Topology optimization (TO) has started to gain attraction 
starting from the late 20’th century [140]. It became more 
popular as a reliable computational method for designing 
with less weight of parts being made in many fields includ-
ing automotive and aerospace industries [135]. The main 
purpose of this step is to improve geometry to maximize 
load-bearing capacity while keeping stiffness and longevity 
at desired standard using as few materials as possible. TO 
methods also consider the optimization of natural frequency 
maximization and constraints and the minimization of con-
strictions. TO methods are applicable and have proven to be 
effective (Fig. 20) [141].

Nevertheless, TO faces many hurdles when paired with 
3D printing. One of the main reasons stems from complex 
part shapes with overhung extensions, unique potential Ta
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Fig. 19  Main process steps in AM [134]
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sections of each product with different geometries and cross-
section areas and angles exceeding their threshold vertical to 
printing bed. Depending on the type of material considered 
to be applied in printing process and the geometrical shape 
of part as well as its actual functionality, support structures 
are selected and used (Fig. 21) [142].

However, the removal of support structure is an extra 
effort; that is why although AM and TO are theoreti-
cally compatible, most TO considerations end up slightly 

challenging when a part is 3D printed [143, 144]. Thus, 
designing the shape to eliminate the need for support struc-
ture will result in a non-optimal shape. Therefore, a bal-
ance between the application of support structure while 
decreasing its significance in designing is a favorable tactic. 
Figure 22 [145] is an attempt to achieve such a goal by con-
ducting analysis on the assemblage and the prediction made 
by ML on strength and toughness. Overall, the premise is to 
introduce the angles that are overhung, regarded as a pen-
alty term, which could be considered as constraints in the 
design space. Also, linear regression can be applied to all 
voids in solid interfaces to detect the areas which need sup-
port structure. It needs to be mentioned that self-supporting 
designs mostly hinder the design from being practical. One 
commonly used approach to tackle this issue is assigning a 
soft penalty label to the amount of effort required to remove 
support structure to the design objective of choice with small 
controllable coefficients. The proposed method is to start 
solving in an unconstrained design space followed by further 
reorganization of the solution iteratively to minimize the so-
called soft penalties with respect to design objective [134].

One of the capabilities of TO in AM designs is the abil-
ity to optimize heat and fluid transfer via TO methods. 
Optimizations could also be implemented to generate more 
enhanced heat sink designs [147]. AM has improved the 

Fig. 20  a Basic structural forms 
of problem, b TO executed on 
the part, c 3D printed object 
[141]

Fig. 21  a An additively manufactured part, b The support structure 
holding the shape upright, shown in blue [142]. (Color figure online)

Fig. 22  A A sample DM and voxels representing varied domain assemblages [146], B Design manufacturing sensitivity analysis accomplished 
by linearly built models forecasting strength (right) and toughness (left) [145]
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distribution of diverse lattice assemblies in designs (Fig. 23) 
[148]. Also, because of design freedom, the ability to include 
multiple materials in a part is practical and practiced today 
(Fig. 24) [149].

Shape and size optimization should also considered in 
TO [150–154]. Design and shape specifications related to 
each cell or voxel in each design could often be trained 
via ML methods by programming different material vox-
els as different features related to their assigned numbers 
(Fig. 25) [155].

In a case when buckling due to enforcing maximum 
load to a desired area is likely to happen, a particle swarm 
optimization (PSO) method was used in order to ensure 
shape optimization. The process could be stated in the 
following general form:

(5)

Minimization of (X) = F(X) =
1

Buckling
=

Applied load

Buckling

Subjected to aj ≤ Xj ≤ bj j = 1, 2, n

Fig. 23  Complete scale recrea-
tion for the design made by a 
simulated design and b fixed 
design [148]

Fig. 24  Negative Poisson’s 
ratio metamaterial designs with 
different volumetric ratios: a 
20% for soft material and 40% 
for hard materials, green parts 
indicate hard materials and red 
parts present soft materials; b 
35% green material and 25% red 
material; c 30% both hard and 
soft materials [149]

Fig. 25  Design of an AM prod-
uct processed and fed to a ML 
model, each colored unit cell 
indicates complex assemblages 
of microstructures, giving each 
cell a number for the identifica-
tion of each cell [155]
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where function F(X) is the objective to be minimized, and by 
optimization of variable X and the lower and upper bounds 
enforced to the variable are set as aj and bj In general, PSO 
is regarded as a gradient-free optimization technique. A 
definite number of randomly chosen particles, also stated as 
designs, are introduced over a specified design domain so 
that each and every particle or design are processed based 
on the initial objective function. Upgrading is perceptible in 
the form of their social and individual variances, meaning 
alterations they receive as a particle or in a batch compared 
to pre-upgrading state. Depending on the best global value 
of each particle in the swarm and individual initial optimal 
value of interest. In this instance of the application of this 
optimization (Fig. 26) [156], shape X and shape design vari-
ables were successfully optimized via PSO [156]. Further 
details were also provided in a study by Singh et al. [157]. 
The right side of Fig. 15 illustrates a feature knows as Rhino. 
Python was used to assess the buckling load applied to the 
stiffened panel-shaped part under load for each particle of 
the optimized method. Furthermore, this feature could be 
used for the creation of panel geometry. When geometry is 
generated with a different set of parameters optimized by 
PSO, in order to automate the generation of geometry while 
PSO is being operated. Then, the prepared geometry is trans-
ferred to be processed in MSC Nastran software environment 
for buckling analysis [156, 158].

In other attempts to optimize TO, Sosnovik et al. [159] 
tried using CNN which resulted in significant positive results 
and overall acceleration in the process. The overall achieve-
ments were as following,

• After just a few numbers of iterations done by the algo-
rithm known as penalization of solid isotropic materials 
(SIMP), the proper input volume was delivered.

• The SIMP algorithm delivered the output volume only 
after 100 iterations.

In the accounts of application of SIMP algorithm shown 
by Sosnovik et al. [159]. it was revealed that the computa-
tional effort was significantly reduced while results were 
ranging from 92% accuracy from 5 iterations to 99.2% after 
80 iterations. Also, Harish et al. developed an algorithmic 
DL/ML based approach for TO for getting the optimized 
structure with a given condition of the structure and for 
that purpose, they trained a CNN model variant of DL with 
a decoder, encoder structure with decent results [160]. In 
another research, which was concerning the application of 
3D cantilever beams, Banga et al. [103] reached the binary 
accuracy of 96%. This indicated that with significantly less 
time TO could be done with the same quality. Furthermore, 
higher resolution TO was used effectively in the practice 
phase therefore, leading to better quality outputs and finally, 
higher complexity was achieved leading to optimized struc-
ture without supports [161].

2.1.2  Design Feature Recommendation

Design feature recommendation is the very foundation of a 
successful AM process, as it is indicative of how efficient 
the print process would be in terms of cost, preciseness, 
amount of post-processing and usage of support structure 
[122]. ML approaches also have the history of being used 
to determine how complex or simple the process of manu-
facturing of a computer-aided design (CAD) model would 
be, based on its features, such as multi-scale clustering 
and heat kernel signature methods. This capability is very 
helpful in order to prevent futile designs early on and also 
in setting the proper build orientation. CNN, has shown 

Fig. 26  Shape optimization 
via swarm particle optimiza-
tion coupled with a trained DL 
model [156]
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significantly better accuracy in part mass estimation and 
build time forecasting than conventional linear regression 
modeling approaches [162, 163]. In a work done by Yao 
et al. [164], a method of hybrid approach was presented 
in order to come up with the best design features, using 
unsupervised and supervised techniques as the form of 
Hierarchical clustering (HC) and SVM, in a way that 
initial AM design features and targeted parts and com-
ponents are coded and thereafter, HC method is applied 
on the coded design features resulting in an initial plot-
ting, then the SVM classification is applied to iteratively 
optimize the plotting made by HC. the byproduct of the 
hybrid ML approach contains the recommended design 
features. In order to proceed with the proposed hybrid 
ML approach, four general steps were considered. These 
general steps contain a route to fully use unsupervised 
learning clustering and classification made by supervised 
learning. The first step is to code the design features and 
targeted components to be stored and classified in a refer-
able dataset. Then, the second step would be to execute 
HC to all design features and targeted components within 
the database, resulting in plotting of hierarchical tree 
structure. The third step is to commence SVM classifica-
tion by training on real industrial data, and in the fourth 
step, the classifier that was trained in the previous step is 
employed to form an algorithm capable of identification 
of recommended design features via cutting and selection 
of branches formed on the hierarchical tree shaped in the 
second step. The fundamental step toward the proposed 
approach is the multi-categorial coding which grants better 
intuition as to how the HC and SVM would function. The 
authors differentiated 3 distinct categories for initial cod-
ing of target components and design features, the “load-
ing’’ category, “objectives’’ category and “properties’’ 
category. Moreover, these 3 categories are found to be 

co-related, such that either a target component or an AM 
design feature which is under a static tension load might be 
having resisting linear distortion as design objective, while 
Young's modulus and tensile strength are the important 
properties. The coding considerations are shown in Table 3 
and the complete mapping of the aforementioned 4 steps 
is depicted in the Fig. 27 [164].

2.1.3  Geometric and Shape Deviation

There exist many aspects leading to geometry and shape 
deviation. In the process of converting the CAD model to 
standard input files, numerous inaccuracies and geometric 
deviations occur. Also, errors of the machine would result in 
shape and geometric inaccuracies and shape shrinkage. For 
getting into more specifications of this issue, Huang et al. 
[165] achieved optimal shape dimensions for 3D printed 
objects of polygon and cylindrical shapes, a new statistical 

Table 3  Categories in functionality-centric design, coding based on 
expert knowledge of experienced operators and their archived design 
features which are coded and could be extracted. matching each 

archived design feature to target components is the basis of design 
feature recommendation [164]

Initial coding step Type of coding Type of input Type of classification in database

Loadings Binary pattern, the digit “1” indicates 
that the corresponding loading will be 
applied on the design feature or the 
target component, digit “0” indicates 
that the corresponding loading is 
non-existent

Physical inputs, including mechani-
cal loadings, fluid and heat flux and 
electromagnetic loadings

As a vector 
L =

[
l1, l2,… , l3

]T(
li ∈ {0, 1}

)

Objectives Coded with numerical ratings from 1 to 
3, indicating levels of relevance

List of design purposes of AM design 
features and target components such as 
aesthetics, ergonomic factors, weight, 
instant assembly, etc.…

As a vector 
O =

[
o1, o2,… , o3

]T(
oi ∈ {1, 2, 3}

)

Properties Coded with numerical ratings of 
importance

A list of key properties, including 
mechanical, chemical, thermal and 
electromagnetic properties

As a vector 
P =

[
p1, p,… , p3

]T(
pi ∈ {1, 2, 3}

)

Fig. 27  Process steps to hybrid ML design [164]
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model was established and their model delivered promising 
results in shape prediction where it was capable of compen-
sation and prediction of 75% of deviations of a dodecagon 
shape deviations based on statistical approaches. In another 
research, a deviation modeling method was suggested by 
Zhu et al. [166] for making accurate forecasting of the shape 
and geometric deviation trends in AM. For realizing this 
purpose, Bayesian inference was used. Based on the data 
from different shapes, the models perform and thus, more 
accurate tolerancing of AM parts would be achieved.

Furthermore, in a study by Ghadai et al. [167] DL is used 
to learn from 3D CAD models and make better suggestions 
on DFAM, without the need for additional shape informa-
tion. The layer-wise stacking process in AM and the fact that 
materials undergo repeated thermal expansion and shrinkage 
causes some issues in preciseness of the shape and geometry, 
causing the influence of deviations to be existent inside each 
layer or in between each layer. Nonetheless, other factors such 
as errors due to geometrical approximation, mostly because 
of converting the 3D CAD model to the standard file input, 
should be accounted for. In The approach by Huang et al. 
[165], the mathematical expression to address deviations is in 
2D domain, due to negligible width of each layer is presumed. 
thus, resulting in an expression based on the original objective 
dimensions comparing with the shape that was attained after 
the process. In a 2D layer, the axes in which deviations could 
occur, based on the cartesian coordinate system are in the X, 
Y and the rotational expression with respect to the original 
shape. These expressions are used to make transformational 
expressions. However, the aforementioned expression could 
only account for overall in-plain shape deviations and not 
the more complex error sources such as location-dependent 
surfaces along the shape boundary. The authors assume that 
such complexity, which could not be expressed by parametric 
function, could be related to the uniqueness of the shape. As a 
result, the need to apply a data-driven model comes from the 
complexity of this multifaceted error source, and the multi-task 
Gaussian process (GP) was chosen to learn, characterize, and 
predict the deviations. GP is a supervised learning ML tech-
nique. This method is known for its probabilistic predictions 
and its capabilities in real-life applications. The more the num-
ber of training points increases, complexity in computations 
gets updated, and predictions improve [168]. Supposing that 
our objective is to model the deviations of M number shapes, 
formula (6) that expresses GP is as follows;

where M is the index of the shape, l = 1, 2, 3…M. 
fl
(
�;�l

)
 = the parametric function for expressing systematic 

deviation of shape l. where gl(�) is a zero-mean and GP 
models the local variation of shape ‘l’. Eventually, random 

(6)yl(�) = fl
(
�;�l

)
+ gl(�)

noise is learned while all M shapes are accessed via multi-
task learning algorithm.

Overall, the relationship between occurring errors to 
shape and geometry deviations are far too non-linear to be 
modeled empirically from a set of samples. Therefore using 
data-driven ML techniques has proven to be a proper choice, 
as the results are shown in Fig. 28 [166].

2.1.4  Materials in AM

In AM, specific manufacturing techniques are used for each 
type of material. Material types in AM could vary depending 
on the material scale (at mesoscale, macro-scale, or nano), 
type of material, which could be metallic, ceramic, poly-
mer. Also, process parameters for printing the material are 
very influential when it comes to material quality. One of 
the reasons which makes AM unique compared to previous 
manufacturing methods like subtractive manufacturing is the 
fact that material inheritance is kept intact and unaffected. 
For example, in machining, only a block of material is sub-
tracted and shaped to the manufacturer's desire. Therefore, 
this is only physical manipulation of the shape of the afore-
said block that is happening. On the other hand, in AM, 
the material is being transformed by a chemical or thermal 
process all the while geometry of the manufactured part is 
being established. The very materials implemented, such as 
powder or polymers, are quite influential. However, process 
parameters, such as printing speed, printing scalability and 
printing resolution, also play a significant role in material 
characteristics [169, 170]. Owning to this new niche in mate-
rial manufacturing in AM, a large number of variables for 
material analytics are generated, and storing, clustering, and 
gaining insight from such vast amount of data is a cumber-
some task. For example, in a case of powder chemistry of a 
certain metal or alloy, such as the case of Ti-6Al-4 V alloy 
powder, the chemistry could vary drastically because of the 

Fig. 28  Accuracy of the prediction in deviation forecasting compared 
to real observed deviation [166]
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impurities like oxygen, carbon, iron, or nitrogen. This vari-
ation can affect the tensile properties, which could alter the 
configuration of each set [171]. As a result, ML methods 
can be used for better material composition and the usage of 
sensors such as pyrometers or acoustic sensors [172, 173]. In 
general, this study overlaps with the material science aspect, 
so it would be helpful to mention the most prominent ML 
method used in material science (Table 4).

In a case study in bone tissue engineering, conducted by 
Guo et al. [174], it was shown that the microstructure of the 
required porous geometry could be further improved by the 
control which would bring about possibilities such as preci-
sion in intricate micro and macro porous parts for printing 
bone tissues. These can be realized only via 3D printing 
(Fig. 29). They studied a case of printing Ti6Al4V titanium 
alloy and concluded that ML method could immensely aid 
in the following aspects of bone tissue printing:

• Gradually updating the process-microstructure perfor-
mance relationship based on repeated training

• Providing guidance for process parameter selection for a 
higher quality of printed material

• Minimizing the unwanted porosity caused by measly hole 
instability

• Reduction in fusion defects due to inadequate overlap-
ping of adjacent scanning routes

In another attempt to construct a Bayesian framework 
based on GPR and Bayesian optimization approach, uni-
fication of nanocomposite design and part construction 
was done by Liu et al. [175]. The researchers combined the 
decent surface quality forecast and process parameter opti-
mization to gain improved surface roughness. It was reported 
that GPR performed better than other targeted benchmark 
methods in terms of convergence with the highest coeffi-
cient of determination  (R2) value  (R2 = 0.84), and the model 
accuracy with the smallest mean absolute percentage error 
value (MAPE = 0.13) and  root mean square error value 
(RMSE = 2.66). It can be stated that the type of material 
and complexity of the respected material is a challenge. To 
tackle this issue, an unsupervised method was suggested 
to reduce the amount of vast data generated from metallic 
material for the AM process [176].

2.1.5  Product Cost Estimation

In general, to determine whether a product development 
would result in financial gains, the product should neither 
be overpriced nor undervalued. The determination of such 
quality of products for manufacturing is product cost esti-
mation related to many factors, which will be addressed in 
the following section. In a paper by Busachi et al. [177], 
three general approaches for product cost estimation were 

distinguished, “Intuitive Techniques”, “Analytical Tech-
niques” and “Analogical Techniques”. In intuitive techniques 
the past successful designs are used as data for applying to 
new designs. In analytical approach, the cost of each product 
is estimated based on the features that the product is set to 
have, namely complexity of design, mass of the object or 
certain objective standards which the product should have. 
This approach has little flexibility and is better suited for the 
final stages of the design and the analogical techniques. In 
this technique, the most indicative factor is the amount of 
data, as the robustness of the historical data set indicates the 
accuracy of the analysis. Regression techniques are used to 
predict the cost of the novel designs. Well-structured math-
ematical relationships and background are very deterministic 
in this approach, and the weight each variable might have in 
the overall cost is derived. ANN modeling has proven to be 
very effective in cost estimation even without a comprehen-
sive dataset. It can investigate in non-linear environments, 
and they are insightful tools for the early stages of the pro-
cess [178, 179]. At large, ML algorithms are used for moni-
toring and system diagnosis and machine condition monitor-
ing. In the coming years, owing to the rise in computational 
power and advancement in hardware, ML approaches have 
grown even faster as DL approaches are capable of mak-
ing calculations on millions of parameters [180]. Methods 
such as least square SVM were used by Deng and Yeh et al. 
[181] to predict the production cost. Least squares support 
vector machines for the airframe structures manufacturing 
cost estimation, and K-nearest neighbors and meteorologi-
cal parameter section for assembly of cost features in the 
form of vectors [182] are also used. In a suggested frame-
work proposed by Chan et al. [183], maintaining consistent 
cost estimation is directly linked to processing the related 
feature extraction form the proposed model to the analysis 
of dynamical clustering. Also, in the proposed framework, 
the extracted features are considered to be the main fac-
tor in the amount of processing time and complexity of the 
design. For instance, in injection molding, features are size 
and number of cavities, venting system, surface quality, and 
the overall dimension of the objective part the material of 
choice and etc. However, in this approach, the method of 
choice is FDM (FFF). From a stereolithography format file 
(STL). Features that determine the cost could be obtained, 
such as print path length, printing duration, the volume and 
number of prints made and so on. The aforementioned fea-
tures extracted from the 3D model are crucial in the overall 
print cost and are assembled in the form of feature vectors. 
The process of cost estimation is depicted in Fig. 30. The 
next phase is to process the extracted vectors and coding. the 
information will be in a G-code format, regardless of being 
geometry-related or non-geometric. The generated data will 
be stored in the Cassandra storage system. Afterward, in 
order to increase the preciseness of the cost forecasting, the 
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data are first grouped based on their similarities, and regres-
sion models are embedded within each cluster that is con-
structed dynamically as a method to reduce variance. while 
prediction is ongoing, a cluster which shares the most simi-
larity with the new generated model is imported. afterwards, 
two methods of regression known as least absolute square 
shrinkage (LASSO) and elastic net (EN). These regression 
models work well in high dimensional spaces while input 
variables are highly dependent upon one another. They show 
high selectivity towards correlations between inputs and out-
lier data. This suggested forecasting method to determine 
production cost estimation, collects a comprehensive data set 
for more accurate results to make cost predictions regarding 
a new task based on the history of previous tasks of simi-
lar merit. it is elucidated that G-codes generated could be 
a means to make cost estimation while geometry features 
could be extracted from the G-codes. geometrical features, 
non-geometrical features such as temperature settings could 
also be accessed, however, other features such as labor cost, 
print machine selection and type are decided by technicians 
[183].

2.2  Process Parameters and Performance 
Optimization

Different ML models have different sets of parameters that 
rule the process of printing. After tuning the geometrical 
parameters, the next step is the selection of suitable pro-
cess parameters. Different ML models have different sets 
of parameters that rule the process of printing. Process 
parameter optimization is studied in cases where either 
new materials or a novel approach is considered to be 
implemented [122]. Determining process parameters has 
a very big impact on AM products [184]. The relation-
ship between process parameters are highly complicated, 
none-linear, vast dimensional space and even non-convex 
at times [185]. In an attempt by Rosen et al. a modeling 
framework for process-structure properties has been pre-
sented, shown in Fig. 31 [186]. In the following section, 

extensive case studies of process parameters and perfor-
mance optimization-based application of aforesaid opti-
mization approach on specific AM method is discussed 
in details.

2.2.1  Implementation of Genetic Algorithm for Process 
Parameter Optimization

Typically, FDM consists of polymers extruded through the 
nozzle layer after layer. In this method, parameters such as 
layer height, printing speed and material flow from the car-
tridge cartilage are critical and choosing proper parameters 
with correct values could tremendously optimize the AM 
design (Fig. 32) [187]. In Table 5, proper parameter selec-
tion in FDM and applied ML approach is shown. in laser 
fused AM methods which are somewhat similar to FDM in 
terms of being layer-based, parameters such as laser scan-
ning strategy, laser power, and laser speed are pretty influ-
ential as is shown in Table 6. overall, It has been found that 
genetic algorithms (GA) [188] used in ML modeling can 
influence the quality of 3D printed parts. Through a crite-
rion known as fitness function, the first set of parameters 
also known as parent generation set is accessed. However, 
if the target is not reached, the process keeps repeating until 
the optimal results are generated and the objective is ful-
filled. An instance of the implementation of GA is with the 
design of experiments (DOE) [189]. The objective is to find 
the optimal combination of process parameters that could 
potentially minimize the surface roughness and porosity of 
the manufactured objects. In this case, the parts were created 
by FDM method, the material used in the process was acry-
lonitrile butadiene styrene (ABS) and the process param-
eters of the study were slice thickness, road width, nozzle 
temperature, and air gap. At the beginning of the process, 
DOE operation was set to achieve the porosity the rough-
ness of surface from a number of combinations of above-
mentioned parameters. Then, based on the obtained results 
and in order to get fitness function, a methodology known as 
response surface method (RSM) was applied. This method is 

Fig. 29  A wide-ranging decep-
tion of paring ML in printing 
bio-engineered materials [174]
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basically a selection of statistical and mathematical technical 
approaches applied for both approximation and optimization 
of stochastic modelling in manufacturing [190] extracted as 
a second-degree polynomial equation of the set of process 
parameters. Then, GA was used to forecast the optimal pro-
cess parameter sets. Finally, it was concluded that minimal 

surface roughness was obtained at the smallest determined 
slice thickness, road width and air gap with an intermediate 
nozzle temperature, which was consistent with both experi-
mental and GA model[188].

Fig. 30  Process steps to pro-
posed cost estimation approach 
[183]

Fig. 31  Process structure prop-
erty problem framework [186]
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2.2.2  Implementation of ANN for Process Parameter 
Optimization

Setting the process parameters could be better performed 
by using ANN models (Fig. 33) [203]. In general, there are 
two levels of quality indication in ML models which are 
related to the main process parameters of interest. The first 
one is related to mechanical properties which is at macro-
scale level and the other scope of analysis is at mesoscale 

which is linked to melt pool geometries, relative density 
and pores. Furthermore, in order to better identify the pro-
cess, ML is used to lay down mapping of processes which 
is a helpful visualization tool [202]. Figure 34 shows a few 
of such instances [201].

In a study on DED with Ti-6A1-4 V which is an alloy 
with remarkable strength, resistance corrosive agents and 
remarkable fracture toughness [204]. There exist reports 
regarding experiments on process parameters in SLM laser 

Fig. 32  Optimization of process 
parameters suited for thin 
walled applications a The origi-
nal setting of printing speed, b 
The original setting of extrusion 
multiplier, c Printing speed 
with an optimized setting, and d 
Optimized settings for extrusion 
multiplier to preform according 
to optimized process parameters 
[187]

Table 5  Most indicative process parameters in FDM, based on the information extracted from numerous references, multi-layer perceptron 
(MLP) is the most prominent ML method implemented [191–197]

Material ML method Inputs Outputs Objective

Poly carbonate-ABS MLP Layer thickness, air gap, raster 
angle, build orientation, road 
width, number of contours

Creep and recoverable compliance To optimize process parameters and 
improve viscoelastic responses

PLA MLP Print speed, cooling fan speed, 
print temperature

Printable bridge length To predict maximal printable bridge 
length and minimize support 
waste

PC-ABS MLP Layer thickness, air gap, raster 
angle, build orientation, road 
width, No. of contours

Dynamic modulus of elasticity To predict dynamic modulus of 
elasticity for load-carrying parts 
under dynamic and cyclic condi-
tions

Polylactic acid MLP Temperature, layer thickness, 
raster angle

Tensile strength To generate a mathematical model 
to predict tensile strength corre-
sponding to three raster patterns

ABS MLP Layer thickness, orientation, raster 
angle, road width, air gap

Sliding wear value To optimize parameters and 
improve wear resistance

ABS MLP Layer thickness, part orientation, 
raster angle, road width, air gap

Compressive strength optimizing process parameters and 
to improve compressive strength

PC-ABS ANN-GA Extruder temperature, infill per-
centage, layer thickness

Part thickness, and production 
cost

To boost toughness and reduction in 
production cost



5688 G. K. Sarkon et al.

1 3

Ta
bl

e 
6 

 A
n 

ex
am

pl
e 

of
 p

ro
ce

ss
 p

ar
am

et
er

s a
nd

 a
pp

lie
d 

M
L 

m
od

el
s i

n 
PB

F 
m

et
ho

d 
[1

98
–2

02
]

A
M

 p
ro

ce
ss

M
at

er
ia

ls
In

pu
ts

M
L 

m
et

ho
ds

O
ut

pu
ts

Pu
rp

os
es

Se
le

ct
iv

e 
la

se
r m

el
tin

g 
(S

LM
)

SS
31

6L
La

se
r p

ow
er

, s
ca

n 
sp

ee
d,

 la
ye

r 
th

ic
kn

es
s, 

po
st-

pr
oc

es
si

ng
 te

m
-

pe
ra

tu
re

, t
en

si
le

 p
ro

pe
rti

es

A
da

pt
iv

e-
ne

tw
or

k-
ba

se
d 

fu
zz

y 
in

fe
re

nc
e 

sy
ste

m
H

ig
h 

cy
cl

e 
fa

tig
ue

 li
fe

To
 p

re
di

ct
 h

ig
h 

cy
cl

e 
fa

tig
ue

 
lif

e 
w

ith
 ‘p

ro
ce

ss
-b

as
ed

’ a
nd

 
‘p

ro
pe

rty
-b

as
ed

’ m
od

el
s

SL
M

B
ro

nz
e

La
se

r p
ow

er
, s

ca
n 

sp
ee

d,
 h

at
ch

 
di

st
an

ce
M

ul
ti-

la
ye

r p
er

ce
pt

ro
n 

(M
LP

)
Re

la
tiv

e 
de

ns
ity

, m
ic

ro
ha

rd
ne

ss
To

 p
re

di
ct

 p
or

os
ity

 a
nd

 m
ic

ro
ha

rd
-

ne
ss

SL
M

SS
31

6L
La

se
r p

ow
er

 sc
an

 sp
ee

d
G

au
ss

ia
n 

pr
oc

es
s-

ba
se

d 
(G

P)
M

el
t p

oo
l d

ep
th

To
 c

on
str

uc
t a

 p
ro

ce
ss

 m
ap

 a
nd

 
pr

ed
ic

t m
el

t p
oo

l d
ep

th
SL

M
SS

17
-4

 P
H

La
se

r p
ow

er
 sc

an
 sp

ee
d

G
P

Po
ro

si
ty

To
 m

od
el

 a
nd

 p
re

di
ct

 p
or

os
ity

 
at

 a
ny

 c
om

bi
na

tio
n 

of
 p

ro
ce

ss
 

pa
ra

m
et

er
s f

ro
m

 a
 sm

al
l d

at
as

et
SL

M
IN

71
8

Pa
rt-

or
ie

nt
at

io
n 

an
d 

pa
rt 

po
si

tio
n 

fr
ac

tio
n 

of
 re

cy
cl

ed
 p

ow
de

r
R

an
do

m
 fo

re
st 

(R
F)

Po
ro

si
ty

, m
ed

ia
n 

po
re

 d
ia

m
et

er
 

an
d 

sp
ac

in
g

To
 c

on
ne

ct
 th

e 
pr

oc
es

s p
ar

am
et

er
s 

to
 p

or
e 

fo
rm

at
io

n
SL

M
Ti

-6
A

l-4
 V

Sp
re

ad
er

 tr
an

sl
at

io
n 

an
d 

ro
ta

tio
n 

sp
ee

d
M

LP
Po

w
de

r b
ed

 su
rfa

ce
 ro

ug
hn

es
s, 

sp
re

ad
 sp

ee
d

To
 c

on
str

uc
t a

 sp
re

ad
in

g 
pr

oc
es

s 
m

ap
 to

 o
pt

im
iz

e 
su

rfa
ce

 ro
ug

h-
ne

ss
 a

nd
 sp

re
ad

in
g 

effi
ci

en
cy

 fo
r 

po
w

de
r b

ed
El

ec
tro

n 
be

am
 m

el
tin

g 
(E

B
M

)
C

oC
r

B
ea

m
 c

ur
re

nt
, s

ca
n 

sp
ee

d
Su

pp
or

t v
ec

to
r m

ac
hi

ne
 (S

V
M

)
En

er
gy

 d
en

si
ty

To
 c

on
str

uc
t a

 p
ro

ce
ss

 m
ap

 fr
om

 a
 

sm
al

l d
at

as
et

EB
M

–
Pr

es
en

ce
 o

f c
or

e 
su

pp
or

t, 
su

pp
or

t 
de

ns
ity

 a
nd

 a
ng

le
D

ec
is

io
n 

tre
es

, B
ay

es
 c

la
ss

ifi
er

C
la

ss
ifi

ca
tio

n 
of

 p
ar

t q
ua

lit
y

To
 in

ve
sti

ga
te

 th
e 

in
flu

en
ce

 o
f 

su
pp

or
t s

tru
ct

ur
e 

pa
ra

m
et

er
s o

n 
pa

rt 
qu

al
ity

Se
le

ct
iv

e 
la

se
r s

in
te

rin
g 

(S
LS

)
PL

A
La

ye
r t

hi
ck

ne
ss

, l
as

er
 p

ow
er

, 
fe

ed
 ra

te
M

LP
 S

V
M

O
pe

n 
po

ro
si

ty
To

 p
re

di
ct

 o
pe

n 
po

ro
si

ty

SL
S

58
 w

t%
 H

A
 +

 42
 

w
t%

 P
A

 
m

ix
tu

re

La
ye

r t
hi

ck
ne

ss
, l

as
er

 p
ow

er
, s

ca
n 

sp
ee

d
En

se
m

bl
e-

ba
se

d 
m

ul
ti-

ge
ne

 
ge

ne
tic

 p
ro

gr
am

m
in

g
O

pe
n 

po
ro

si
ty

To
 a

ch
ie

ve
 d

es
ire

d 
op

en
 p

or
os

-
ity

 v
al

ue
s b

y 
re

gu
la

tin
g 

pr
oc

es
s 

pa
ra

m
et

er
s



5689State‑of‑the‑Art Review of Machine Learning Applications in Additive Manufacturing; from…

1 3

PBF and PBF technologies that are indicative of aforemen-
tioned occurrences [205–208]. Conversely, there are not 
many reports regarding alterations in part quality related 
to process parameters. It is a daunting task to select the 
proper process parameters while refraining from the costs 
experimentations could result to. thus, researchers are 
resorting to statistical approaches, namely Taguohi design 
approaches to design experiments for AM methods [209, 
210]. Today, ML methods are used in many aspects of 
AM, such as melt pool signature, and overall defect gen-
eration. The primary objective of these methods is to reach 
a state capable of mutually corelating dependent factors 
at parameters and the overall generalization of complex 
problems between parameters to function as a map for 
conducting real experiments [211]. In this case study, for 
the purpose of mapping the indicted input into objective 
output, an ANN model has been developed. The major 
inputs of study are laser power, scan speed, rate of pow-
der feed and layer thickness, and the density of the alloy 
material and the build height are designated to be the out-
puts. Based on trial and error and model tuning, minimized 
prediction error is understood and thereafter, the number 
of neurons and hidden layers are better determined. The 
general depiction of the model implemented in this study 
is shown in Fig. 35.

The steps to completion of ANN model begins with 
synchronizing the empirical values with an ANN model, 
resulting in minimum amount of error in the developed 
model [212]. For training stage, sigmoid back propaga-
tion algorithm was activated. The main objectives to be 

reached are the least amount of mean square error and 
average prediction error, that are expressed in (7) and (8) 
formulas,

where Etr(y) is the mean error in output prediction (related to 
parameter y), N is the number of data sets, Ti(y) is targeted 
output and oj(y) is processed output. In the case of the ongo-
ing ANN model, pattern and variations in occurrences of 
errors and defects dictate the number of neurons and hidden 
layers. The model is set to have 2 hidden layers with 2–15 
neurons in hidden layers. Figure 36 shows the value of mean 
square error and mean error in the output, on par with varia-
tions of these values while using one and two hidden layers. 
Furthermore, it was observed that by increasing the number 
of hidden neurons, mean error value was decreased. Ulti-
mately, the 15-neuron ANN structure delivered the lowest 
overall error. The next step in the development of the model 
is to optimize the number of instances for iterations. Based 
on the results depicted in Fig. 41c, the initial number of 
iterations started from a range of 500–25,000. Nonetheless, 
when the number of iterations reached 18,000, the error val-
ues (MSE = 0.000001 and Etr = 0.001124) were fixed when 
model was trained again. ANN hyperparameters such as 
momentum (α) and learning rate (η) both ranged from 0.1 
to 0.9 and when momentum was set at 0.9, the minimum 
error value was reached (Fig. 35). An observation made at 
a momentum of 0.6 was a drastic shooting of error value 
which was a sign of overfitting. Similarly, in a case reported 
by Reddy et al. [212], it was shown that high learning rate 
could also lead to overfitting. At last, an ANN model of two 
hidden layers, 15 neurons, trained for 18,000 iterations with 
hyperparameters of 0.9 for momentum and learning rate of 
0.7 was recognized as the optimal model for the estimation 
of process parameters related to DED AM.

In order to investigate the effects of process parameters, 
especially build height and density, as indicated in Figs. 37a 
and b, the areas shown in red indicate poor densities and 
unbalanced build heights, which are in proportion to scan 
speed and power. However, some process parameters such 
as thickness of layer (0.3 mm) and the fed rate of powder 
(2 g/min) were kept constant. Overall, it was construed that 
depending on the type of material and fabricability, in the 
case of specific alloy which is used in particular, it is most 
suitable to keep the power for deposition at a high output 
while keeping the scan speed at a low pace for avoiding 
lack of fusion defects [204]. Generally, scan speed and 

(7)MSE =
1

p

∑

p

∑

i

(
tip − oip

)2

(8)Etr(y) =
1

N

N∑

i=1

|||Ti(y) − oj(y)
|||

Fig. 33  A Illustration of ANN model trained based on geometric 
rewards received based on error elimination [203], B The stereo-
lithography method generated via a proficient ANN model [203]
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temperature gradient dictate laser power density, which con-
sequently alters the build height of deposited material. Based 
on the results of this study, the best combination values of 
process parameters are for laser power and scan speed to be 
in the ranges of 320–400 w and 0.75–1.2 m/min, respec-
tively. Other combinations that could lead to relatively opti-
mal results are illustrated within the bounds of green area 
in Fig. 37. Additionally, high feed rate results in low layer 
thickness and conversely low feed rate and low layer thick-
ness leads to increase in build height, whereas combination 
of low feeding rate /layer thickness will transfer the heat to 
the previous layers and reheats them. Also, regardless of 
layer thickness of as high as 0.3 mm, build height decreases 
owning to its insufficient energy expansion, further hinder-
ing the precision of the design. The green region also shows 
the best build height values. In summary, ANN model is 
evolved such that it can find proper density and build height 
for Ti-6AI-4v alloy, by DED and AM methods and the sug-
gested set of parameters led to high quality printed products 
[211].

In a research conducted by lang et al. [213], a method 
called multi-material jetting (MMJ) was evaluated for a 

multi-stage ceramic material application and related issues 
to shape deviations, unwanted mechanical anisotropy, and 
residual stresses were discussed. The authors deduce that 
the reason for this shortcoming, aside from the fact that AM 
is still an evolving field, is due to the tendency to opt for 
empirical data gathering, which comes at a high cost and 
is generally slow to build up. Therefore, since the parts are 
printed drop by drop, there is a good possibility to param-
eterize each droplet being desposited. Some defining param-
eters for each drop are volume, height of droplet discharge 
to form specific geometry, and the diameter of droplet. The 
main objective is to assemble a data managing system to 
keep a record of the most influential data. By keeping track 
of manufacturing components and material behavior. It is 
possible to assign the most infeluntial data to their unique 
identifiers in the form of a parameter within the database. 
By implementing a DNN model, an object recognition for 
droplets is defined. By means of proper training on multiple 
training sets and image recognition algorithms, the automa-
tion of drop exertion was realized. What affects the model's 
efficiency is that each drop is given its own identifier and 
related traceability based on the defined target value. The 

Fig. 34  A Support vector machines used for the prediction of macro scale properties of electron beam melting built products, B The cross-sec-
tion views of defects, C Pores in the form of black spaces and the optimization process mapping on the right [201]

Fig. 35  The proposed ANN 
model with indicated input, hid-
den, and output layers [211]
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most influential target values were the particles in ambient 
environment while printing, drop circularity, drop height, 
and standard deviation of each droplet. In conclusion, the 
detection of significant factors in droplet generation and 
their introduction in the form of process parameters made 
for more control and regulating the influential parameters 
such as droplet height, leading to more process control and 
optimization. As Fig. 38 shows, drop geometry and drop 
height are much better tuned [213].

2.2.3  Process Parameter Optimization using Gaussian 
Regression

Laser powder bed fusion (LPBF) highly relies on the param-
eters related to operating laser [214] and there are lots of 
underlying parameters involved that are yet unstudied. These 
process parameters do not necessarily manifest themselves 
in one process step because of the iterative approach of AM 
methods. Needless to say, process parameters have relatively 
high dimensions and magnitudes. A tabular data (Table 7) 
showing the most important process parameters in a LBPF 
process is presented in [23]. Sophisticated chemical and 

physical factors need to be considered in LPBF and all sub-
branch methods. an existing microstructure-property rela-
tionship should be defined for different materials that are 
chosen in AM process [215]. The perception and indem-
nity of right optimized LPBF processing parameters often 
rely on an expensive empirical process to be experimented 
for multiple times. When the alloy or metal selected for 
LPBF is newly introduced, this procedure becomes even 
more complicated. Furthermore, most of the current ML 
methods are far more limited in terms of the number of pro-
cessing parameters suitable for fabricating (Fig. 39) [216]. 
As suggested by Kamath and Fan [217], since only a few 
parameters need to be processed, Gaussian process regres-
sion (GPR) is selected as the most suitable method because 
other methods like NN and support vector machines (SVM) 
deal with a considerable number of parameters and require 
unnecessary computational burden One of the unique attrib-
utes of this regression is its ability to indicate how uncer-
tain a prediction could be. GPR acts as a link between the 
density of fabricated objects and process parameters, i.e., 
laser power and scan speed [218]. Also, some important 

Fig. 36  Process of plotting the evolution of ANN model, a The optimal number of hidden neurons with respect to error value, b Number of hid-
den neurons with respect to error value, c Number of iterations and d Number of iterations and learning rate respectively [211]
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mechanical properties, namely fracture toughness, fatigue 
resistance, and tensile properties, need to be accounted for 
[219].

Overall, using ML methods and GPR in the aforemen-
tioned process, it was found that this new and significantly 
larger optimized LPBF prospect was never tested for manu-
facturing fully dense AlSi10Mg samples (i.e., relative den-
sity ≥ 99%). The newly determined optimized processing 
parameters (e.g., laser power and scan speed) have made 
it possible to achieve previously unattainable high strength 
and ductility. The obtained results revealed that even though 
AlSi10Mg exhibited similar Al-Si eutectic microstructures 
(e.g., cell quality in fine and coarse grains), large differ-
ences were revealed in their mechanical properties includ-
ing hardness (118–137 HV 10), ultimate tensile strength 
(297–389 MPa), elongation to failure (6.3–10.3%), and frac-
ture toughness (9.9–12.7 kJ/m2). The underlying explana-
tion was attributed to the subtle microstructural differences 
known using two newly defined morphology indices (i.e. 
dimensional-scale index Id and shape index Is) based on 
several key microstructural features retrieved from scanning 
electron microscopy imaging [220].

2.3  In‑Situ Anomaly Detection

Human examination with naked eyes could always be prone 
to flaws and inconsistencies. An accurate defect detection is 
an integral part of AM process [221]. An instance of such 
are delays happening in defect detection which even when 
executed by an experienced human operator, a flawless 
detection could still not be achieved. Supervision, while the 
printing process is ongoing, is paramount because precise 
detection could identify potential defects stemming from 
poor parameter setting. In order to address the issues with 
acquiring through data from the in-situ spatial domain, Jin 
et al. [222] proposed an ML algorithm in order to deal with 
over and under-extrusion occurring at in-plane directions, on 
global and local scope. As a result, their approach resulted 
in synchronized defect detection without latency and real-
time defect detection. Also, in order to address the issue 
of efficiency of data processing and modeling, and in an 
attempt to implement unsupervised component analysis to 
aid in fusing features extracted from sensing data, Wang 
et al. [223] made an effective effort towards better defect 
detection. In another work by Ye et al. [224] the issue of ina-
bility of detecting layer surface variations and small process 
shifts was put under scope, and the authors argued that this 
shortcoming requires development of a framework which 

Fig. 37  Process parameters 
plotted based on ANN predic-
tions and green boundaries are 
shown as the areas where the 
combination of process parame-
ters had optimal results. a shows 
density while b indicates build 
height of DED Ti-6Al-4V alloy 
based on considering power and 
scan speed, c shows density plot 
of and as powder feed rate and 
layer thickness d build hight 
related to process parameters 
such as powder feed rate and 
layer thickness [211]
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Fig. 38  Plotting droplet hights and related standard deviations as 
functions of process parameters and comparison of droplet accu-
racy before and after ambient particle accuracy regulation. a relation 
between raising time and air supply pressure to height of droplets, b 

percentage of drop exerting needle lift with respect to droplet falling 
time, c influential parameters such as droplet open time and needle 
lift on standard devieation of droplet hights, d Rasing time and needle 
lift on standard devieation of droplet hights [213]

Table 7  Considered process 
parameters for a LPBF process 
[23]

Manufacture parameter Symbol Value range Unit Value used

Build mass mb 4–12 kg Pre-determined
Build Height hb 80–90 mm Pre-determined
Build Time tb 30–120 hour Pre-determined
Part volume vp 14,200–15,900 mm3 Pre-determined
Post chamber- pressure drop Δp 45–175 mbar Maximum
Powder PSD D10 PSDD10 10–25 um Measurement
Powder PSD D50 PSDD50 25–40 um Measurement
Powder PSD D90 PSDD90 40–60 um Measurement
Powder hall flow thall 10–20 second Measurement
Powder apparent density �apparent 4.3–4.5 g

/
cm3 Measurement

Sample location X axis Xloc  − 130–130 mm Pre-determined
Sample location Y axis Yloc  − 240–240 mm Pre-determined
Temperature in chamber Tc 45–70 C0 Mean
Temperature of process gas Tg 30–70 C0 Mean
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has layer wise monitoring ability. Furthermore, the authors 
claim that their approach is among the first attempts to fully 
take advantage of 3D scanning for in-situ monitoring. This 
novel approach resulted in better defining of morphological 
changes within the printed layers, regardless of shape and 
size. Overall, results show better recognition of miniature 
shifts that bring about deviations that are not conspicuous 
but shape-altering, impeding the overall part quality. This 
issue is mostly stemmed from poor parameter setting. An 
example is shown in Fig. 40 [225].

In order to address this challenge while executing in-situ 
monitoring, proper in-situ monitoring systems and image 
processing installments are necessary. Aside from image-
based or real-time monitoring, there are other clues in the 
form of signals, that could be detected and analyzed in order 
to perform the anomaly detection task. Namely, useful infor-
mation could be achieved by the application of signal-based 
methods, where the acoustic signals emitted are used while 
the operation is ongoing. Acoustic signal detection, optical 
emission, infrared signal emission, and multi-sensory signal 
installments [226] are some methods that will be explained 
in the following section. Having these provisions could go a 
long way in producing high-quality printing parts. Numerous 
efforts have been recorded to achieve the abovementioned 
objective, namely, novelty simulating methodologies, better 
developed experimental setups, and more optimized com-
puter vision. In the following, we further expand the accu-
racy of Image processing methods via ML models.

2.3.1  Real‑Time Anomaly Detection

The capability of these anomaly detection systems is deter-
mined by the direct feedbacks they receive from the sys-
tem in real-time. One of application cases of this method 
is the use of a camera known as DIC camera [227], which 
performs image correlating tasks. DIC is a state-of-the-art 
camera imaging reconstruction system, performing the task 
of monitoring the surface geometry of printed parts. In our 
particular case, this installment is used while a fused fila-
ment fabrication (FFF) was ongoing. The system was capa-
ble of correlating stereoscopic images. An algorithm known 
as random sample consensus (RANSAC) [228] was set to 
the task of cloud alignment of different points and elimi-
nated potential outliers in the process of data correlation. 
Results of this effort showed that defects such as porosity 
within the printed parts were detected. The detection was 
accurate enough to identify a porosity at the resolution 
of 0.0202 mille-meters and this revealed the efficiency of 
coupling DIC with 3D printing process in in-situ detec-
tion. This finding could also be used in other fields such 
as LPBF [229–231], where porosity detection could be a 
hefty work. There are records of other capable algorithms 
to address different types of reoccurring defects in fabrica-
tion stage, such as image segmentation methods established 
with high-quality imaging systems to set the precision of 
in-situ geometrical documentation of images taken from 
each layer of LPBF process. One of these methods is active 
contours without edges (ACWE) [232]. Another method is 

Fig. 39  Image of GPR results 
as an indication of the train-
ing data for the average and 
standard deviation. a Showing 
two sample specimen from two 
selected points of the domain, 
b Relative density at discrete 
parameters of laser power and 
scan speed, c Extrapolated 
error from scan speed and laser 
power [216]
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based upon level-set methods with bias field approximation 
(LSM-BFM), which has been applied for the creation of 
boundary charting. Layer-wise nature of the geometry of 
the printed part is also analyzed and finally, were compared 
with ground truth that was captured in optical microscopy 
images. A number of different parameters such as lighting 
conditions, printing geometries, and different directions of 
laser scanning were also considered. Overall, the conclusion 
was that the dark illuminated spots while performing in-situ 
anomaly detection using ML showed promising outcomes in 
in-situ anomaly detection.

Nevertheless, the abovementioned methods do not have 
all-inclusive methodology of ML models in terms of detect-
ing different categories of imperfections at the same time. 
One of the most notable and fitting accomplishments of ML 
is revealing underlying patterns that could not be seen. This 
accomplishment of ML is advantageous in processes such 
as 3D printing since it is a multi-physics process with many 
variables. Therefore, imaging systems to monitor fabrication 
process, ML algorithms and computer vision are decisive in 
comprehending and categorizing different defects of a 3D 
printing process. In a case study, the process was recorded 
via the attachment of a USB (universal serial bus) camera 
to the printing nozzle resulting in a sable recording of print-
ing process while the print nozzle was changing its plane, 
the setting of the camera proven stable and unchanged. An 
example of this installment is shown in Fig. 41 [222].

A CNN was trained to analyze the recorded real-time 
images to predict status of in-situ printing. Another method 
is known as delamination, where the primary parameter was 
nozzle height which needed vigilant monitoring. In this case, 
the model was trained based on input images having four 
different nozzle height adjustments. Overall, it was revealed 
that the accuracy of the two models was 98% for defects 
within planes and 91% for the lack of lamination. In this pro-
cess, a modification of an automation technique that oper-
ates in a closed-loop correction structure was established. 

This establishment analyses and modifies process parameters 
in accordance with the prediction made by ML model and 
the obtained results have shown that ML generally func-
tions much better than a well-experienced operator. Another 
example of an in-situ anomaly is the application of clus-
tering techniques in an unrevised manner. This showed an 
astonishing accuracy of finding seven anomalies and with 
overall 98% accuracy in one case, and also 95% accuracy 
in the classification of six other anomalies. To achieve this 
accuracy, six types of common anomalies were consid-
ered including incomplete spreading, part failure, debris, 
superelevation, recoater streaking, and recoater hopping. 
The model operates with applying a filter bank to the first 
response images and gathered a database grounded on clus-
tering techniques and feedbacks from the filters in site. Each 
image is processed and archived base on fitting its histogram 
or assigned fingerprint to the ones in the baseline and their 
matching degree. This process is repeated for each new input 
image and the images are classified in accordance with the 
gathered database and that the defects and errors are traced 
via the comparison of the fingerprint of new images to base-
line data images. Furthermore, this method has the potential 
to be applied to many other manufacturing methods and is 
not limited to AM procedures [134].

2.3.2  Image‑Based Anomaly Detection

In-situ anomaly detection using Siamese network, as is 
mentioned in Sect. 3 of the paper, fall in a category of AM 
(VATP) which has seldom been paired with ML techniques 
and data-driven approaches. Therefore, there are limited 
available data. Thus, it is a challenge to apply ML models 
and get a decent accuracy in results. In order to overcome 
this hindrance, a specific type of ML/DL model known as 
Siamese network, is chosen. This network was first used for 
identifying different handwritten signatures but has proven 

Fig. 40  An instance of poor parameter setting in LPBF where build up direction is from bottom to top which resulted in obvious voids within the 
printed part [225]
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to work well with limited data. A general two-layer Siamese 
network is shown in Fig. 42 [233].

In addition, the use of synthesized data was considered to 
be evaluated with respect to available experimental data. The 
synthesized data were governed by a developed theoretical 
model shown in Eqs. (9) and (10) [234, 235].

where Fseparation indicates the maximum measure of a 
force of separation that each layer might have, and F0andF1 
indicate the lower and upper bounds of the separation force 
denoted to each printed layer. Also, based on the previous 
works which are modeled after the separation force of a 
constrained smooth surface and the drop in pressure for a 
constrained textured surface. In Eqs., (11) and (12). The 
separation mechanism of layers and the effects of liquid fill-
ing around the separation surface are expressed as following,

where r is the radius of the part cross-section and is variable 
from the minimum of zero to the maximum of R, V indicates 
separation speed, n shows the number of grooves of a texture 
at micro-scale, µ represents the viscosity of resin, d and w 
are depth and width, respectively, and h indicates the initial 
gap that is oxygen layer thickness. Based on the aforemen-
tioned theoretical equations, the synthetic data are generated 
which help in indicating and setting the right printing speed 
for continuous printing to avoid further separation of the 
printed material. The workflow of how ML approach and 

(9)
{
Fseparation

}
⊂
[
F0,F1

]
, success

(10)
{
FSeparation

}
⊄
[
F0,F1

]
, failure

(11)F =
3�.�V

2.h3.
.R4

(12)dp

dr
V .�r2.2�.

(
4�.r +

2nd

cos�
− n.w

)2

(2�.r.h + 0.5n.w.d)3

an AM process could be interlinked and further exploited is 
depicted in Fig. 43 and Table 8 illustrating the most impor-
tant process parameters [51]. In Fig. 43, a subset denoted 
as subset S is designated as the original DOE table set. The 
best ML model will be selected out of the designed experi-
ments in the sub set S. For the purpose of comparison and 
setting a baseline, the outcomes by new DOE and predic-
tions made by ML are compared to the original DOE. With 
respect to the theoretical model, the most effective and prag-
matic parameters are chosen, which are included in Table 9. 
Each different quantity of these parameters results in a new 
set of experiments. In this study, there were 6000 simula-
tion runs and the data were collected. For experimental data 
preparation, based on the parameters and desired variables 
to achieve, each set of process parameters are recorded and 
evaluated. Their results are summarized and therefore, an 
experimental data set is prepared. There are 180 tests and the 
data gathered are employed for ML models to forecast the 
variables of interest, which are printing speed and elevation. 
When data preparation reaches a satisfactory stage, the next 
step in the application of ML in CLIP parameter optimiza-
tion is done by three different routes; i.e., ensemble models, 
conventional ML methods, and Siamese neural network.

ML techniques and data-driven approaches are consid-
ered as efficient ways for pore detection in order to prevent 
and optimize the final product [236]. The parameterization 
of the defects demands advanced methods to make proper 
inspections on pore and defect evolution. BJ is characterized 
by the large number of pores that are globally spread in a 
printed part [237, 238]. The most challenging observation 
in this regard is the detection of internal pores and defects. 
Moreover, the scope of observation (meso, macro, and micro 
scale) for identifying defects is very determinant in the anal-
ysis. To overcome this issue, in a work by Zhu et al. [239] 
on metal BJ, an inspection method was presented which was 
consisted of three steps,

• Micro scaale X-ray CT scan reconstruction.

Fig. 41  a A trial anomaly detec-
tion set up mounted by a USB 
camera. The camera records the 
process with a 30-degree slope 
downward to the horizontal 
axis. Blue and red arrows 
show even numbered or odd 
numbered layers, respectively. b 
The flow diagram of preparation 
of data set images [222]. (Color 
figure online)
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• Auto 3D morphology analysis
• Big data analysis based on ML approaches

A very comprehensive and effective setting was installed 
taking advantage of X-ray CT scanning and computer vision 
connected to a substantial defect formation database moni-
toring on a macro-scale for a given volume. Thereafter, ML 
clustering and regression techniques detect patterns and 
qualitative results never seen or acknowledged by human 
eye. On a macroscopic analysis, this setting detected around 
105 pores. Overal, AM products have a myriad of defects, 
such as internal cracks trapped air bubbles and pores that 
could be manifested in considerable numbers which are often 
random and homogeneous [237, 240]. These issues would 
result in crack and deformation propagation, especially 
lowering the fatigue strength and static mechanical prop-
erties, thus making the binder jetted material less reliable 
for engineering applications. This lack of quality demands 
novel quality control provisions to be taken into account. 
An accurate defect development analysis and a thorough 
microscopic evaluation of a printed part is of paramount 
importance [241–243]. Typically, the initial challenge ahead 
is defect information from a microscopic analysis, because 
the defects are not clustered by the same pattern in every part 
of the binder jetted part and they are randomly dispersed. 
Traditional techniques are not very efficient and as a result, 
in order to tackle this issue, the use of x-ray ct (XCT) scan-
ning has proven to be very effective. XCT generates a very 

extensive data set from the captured images of the speci-
men of interest. The broad database generated was in the 
range of 2–15 GB of data in the form of images captured 
from defect morphosis in 3D. However, these images need 
to be compatible with 3D morphological algorithms [244, 
245]. These algorithms are able to decipher data related to 
defects, their position, the fraction of porosity, pore per vol-
ume area in 2D [245] and slices or 3D [246]. The issue lies 
in the fact that these methods are not conditioned to work 
well with binder jetted samples. This hurdle was passed by 
using computer vision-based auto inspection, especially DL 
approaches, for they function based on real examplifiction 
in numerious interations, rather than being rule or algorithm 
based [247, 248]. The complex and coincidental shapes the 
defects might pose a challenge since it is very important to 
accurately quantify the changes and developments of the 
shapes of pores and defects during or after print process. 
At the time, this research consders only a single criterion 
which is the volume fraction of the pores (porosity) [249]. 
This criterion cannot indicate anything regarding other prop-
erties a printed part might have including fracture tough-
ness, anisotropic elasticity, permeability, etc. [250], which 
are proportional to pore orientation, sparsity in the printed 
part and the geometry of pore. Therefore, understanding the 
vast dataset containing such information is very necessary. 
As a result, quantitative big data analysis is preposed to not 
only overcome the challenge but also to eventually provide 
new physical insight [239]. These obsticles are dealt with 

Fig. 42  A general two-layer 
Siamese network, as a binary 
classifier with the prediction 
‘P’[233]
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Fig. 43  The workflow and the planning for applying ML with experimental and synthetic data [51]

Table 8  Different quantities of 
important process parameters 
[51]

Resin viscosity (Pa. s) 0.09 0.12 0.14
PDMS thickness (mm) 1 2 4
Manufacturing velocity (mm’s) 0.052 0.038 0.05
Cross section j, for data synthesis ( mm2) 3.1 12.6 55.3
Constrained surface type Smooth Textured Island
Duration of frames (s) 0.5 1 1.5
Video projection time 15 20 30
Groove width (µm) 100
Groove length (µm) 100
Cross section sizes jb , used for separation 

force of synthetic data ( mm2)

3.1, 7.1, 12.6, 19.6 28.3, 38.5, 50.3 63.6, 78.5
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via implementation of the latest advanced technologies. For 
the first aforementioned challenge, fast XCT, another step 
is morphological analysis and for the final step, challengs 
is in ML big data analysis driven with DL methods. Images 
taken with XCT are used which delivered the images in a 
fraction of the time of a typical data gathering method would 
take [251]. By using ML methods [252], a large amount 
of data from different pore shapes, sizes and orientations 
are recorded, identified, and clustered resulting in a very 
accurate analysis. In Fig. 44, the function of the proposed 
approach and the application of ML at the final stages are 
shown.

In a research by Zhu et al. [239], copper samples were 
binder jetted and post-processed. The samples were shaped 
to spherical geometry, having a bimodal diameter distribu-
tion with peaks at 5 µm and 30 µm. Post-processing was 
consisted of debinding, sintering, and hot isotropic press-
ing In total, the XCT imaging of 3 copper samples revealed 
117,669 pores in total, including 22,912 for the first sample, 
54,739 for the sintered sample and 40,018 for the HIP speci-
men and pore parameterizaion. Table 8 presents a small por-
tion of the results generated from parameterization. These 
results indicated that the prosity of the first, second and third 
specimens were 37.90%, 3.43% and 0.89%, respectively. The 
density of samples was measured via Archimedes method.

The initial step for quantitative pore evolution analysis 
is to derive the overall morphological indicators for pores. 
By deriving major morphological indicators, it is possible 
to have a systematic way of describing porosity with fewer 
dimentions and less complexity. In ML quantitative pore 
evolution, this practice is basically known as principle com-
ponent analysis (PCA). For the purpose of implementing 
PCA, results in Table 10 are re-scaled to become normal-
ized, resulting in the stability of the numerical values and 
variance; thus, variables with extreme quantities become 
ignored.

Based on the PCA process shown in Fig. 45, it is shown in 
the first and second principle component (PC) that a combi-
nation of volume and eccentricity are indeed very important 

factors, which accounted for 55% and 24% of overall vari-
ance. At the beginning, the third PC only yielded 12% of the 
variance. The reason is that the third PC is mostly consisted 
of altitude angle, showing that this feature is not very rel-
evant compared to other morphosis criteria. Clustering is 
another ML task which is used for anomaly detection. Based 
on the reduced 4D dimensions brough about on PCA, Gauss-
ian mixture model is used for clustering analysis. Afterward, 
it was shown that the identified pores in the three binder 
jetted copper samples were conveniently grouped into four 
morphological categories. In Fig. 45, the clustered groups 
are plotted for further classification (PC1, PC2, and PC3). 
Concerning the sub-space defined by each cluster, the data 
plotted at the center of the subset of each cluster indicates 
the related morphesis. Eventually, the four major groupings 
of related pores are presentd in Table 11.

Owning to the insight learned from the analytical results 
of BJ specimens, the binder penetrates between loosely 
packed particles, resulting in large and interlinked empty 
spaces. The first green specimen was measured to have a 
high porosity of 37.9% which is the aftermath of the afore-
mentioned effects. The defects in group four consist of inter-
connected gaps which are full of twists and turns, leading to 
narrow regions among the particles in close contact. When 
densification diffusion occurs during sintering, particles that 
are close form neck structures at the location of contact. 
Neck structure pulls the particles closer along with overall 
pore shrinkage [253]. Furthermore, when neck structures 
grow, interconnected pores break up their bonds resulting 
in the decomposition of pores and eventually making more 
discontinuous pores which belong to the pores in groups 
2 and 3. The reason behind increased avarage size and the 
number of pores in groups 2 and 3 after sintering is the 
fact that the overal shrinkage of pores happens at sintering. 
Additionally, due to the orientation of the specimen, gravity 
enforced to the part made the pores more existent in vertical 
orientation. Needless to say that these findings are consist-
ent with 2D pore formation studies [254]. In conclusion, by 
taking advantage of unsupervised ML methods including 

Table 9  Data acquired from the pores

Pore index Centroid
µm

Orientation Principal axis 
length
µm

Bonding box size 
µm

Volume µm3 Surface area µm3 Convex hull 
volume µm3

1 x y z Ɵ Ø a b c x y z ν s νhall
2 5.3 87 2.2 57.6 95.2 51.4 17.4 13.2 44.4 22.2 14.8 3.19e3 1.55e3 7.70e3
3 2.5 273 5.7 33.8 120.5 39.3 25.9 14.4 29.6 25.9 44.4 6.13e3 2.23e3 1.02e4
4 27.9 80.9 14.3 72.2 74.7 283 91 89.4 241 189 163 2.14e5 5.37e4 2.31e6
5 13 412 39 54.5 264.2 254 127 54.8 137 122 244 2.50e5 5.69e4 1.64e6
6 4.9 295 6.3 78.2 9.6 24.5 33.4 21.2 33.3 59.2 40.7 1.27e4 4.21e3 3.34e4
117.669 61 40 600 90 251.6 23.5 8.2 4.3 18.5 11.1 3.7 455.90 302.8 557.2
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PCA and GMM, the major factors to pore creation in binder 
jetted parts are discovered. The pores are comprehensively 
classified into four groups; therefore, this allowed the quanti-
fication of pore morphesis on the basis of describing criteria 
set for each type of pore which is far beyond human vision 
capability [239]. ML methods and data-driven modeling 
have contributed lots of possibilities and a new horizon to 
novel AM technologies such as MJ, far exceeding the experi-
mental insight. In the forthcoming section, we present cases 

of novelty where data driven approaches and ML modeling 
were used to optimize MJ technique [213].

2.3.3  Signal‑Based Anomaly Detection

The time frame in which the signals are received to gather 
data makes a great difference in understanding of the model 
behavior. In this respect, false and abnormal signals from 
defects can be better detected with respect to signals emitted 
from when process is undertaken correctly during AM pro-
cess. In general, anomaly detection tasks could be optical-
based, which could be real-time monitoring or image-based, 
as already discussed. Additionally, acoustic-based, thermal-
based [255], multi-sensory approaches [226], and even gen-
eration of augmented data based on synthetic information 
are used to better develop the anomaly detection models 
[256]. Becker et al. [257] applied an acoustic-based anomaly 
detection approach (Fig. 46) to detect abnormal cues in the 
shape of emitted sound. One needs to acknowledge that in all 
the detected ways a 3D printing process could go wrong, not 
all of the signs could be detected via emitted sounds, such 
as aforementioned optical, thermal, multi-sensory and etc. 
As a result, the collection of likely errors is provided by the 

Fig. 44  µXCT imaging using 
hierarchical split- CNN for bet-
ter grouping and at ML analysis 
using gausian mixture model-
ling, suggested to overcome 
the challenges regarding pore 
decetion of binder jetted parts 
using big data approach and ML 
unsupervised clustering [239]

Table 10  Normalization of pore attribiutes [239]

Index Notation Attribiute Normalization

1 ν Volume l̂ogv

2 el Eccentricity 1 a/ 3
√
abc

3 em Eccentricity 2 b/ 3
√
abc

4 es Eccentricity 3 c/ 3
√
abc

5 µ compactness √
s∕ 3
√
ν

6 v Volume ration ν/xyz
7 s solidity ν/νhall
8 Ɵ Altitude angle Ɵ
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manufacturer of the printing device [258]. Table 12 shows 
the most important parameters which need vigilant detec-
tion for anomaly detection. Moreover, these will be param-
eters to be used in the ML model for training the model. For 
example, one likely fault is an incorrect adjustment of the 
printer’s nozzle elevation. Should the nozzle move too close 
over the print bed and the deposited layer, it makes contact 
with it and leaves grinding scratches on the surface. This 

causes the considered heights and material flow to become 
inappropriate [257].

After modeling and training the model, training multiple 
data sets, and adding augmented data to get a better generali-
zation within the NN, the experience brought about 96.96% 
accuracy and an F1- score of 86.7% for the training. This is 
known as a score that predicts model performance by com-
bining recall and precision [257].

2.4  Testing, Validation and Property Prediction

The process of additively manufacturing a product is a com-
plex and relatively novel practice. Complex geometries and 
lack of uniform material properties are some of the chal-
lenges in testing and validating the manufactured parts 
[133]. As a result, many factors must be evaluated and tested 
after the manufacturing of a part is done. The objective of 
concentration in testing and validation phase is mostly on 
surface metrology, and defect detection and classifications 
using ex-situ techniques. An example of the application of 
ML in optimizing the influence of ex-situ measures is pre-
sented by Datsiou et al. [259], as shown in Fig. 47, where 
feedstock of a type of glass material, soda-lime-silica glass, 
was considered for the process of LPBF. The aftermath was 
geometrically complex products. However, surface was 
rather opaque and geometrical dimensions were slightly 
changed with respect to the initial standards, as given in 
Tables 13 and 14 [259]. This aforementioned dimensional 
change is mostly due to particles stuck to the walls of the 
surface. This issue is common in methods involving powder 
and is often optimized by post-processing measures [259, 
260].

Moreover, the measurement of a new build is extremely 
critical. One tactic is to use industrial computed tomogra-
phy scanning (CT), which is a competent tool, particularly 
for the validation and generation of a plot from the internal 
geometry of the printed part. A notable advantage of this 
scanning method is that no physically enforced measures 

Fig. 45  a Plots of different pore types based and princple component 
anlysis, b Four detected groups of pores via ML analysis [239]

Table 11  Four major groups detected by ML analysis [239]

Groups of pores Shape Volume Solidity Description

Group 1 Quasi-spherical pores Small volume (0.32 ± 0.39*10^4*�m^3)
High volume ratio (0.35 ± 0.13)

High (0.76 ± 0.13) Absence of sharp edges or extrusions, 
most pores in detected samples

Group 2 Small elongated pores Volume (0.97 ± 0.41*10^4*�m^3) High (0.51 ± 0.13) Pores are characterized by eccentric 
structures, without significant extru-
sions

Group 3 Large elongate pores Volume (3.61 ± 0.52*10^4*�m^3) Low (0.36 ± 0.12) Elongated pores, a lot of extrusions and 
necking that result in low solidity

Group 4 Reticulated defects, 
tortuous, network

Volume (5.56 ± 1.58*10^4*�m^3) (0.33 ± 0.12) Defects have large packing intercon-
nected voids. Average volume of 
defects is larger than that in previous 
groups
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need to be taken, keeping the part’s physical shape, form 
and texture intact. Another technique of CT scanning that 
has proven to show accurate results in identifying flaws 
and defects in AM parts is X-ray computed tomography 
(XCT). Even though CT scanning is an ensured method of 
flaw detection after the build is completed, the process of 
scanning comes at a hefty price, resulting in more expen-
sive testing process [134]. One ideology to tackle this issue 
is the use of data generated from the monitoring devices 
installed in-situ to detect the flaws instantaneously. With this 
approach, expensive CT scanning procedures are no longer 
needed and the concept of generalizability, meaning the abil-
ity to apply generalization based on the baseline drawn by 
ML regression analysis from in-situ imaging of defects to 

parts manufactured by AM builds, results in keeping quality 
of the performance at a satisfactionary level [261]. Another 
issue that ML handles thoroughly is the detection of errors 
at micro scale out of terabytes of data generated from the 
installed sensors [255, 262–264]. Even though 3D print-
ing allows for freedom in geometrical shape, build qual-
ity in static or dynamic mechanical operations is a cause 
of concern. Scatter in fatigue properties is one example of 
prominent issues, which generally leads to failings within 
the solid such as gas porosity, keyhole pores, and lack-of-
fusion [265–267]. Among aforementioned failings, lack 
of fusion pores is the most challenging because they turn 
out to be bigger in dimensions compared to gas porosity 
and keyhole pores (gas and keyhole pores being ~ 50 µm or 
smaller). Keyhole pores are more critical since their size 
and irregularity are more likely to lead to crack development 

Fig. 46  A picture of the signal 
based (acoustic) anomaly detec-
tion setting [257]

Table 12  Selected parameters based on importance in acoustic anom-
aly detection to train the NN model [257]

Number of parameters in NN modeling Parameter name

0 Fan noise
1 Printing process
2 Door opening
3 Door closing
4 Movement in the Z direction
5 Faulty Nozzle Height

Fig. 47  LPBF of glass: a Thin-walled structures with good (left) and poor (right) consolidation; b Cubic structures having poor (left) and good 
(middle) consolidation and balling (right) [42]

Table 13  Set dimensions [259]

Design limits Wall thick-
ness (x)

Wall thick-
ness (y)

Wall 
thick-
ness (z)

Set values(mm) 0.2 0.3 0.4
Minimum internal design 

diameter Din(mm)
1.1 1.7 2.0

Maximum length, L (mm) 14 14 8
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and propagation. One of the possible reasons leading to this 
defect is the presence of spattered particles in build environ-
ment. Needless to say, this matter depends heavily on AM 
method, LPBF method undertaken by the following papers 
[267, 268]. An example of lack of fusion is shown in Fig. 48 
[268].

In the case of LPBF, using an automated defect rec-
ognition (ADR) algorithm[269]. ADR helps in analysis 
of raw XCT imaging data by identification of deviations 
in the images using 3D, zero-sum, Gaussian convolution 
kernels techniques. Thereafter, the next step is to regis-
ter the data gathered from XCT and the ADR algorithm 
within the layer wise image domain(Fig. 49) [261]. With 
methods explained in [270]. Eventually, data is prepared to 
be fed to CNN and NN models along images of both XCT 
scanning and in-situ imaging installments (a combination). 
part quality was validated and decent results were obtained 
[261]. Regarding multiple trained networks in this case 
study, classifiers with more diversity in datasets mani-
fested more accurate results and were more generalizable. 
The accuracy of results had little to no relation to the data 
size as long as the generated data was from different parts 
and components of any given build. The data gathered 
via sensory systems related to post-scanning proved to be 
more detrimental in flaw detection and validation com-
pared to post-recoating images. Nonetheless, they were 
used for improving information for post-scan modalities 
since they contained applicable information. Eventually, 
the presence of spatter particles to printing bed from the 
previous operations was considered as the main reason for 
the development of flaws related to lack of fusion. a 3D 
voxelated presentation of pores is presented in Fig. 50.

In general, to obtain a clear notion of part quality and 
validity, the mechanisms leading to pore development, 
which are mostly due to bubbles trapped during solidifica-
tion of the solid manufactured parts, are very important to 
monitor and are essential to testing and validation in general 
[271]. The word prediction in ML refers to the output of a 
trained model, representing the most likely value that will 
be obtained for a given input In this study, the property of 
choice for prediction is the quality of the printed part, which 
in the following figure is a prediction of glass formation 
(Fig. 51) [272].

The model is trained with historical data and then predicts 
a selected property of the data for new inputs. This approach 
is also called forward modeling. Contrariwise, suggestion 
based on process parameters when given target properties 
is known as reversed modeling. In a study by Gou dong 
et al. a specific variation of MJ referred to as polyjet, was 

Table 14  Comparison of 
resulting dimensions [259]

Designed wall thickness
tw (μm)

Measured features Results ( �m) Difference in 
percentage

200 Max wall thickness 688.5 244.2
Min wall thickness 533.1 166.6
Mean wall thickness 619.6 209.8
Standard deviation 51.04
Coefficient of variation cv% 8.3

300 Max wall thickness 1080.4 206.1
Min wall thickness 901.4 200.5
Mean wall thickness 978.8 226.3
Standard deviation 78.7
Coefficient of variation cv% 8.0

400 Max wall thickness 1247.6 211.9
Min wall thickness 1076.8 169.2
Mean wall thickness 1168.0 192.0
Standard deviation 94.2
Coefficient of variation cv% 8.1

Fig. 48  An example of lack of fusion in a laser PBF process [268]



5704 G. K. Sarkon et al.

1 3

used in order to print patient-specific anatomical replicas, 
as this method has proven to be much cheaper than con-
ventional methods, with the ability to fabricate without the 
need for tooling and capability to print multiple materials. 
In their approach, they used composite layering to construct 
their structure and used the following materials with their 
respected mechanical properties; TangoPlus (with an elas-
tic modulus of 0.45 MPa and shore hardness of 26A) and 
Verowhite (having elastic modulus of 2500 MPa and shore 

hardness of 86 shore D scale). In their work, they derived 
formulas to predict the shore hardness and compressive 
modulus. Their ML approach outperformed conventional 
surface method response by 3.5%, and their multi-layer 
model was able to mimic human tissue material properties 
from the durometer of Shore 20A to 65A [273]. In the case 
of weld bead height (h) and width (w) estimation, an ANN 
model is constructed which is made of 3 input layers that 
are V (voltage), F (feed rate) and welding speed (S). In the 

Fig. 49  Comparison of images 
taken via XCT(left) and in site 
screening using ADR algorithm 
(right) [261]

Fig. 50  Image taken of a pore 
from different angles and its 
voxelated reconstruction [261]
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case of the forward model, two hidden layers are included 
that each layer has 10 and 4 neurons respectively and the 
reverse modeling considered to be the exact opposite but 
only difference in the reverse model is that the two hid-
den layers have 12 and 10 neurons because of the results 
achieved after 1034 epochs and reaching a mean square error 
of 6.1216e−16 and 2.0072e−16 of mean square error for the 
reverse model after 4311 epochs. Figure 52 [274] illustrates 
this process. In order to hit multiple target properties, a prob-
lem should be formulated in a way to cover a multi-objective 
task optimally. An example is formulating the problem as a 
multi-objective optimization process. This approach seeks 
multi-dimensional optimization within a property space. It 
is worth mentioning that because common gradient-based 
methods are not exactly suited for this problem, an algorithm 
known as multi-objective genetic algorithm was applied to 
simultaneously optimize trained Navier Bayes models or any 
given parameter. GA implements principles from evolution-
ary biology and maximizes the fitness of a batch of param-
eters [275, 276].

Moreover, in a study carried out by Singh et al. [277] 
regarding the laser direct metal deposition, also known as 
DMD [278], another case of forward and backward modeling 
was exercised. In this study, the forward modeling was used 
for estimating the width and height of the deposited beads, 
and the reverse model revealed the pragmatism of input 
parameters such as laser power, scanning speed and powder 
flow rate. To fulfill the aforesaid objectives set, three differ-
ent NN models were organized; RNN, multi-layer feed for-
ward neural network (MLFFNN), and radial basis function 
neural network (RBFNN). RNN outperformed the two latter 
models in forward modeling since hidden layers in RNN are 
fed with internal processed inputs, which aid in maintaining 
previous information [277]. Numerical and analytical mod-
eling methods have long been applied to indicate melt pool 
temperature. However, these methods do not provide the best 
results, as temperature distribution in real-time is not taken 
into account. For this issue to be dealt with, a data-driven 
predictive method was proposed using ML techniques to 

estimate melt pool temperature while DED was in process 
with high precision. In this scenario, based on the number 
and value of the parameters involved, two ML algorithms 
are chosen; extreme gradient boosting (XGBoost) and long 
short-term memory [220]. One of the main factors for choos-
ing XGBoost is that it is easy to interpret and visualize and 
computationally cheaper because it is a decision tree-based 
model [279]. First proposed by Chen and Guestrin [280], it 
has earned its popularity in ML applications because of its 
speed and efficiency. This method creates decision trees in 
each step and each tree can fit the residual of previous trees. 
A scalable model achieves excellent property feats in many 
aspects. Different from random forest (RF) which is a paral-
lel ensemble-based method, XGBoost model is based upon 
the notion of “boosting,” which accounts for all predictions 
of “weak” learners for further improving more competent 
learner through step-by-step training routines [281]. Long-
short term memory (LSTM) is an algorithm that has the 
capability to learn long-lasting dependencies, a form of a 
RNN model. LSTM (Fig. 53) [282] has both forward and 
backward loops. This model efficiently performs classifi-
cation, storage, and forecasting of time series information 
because this model uses a time delay in some spans separat-
ing crucial data in a time series. Unlike novel feed-forward 
NNs, LSTM goes in both forward and backward loops; thus, 
functions well in addressing deviations such as explosion 
and losing gradients. LSTM algorithm was first presented 
by Hochreiter and Schmidhuber, in 1997 [283].

These two methods (XGboost and LSTM) were used to 
improve the accuracy of melt pool temperature predictions. 
However, XGBoost is more efficient in terms of computa-
tional load. On the other hand, LSTM is more accurate and 
has more robustness. While DED is a decent choice amongst 
other AM methods, it has its own disadvantages. Due to the 
assumptions of entrapped gas, powder melting incomple-
tion, lack of fusion and rapid solidification, no porosity and 
cracks are formed in the manufactured product [284]. Both 
algorithms have predicted melt pool temperature with par-
ticularly high accuracy. For the cases with large fluctuations 

Fig. 51  The capability of glass 
formation within Ni—Al—Zr 
ternary realized via ML fore-
casting and computer generation 
[272]
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of melt pool temperature, the performance of XGBoost is 
not far superior to that of LSTM. When melt pool tempera-
ture fluctuations are not substantial, LSTM outperformed 
XGBoost. The computational efficiency of XGBoost, how-
ever, is much better than LSTM. The comparison of the 
performance of XGBoost and LSTM with ridge regression 
algorithm, which is a linear regression model, revealed that 
LSTM performed 400 times slower than XGBoost. In future 
studies, the relationship between melt pool temperature and 
porosity in DED-fabricated parts using ML techniques 
should be further investigated [220].

3  Outlook for AM and AI in Industry 4.0

3.1  AM Outlook

AM is regarded as a promising new manufacturing approach 
compared to the conventional processes. Aside from the pre-
cision and freedom in geometry that is brought about via 

AM, the flexibility of the process for initiation, less needed 
space for the AM installment, and the fact that it is more 
environmentally friendly make up for a rapidly increasing 
application in the industry [285]. Moreover, with the vast 
quantity of data that is generated from each AM process 
and the aid of AI driven approaches such as ML and DL, 
AM can be an integral part of the forth industrial evolution 
[286], as is shown in Fig. 54. 3D printing, ML, DL, and AI 
approaches are common Information and Communications 
Technologies (ICT) topics that are of outmost importance.

An example of one of the methods, which is greatly ben-
eficial, is a state-of-the-art method referred to as wire arc 
additive manufacturing (WAAM)[285, 288]. This method 
has excellent capability for mass production and the ability 
to process all materials used in a welding process. However, 
it is not yet mature and many process parameters are still 
not optimized, which are amended and more understood 
via ML approaches. An example is using Gaussian process 
regressor in a work by Barrionuevo et al. [289]. Moreover, 
as image processing machinery is advancing in defect detec-
tion and general computer vision, better understanding and 
the underlaying patterns are being realized. An instance of 
benefits of computer vision is WAAM that is being under-
stood and used with better understanding and with a higher 
output. As reported in a work done by Li et al. [290], defects 
owning to voids and lack of fusion are instantly detected 
after each layer deposition. The current trend of pattern or 
defect detection and optimization of process parameters is 
a reoccurring trend that predominantly give more insight to 
any AM process for any purpose, any type of material, and 
any type of application or quantity of production. Moreover, 
with more experience and investment in AM, a myriad of 
other methods and approaches in AM are arising, such as 
nano-scale AM [291, 292], Hybrid AM, where AM is used 
to compliment subtractive manufacturing [293], AM with 
a printing nozzle of 5 degrees of freedom being capable of 
printing curves instead of just flat layers [294, 295], electri-
cally assisted 3D printing [296] and responsive material AM 

Fig. 52  An example of usage 
of forward (a) and inverse (b) 
modelling for property predic-
tion in an ANN model, where 
parameters and variables could 
be swapped to gain different 
perspective and prediction on 
parameters [274]

Fig. 53  The operation mechanism of LSTM [282]
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or 4D printing [297]. Overall, over the past 20 years, the 3D 
printing market has been growing rapidly where worldwide 
revenue rose 21% from 2017 to 2018, reaching 7 billion USD 
in 2018. It has become a 10.6 billion USD industry in 2021 
and is projected to spike up to 50 billion USD [298]. Ulti-
mately, with the growth of the AM industry in the coming 
years, health and maintenance of AM machines should be 
considered. As a result, Analatom, Applied Research Labo-
ratory of Penn State University, and University of California 
suggest to apply contemporary concepts inspired from simu-
lation runs, corrosion modeling, and control theory merged 
with PHM in the development of AM materials evaluation in 
order to understand AM machine health and Manufacturing 
quality [299] and in another paper by Liu et al. [300], the 
concept of condition monitoring and fault detection based on 
machine vision for maintenance of tools and tool health and 
ability to operate is recognized as a vital measure.

3.2  Self‑explanatory ML Systems and More

There are much room for the improvement of AI approaches 
in general, and particularly, its applications in AM. An 
instance is self-explanatory ML approaches. The most sig-
nificant advantage of self-explanatory ML, as the name sug-
gests, is the ability to depict what process takes place for the 
ML models to decide and make the conclusions the way they 
did. As crucial as precision is for an ML model, the ability 
to explain is also as important [301, 302]. Also, it needs to 
be acknowledged that such models are clustered into two 
main groups of data-driven and model-driven interpretation. 

Figure 55 shows the classification of various interpretable 
methods. The best way of explaining the main difference is 
that data-driven models work with interpretations of inputs 
that were given to them and do not require explicit mod-
eling. One case of successful usage of the self-explanatory 
ML method in AM known as Shapley additive explanations 
(SHAP) [303].

Besides the great benefits of self-explanatory ML meth-
ods, there are other fascinating routes of progression which 
can help ML and its application in AM, such as the quantum 
ML methods for maintenance of AM devices [25]. Also, ML 
methods that require no direct coding, known as no-code 
ML [304], and incorporation of emerging methods such as 
internet of things (IOT) and AM with the aid of ML method 
[305] can be useful in the future of application of cutting 
edge ML methods in AM.

4  Summary and Outlook

In Table 15, a tabular comparison of the most recent publica-
tions reviewed in this paper is provided in detail, dedicated 
to ML technologies in AM and ML applications. Difficulties 
and potentials identified by each work are also presented.

As illustrated in the Table above, the findings, challenges, 
and limitations of the latest papers cited in this review are 
the lack of data, computational capability, the novelty of the 
topic of AM and challenges in production. Although some 
algorithms such as LSTM are very accurate, they demand 
high computational power and it has been noted that algo-
rithms which are less computationally demanding lack the 
desired accuracy. Less demanding algorithms in terms of 
computation power are not yet as accurate [312]. Also, 
the post-production quality of AM manufactured objects 
is stated to be a topic that needs much optimization and 
research [309].

In this review, it was aimed to evaluate how the imple-
mentation of AI, especially ML and DL, could revolutionize 
manufacturing process by pairing this approach with AM, 
which is a rather new technique, and still has incapability to 
fully replace the conventional methods of subtractive manu-
facturing. These ML methods lack enough data banks to 
create more efficient modeling in ML. Also, gathering data 
could be done by either numerical or experimental methods 
which is very expensive for such a multi-physics process like 
AM and lack of simulating software for AM processes is a 
notable shortcoming [313]. Furthermore, ML optimized all 
design steps with good results. However, in topology opti-
mization, the use of support structures hinders the quality 
of parts and materials and the designer should opt to self-
sustaining shapes or considering using support structures 
that would lessen the quality of part design and needs further 
research. Moreover, process parameters are widely affected 

Fig. 54  Common trends in information and communications technol-
ogies (ICT) in the last three years [287]
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from device specific factors, thus for each printing device 
process parameters could be different and that is a challenge 
to get an optimal print based on the data available for each 
printing device. Also, in the case of anomaly detection, some 
improvement could be made to supplement the precision 
of the techniques used, namely the scope of defect detec-
tion, because based on latest efforts only above ηm levels 
are detected. as a result, there are no imaging of such defects 
in ML data base to recognize the shape and boundaries of 
such pores, also the data accusation time is a factor that 
faster and more optimal algorithms should be developed to 
overcome this hurdle. The most commonly used methods 
of AM which have been paired with ML are PBF, DED, 
and ME. This shows that, since 3D printing is a relatively 
new branch of manufacturing, many other techniques have 
not been put to test and experimented with ML techniques. 
Therefore, further experimentation and investigation using 
other methods such as Stereolithography and BJ are required 
as they demand low energy input and have the ability to 
continuously print, therefore resulting in a faster production 
rate and substantial time and cost saving.

Furthermore, there is not enough data gathered to better 
tune and train ML algorithms. Much more effort to collect a 

better and more extensive data set is required to fully exploit 
the potential of ML and data driven approaches in AM and 
more large-scale productions. Overall, AM is still not used 
for mass production, choice of material is still limited, and, 
based on the installments and devices that perform AM, pro-
duction of dimensionally large parts is still challenging and 
as a result not enough data are generated on dimensionally 
large-scale AM. Due to these limitations and essence of nov-
elty in AM, statically classified data are very much needed 
for ML procedures and these data sets are still missing and 
most ML algorithms are only as good as the data they are 
being fed.
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