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Abstract
Metaheuristic optimization algorithms (MOAs) represent powerful tools for dealing with multi-modal nonlinear optimization 
problems. The considerable attention that MOAs have received over the last decade and especially when adopted for dealing 
with several types of structural optimization problems can be mainly credited to the advances achieved in computer science 
and computer technology rendering possible, among others, the solution of real-world structural design optimization cases 
in reasonable computational time. The primal scope of the study is to present a state-of-the-art review of past and current 
developments achieved so far in structural optimization problems dealt with MOAs, accompanied by a set of tests aiming 
to examine the efficiency of various MOAs in several benchmark structural optimization problems. For this purpose, 24 
population-based state-of-the-art MOAs belonging in four classes, (i) swarm-based; (ii) physics-based; (iii) evolutionary-
based; and (iv) human-based, are used for solving 11 single objective benchmark structural optimization test problems of 
different levels of complexity. The size of the problems employed varies, with the number of unknowns ranging from 3 to 
328 and the number of constraint functions ranging from 2 to 264, related to the structural performance of the design with 
reference to deformation and stress limits.

1  Introduction

During the last decades, the architectural, design and con-
struction (ADC) industry has shown excessive innovation 
both in the theoretical and its practical directions [1]. These 
innovations could not be made possible without the advance-
ments in fields related to computational mechanics, which 
played a critical role [2]. These developments made it possi-
ble not only to provide solutions to complex traditional prob-
lems in engineering, but also to propose novel mathematical 

formulations and solving techniques for practical applica-
tions, leading to innovative, unique, economic and more 
environmental-friendly structural systems [3]. Nowadays, 
modern numerical tools are available to provide enormous 
capabilities to architects and engineers, by fulfilling the 
demands of the analysis and design procedures.

During the last three decades, metaheuristic optimization 
algorithms (MOAs) have conquered many areas of engineer-
ing optimization, structural design optimization problems 
included, due to the easiness of implementation, their sim-
plified nature, and mainly due to their efficiency in dealing 
with NP-complete problems. Structural design optimiza-
tion (SDO) explains the procedure of proposing improved 
designs of structures with respect to material or construction 
cost, manufacturability, structural performance, among other 
design criteria. Several researchers have tried to make a sys-
tematic review and organize the broad research literature on 
optimization algorithms in general, or metaheuristics in par-
ticular, applied to structural optimization problems. Sahab 
et al. [4] performed a review on traditional and modern 
structural optimization problems and solution techniques. 
Kashani et al. [5] did a similar review work, focusing on 
population-based optimization methods applied in structural 
engineering, while Bekdaş et al. [6] presenting a review on 
metaheuristic algorithms and their applications in civil 
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engineering optimization problems, highlighting the recent 
progress and the state-of-the-art developments in the field. 
On the other hand, Yang et al. [7] focused their review on the 
applications of metaheuristic algorithms in civil engineering 
problems, particularly.

Most real-world structural design optimization problems 
are expressed in standard mathematical terms through highly 
nonlinear and multimodal expressions. A single objective 
non-linear programming (NLP) problem can be formulated 
as follows:

where f (s) is the objective function (e.g. minimizing the 
weight of the structure that is related to the material require-
ments, improving the structural performance characterized 
for instance by the modal characteristics of the structural 
system, etc.), ga(s) is the ath inequality constraint, hb(s) is 
the bth equality constraint, while lbj and ubj denote the lower 
and upper limits, respectively, of the jth component of the 
design variable vector s of size n . It has to be noted that in 
the majority of structural optimization problems, no equality 
constraints are used for the problem formulation.

The scope of the present study is two-fold; first to review 
the achievements of the past and to present the future chal-
lenges through the state-of-the-art development of MOAs 
when used for solving structural optimization problems 
(SOPs). Then, in the second part of the study, several well-
known MOAs are tested into typical and large-scale bench-
mark structural optimization problems, where the common 
characteristics and the similarities among the chosen MOAs 
are also presented. There are three categories of SOPs, 
namely (a) sizing; (b) shape; and (c) topology optimization. 
In addition, when uncertainty is involved into the problem 
formulation, two general types of problems can be described, 
namely reliability-based structural optimization and robust 
design optimization problems [8]. The structure of the work 
begins with the presentation of the history of the integration 
of MOAs with the various types of structural optimization 
problems. Subsequently, the 24 MOAs chosen for being 
tested into 11 benchmark structural optimization problems 
are briefly described. The selected MOAs cover a wide range 
of metaheuristic algorithms with different characteristics and 
nature, from well-known and well-established algorithms 
to the most recent and most promising ones that represent 
the latest trends in this research field. The implementation 
of these algorithms relies on the MATLAB codes provided 
by the developers of the corresponding MOAs, while the 
special features of each algorithm implementation together 

(1)

Optimize f (s),

Subject to

ga(s) ≤ 0, a = 1, 2, ...,ma

hb(s) = 0, b = 1, 2, ...,mb

lbj ≤ sj ≤ ubj, j = 1, 2, ..., n

with the basis of comparison are provided in the next chap-
ter of this study. In the last chapter, the numerical tests are 
presented, classified into two groups; in the first one three 
well known truss-structure problems are presented together 
with the welded beam, pressure vessel and the tension–com-
pression string design problems. In the second group, five 
large-scale sizing-shape structural optimization problems 
are investigated, taken from the International Student Com-
petition in Structural Optimization (ISCSO 2015 to 2019) 
[9–13].

2 � The History of MOAs in Structural 
Optimization

Over the last few decades, the so-called “metaheuristic tech-
niques” have been developed, to provide near-to-optimum 
solutions to various problems [14]. They are especially 
tailored to hard optimization problems that are difficult or 
even impossible to be optimized by the exact-optimal tech-
niques, such as linear programming (LP) [15], non-linear 
programming (NLP) [16], integer programming (IP) [17], 
and dynamic programming (DP) [18]. Initially, these new 
techniques were called “Heuristics” and each such algorithm 
was exclusively developed to handle a specific problem [19], 
without having any “global” problem solving properties. 
After a while, the researchers started to generalize these 
algorithms, building wider solving frameworks that could 
be used to solve wider problems of any nature. This group of 
global solvers is nowadays known as “Metaheuristics” [20].

There are two main classifications of the fundamental 
mechanisms used in MOAs: (i) diversification and (ii) inten-
sification [21]. The main difference between these two is 
that diversification tries to diverge the search in an attempt 
to explore the entire solution space, while intensification 
simply pushes the search towards the already found best 
solutions. Metaheuristics can be classified according to vari-
ous criteria, such as (i) population-based or single-solution-
based; (ii) trajectory or discontinuous; (iii) memoryless or 
using memory; (iv) local-oriented or global-oriented, among 
others.

Figure 1 displays Metaheuristics of various types where 
they have been first classified according to whether they use 
a population of solutions (population-based metaheuris-
tics) or not (single-based metaheuristics). Single-based 
metaheuristics use a single solution at each run while pop-
ulation-based ones maintain a set of solutions (population) 
at each run. As shown in the figure, the class of popula-
tion-based metaheuristics can be further classified into four 
main categories: (i) swarm-based, (ii) physics-based, (iii) 
evolutionary-based, and (iv) human-based. Swarm-based 
methods use swarm intelligence (SI) approaches that mimic 
the behaviour of swarms in nature. Evolutionary-based 
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algorithms or evolutionary algorithms (EA) are inspired 
by the evolutionary phenomena in nature and they usually 
use three operators: selection, recombination and mutation. 
Physics-based methods are inspired by and related to physi-
cal phenomena while Human-based methods are related to 
human activities and the human behaviour. The original 
figure with the classification of the algorithms, that appears 
in [22], includes 45 algorithms. In the new version of this 
figure (Fig. 1) we have added 9 additional algorithms and 
as a result the final scheme contains 54 algorithms in total. 
Of them, 24, denoted with bold letters and a thicker border 

in the figure, are examined in detail in the present study, as 
will be discussed in the next sections.

In this section we try to identify the various ways that 
MOAs have been used in structural optimization problems. 
These include benchmark structural optimization test prob-
lems for assessing the efficiency of new MOAs, implemen-
tations of existing MOAs for solving new formulations of 
structural optimization problems, methodologies for han-
dling the excessive computational effort that MOAs require 
for solving structural optimization problems, and others.

Popula�on-based
metaheuris�cs

FA2

FA3

Bat Algorithm (BA)

Krill Herd (KH)

Grey Wolf Op�mizer 
(GWO)

Moth-Flame 
Op�miza�on (MFO) 

Algorithm

Dragonfly Algorithm (DA)

Whale Op�miza�on 
Algorithm (WOA)

Crow Search Algorithm 
(CSA)

Salp Swarm Algorithm 
(SSA)

Grasshoper Op�miza�on 
Algorithm (GOA)

Central Force 
Op�miza�on (CFO)

Gravita�onal Search 
Algorithm (GSA)

Big-Bang Big-Crunch 
(BBBC)

Magne�c Charged 
System Search (MCSS)

Electromagne�c Field 
Op�miza�on (EFO)

Water Evapora�on 
Op�miza�on (WEO)

Op�cs Inspired 
Op�miza�on (OIO)

Mul�-Verse Op�mizer 
(MVO)

Thermal Exchange 
Op�miza�on (TEO)

Henry Gas Solubility 
Op�miza�on (HGSO)

Arithme�c Op�miza�on 
Algorithm (AOA)

Gene�c Algorithm (GA)

Differen�al Evolu�on 
(DE)

Evolu�onary 
Programming (EP)

Evolu�on Strategies (ES)

Gene�c Programming 
(GP)

Probability-Based 
Incremental learning 

(PBIL)

Biogeography-Based 
Op�mizer (BBO)

Harmony Search (HS)

Imperialist Compe��ve 
Algorithm (ICA)

FireWork Algorithm 
(FWA)

Human Group Forma�on 
(HGF)

Teaching Learning-Based 
Algorithm (TLBA)
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Algorithm (FGIA)
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Tabu Search (TS)
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Iterated Local Search (ILS)

Stochas�c Local Search 
(SLS)

Variable Neighborhood 
Search (VNS)

Greedy Randomized 
Adap�ve Search 

Procedure (GRASP)

Swarm-based Physics-based Evolu�onary-based Human-based

Single-based
metaheuris�cs

Improved GWO (IGWO)

GOA faster (GOAf)

Ant Lion Op�mizer (ALO)

Covariance Matrix 
Adapta�on Evolu�on 
Strategies (CMAES)

Sine Cosine Algorithm 
(SCA)

Interior Search Algorithm 
(ISA)

Pity Beetle Algorithm 
(PBA)

Slime Mould Algorithm 
(SMA)

Mul�-Trial vector-based 
Differen�al Evolu�on 

(MTDE)

Par�cle Swarm 
Op�miza�on (PSO)

Ant Colony Op�miza�on 
(ACO)

Ar�ficial Bee Colony 
(ABC) Algorithm

Cuckoo Search Algorithm 
(CS)

Firefly Algorithm (FA)

Metaheuris�cs

Fig. 1   The mosaic of metaheuristic optimization algorithms
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Deterministic structural optimization problems that do 
not involve uncertainties of any kind can be classified into 
three broad categories: (i) sizing, (ii) shape, and (iii) topol-
ogy optimization. In sizing optimization, usually the design 
variables have to do with some geometric characteristics of 
the cross sections of the members, for example in a truss or 
a frame structure, in 2D or 3D. In shape optimization, the 
optimizer can change the locations of the nodes or other 
control points of the geometry of the structure, changing 
this way the overall shape of the structure. In topology opti-
mization, the optimizer can completely change the topology 
of the structure, by adding or removing elements, creating 
holes in slabs, etc. These three categories are not always 
discrete and clearly distinguishable from each other. Many 
times, we end up with mixed sizing-shape structural optimi-
zation problems, where both the geometric characteristics of 
the sections and the locations of some nodes are subject to 
change. In other cases, we have mixed shape-topology opti-
mization problems where again the shape and the topology 
can be simultaneously changed by the optimizer.

2.1 � New MOAs Assessed Through SOPs

The collection of metaheuristic algorithms is being continu-
ously enriched with new methods and new, improved varia-
tions of existing methodologies. Researchers keep proposing 
new optimization schemes claiming that their performance 
is better than the one of other algorithms, at least in the 
optimization test examples examined. Many times, these 
test examples come from the field of structural engineering 
as these problems are usually some of the hardest to deal 
with. In other words, the performance of a new MOA is 
assessed through structural optimization problems, instead 
of the usual mathematical functions, or in addition to them.

Cuckoo search (CS) was originally presented by Yang 
and Deb [23] as a new metaheuristic based on the obligate 
brood parasitic behaviour of some cuckoo species com-
bined with the Lévy flight behaviour of certain birds and 
fruit flies. The implementation of the algorithm involves 
Lévy flights with random steps, providing random walk 
capabilities to the method. In another study [24], the same 
authors applied the algorithm to solve engineering design 
optimisation problems, including the design of springs and 
welded beam structures. In addition, Gandomi et al. [25] 
assessed the validity and performance of the algorithm in 
handling SOPs. In particular, CS is assessed with several 
SOPs including the design of a pin-jointed plane frame with 
a fixed base, the minimization of the vertical deflection of 
an I-beam, the design of a piston component, the minimum-
weight design of the corrugated bulkhead for a tanker, the 
design of a cantilever beam and a tubular column, a three-
bar truss, a reinforced concrete beam design, and others. A 
multi-objective version of the CS algorithm was proposed in 

[26] by Yang and Deb, assessed again through of structural 
design optimization problems, such as beam design and disc 
brake design.

Cheng and Prayogo proposed the symbiotic organisms 
search (SOS) algorithm [27], a method which simulates the 
symbiotic interaction strategies adopted by organisms to sur-
vive and propagate in an ecosystem. To show the capabilities 
and the robustness of the algorithm, the authors used 26 
mathematical problems as well as five engineering design 
problems including the design of a cantilever beam, the min-
imization of the vertical deflection of an I-beam, and two 
plane truss structures with 15 and 52 members. Yang pro-
posed a Bat-inspired optimization algorithm [28], based on 
the echolocation behaviour of bats, in an attempt to combine 
the advantages of existing algorithms. The new algorithm 
is compared to GA and PSO in handling optimization prob-
lems. The method was first assessed through engineering 
optimization problems in the work of Yang and Gandomi 
[29] using eight nonlinear engineering optimization prob-
lems. Shadravan et al. [30] proposed the sailfish optimizer, a 
metaheuristic inspired by a group of hunting sailfish, tailored 
in solving constrained engineering optimization problems. 
The particularity of the algorithm is that it maintains two 
populations, one of sailfish for intensification of the search 
around the best so far and one of sardines for diversification 
of the search space. After evaluating the algorithm in 20 well 
known unimodal and multimodal mathematical functions, 
the authors proceed with testing it in different engineering 
optimization problems including an I-beam design problem, 
a Welded beam design problem, a Gear train design prob-
lem, a 3-bar truss design problem and a Circular antenna 
array design problem.

Heidari et al. [31] introduced Harris hawks optimization 
(HHO), simulating the hunting behaviour of Harris’ Hawks. 
The algorithm is inspired by the cooperative behaviour and 
chasing style of Harris’ hawks in nature, called surprise 
pounce, where hawks pounce a prey from different direc-
tions trying to surprise it. The effectiveness and performance 
of the method is tested on 29 benchmark problems and sev-
eral real-world engineering design problems. Askarzadeh 
[32] introduced Crow search algorithm in 2016, for solving 
constrained engineering design optimization problems. The 
algorithm is based on the intelligent behaviour of crows and 
based on the idea that crows store their excess food in hid-
den places and retrieve it when it is needed. The method is 
applied to six engineering design problems with different 
natures and level of complexity. Eskandar et al. [33] pro-
posed another nature-inspired metaheuristic, the so called 
water cycle algorithm. The algorithm is based on the obser-
vation of water cycle process and how rivers and streams 
flow to the sea in the real world. The algorithm comes with 
an embedded constraint handling mechanism and is suited 
to handling constrained engineering optimization problems.
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2.2 � MOAs for Solving New Formulations of Sizing 
SOPs

Sizing optimization is one of the most important and argu-
ably the most widely applied structural optimization disci-
pline because of the simplicity of the problem formulation 
and its practical significance for the design of real-world 
structures composed of linear elements, such as columns, 
beams and truss members. The class of sizing optimization 
problems was the first application of optimization algorithms 
in structural engineering.

Farshi and Alinia-ziazi [34] proposed a new methodology 
for the design of truss structures with optimum weight incor-
porating the force method based on the method of center 
points. The design variables of the optimization problem 
are the cross-sectional areas of the members. The method 
utilizes the largest hyperspheres inscribed within the feasi-
ble space and the analysis step is included in the optimiza-
tion cycle. Kociecki and Adeli [35] developed GA with two 
phases to solve the problem of the design of space-frame 
roof structures with minimum weight (size optimization). 
They compared their results with the ones obtained with 
the commercial design software SAP2000, against the fac-
tors of: (a) convergence improvement, (b) computation time 
reduction, and (c) practicality of the optimum design. The 
advantages of this two-phase GA approach are the following: 
(a) the design process can be fully automated, even for one-
of-a-kind structures, (b) the design time, no longer based on 
trial and error, can be drastically reduced, and c) a lighter 
and more economic design can be achieved.

Hasançebi et al. [36] investigated the use of genetic 
algorithms (GA), simulated annealing (SA), evolution 
strategies (ES), particle swarm optimizer, tabu search, 
ant colony optimization (ACO) and harmony search (HS) 
in the optimum design of real size pin jointed structures, 
where design limitations were imposed based on the allow-
able stress design code of American Institute of Steel Insti-
tution (ASD-AISC). The authors claim that HS and GA 
are characterized by slow convergence in large-scale prob-
lems, while SA and ES proved to be powerful techniques. 
Kaveh et al. [37] presented a performance-based optimal 
seismic design of frame structures using the ACO method. 
The structural response at various seismic performance 
levels, is simulated and evaluated using non-linear push-
over analysis. The authors claim that ACO is more capable 
than GA for handling this type of problems and the rel-
evant results are illustrated via two example steel frame 
structures. Moayyeri et al. [38] applied the PSO algorithm 
for the optimum design of reinforced concrete retaining 
walls taking into account both geotechnical and structural 
constraints for the optimization problem and considering 
different methods of the bearing capacity computation.

Gholizadeh and Milany [39] proposed an improved fire-
works algorithm [40] (IFWA) for discrete sizing optimiza-
tion of steel skeletal structures. The algorithm features the 
possibility of interaction among different solutions dur-
ing the optimization process. IFWA is employed to deal 
with the discrete structural optimization problems of steel 
frames and trusses. Bureerat and Pholdee [41] proposed an 
adaptive differential evolution algorithm for the solution 
of optimal truss sizing problems. The method is based on 
DE while a strategically adaptive scheme is also employed, 
together with an effective constraint handling technique for 
dealing with constrained structural optimization problems. 
Hasançebi and Kazemzadeh [42] employed an exponential 
big bang-big crunch algorithm for the discrete design opti-
mization of steel frames. Two real-world numerical design 
examples are used, including a 132-member unbraced steel 
frame and a 209-member industrial factory building. The 
method proved to be robust and efficient in tackling practi-
cal design optimization instances of steel frames. Another 
work on the optimum design of steel structures is the one 
by Lagaros et al. [43] where the optimum design of 3D 
steel structures with perforated I-section beams is exam-
ined. The problem is formulated as a combined sizing, 
shape and topology optimization problem where the cross-
sectional dimensions of beams and columns are the sizing 
variables, while the number and size of web openings in 
the beams are the topology and shape design variables.

Papadrakakis et  al. [44] proposed the use of evolu-
tion strategies to perform structural sizing optimization 
of space frames under seismic loading conditions. In this 
work the authors used two methods for the dynamic analy-
sis of the structure, namely the traditional design response 
spectrum approach and the direct integration approach 
[45] using artificial accelerograms compatible with the 
elastic design response spectrum. Fragiadakis et al. [46] 
went one step further in the optimum design of structures 
under dynamic loading, by proposing a performance-
based optimum design methodology for steel structures 
subjected to seismic loading, considering the inelastic 
behavior (via pushover analysis) and the life-cycle cost 
of the structure. The life-cycle cost of the structure was 
also taken into account in the work of Mitropoulou et al. 
[47], for the assessment of optimally designed reinforced 
concrete buildings under seismic actions. In this work, the 
performance of the structure is evaluated in multiple earth-
quake hazard levels using incremental static and dynamic 
analyses, while the life-cycle cost is taken into account 
as an additional objective function, other than the initial 
weight of the structure.
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2.3 � MOAs for Solving New Formulations of Shape 
and Topology SOPs

Kociecki and Adeli, previously mentioned for their work in 
sizing optimization [35], extended their work to sizing and 
topology optimization also, where they used a two-phase 
genetic algorithm for solving the sizing and topology optimi-
zation problem of free-form steel space frame roof structures 
[48]. They applied the algorithm to two real-life space roof 
structures. The initial design in both cases is a real design 
performed by a design office iteratively using a general-
purpose structural analysis software in a period of several 
days. The proposed method resulted in savings of 12% and 
4% for the two example cases, respectively. The previously 
mentioned work of Kociecki and Adeli was further extended 
for handling sizing, topology, and shape optimization of 
free-form steel space-frame roof structures with complex 
geometries using evolutionary computing [49]. Two meth-
ods of changing the geometry of the structure are presented, 
a simple one for mostly regular geometries, as well as a more 
complex one. The aim was to achieve an optimal design by 
changing the geometry of the roof structure while simultane-
ously optimizing the roof member, the column dimensions 
and the roof topology. Additional constraints, having to do 
with esthetics have been added to the algorithm as heuristic 
limits to avoid undesirable changes in the architectural form. 
Efficiencies in the range of 10–16% have been achieved for 
the two examined example structures using the proposed 
methodology.

Amir [50] introduced a new computational approach 
for optimizing reinforced concrete structures. The major 
goal was to reduce the amount of material (weight) used 
in concrete structures, which is extremely desirable due to 
the negative environmental impact of cement production. 
Building lighter concrete structures can be considered an 
important step towards more sustainable architecture. The 
fundamental concept was to integrate realistic finite element 
modelling of reinforced concrete with topology optimization 
algorithms based on a sensitivity analysis. The strain soften-
ing response of concrete was treated as a continuum, with 
a nonlocal damage model used to account for it. Reinforce-
ment was embedded in the continuum concrete domain and 
represented as a set of all allowable rebar placements. In a 
topology optimization approach combining truss-based and 
continuum-based approaches, both materials, concrete, and 
the steel reinforcement, were designed simultaneously. It 
was discovered that the optimized designs performed 20% 
to 30% better than the standard structures in terms of load-
bearing capacity per unit weight. Lagaros et al. [51] also 
investigated the application of optimization methods in the 
design of 3D reinforced concrete buildings, where the aim 
was to minimize the eccentricity between the mass center 
and the rigidity center of each story, handled as a combined 

topology and sizing optimization problem. The optimized 
design led to a significant reduction in the structural cost 
of the building in the test examples considered. Zakian and 
Kaveh [52] conducted a research study on the topology opti-
mization of shear walls considering material volume and 
displacement constraints. The aim was to optimize the struc-
tural compliance under seismic loads commonly applied to a 
shear wall. The one-field density approach of simplified iso-
tropic material with penalization (SIMP) was employed and 
enriched with a penalty function for dealing with the drift 
constraint of shear walls. The optimality criteria method was 
incorporated for the solution of the optimization problem. 
Various heights are defined for shear walls to obtain opti-
mized configurations under different circumstances. The 
shear wall-frame interaction that influences the single and 
coupled shear walls was assessed. The results of the investi-
gation revealed the material distribution of shear walls and 
vital parts of the structure where openings or cut-outs should 
not be created.

Kaveh and Kalatjari [53] performed size/topology opti-
mization of trusses using a genetic algorithm (GA), the 
force method and concepts of graph theory. The applica-
tion of the force method, together with the theory of graphs, 
allowed the generation of a suitable initial GA population. 
If unstable trusses were identified during the process, they 
were penalized properly. The efficiency of the method was 
illustrated using numerical examples and comparisons to the 
corresponding results from previous studies. Tian et al. [54] 
carried out a study which aimed to apply topology optimiza-
tion approaches in offshore platform structural design and 
examine how this might help produce better solutions and 
methods while reducing the design, deployment, and manu-
facturing costs. The methodology can be used at an early 
design stage, which helps in determining the initial structure 
and transmission path. The entire design space is selected as 
the available space for the design variables, and the objective 
is to maximize the structural stiffness. Deformation, stress 
and vibration-related constraints are imposed, all contrib-
uting to creating the constraints for a multi-criteria design 
assessment. The results of the optimization procedure were 
verified by FE analysis for static and dynamic performance.

De Souza et al. [55] optimized transmission line towers 
by dividing the structure into modules that can take various 
pre-determined topologies. Shape and size were optimized 
at the same time as the topology. Two example cases were 
considered, a tower with eight different load cases, and a 
self-supported tower that was subjected to a cable rupture 
scenario and a wind load. When compared to a classical 
topology optimization procedure, the obtained results indi-
cated a reduction of up to 6.4% in the final structural weight. 
Jiang et al. [56] proposed four shape optimization problems 
in order to obtain reasonable shapes for free-form shell 
structures with both high static and dynamic performance. 
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Static performance was measured by strain energy under 
static loads, whereas dynamic performance was measured 
by the lower bound on the fundamental natural frequency 
or strain energy under seismic stresses. The self-weight and 
live loads are applied, and an optimization problem is ini-
tially developed for reducing the strain energy under fre-
quency constraints. After that, the strain energy associated 
with the comparable seismic static load is minimized. In the 
cases where the design variables were dense, the surface 
curvature was added as the second objective function in a 
multi-objective optimization problem, to avoid ending up 
to an undesirable shape. The efficacy of the approach was 
demonstrated in several numerical examples.

Papadrakakis et al. [57] investigated the use of combina-
torial optimization methods, in particular evolution strate-
gies, for handling structural shape optimization problems. 
According to the study, the combination of ES with SQP 
gives very promising results in shape optimization problems, 
especially when also taking advantage of a parallel comput-
ing environment. The efficiency of the ES was confirmed 
in the work of Lagaros et al. [58], which investigated the 
optimum design of shell structures with stiffening beams 
using an ES optimization scheme, considering sizing, shape 
and topology design variables.

Belevičius et al. [59] developed a method for optimiz-
ing simultaneously the shape, size, and topology of tall, 
guyed masts. Strength, stability, and slenderness constraints 
were imposed while designing the mast structure against 
self-weight and wind loading. The guyed mast’s nonlinear 
behavior was simplified by considering the nonlinear guys 
as approximate boundary conditions for the mast. Following 
the selection of the best solution from a set of Evolution-
ary Algorithm (EA) solutions, the pattern search algorithm 
was used to thoroughly investigate the solution’s surround-
ings, after the best solution was chosen. A conventional 
96 m steel guyed mast holding a standard antenna cluster 
was optimized using the method. The optimization of the 
mast with various sets of design parameters revealed that 
the most relevant mast schemes had three to five guys’ clus-
ters, with the optimal mat scheme being the one with five 
guys’ clusters. Mam et al. [60] studied the optimization of 
the shape of a timber braced framed structure with dowel-
type connections subjected to an overall drift restriction 
as well as strength requirements under wind and gravity 
loads. The primary goal of the study was to demonstrate the 
importance of joint flexibility in achieving the best possible 
solution for a truss-like construction. To establish a simpler 
relationship between joint stiffness and axial load-carrying 
capability, dowel-type connections are first investigated. 
The established local behavior rule is then used to the shape 
optimization and design of a discrete braced frame subjected 
to lateral drift constraints under wind load. A two-level 
optimization approach was developed, using the low-level 

optimization methods fully stressed design (FSD) and a rig-
orously determined optimality criteria (OC) for size optimi-
zation and a more general optimization approach for shape 
optimization. This approach provides more control over the 
optimization process as well as the use of specific optimiza-
tion methods for each sub-problem. When compared to clas-
sical results, the semi-rigid behavior of connections results 
in a substantial increase in the volume of wood, but it also 
has an impact on the optimum form and the topology of the 
X-braced frame.

Pastore et al. [61] presented a novel optimization method 
for designing lightweight concrete structural components 
based on an integrated Risk-Factor and Stress-Constrained 
method, which can account for the asymmetrical compres-
sion and traction stresses that characterize concrete materi-
als. In a simply supported beam arrangement, the algorithm 
was tested across a set of concrete material characteristics. 
When compared to a traditional Von Mises stress condition, 
the Risk Factor method showed to be more efficient in pro-
ducing optimal beams when dealing with a variety of asym-
metrical stress restrictions. The method was embedded in an 
iterative heuristic algorithm, which was then put to the test 
in a simply supported beam setup with a large number of 
concrete classes. The findings of the study indicate that the 
suggested approach can improve the traditional Von Mises 
paradigm by producing optimized beams that can withstand 
a variety of asymmetrical stress constraints. In an effort to 
support and advance sustainable architecture, Frangedaki 
et al. [62] investigated the design of tree-shaped structural 
systems using the advanced characteristics of a bamboo 
material native to South America, and to test its effective-
ness by means of a structural parametric design optimization 
approach. Two structural systems, an elliptical-shaped one 
and a quadrangular one were parametrized and optimized.

2.4 � Hybrid Methods Based on MOAs for Solving 
SOPs

Various hybrid methods have been proposed in the literature 
combining the advantages of different methodologies in an 
effort to achieve higher quality results and increased speed. 
Some of the hybrid approaches simply try to speed up the 
convergence of the optimization algorithm, usually combin-
ing different types of optimizers that work well either in 
searching the general search space or specialize mostly in 
local search. Other approaches combine different numerical 
methodologies, in an attempt to reduce the computational 
effort of the optimization scheme, especially when handling 
large-scale structural optimization problems.

Plevris and Papadrakakis [63, 64] presented a hybrid 
PSO-gradient algorithm for the global optimization of 
2D and 3D truss structures. In this work, the Particle 
Swarm Optimization [65] method was enhanced with a 
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gradient-based sequential quadratic programming (SQP) 
optimizer for handling constrained optimization problems 
of 2D and 3D trusses. The methodology proved to be bet-
ter in finding optimal solutions for structural optimization 
problems compared to traditional (non-hybrid) optimiza-
tion approaches. Similarly, Aydilek [66] proposed a hybrid 
firefly [67] and particle swarm optimization (HFPSO) 
algorithm for computationally expensive numerical prob-
lems. The algorithm combines the strongest points of 
firefly and particle swarm algorithms, while it mitigates 
the disadvantages of both methods. The hybrid algorithm 
is checked in several benchmark engineering mechanical 
design problems including the pressure vessel, welded 
beam, and tension and compression spring.

Using both GA and neural networks (NN), Gholizadeh 
et al. [68] proposed a method to find the optimal weight 
of structures subject to multiple natural frequency con-
straints. GA is used to find the optimal weight, through the 
virtual sub-population (VSP) method. NN is employed to 
evaluate the natural frequencies, through a wavelet radial 
basis function (WRBF). This is the first time WRBF has 
been employed to identify the natural frequencies of the 
structure as previously it was only employed to identify 
other structural characteristics. The test examples included 
a 10-bar aluminum truss and a 200-bar steel double layer 
grid. The result of the investigated algorithm (VSP & 
WRBF) is compared to an exact analysis result and an 
approximate one obtained by a single RBF neural network, 
and it is found that for an efficient trial structural optimi-
zation, the best results (in terms of weight & time) are 
obtained by VSP & WRBF. Nguyen and Vu [69] employed 
composite differential evolution (CoDE) for structural 
optimization, where the optimization scheme is accom-
panied with neural networks used as surrogate models for 
speeding up the process by rapidly evaluating the fitness of 
candidates. First, CoDE is used in the traditional way, but 
the fitness values of the possible solutions are saved to the 
database. After enough data have been generated, NN is 
trained with these data to provide inexpensive estimations 
of the fitness function value of other individuals. Three 
structural benchmark problems are used, the 10-bar truss, 
25-bar truss, and 72-bar truss. The methodology achieves 
a significant reduction of the computational, by around 
60%. In the same direction of employing neural networks 
in an optimization procedure, Papadrakakis et al. [70] 
investigated the application of NN models to substitute 
the time-consuming structural analysis phase in large-
scale shape and sizing structural optimization problems, 
achieving significant computational advantages, especially 
in large-scale optimization problems. A similar approach 
was employed by the same group in [71], where this time 
the NN models were applied in a reliability-based struc-
tural optimization framework.

Lagaros et al. [72] proposed an adaptive neural network 
strategy for improving the computational performance of 
evolutionary structural optimization. In this work, NN is 
used to predict, the feasibility or infeasibility of structural 
designs in the framework of an ES optimization procedure. 
The NN is adaptive, in the sense that its configuration is 
updated incorporating knowledge about the search domain 
acquired during the optimization phase. Lagaros and Papa-
drakakis [73] assessed the performance of differential evolu-
tion, harmony search and particle swarm optimization, with 
reference to their efficiency and robustness for the opti-
mum design of real-world structures with a large number 
of degrees of freedom. In addition, a neural network-based 
prediction scheme of the structural response was proposed 
for assessing the quality of each candidate design during the 
optimization procedure. The same authors [74] proposed a 
novel method to improve network training using an adap-
tive activation function with a properly updated gain param-
eter, where the efficacy of the methodology was examined 
in structural optimization problems with NN being used to 
replace the structural analysis phase.

Liao [75] proposed two hybrid differential evolution 
algorithms for dealing with engineering design optimization 
problems. One of them strengthens the exploitation ability 
by providing DE [76, 77] with a local search operator, i.e. a 
random walk with direction exploitation. The second hybrid 
approach enhances DE with its combination with harmony 
search to achieve a synergetic effect. The two hybrid algo-
rithms are assessed with 14 engineering design optimiza-
tion problems selected from different fields of engineering. 
Kaveh [78] proposed a hybrid scheme where swallow swarm 
optimization (SSO) [78] is implemented in the framework 
of particle swarm optimization (PSO) to form the hybrid 
particle swallow swarm optimization (HPSSO) algorithm, 
in an attempt to achieve a good balance between global and 
local search. The new scheme is evaluated by solving 11 
mathematical optimization problems and 6 truss design 
engineering problems.

Carbas [79] used an enhanced firefly algorithm for the 
design optimization of steel frames under the load and resist-
ance factor design–American Institute of Steel Construc-
tion (LRFD-AISC) steel design code provisions, where steel 
profiles for the members are selected from a given table of 
steel sections. The study proposes an enhancement of firefly 
algorithm by adding two new expressions for the attractive-
ness and randomness parameters. Two real-world design 
examples are successfully designed using the enhanced 
algorithm. Talatahari et al. [80] introduced a new hybrid 
scheme, ES-DE, of Eagle Strategy [81] with Differential 
Evolution, for the optimum design of frame structures. 
The performance of the hybrid algorithm is evaluated by 
solving four benchmark problems where the objective is to 
minimize the weight of steel frames. Khalilpourazari and 
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Khalilpourazary [82] proposed a hybrid algorithm based on 
water cycle [33] and moth-flame optimization (MFO) [83] 
algorithms for solving constrained engineering optimiza-
tion problems. In particular, the spiral movement of moths 
in MFO is introduced into the water cycle algorithm in an 
attempt to enhance its exploitation ability. The efficiency 
of the hybrid scheme is evaluated with solving three well-
known structural engineering problems and comparing the 
results with the ones of other optimizers in the literature.

2.5 � MOAs for Solving Practical, Real‑World SOPs

MOAs have been found very efficient for solving real world 
problems in various disciplines and currently they are used 
in the everyday professional practice with great success. In 
the case of SOPs, the economic and environmental benefits 
through the use of such algorithms are enormous [84, 85]. 
Although adopting optimization-based design procedures 
can have a drastic environmental impact and contribute to 
economic development, the architecture, engineering and 
construction (AEC) industry appears to be reluctant in 
adopting such procedures. Two of the reasons that justify the 
hesitance of AEC industry is the enormous computational 
effort required for solving real world SOPs and the issues 
of constructability encountered on the optimized solutions 
achieved. In this part of the investigation some attempts on 
dealing with these issues are reported.

To speed up the optimization time in a structural opti-
mization framework based on ES, Papadrakakis et al. [86] 
employed a preconditioned conjugate gradient (PCG) solu-
tion algorithm that was proved as a computationally efficient 
iterative procedure for solving linear systems of equations 
resulting from the FEA discretization,. The numerical tests 
demonstrated the computational advantages of the meth-
odology, especially in the case of large‐scale optimization 
problems and in a parallel computing environment. The 
efficiency and benefits of parallel computational strategies 
in structural optimization are also exhibited in [87] with 
reference to ES and GA. In this work, parallel strategies 
are implemented first at the optimization algorithm level 
(i.e., dealing with several members of the population in 
parallel), and second at the structural model (FEM analy-
sis) level, where the finite element analyses are performed 
with the help of the FETI domain decomposition method. 
In the same direction based on parallelism, Lagaros [8] pro-
posed the implementation of parallel computing at the level 
of metaheuristic optimization, by exploiting the physical 
parallelization feature of the nondominated sorting evolu-
tion strategies method. The method is accompanied by an 
efficient dynamic load balancing algorithm for optimum 
exploitation of the available computing resources, achieving 
almost 100% speedup factors with respect to the sequential 
procedure.

On the constructability issue, Lagaros [88] proposed a 
generic real-world optimum design computing platform for 
civil structural systems, founded on advances achieved on 
MOAs, structural analysis and parallel computing. Five real-
world design projects optimized using the proposed frame-
work are presented. Lagaros and Karlaftis [89] investigated a 
design procedure for steel wind towers subject to constraints 
imposed by the Eurocode, formulated as a structural design 
optimization problem. In this work, five test examples are 
considered, in particular real-world steel wind towers with 
varying heights which are optimally designed with minimum 
cost.

3 � Description of the 24 MOAs

As discussed in Sect. 2, MOAs can be categorized into four 
broad classes: (i) Swarm-based (SB); (ii) Physics-based 
(PB); (iii) Evolutionary-based (EB); and (iv) Human-based 
(HB). In this work, 24 MOAs are applied and tested into 
several structural optimization problems. 14 of them belong 
to the Swarm-based class, 3 to the Physics-based class, 3 
to the Evolutionary-based class and 4 to the Human-based 
class, as shown in Table 1. In this section a short description 
of each algorithm is also provided.

An important characteristic of a MOA is the number of 
main parameters that need to be adjusted for the algorithm 
to work, a piece of information which is also provided in 
Table 1. In this table, the variables that are adjusted ran-
domly or automatically into the range [0, 1] , and are usually 
used during the search process, are not included. Based on 
the number of user defined parameters ALO, SSA, TLBO 
require only 2 basic parameters to be adjusted (the popu-
lation size and the maximum function evaluations), while 
CMAES requires 3 parameters, the previous mentioned two 
and an extra one, since there is a distinction between the 
number of parents and offspring. The rest of the algorithms, 
require 1 up to 7 additional user defined parameters, on top 
of the two basic ones. MTDE and PBA are the most demand-
ing cases, requiring 7 extra parameters to be defined, apart 
from population size and maximum function evaluations.

Although there are so many MOAs in the literature, it is 
worth mentioning that according to the no free lunch (NFL) 
theorem [90], there is no metaheuristic best suited for solv-
ing all optimization problems. In other words, there is no 
point in trying to find the “best” overall algorithm, as it sim-
ply does not exist for all cases and all possible problems. 
Different algorithms are better suited for different problems, 
while also their settings and the parameters used play a very 
important role in the efficiency of the algorithm for han-
dling a specific problem. As far as structural optimization 
problems are concerned, it can be said that most established 
metaheuristics can be used for these problems, provided that 
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they can be equipped with an efficient constraint handling 
mechanism for dealing with the constraints.

The above mentioned 24 optimization algorithms are 
independent algorithms which have been published in dis-
tinct scientific papers, as shown in Table 1 and the relevant 
references for each algorithm. For this reason, in this study, 
they are treated individually, but similarities do exist among 
them in some cases, in terms of their formulation, the algo-
rithmic description, and other characteristics. For example, 
the multi-verse optimizer (MVO) could be considered as 
a variant of differential evolution (DE), while moth-flame 
optimization (MFO) has important similarities with whale 
optimization algorithm (WOA). In addition, the flight equa-
tion used in dragonfly algorithm (DA) is based on the cor-
responding one of Cuckoo Search algorithm (CS) [23].

In the next sections, 3.1 to 3.24, a short description of 
each of the 24 metaheuristics is presented along with their 
distinct features and additional similarities with other meth-
ods and with each other. The following common notations 
and characteristics have been used:

•	 si(g) is the position vector of the ith search agent, for the 
gth iteration,

•	 si,j(g) is the jth element of the ith search agent,
•	 where i = 1, 2,⋯ ,NPopSize and j = 1, 2,⋯ , n,
•	 sgb(g) is the global best solution achieved so far,
•	 ubj and lbj are the upper and lower bounds of the jth 

design variable (dimension),
•	 N is the maximum number of iterations,
•	 R a n d o m  n u m b e r s  a r e  d e n o t e d  a s 

rk ∼ U[0, 1], (k = 1, 2, 3 and 4),
•	 The initial population is generated randomly in the design 

space,
•	 The global best solution found so far is considered by 

many algorithms as the target to be chased by the agents.

3.1 � Grey wolf Optimizer (GWO)

GWO refers to a swarm-based metaheuristic [91] inspired 
by the hunting mechanism and leadership hierarchy of grey 
wolves (Canis lupus). During the iterations of GWO, candi-
date solutions are classified into alpha, beta, delta and omega 
classes. The best one constitutes class alpha, the second and 
third best candidates belong to classes beta and delta, respec-
tively, while the rest ones are part of the omega class. The 
three main operators of the algorithm are: chasing the prey, 

Table 1   The 24 investigated 
optimization algorithms

1 Population size and maximum function evaluations
2 Number of parents and offspring plus maximum function evaluations

ID Acronym Name and references Class Year Parameters

1 GWO Grey wolf optimizer [91] SB 2014 1 + 21

2 IGWO Improved GWO [92] SB 2020 1 + 21

3 WOA Whale optimization algorithm [93] SB 2016 2 + 21

4 ALO Ant lion optimizer [94] SB 2015 0 + 21

5 CMAES Covariance matrix adaptation evolution strategies [95] EB 2001 0 + 32

6 MTDE Multi-trial vector-based differential evolution [96] EB 2020 7 + 21

7 DA Dragonfly algorithm [97] SB 2016 1 + 21

8 GOA Grasshopper optimization algorithm [98] SB 2017 2 + 21

9 GOAf Improved GOA [99] SB 2020 2 + 21

10 MFO Moth-flame optimization [83] SB 2015 2 + 21

11 MVO Multi-verse optimizer [100] PB 2016 3 + 21

12 SCA Sine cosine algorithm [101] PB 2016 1 + 21

13 SSA Salp swarm algorithm [102] SB 2017 0 + 21

14 PSO Particle swarm optimization [65] SB 1995 4 + 21

15 FA Firefly algorithm [67] SB 2008 5 + 21

16 ICA Imperialist competitive algorithm [103] HB 2007 4 + 21

17 DE Differential evolution [76, 77] EB 1995 2 + 21

18 HS Harmony search [104] HB 2001 4 + 21

19 TLBO Teaching–learning-based optimization [105] HB 2011 0 + 21

20 KH Krill herd [106] SB 2012 4 + 21

21 ISA Interior search algorithm [107] HB 2014 1 + 21

22 PBA Pity beetle algorithm [108] SB 2018 7 + 21

23 SMA Slime mould algorithm [109] SB 2020 2 + 21

24 AOA Arithmetic optimization algorithm [110] PB 2021 4 + 21
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encircling and then attacking it. The position vectors si(g + 1) 
are defined as follows:

and

where coefficient vectors Ai,1,Ai,2 and Ai,3 are defined as 
A = 2a × r1 − a , where parameter a is decreased linearly 
from 2 to 0 to switch the values of A vectors outside and 
inside of [−1, 1] ; s� , s�ands� are the position vectors of the 
prey for each set, i.e. the first, second and third best agents 
obtained so far; D� ,D� and D� denote the distances of the 
agent of the corresponding set to the prey:

where C1,C2 and C3 are coefficient vectors 
(
Ci = 2 × r2

)
 . 

Alpha, beta, and delta are the agents who lead the search 
and omega is a follower. In every iteration, parameters a and 
Ci are defined, while vectors A andD are updated.

3.2 � Improved GWO (IGWO)

An improvement of GWO algorithm [91] was proposed in 
2020 [92], in an attempt to enhance the population diversity 
and to improve the equilibrium amid global and local search. 
The new algorithm (IGWO) can be considered as a variation 
of the existing GWO algorithm. In this variation, neighbor-
ing information can be shared amongst candidates through the 
dimension learning-based hunting (DLH) scheme, that aims 
to improve global search domain using multi neighbors learn-
ing. According to IGWO, candidates are selected either based 
on either GWO or DLH schemes depending on the quality of 
their new positions:

where sn,i(g) denotes the ith dimension of a random neighbor 
and sr,d(g) is an agent randomly chosen from the population.

3.3 � Whale Optimization Algorithm (WOA)

WOA metaheuristic [93] depends on the hunting scheme of 
humpback whales, which is of spiral bubble-net type. The 

(2)si(g + 1) =
si,1(g) + si,2(g) + si,3(g)

3

(3)
si,1(g) = s�(g) − Ai,1 × D�

si,2(g) = s�(g) − Ai,2 × D�

si,3(g) = s�(g) − Ai,3 × D�

(4)
D� = ||C1 × s�(g) − si(g)

||
D� =

|||C2 × s�(g) − si(g)
|||

D� =
||C3 × s�(g) − si(g)

||

(5)

si,DLH(g + 1) = si,j(g) + r1 ×
(
sn,j(g) − sr,j(g)

)
,

si(g + 1) =

{
si,GWO(g + 1)Eq.(2) if f

(
si,GWO

)
< f

(
si,DLH

)
si,DLH(g + 1) otherwise

search process relies on three procedures: search (explora-
tion), encircling, and bubble-net attacking (exploitation). 
The later one simulates the humpback swim type of whales 
around prey composed by two movements: spiral-shaped 
path towards the sea surface and shrinking circle, chosen 
with 50% probability each:

where D denotes the distance to the prey of the ith search 
agent (whale) according to Eq. (6), A is a coefficient vector 
as defined for GWO and D�

=
|||sp(g) − si(g)

||| , parameter b 
controls the form of the logarithmic spiral, number l is ran-
domly chosen in [−1, 1] . The position vector of the prey sp(g) 
contains the global best solution achieved so far, or a ran-
domly chosen agent out of the current iteration, depending 
on whether the search purpose represents exploitation or 
exploration, respectively.

3.4 � Ant Lion Optimizer (ALO)

ALO metaheuristic [94] simulates the synergy between 
ants and antlions during a hunting process. During the 
main procedure, the location of antlions and ants is 
renewed by means of five operators up to convergence: 
random walk of ants, traps building by antlions, ants 
entrapment, prey catching, and re-building traps for 
another prey. For numerically modelling the ants’ random 
walk the following formula is used:

where cs(⋅) stands for cumulative sum function of its vec-
tor input argument, N is the maximum number of allowed 
iterations, r

(
g1
)
 is a stochastic function that returns 1 when 

r1 > 0.5 and 0 otherwise. In order to mimic the sliding of 
ants towards the antlion in the trap, the radius of ants’ ran-
dom walk is shrunk. When a fitter prey is caught, the antlion 
renews its position to the prey. The random walk of each 
ant is affected by two antlions; one selected by the roulette 
wheel mechanism and another which is saved in the memory 
as the “elite” antlion.

3.5 � Covariance Matrix Adaptation Evolution 
Strategies (CMAES)

CMAES method [95] represents a self-adaptation pat-
tern which is entirely de-randomized, where the covari-
ance of mutation is altered first aiming to enhance like-
lihood of generating the specific step. Subsequently, the 

(6)

si(g + 1) =

{
sp(g) − A × D if r1 < 0.5]

D� × eb×l × cos(2𝜋 × l) + si(g) otherwise

(7)
s(g) =

[
0, cs

(
2r
(
g1
)
− 1

)
, cs

(
2r
(
g2
)
− 1

)
, .... cs

(
2r
(
gN

)
− 1

)]
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modification degree is updated based on the amount of 
strategy parameters allowed to be altered. Then, accord-
ing to a random selection scheme the expectation of the 
covariance matrix is stationary. In addition, the adaptation 
mechanism is independent of the coordinate system. In the 
(g + 1)th iteration, � new offspring are generated as follows:

where si(g + 1) ∈ ℜn (i = 1, ..., �) , random numbers 
N
(
m(g),C(g)

)
 are normally distributed where mean value 

vector m(g) ∈ ℜn and C(g) is the covariance matrix, while 
global step size �(g) ∈ ℜ+.

3.6 � Multi‑trial Vector‑Based Differential Evolution 
(MTDE)

The performance of differential evolution (DE) algorithm 
is highly affected by the employed search strategy and the 
parameter settings. In order to cover a variety of problems, 
multiple search strategies should be combined [90]. In this 
direction, Nadimi-Shahraki et al. [96] proposed MTDE, a 
DE variant, where three different search strategies are com-
bined, producing the so called multi-trial vector (MTV) 
approach. More specifically the trial vector procedures 
(TVP) are the representative based (R-TVP), one which 
maintains diversity, the local random based (L-TVP) one 
that ensures the balance between exploration and exploita-
tion, and the global best history based (G-TVP) one that 
enhances the exploitation ability:

where indices ri1 and ri2 are random integers within the cor-
responding population range, mutually exclusive and dif-
ferent than index i . Mutation factor F controls the magni-
tude of variation and coefficients a1 and a2 are functions of 
seven user defined variables ( WinIter,H, ini, fin,�,�f and� ) 
[96]. si,b(g) and si,w(g) are the best and worst members of 
R − TVP sub-population while si,gbh(g) is the ith member 
of history best archive. Subsequently, crossover operator 
is used based on a trial vector ui(g + 1) and then the new 
population is generated by means of the search operator 
(see description of DE below). In contrast with DE variants 
that distribute the population into smaller subpopulations 
of the same size, MTV employs a winner-based policy, that 
distributes the subpopulation not in an equal manner, but 

(8)
si(g + 1) ∼ N

(
m(g), �2(t) × C(g)

)
∼ m(g) + �(g)N

(
0,C(g)

)

(9)vi(g + 1) =

⎧
⎪⎨⎪⎩

si(g) + F ×
�
si,b(g) − si(g)

�
+ F ×

�
si,w(g) − si(g)

�
+ a1 ×

�
sr(g) − si(g)

�
,R − TVP

si(g) + F ×
�
sri1 (g) − sri2 (g)

�
+ a2 ×

�
sr(g) − si(g)

�
, L − TVP

si,gbh(g) + a2 ×
�
sri1(g) − sri2(g)

�
,G − TVP

i = 1, 2, ...,NR−TVP or NL−TVP or NG−TVP

using the approach “the better the search strategy, the larger 
the subpopulation it will handle”. MTV approach introduces 
adaptive movement steps that rely on a life-time archive that 
preserves and shares information of the restored promising 
solutions while also maintaining population diversity.

3.7 � Dragonfly Algorithm (DA)

DA is a swarm-intelligence metaheuristic that mimics the 
surviving swarm behavior of dragonflies [97]. The algorithm 
is implemented through five swarm movements. In nature, 
dragonflies follow this scheme either in static swarming 
(hunting), or in dynamic swarming (migration). The hunt-
ing swarming is simulated during the exploration phase of 
the optimization, in which the dragonflies create sub swarms 
and fly back and forth over different areas within the search 
domain. The dynamic migration swarming is simulated dur-
ing the exploitation phase, where the dragonflies fly in larger 
swarms and along one direction. To simulate this scheme, 
the step vector is defined as follows:

where Si , Ai̇ , Ci , Fi , Ei are the five parameters of the swarm 
behavior defined as, Separation that maintains avoidance of 
individuals collision in a neighborhood, Alignment control-
ling the velocity matching between the neighboring agents, 
Cohesion referring to the individuals’ tendency to the neigh-
borhood, Attraction to food, and Distraction from enemies. 
respectively. The parameters s, a, c, f and e, are weighting 
factors and w is an inertia weight. The position vector is 

given by:

where

where � is a constant and � is a function of � . It is worth 
mentioning that Lévy flights were first used by the Cuckoo 
Search (CS) algorithm [23].

(10)
Δs(g + 1) = (s × Si + a × Ai̇ + c × Ci + f × Fi + e × Ei) + w × Δs(g)

(11)

s(g + 1) =

{
s(g) + Δs(g + 1), if neighbors around

s(g) + L
�
e vy(d) × s(g), if no neighbor around

(12)L
�
e vy(x) = 0.01 ×

r1 × �

||r2||
1

�
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3.8 � Grasshopper Optimization Algorithm (GOA)

GOA metaheuristic [98] mimics the natural swarm behavior 
of grasshoppers. A grasshopper’s movement is based mainly 
on the social interaction with its neighbors. It is described in 
terms of three zones: attraction, repulsion, or comfort zone 
state. In order for the swarm to converge to one optimal point 
eventually (global optimum), two mathematical terms are 
added to let the best-found solution at each iteration affect 
the next swarm direction, and also to shrink gradually the 3 
zones that control each grasshopper’s movement, in order to 
avoid being stuck at the comfort zone so early with no fur-
ther movement (i.e. trapped in a local optimum). To model 
this behavior mathematically, the following equations are 
used. The position of ith grasshopper is given by:

where shrinking coefficient c ≤ 1 , and SocInt defines the 
social interaction of the grasshopper with its neighbors, 
where G() represents the social force, either attraction 
(during exploitation) or repulsion (during exploration), 
expressed as follows:

where the size of the attraction, repulsion and comfort zones 
can be adjusted by the intensity of attraction f  and the attrac-
tive length scale l . Convergence of grasshoppers towards 
the target over the course of iterations, is actually due to 
decreasing c that is a function of its maximum and minimum 
values, and the target effect of pulling the swarm. The next 
position of a population member is affected by its current 
position, the target position, and the positions of all other 
members. This behavior is in contrast to PSO, in which the 
swarm particles’ positions (except for the best individual) do 
not play a role in defining the next movement of a particle.

3.9 � Improved GOA (GOAf)

GOAf metaheuristic [99] is a variant of the original GOA 
[98] with the change of a specific implementation feature, 
in particular the update expression of coefficient c , and the 
application of random walk. Given that coefficient c is used 
to balance between exploitation and exploration, it should 
remain close to unity during the first iterations and then be 
reduced at a lower value cmin in order to support exploitation, 
according to

(13)

si,j(g + 1) = c ×

�
NPopSIze∑
k=1

c ×
ubj−lbj

2
× SocInt

�
+ sgb,j(g)

SocInt = G
����sk,j(g) − si,j(g)

���
�

sk,j(g)−si,j(g)

dik

(14)G(r) = f × e
−r

l − e−r

where l is the attractive length scale ( L is the maximum 
value of the length), � controls the variation of c , as it 
defines the rate in which c will be decreased, with typical 
values � = 3or4 . Furthermore, in order to avoid premature 
convergence a biased random walk is also used, similar to 
the one of cuckoo search algorithm [23].

3.10 � Moth‑Flame Optimization (MFO)

MFO algorithm [83] relies on the transverse orienta-
tion navigation patterns of moths. In particular, the spiral 
movement of moths towards artificial lights is the part in 
the transverse orientation method that is simulated in the 
MFO’s movement operator. In the transverse orientation 
approach, a moth flies by fixing a certain angle with respect 
to the light source, forming a spiral fly path, which ensures 
convergence. To maintain investigating the most promising 
areas of the search space, moths si,M(g) (search agents) take 
flames si,F(g) (best-found solutions) as the source of light 
and fly spirally around them. To preserve exploration and 
avoid local optima, each moth is allowed to alter its position 
using only one specific flame. The new positions of moths 
si,M(g + 1) are then defined as:

where S() is the spiral function calculated over the ith month 
and the jth flame as follows:

It is the same spiral-shaped path expression used by the 
WOA metaheuristic in Eq. (6), that was presented a year 
later than MFO. Constant b defines the shape of the loga-
rithmic spiral, t  is a random number in [r, 1] , and r is lin-
early decreased from − 1 to − 2 over the course of iterations 
to promote the exploitation proportional to the number of 
iterations (the lower g , the closer the distance to the flame). 
For further promotion of the exploitation proportional to 
the number of iterations, the number of flames is decreased 
gradually over the course of iterations, until all moths at the 
final step update their positions with respect to only one 
flame.

(15)c =

⎧
⎪⎨⎪⎩

exp

�
−0.5 ×

�
l

L∕𝜎

�2�

cmin, otherwise

, if c > cmin

(16)si,M(g + 1) = S(si,M(g), sj,F(g))

(17)
S(si,M(g), sj,F(g)) =

|||si,M(g) − sj,F(g)
||| × eb×g × ���(2� × g) + sj,F(g)
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3.11 � Multi‑Verse Optimizer (MVO)

MVO metaheuristic [100] was inspired by the relevant multi-
verse theory in physics. Three concepts of multi-universe 
are simulated, namely white holes, black holes, and worm-
holes, where the relevant models associated with these con-
cepts are used for exploration, exploitation and local search, 
respectively. The white holes are the main component for 
the birth of a universe, while black holes will attract eve-
rything towards them with their enormous gravitational 
force. Wormholes, on the other hand, connect different 
parts of a universe and in the multi-verse theory they can 
also connect one universe to another. Objects (variables) 
travel from white holes (solution with high fitness function 
value) to black holes (solutions with low fitness function 
value), while searching for better fitness values. The white 
holes are selected using a roulette wheel mechanism. The 
exchange of variables through white and black holes main-
tains the exploration of the search space, while wormholes 
exist randomly in any universe (regardless of its fitness func-
tion value) to assist the MVO in exploiting the search space, 
through transporting a universe’s objects within its space in 
a random manner. The process starts with the creation of 
a set of random solutions. In every iteration, variables in 
the solution agents with high objective values tend to move 
towards others with lower (better) objective values via the 
white and the black holes (exploration):

where coefficients TDR and WEP are gradually modified 
(increased and decreased, respectively) over the iterations as 
functions of three variables (maximum and minimum values 
of WEP and parameter p ). Meanwhile, all the members are 
moved towards the best solution randomly regardless of their 
own solution fitness value, which maintains the diversity.

3.12 � Sine Cosine Algorithm (SCA)

SCA metaheuristic algorithm [101] relies on the concept of 
randomly generated agents that are forced to fluctuate either 
towards or outwards the best-found solution according to a 
sine–cosine behavior. The positioning of the agents is itera-
tively guided by a random-walk function:

(18)si,j(g + 1) =

⎧⎪⎨⎪⎩

�
sgb,j(g) + TDR ×

��
ubj − lbj

�
× r4 + lbj

�
, if r4 < 0.5

sgb,j(g) − TDR ×
��
ubj − lbj

�
× r4 + lbj

�
, if r4 ≥ 0.5

, if r2 < WEP

si,j(g), otherwise

(19)

si(g + 1) =

{
si(g) + r1 × 𝑠𝑖𝑛(r2) ×

|||r3×sgb(g) − si(g)
|||, if r4 < 0.5

si(g) + r1 × 𝑐𝑜𝑠(r2) ×
|||r3×sgn(g) − si(g)

|||, otherwise

where random numbers r1 indicates the region of the next 
position, either inside or outside the space between the solu-
tion and its destination, r2 defines how far the movement 
will be, r3 gives a random weight to control the effect of 
destination in defining the distance, and r4 has the role of 
switching between the sine and cosine functions. The cyclic 
form of cosine and sine functions guarantee exploitation of 
the search space. While exploration is achieved by modify-
ing the r1 range of the sin/cosine function, where a solution 
will be able to move outwards its destination point. In order 
to promote the exploitation over exploration as the iteration 
number goes higher r1 is defined as:

where g and N denote the current and maximum iterations 
allowed, respectively, and a is a constant.

3.13 � Salp Swarm Algorithm (SSA)

SSA is a simple and easy-to-implement metaheuristic 
[102] that mimics the swarming behavior of the ocean 
salps travelling in form of a salp chain. The chain consists 
of a leader and a number of followers. The leader goes 
towards an artificial source of food, and the followers sim-
ply enjoy the ride behind the leader. In the optimization 

process, the best-found solution is considered as a target 
to be chased by the salps afterwards, iteratively. The algo-
rithm is equipped with two movement equations, one for 
the leader and one for the followers. The leader walk is 
actually a random movement, but towards the source of 
food (best-found solution so far), which maintains inves-
tigating the most promising regions in the search space 
during the optimization process. On the other hand, the 
followers walk with respect to each other following the 
leader in a gradual movement based on Newton’s law of 
motion. The following equation is used to update the posi-
tion of the leader:

where s1,j(g + 1) shows the jth dimension of the leader and 
coefficient c1 balances exploration and exploitation. The 
position of the followers is updated as:

(20)r1 = a − g ×
a

N

(21)

s1,j(g + 1) =

{
sgb,j(g) + c1 ×

((
ubj − lbj

)
× r2 + lbj

)
r3 ≥ 0

sgb,j(g) − c1 ×
((
ubj − lbj

)
× r2 + lbj

)
r3 < 0
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where i ≥ 2.

3.14 � Particle Swarm Optimization (PSO)

PSO [65] is an optimization algorithm that works with a 
population of solutions, called particles. Each particle has 
a position and a velocity in the design space while all the 
particles together form the so called “swarm”. The method 
mimics the behaviour of birds and particles “fly” in the 
search space looking for the optimum solution. With itera-
tions, the particles adjust their velocities and positions based 
on their own “experience”, the experience of neighbouring 
particles and also the one of the “best” particle. The experi-
ence of a particle is about the best position they have seen, 
i.e. the best objective function value they have encountered 
in their path so far. This way PSO combines local and global 
search, balancing exploration and exploitation. The velocity 
and the position of every particle is updated as follows

where vi(g) is the velocity of ith particle and si,pb(g) is the 
personal best (found by ith particle); c1 and c2 are the cog-
nitive and social parameters (constant parameters of the 
method), respectively and coefficient w is a weight function.

3.15 � Firefly Algorithm (FA)

FA is a metaheuristic inspired by the natural flashing behav-
iour of fireflies [67, 111]. Each firefly is considered to be 
attracted to brighter fireflies, while exploring and searching 
for prey. The brightness of each firefly is associated with the 
objective function value. The movement of the ith firefly 
which is attracted by a brighter jth firefly is determined by 
the formula:

where � is the light absorption coefficient, ag is the randomi-
zation parameter, �i(g) is a vector of random numbers gener-
ated based on a Gaussian or uniform distribution defined as 
functions of � ∈ [0, 1] , �0 ∈ [0, 1] is the attractiveness when 
the Cartesian distance rij = 0 , usually �0 = 1 , and � = O(1) 
that characterizes the variation of attractiveness, usually var-
ies from 0.001 to 1000. The randomization parameter ag 
should ideally decrease with iterations. A simple scheme to 
achieve this is:

(22)si,j(g + 1) =
1

2
×
(
si,j(g) + si−1,j(g)

)

(23)vi(g + 1) = w × vi(g) + c1 × r1 ×
(
si,pb(g) − si(g)

)
+ c2 × r2 ×

(
sgb(g) − si(g)

)

(24)si(g + 1) = si(g) + vi(g + 1)

(25)
si(g + 1) = si(g) + �0 × e

−�×r2
ij ×

(
sj(g) − si(g)

)
+ ag × �i(g)

where the initial randomness a0 = 1 and � is the randomness 
reduction factor which is similar to the one used for cooling 
in simulated annealing. In its original version presented by 
Yang [67, 111], light absorption coefficient, attractiveness β0 
at r = 0 and the randomization parameter ag , are the control 
parameters used. In the variant used for the purposes of this 
study, also presented by Yang [112], ag is controlled by two 
parameters ( a0 and � , see Eq. (26)), while the control param-
eter � is used to generate the random vector �i(g).

3.16 � Imperialist Competitive Algorithm (ICA)

ICA is an evolutionary socio-politically inspired metaheuris-
tic [103]. The idea is to consider the countries as possible 
solutions, where the best ones are the imperialists ( Nimp ) 
and the rest are the colonies ( Ncol ). Each imperialist is sup-
posed to possess a portion of the colonies, thus forming an 
empire. The evolutionary improvement of the solutions is 
implemented through assimilation, revolution, title exchange 

and empires’ survival/collapse operators. The normalized 
power of an imperialist, i.e. the elements of the solution 
vector, is given by:

where Ci denotes the normalized cost of an imperial-
ist. Given that Nimp refers to the number of imperialists, 
Ncol = NPopSIze − Nimp is the number of the colonies. The 
initial number of colonies of an empire will be:

and they will be randomly chosen. During the Assimilation 
process (defined as function of variable �, � ), the power of 
each colony approaches gradually the one of its respective 
imperialist. The colonies move in random distances, along 
directions towards their respective imperialist, maintaining 
both exploration and exploitation capabilities. The Revolu-
tion operator maintains better exploration, in which some 
colonies resist to be ruled by the imperialists, jumping out 
of the empire, thus exploring new promising areas within 
the search space. The Title Exchange operator is performed 
to promote a colony to be an imperialist in the next itera-
tions, and vice versa. Empires’ survival/collapse occurs 
after performing assimilation, revolution and title exchang-
ing processes, when the empires get either weaker or more 

(26)ag = a0 × �g

(27)
si(g + 1) =

����
Ci∑Nimp

k=1
Ck

����
Ci = f

�
si(g)

�
−max

l
(f (sl(g)))

(28)Ncol,i = round
(
si(g + 1) × Ncol

)
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powerful (the power is defined through variable � ). The 
weak empires collapse leaving behind their colonies that 
will be taken over by the stronger ones. Convergence in ICA 
occurs when either one empire finally survives (the “grand 
empire”) while all the rest have collapsed, or when another 
convergence criterion is met.

3.17 � Differential Evolution (DE)

Since its inception by Storn and Price in 1995 [76, 77], DE 
has proven to be a powerful optimization algorithm. The 
method generates a new vector through the weighted dif-
ference of two population members to a third one. Accord-
ing to the “DE/rand/1” scheme, a donor vector vi(g + 1) is 
defined as:

where the indices ri1 , ri2 and ri3 are random integers within 
the population range, mutually exclusive and different than 
index i . The mutation factor F ∈ [0, 2] controls the magni-
tude of differential variation. The crossover operator is used 
based on a trial vector ui(g + 1) which is defined from the 
components of vectors si(g) and vi(g + 1):

where randi,j ∼ U[0, 1] and random integer Irand ∈ [1, n] 
ensures that vi(g + 1) ≠ si(g) . The last step of the generation 
procedure is the implementation of the selection operator:

Several successful variations of DE have been reported 
and investigated in the literature, for general optimiza-
tion problems as well as structural optimization problems 
[113–115]. It is worth mentioning that MVO metaheuristic 
can be considered as a variant of DE, since the derivation 
of the new design implemented by Eq. (18) represents a 
combination of Eqs. (29 and 30).

3.18 � Harmony Search (HS)

HS is an algorithm inspired by music [104] which aims to 
mimic the improvisation process of Jazz musicians. Every 
musician (saxophonist, bassist, guitarist etc.) represents 
a design variable, while the pitch range of each musical 
instrument corresponds to a value of a design variable. The 
Musical harmony has to do with a solution vector at a given 
iteration, and the objective function is expressed by the audi-
ence’s aesthetics. Given this algorithmic concept, HS has 
the following five steps: parameter initialization; harmony 

(29)vi(g + 1) = sri1(g) + F × (sri2(g) − sri3(g))

(30)ui,j(g + 1) =

{
vi,j(g + 1), if randi,j ≤ CR or j = Irand
si,j(g), if randi,j > CR or j ≠ Irand

(31)si(g + 1) =

{
ui(g + 1), if f (ui(g + 1)) ≤ f (si(g))

si(g), otherwise

memory initialization; new harmony improvisation; har-
mony memory update; and termination criteria check. A 
new harmony vector is defined following three rules: usage 
of harmony memory, pitch adjustment and randomization. 
The harmony memory has a function similar to the mutation 
operator in GA. Randomization is employed to increase the 
diversity of the solutions. In the case that the new generated 
harmony vector is better (having a better objective function 
value) than the worst harmony vector already in the harmony 
memory (HM), then the new harmony vector replaces the 
worst harmony. In the original variant of HS [104], the har-
mony memory consideration rate (HMCR) was the basic 
control parameter, while parameters including pitch adjust-
ment rate (PAR), and fret width (FW) were fixed. In the 
current version [116, 117], pitch adjustment rate, fret width 
and fret width damping ratio (FWDR) are also considered as 
control parameters. Thus, the main control parameters that 
need to be adjusted by the user are the harmony memory 
consideration rate, pitch adjustment rate, fret width and fret 
width damping ratio.

3.19 � Teaching–Learning‑Based Optimization (TLBO)

TLBO is a population-based metaheuristic inspired by the 
human teaching and learning behavior [105]. Using two 
main operators, Teacher Phase and Learner Phase, the stu-
dents (solutions) get improved in terms of their grades (fit-
ness function value). The taught subjects are represented by 
the design variables. The indication of the students’ level of 
knowledge in a specific subject, is the mean value of their 
grades in the subject. The best candidate (the one having the 
best fitness) sgb(g) is set as a teacher, and for the rest of the 
candidates, the mean value of each design variable is cal-
culated: smean,j(g) = mean

[
si,j(g)

]
 . Then, the Teacher Phase 

(TF) starts, by enhancing the students’ level of knowledge, 
through pulling the mean value of each design variable to 
the corresponding one in the teacher’s solution:

where integer Tf  is randomly set as 1 or 2, with equal prob-
ability. The second operator (Learner Phase) also provides 
an improvement for the solutions through the interaction 
between the candidates themselves:

where sri1 (g) and sri2 (g) are two randomly chosen solutions.

(32)

snew,i(g + 1) = si(g) + r1 × (sgb(g) − Tf × smean(g))

sTF,i(g + 1) =

{
snew,i(g + 1), if f

(
snew,i(g + 1)

)
better f

(
si(g)

)
si(g), otherwise

(33)

si(g + 1)

=

⎧⎪⎨⎪⎩

sTFi(g + 1) + r1 ×
�
sri1 (g) − sri2 (g)

�
, if f

�
sri1 (g)

�
better f

�
sri2 (g)

�

sTFi(g + 1) + r ×
�
sri2 (g) − sri1 (g)

�
, otherwise
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3.20 � Krill Herd (KH) Algorithm

KH is a metaheuristic inspired by the krill herding in nature 
[106], in which the movement of each individual of the 
swarm has three main pillars to determine its time-depend-
ent position: the whole swarm movement, seeking food and 
random spread. The objective of Krill herd is to minimize 
the distances of each individual krill from the food location. 
For modelling the motion of the individuals mathematically, 
the following formula is employed:

where Ni is the motion induced by the swarm movement 
(function of its user defined maximum value Nmax ), Fi is 
the foraging motion (function of user defined variable vf  in 
[0, 1] ), and Di is the physical diffusion of the ith krill [106] 
(function of its user defined maximum value Dmax ). While 
the position of the krill is updated as follows:

where constant Ct is a real number in [0,2]. Subsequently 
the well-known crossover and mutation operators are imple-
mented over the Krills’ locations. One of the advantages of 
the algorithm, according to the authors of the original study 
[106], is that only one parameter, the time interval ( Ct ) needs 
to be fine-tuned.

3.21 � Interior Search Algorithm (ISA)

ISA metaheuristic [107] was inspired by the architectural 
process of the interior design and decoration. In the interior 
design and decoration process, there are two main concepts 
used to find the best view and decoration; composition and 
mirror concepts. Composition refers to the process of replac-
ing the items’ position until getting the best view, while mir-
ror denotes the concept of placing mirrors near the most 
beautiful items in order to emphasize their beauty. These two 
concepts are followed in ISA, where the candidates (with 
the exception of the fittest candidate) are randomly divided 
into two groups: the composition group in which the candi-
dates change their position only when it gives fitter values, 
and the mirror group in which some mirrors are placed near 
the fittest candidates giving them higher weights among the 
population. The position vector is defined as follows:

(34)
dsi(g)

dt
= Ni + Fi + Di

(35)si(g + 1) = si(g) + Δt ×
dsi(g)

dt

(36)Δt = Ct ×

n∑
j=1

(ubj − lbj)

where ub(g) and lb(g) denote the upper and lower bounds of 
the composition group at the gth iteration, while parameter 
a needs to be fine-tuned. The location of sgb(g) is slightly 
changed by means of random walk using a variable �.

3.22 � Pity Beetle Algorithm (PBA)

PBA is a metaheuristic optimization algorithm [108] 
inspired by the behaviour of the six-toothed bark beetle 
(pityogenes chalcographus beetle) when searching for food. 
This beetle feeds on the bark of the trees. PBA simulates 
the searching for food behavior of this bark beetle, with 
three main stages; initialization of a population consisting 
of males and females, regeneration of new populations, and 
location update stage. In the first stage, an initial population 
consisting of males and females is randomly located within 
the search space. Some males act as pioneers as they search 
for the most suitable host, aggregating into it by producing 
pheromone that attracts the other males and females. The 
initial population in PBA should be well diversified in order 
to avoid premature convergence. To ensure diversification, 
the initial population is generated by means of a random 
sampling technique. In the second stage, every particle will 
look for a better position in the search space to create its own 
population. This is done through five types of hyper volume 
selection patterns: neighboring search volume, global-scale 
search volume, large-scale search volume, mid-scale search 
volume and memory consideration search volume. In the 
last type, the best-found positions are saved and used. In the 
third stage, the position of each mating male and female is 
updated, removing the previous positions except those that 
are kept in the memory for the memory consideration search 
volume. By experiments, it is proved that PBA can handle 
NP-hard optimization problems.

3.23 � Slime Mould Algorithm (SMA)

SMA is a stochastic metaheuristic [109] that simulates the 
slime mold process that Physarum polycephalum forages in 
a way that leads to the food through optimal paths, produc-
ing positive and negative indications out of the propagation 
wave that is resulted from the bio-oscillator. The formula 
for updating the location of the slime mould (wrap food) is 
defined as follows:

(37)

si(g + 1)

=

{
lb(g) + (ub(g) − lb(g)) × r2, if r1 ≤ a(composition group)

r3 × si(g) + (1 + r3) × sgb(g), otherwise(mirror group)
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where z = 0.03 based on a parametric study, parameter vc 
is decreased linearly from 1 to 0 and vb ∈ [−a, a] , sA(g) and 
sB(g) represent two individuals, randomly selected from 
slime mould, W  represents the weight of the slime mould 
defined as a function of the best and worst solutions cur-
rently in the iterative process, and parameter p is given by

3.24 � Arithmetic Optimization Algorithm (AOA)

AOA is a newly presented population-based metaheuristic 
[110], inspired by the four main mathematical operators, i.e. 
addition, division, multiplication and subtraction. In order to 
switch between exploration and exploitation phases, a random 
number r1 is used. If r1 > moa(g) then exploration phase is 
activated, otherwise, exploitation phase is implemented, where 
moa(g) stands for math optimizer accelerated function of the 
gth iteration:

where min and max are minimum the maximum values of 
the accelerated function and N is the maximum number of 
iterations. For the exploration phase:

while for the exploitation phase:

where match optimizer probability (mop) coefficient is 
defined as:

where � is a small integer number, control parameter μ aims 
to emphasize on exploration not only during the first steps of 
the search procedure, control parameter a is used to empha-
size on exploitation accuracy during the optimization.

(38)

si,j(g + 1) =

⎧⎪⎨⎪⎩

r1 ×
�
ubj − lbj

�
+ lbj, if r2 < z

sgb,j(g) + vb ×
�
W × sA,j(g) − sB,j(g)

�
, if r2 < p

vc × si,j(g), otherwise

(39)
p = tanh

(|||f
(
si(g)

)
− f

(
sgb(g)

)|||
)

a = arctanh
(
1 −

g

N

)

(40)moa(g) = min + g ×
max − min

N

(41)si,j(g + 1) =

{
best

(
sj
)
÷ (mop + 𝜖) ×

(
(ubj − lbj) × 𝜇 + lbj

)
if r2 < 0.5

best
(
sj
)
× (mop) ×

(
(ubj − lbj) × 𝜇 + lbj

)
otherwise

(42)

si,j(g + 1) =

{
best

(
sj
)
− (MOP) ×

(
(ubj − lbj) × 𝜇 + lbj

)
if r3 < 0.5

best
(
sj
)
+ (MOP) ×

(
(ubj − lbj) × 𝜇 + lbj

)
otherwise

(43)mop(g) = 1 −
g1∕�

N1∕�

4 � Additional Features of MOAS’ 
Implementation for Solving Structural 
Optimization Problems

MOAs represent randomized search procedures where com-
puting is combined with concepts from physical and biological 
sciences like the imitation of the evolution process, the social 
behaviour of species etc., and were developed originally for 
solving unconstrained NP-complete problems, while so far, 
they have been used for solving any type of problems, rang-
ing from engineering design to economics, routing problems, 
among others. For implementing MOAs into problems related 
to structural optimization, there are some special features that 
need to be integrated into their implementation, such as the 
handling of constraints, either related to structural perfor-
mance or box-type constraints for the bounds of the design 
variables. Before presenting the results obtained through the 
implementation of the 24 state-of-the-art MOAs, the authors 
need to underline that although an optimized objective func-
tion value is provided for each problem found in the literature, 
the scope of this study is not to achieve better results compared 
to the literature, since the conditions of the implementation of 
the algorithms and the characteristics of the problems’ for-
mulations are not always clear. The main scope is to present 
the efficiency of these algorithms, all assessed on a common 
framework and a common basis of comparison. In order to 
define the common basis of comparison, all algorithms were 
implemented in MATLAB using the guidelines provided by 
their own developers in the original work where they were first 
presented. In addition, the same stopping criterion correspond-
ing to a specific number of function evaluations and common 
technique for dealing with the problem constraints were used, 
for both performance and box-type constraints. Last but not 

least, the same procedure has been implemented also for the 
discrete and the integer design variables.

A feasibility rules-based procedure is used for handling the 
constraints. In order to calculate the fitness function of an infea-
sible individual, pviolation factor is introduced which is the indi-
vidual’s normalized maximum constraint violation multiplied 
by a term that takes into account the number of the violated 
constraint functions of a solution. This factor is defined as:

where the term nconstviol denotes the number of violated con-
straint functions and nconst stands for the total number of con-
straints. Then, in order to calculate the individual’s fitness 
function, the pviolation factor is multiplied with the maximum 

(44)

pviolation = ‖max�max�0, gj(s)
��‖ ×

�
1 +

nconstviol

nconst

�
> 1
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objective function value between the best feasible individual 
found until now and the individual itself. The fitness func-
tion is formulated as:

where fbestfeasible is the global best feasible solution found so 
far. The constraints of Eq. (1) can be divided into two broad 
categories; function constraints and bound constraints. The 
first category includes the inequality and equality constraints 
and represents a more complex type of constraints, defined 
as functions. The second category concerns the variable’s 
upper and lower limits (bounds) which restrict the possible 
values of the problem’s design variables. Most researches 
try to optimize constrained problems using techniques that 
handle the function constraints while only few have put sig-
nificant effort to handle properly the limits of the decision 
variables implementing boundary constraint handling meth-
ods (BCHMs). These methods are controlling formulations 
that try to modify and correct the position of an infeasible 
variable solution vector of a problem and set it again inside 
the search space in order to become feasible. Some of the 
most known boundary constraints handling methods, where 
yj is the new corrected variable vector, are the following:

It has to be noted that in the case of structural optimiza-
tion problems, the design variables are not always continu-
ous as many of them can only take integer or discrete values. 
These variables, for every algorithm examined in this study, 
are treated as equivalent continuous variables, using the cor-
rection function of the following simple expression:

For the case of discrete variables where there is no con-
stant step size, an integer variable is employed instead, used 
as a pointer denoting the discrete value to be assigned to the 
design variable.

5 � Numerical Tests

In this section, 11 benchmark test examples are investigated, 
aiming to test the efficiency of the 24 MOAs presented previ-
ously. Each problem was solved by each algorithm 20 times 
(i.e. in 20 independent runs), in order to remove any random 

(45)

F(s) =

{
f (s) if ga(s) ≤ 0 ∀a = 1, 2, ...,ma

max
(
fbestfeasible, f (s)

)
× pviolation otherwise

(46)Projection ∶ yj =

⎧⎪⎨⎪⎩

sj if lbj ≤ sj ≤ ubj
lbj if sj < lbj
ubj if sj > ubj

(47)Correction ∶ yj =

{
floor(sj) for the integer variables

floor(sj × 10)∕10 for discrete variables of 0.1 step size

bias and to obtain the probabilistic characteristics of the 
results. In total, 11 × 24 × 20 = 5280 optimization runs were 
conducted. The parameters that need to adjusted and were 
used during the implementation of the 24 algorithms can be 
found in Table 2, they refer to those of Table 1 and correspond 
to the suggested values provided by the developers of each 
algorithm.

The constraints handling mechanism used for all the 
employed optimization algorithms and test cases is such that 
ensures that in the end of the of the optimization process all 
constraints will be satisfied and there will be no constraint 
violations, at all.

5.1 � Six Benchmark Structural Optimization 
Problems

In this section, six benchmark structural optimization problems 
are studied. First, three well-known benchmark structural truss 
sizing optimization problems in 2D and 3D are investigated, 
namely the 10-bar truss [34], the 25-bar truss [34] and the 
72-bar truss structures [34]. All three problems refer to steel 
truss structures, that are formulated as sizing structural opti-
mization problems, with their size in terms of design variables 
ranging from 8 to 16 design variables. The sizing design varia-
bles are continuous values denoting the cross-section area that 
is to be assigned to the specific structural element, or group 
of elements. For all three problems the weight of the struc-
ture is used as the objective function, to be minimized. Next, 
three well-known benchmark structural optimization problems 
having an analytical expression of the corresponding problem 
formulation are studied, namely the Welded beam design prob-
lem [118], the Pressure vessel design problem [118], and the 
Tension–compression string problem [118].

For all six cases, the number of function evaluations 
allowed, for all algorithms, was equal to the dimensionality 
n of the problem times 10,000. This value for the maximum 

number of function evaluations may not be optimal for each 
individual problem, but it provides a common base of com-
parison for problems with different levels of complexity, while 
also ensuring that the number of function evaluations will be 
large enough to accommodate even the most difficult cases.

5.1.1 � 10‑Bar Truss

For the 10-bar truss problem, an independent design vari-
able is employed for each bar, resulting into a 10 design 
variables problem, that are treated as continuous variables 
in the range [0.1, 33.5] in2. The constraint functions imposed 
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refer to (i) stress constraints, where the stress of the truss 
members should not exceed the stress limit of 25 ksi, and 
(ii) displacement constraints where the absolute value of the 
displacement of all nodes should not exceed the limit of 2.0 
in; more details on the problem formulation can be found 
in [34]. The reference objective function value found in the 
literature that refers to the weight of the structure is equal 
to 5057.88 lb [34]. The results obtained for the 10-bar truss 
problem are reported in Table 3, where it can be seen that 
most algorithms achieved excellent results; the best result 

for this problem was achieved by CMAES, FA, TLBO and 
SMA algorithms resulting to the Best optimized value lower 
than 5061 lb, while the least variance on the results obtained 
out of the 20 independent optimization runs carried out for 
each algorithm corresponds to IGWO, MTDE, MVO, FA, 
DE and TLBO algorithms, as denoted by the coefficient 
of variation with values lower than 0.10%. This problem 
proved to be easy to handle for most optimizers, with very 
few exceptions.

Table 2   Parameters of the 24 algorithms
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5.1.2 � 25‑Bar Truss

For the 25-bar truss problem, the structural elements are 
grouped, resulting into a problem with 8 design variables, 
that are treated as continuous variables in the range [0.01, 
3.4] in2. The constraint functions imposed refer to (i) stress 
constraints, where for tension members the stress should 
not exceed the stress limit of 35 ksi and for compression 
members the stress is limited according to AISC code, and 
(ii) displacement constraints where the absolute value of the 
displacement of all nodes should not exceed the threshold 
of 0.35 in; more details on the problem formulation can be 
found in [34]. The reference objective function value found 
in the literature, referring to the weight of the structure, is 
equal to 545.175 lb [34]. The results obtained for the 25-bar 
truss problem are provided in Table 4, where it can be seen 
that most algorithms achieved very good results. The best 
result for this problem was achieved by CMAES, MTDE, 

FA and TLBO algorithms resulting to the Best optimized 
value lower than 545.20 lb, while the least variance on the 
results obtained out of the 20 independent optimization runs 
corresponds to CMAES, MTDE, MVO, FA, DE and TLBO 
algorithms, with coefficient of variation values lower than 
0.10%.

5.1.3 � 72‑Bar Truss

For the 72-bar truss problem, the structural elements are 
grouped, resulting into a 16 design variables problem, that 
are treated as continuous variables in the range [0.1, 3.0] 
in2. The constraint functions imposed refer to (i) stress 
constraints, where the stress of the truss members should 
not exceed the stress limit of 25 ksi in general, and (ii) 
displacement constraints, where the absolute value of the 
displacement of the uppermost nodes should not exceed 
the limit of 0.25 in; more details on the problem formula-
tion can be found in [34]. The reference objective function 

Table 3   10-Bar truss example—collective results

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 5062.28 5069.68 5086.28 5071.16 0.14
IGWO 5061.55 5062.45 5063.21 5062.46 0.01
WOA 5171.54 5606.54 6987.53 5823.45 9.55
ALO 5062.28 5072.33 5097.44 5074.88 0.18
CMAES 5060.85 5060.85 5076.67 5063.23 0.11
MTDE 5060.86 5060.90 5060.95 5060.90 0.00
DA 5090.99 5235.04 5575.38 5257.89 2.67
GOA 5065.29 5088.91 5102.23 5087.51 0.17
GOAf 5077.83 5193.91 5633.45 5210.60 2.84
MFO 5062.74 5081.20 5429.34 5108.44 1.64
MVO 5061.76 5065.67 5072.91 5066.22 0.06
SCA 5158.26 5238.47 5307.14 5234.16 0.81
SSA 5061.99 5067.16 5087.15 5069.10 0.13
PSO 5061.27 5087.17 6279.92 5173.62 5.14
FA 5060.87 5060.95 5061.48 5061.00 0.00
ICA 5077.56 5134.42 5549.57 5175.55 2.30
DE 5062.10 5063.48 5070.28 5064.05 0.04
HS 5071.60 5102.72 5621.60 5128.90 2.28
TLBO 5060.87 5060.90 5076.71 5061.69 0.07
KH 5061.01 5061.96 5077.59 5068.60 0.16
ISA 5707.11 5896.29 7116.73 6007.23 5.41
PBA 5265.65 5410.69 5680.10 5422.12 1.82
SMA 5060.95 5061.37 5077.27 5063.78 0.11
AOA 5096.51 5299.32 5610.07 5320.36 2.43

Table 4   25-Bar truss example—collective results

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 545.58 546.59 549.06 546.81 0.18
IGWO 545.33 545.46 545.64 545.46 0.01
WOA 550.61 579.29 617.16 580.24 3.01
ALO 545.31 549.50 575.83 552.17 1.44
CMAES 545.16 545.16 545.16 545.16 0.00
MTDE 545.16 545.16 545.17 545.16 0.00
DA 545.49 562.41 662.15 572.15 5.02
GOA 545.44 547.30 611.04 554.85 3.51
GOAf 545.50 548.67 602.03 556.57 2.70
MFO 545.28 546.73 551.74 547.05 0.26
MVO 545.23 545.38 546.00 545.43 0.04
SCA 551.99 558.09 564.37 557.92 0.64
SSA 545.20 549.11 556.31 549.20 0.61
PSO 545.18 545.45 547.07 545.82 0.14
FA 545.16 545.19 545.28 545.20 0.01
ICA 545.45 549.52 554.11 549.42 0.39
DE 545.33 545.40 545.88 545.46 0.03
HS 545.92 549.43 567.12 550.39 0.86
TLBO 545.16 545.18 545.22 545.18 0.00
KH 545.22 545.53 549.14 545.79 0.17
ISA 557.59 557.91 592.64 562.97 1.74
PBA 550.95 563.09 576.02 562.34 1.08
SMA 545.19 545.35 546.25 545.45 0.05
AOA 553.75 563.42 601.81 570.16 2.38
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value found in the literature, referring to the weight of the 
structure, is equal to 379.66 lb [34]. The results obtained 
for the 72-bar truss problem are provided in Table 5. It can 
be seen that most of the algorithms achieved very good 
results. The best result for this problem was achieved by 
GWO, IGWO, CMAES, MTDE, PSO, FA, TLBO, KH 
and SMA algorithms resulting to the Best optimized value 
lower than 379.70 lb, while the algorithms GWO, IGWO, 
CMAES, MTDE, FA, DE, TLBO and SMA achieved the 
least variance, with values of the coefficient of variation 
lower than 0.10%.

5.1.4 � Welded Beam Design Problem

The well-known welded beam design problem [118] can 
be formulated as follows:

w h e r e  P = 6000lb  ,  L = 14in  ,  E = 30 × 106psi  , 
G = 12 × 106psi  ,  �max = 13600psi  ,  �max = 30, 000psi  , 
�max = 0.25in . More details on the problem and its formulation 
can be found in [118]. The reference objective function value 
found in the literature is equal to 1.72485084 [118]. The results 
obtained for the welded beam problem are provided in Table 6. 
It can be seen that most of the algorithms achieved very good 
results managing to reach the vicinity of the optimum. The 
best result for this problem was achieved by CMAES, MTDE, 
MFO, PSO, FA and TLBO algorithms resulting to the Best 
optimized value lower than 1.7249, while the least variance 
on the results obtained out of the 20 independent optimiza-
tion runs carried out for each algorithm corresponds to IGWO, 
CMAES, MTDE, FA and TLBO algorithms as denoted by the 
coefficient of variation with values lower than 0.10%.

5.1.5 � Pressure Vessel Design Problem

The pressure vessel problem [119] is formulated as follows:

(48)

Minimize f (s) = 1.10471s2
1
s2 + 0.04811s3s4

�
14.0 + s2

�
Subject to

g1(s) = �(s) − �max ≤ 0

g2(s) = �(s) − �max ≤ 0

g3(s) = s1 − s4 ≤ 0

g4(s) = 1.10471s2
1
s2 + 0.04811s3s4

�
14.0 + s2

�
− 5.0 ≤ 0

g5(s) = 0.125 − s1 ≤ 0

g6(s) = �(s) − �max ≤ 0

g7(s) = P − Pc(s) ≤ 0

where

�(s) =
�

(��)2 + 2�����
s2

2R
+ (���)2

�� =
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2s1s2

��� =
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J
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Table 5   72-Bar truss example—collective results

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 379.69 379.78 379.93 379.80 0.02
IGWO 379.69 379.75 379.90 379.75 0.01
WOA 411.27 472.21 536.62 477.52 6.97
ALO 381.05 385.22 421.12 390.83 3.07
CMAES 379.61 379.61 379.61 379.61 0.00
MTDE 379.62 379.62 379.62 379.62 0.00
DA 385.36 421.09 508.78 427.72 8.11
GOA 380.86 434.26 540.58 446.20 12.55
GOAf 381.30 403.39 579.48 423.11 11.84
MFO 379.86 380.53 447.17 391.68 4.99
MVO 379.94 381.61 387.65 382.00 0.46
SCA 415.92 428.07 445.85 429.14 2.08
SSA 380.64 383.68 412.35 387.53 2.23
PSO 379.62 379.63 467.15 391.63 6.41
FA 379.62 379.62 379.63 379.62 0.00
ICA 388.63 400.48 503.47 459.63 13.76
DE 379.66 379.69 379.74 379.69 0.01
HS 380.25 381.95 386.68 382.33 0.45
TLBO 379.62 379.62 379.62 379.62 0.00
KH 379.68 379.78 430.68 385.96 4.16
ISA 451.79 755.51 947.13 727.08 21.18
PBA 416.96 439.93 453.68 439.38 2.11
SMA 379.65 379.70 379.77 379.70 0.01
AOA 482.52 506.23 525.30 505.17 2.82
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where s1,s2 design variables are integer multipliers of 0.0625. 
More details on the problem formulation can be found in 
[119]. Τhe reference objective function value found in the 
literature is equal to 5888.3400 [92]. The results obtained 
for the welded beam problem are provided in Table 7, where 
it is shown that while some algorithms achieved very good 
results, others failed to do so. The best result for this prob-
lem was achieved by ALO, MTDE, FA, TLBO and SMA 
algorithms. Some algorithms achieved a better (smaller) 
optimum value than the reference value reported in the lit-
erature and these results are denoted with bold in the table. 
The least variation of the results was exhibited by GWO, 

(49)

Minimize f (s) = 0.6224s1s3s4 + 1.7781s2s
2
3
+ 3.1661s2

1
s4 + 19.84s2

1
s3

Subject to

g1(s) = −s1 + 0.0193s3 ≤ 0

g2(s) = −s2 + 0.00954s3 ≤ 0

g3(s) = −�s2
3
s4 −

4

3
�s3

3
+ 1296000 ≤ 0

g4(s) = s4 − 240 ≤ 0

IGWO, MTDE and TLBO algorithms, with values of the 
coefficient of variation lower than 0.10%.

5.1.6 � Tension–Compression String Problem

The tension–compression string problem [118] can be formu-
lated as follows:

(50)

Minimize f (s) =
(
s3 + 2

)
s2s

2
1

Subject to

g1(s) = 1 −
s3
2
s3

71785s4
1

≤ 0

g2(s) =
4s2

2
−s1s2

12566(s2s31−s
4
1)
+

1

5108s2
1

− 1 ≤ 0

g3(s) = 1 −
140.45s1

s2
2
s3

≤ 0

g4(s) =
s2+s1

1.5
− 1 ≤ 0

Table 6   Welded beam design problem—collective results

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 1.725815 1.727201 1.732929 1.727801 0.10
IGWO 1.725205 1.726402 1.727412 1.726407 0.03
WOA 1.764439 2.066289 3.805661 2.320700 24.75
ALO 1.738265 2.033519 2.270306 2.077232 6.62
CMAES 1.724852 1.724852 1.724852 1.724852 0.00
MTDE 1.724861 1.724871 1.724927 1.724879 0.00
DA 1.736235 1.808789 2.497832 1.949844 13.34
GOA 1.758468 2.240731 3.395531 2.330782 16.02
GOAf 1.842398 2.275301 3.370820 2.353270 17.04
MFO 1.724852 1.967988 3.051153 1.994456 19.11
MVO 1.761176 1.964720 2.239683 1.953782 7.37
SCA 1.792420 1.869048 1.943238 1.865548 2.15
SSA 1.936579 2.037333 2.316735 2.089118 5.61
PSO 1.724852 1.724852 1.974449 1.737488 3.21
FA 1.724852 1.724852 1.724852 1.724852 0.00
ICA 1.725042 2.151993 4.197115 2.347707 28.54
DE 1.761492 1.833467 2.142021 1.875381 5.79
HS 2.356651 3.160089 4.310701 3.179208 17.22
TLBO 1.724852 1.724852 1.724852 1.724852 0.00
KH 1.731836 2.124365 3.097703 2.249855 18.47
ISA 1.890158 3.304555 4.262717 3.264702 20.62
PBA 1.797781 1.904672 2.038480 1.912669 3.46
SMA 1.725136 1.725794 1.839148 1.732070 1.46
AOA 1.950500 2.225528 2.617353 2.283393 8.51

Table 7   Pressure vessel design problem—collective results

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 5851.70 5852.63 5854.93 5853.15 0.02
IGWO 5850.65 5850.99 5851.88 5851.23 0.01
WOA 6254.77 7463.27 8490.07 7481.39 12.61
ALO 5850.38 6410.09 7332.84 6415.42 8.84
CMAES 6059.71 6370.78 7119.97 6492.28 7.16
MTDE 5850.38 5850.38 5850.39 5850.38 0.00
DA 6185.52 6198.52 7544.49 6482.06 9.19
GOA 5850.54 5940.26 6516.42 6043.91 4.48
GOAf 5850.41 6059.73 7050.68 6255.45 7.47
MFO 6073.18 6379.40 6410.56 6269.42 2.72
MVO 6092.04 6372.21 7333.59 6532.62 8.07
SCA 6352.29 6664.72 7734.11 6786.73 8.12
SSA 6068.85 6820.41 7273.51 6652.20 7.22
PSO 6059.71 6090.53 7544.49 6375.17 10.26
FA 5850.38 6090.53 6370.78 6098.55 3.02
ICA 6063.30 6074.21 6130.17 6083.42 0.46
DE 5883.62 5929.28 5991.73 5934.27 0.74
HS 6069.95 6432.58 6853.87 6453.31 4.31
TLBO 5850.38 5850.39 5850.42 5850.39 0.00
KH 6090.72 6410.60 6820.90 6437.27 5.49
ISA 7486.10 10400.00 13200.00 10150.69 23.22
PBA 6084.00 6422.30 6878.42 6438.08 4.45
SMA 5850.38 6090.53 7332.84 6421.01 9.60
AOA 7044.90 8574.39 14736.28 9940.79 30.76
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More details on the problem formulation can be found 
in [118]. The reference objective function value found 
in the literature is equal to 0.012665 [118]. The results 
obtained for the tension–compression string problem are 
provided in Table 8 where it can be seen that most of the 
algorithms achieved excellent results. The best result 
for this problem was achieved by WOA, ALO, CMAES, 
MTDE, MFO, ICA, TLBO and ISA algorithms resulting 
to the Best optimized value lower than 0.012668. The least 
variance of the results was exhibited by IGWO, CMAES, 
MTDE and TLBO algorithms with a value of the coef-
ficient of variation lower than 0.10%.

5.1.7 � Comparative Results

In order to present the globality of the algorithms’ effi-
ciency, Fig. 2 shows the variation (or relative error value) 
of the best achieved optimum solution by each one of the 

24 MOAs, in comparison to the reference (best reported) 
solution found in the literature, for each problem. In this 
diagram, lower bars represent better solutions and ide-
ally a zero-height bar (i.e. zero error) would mean that 
the algorithm has achieved the same optimum as the one 
found in the literature. 10 out of 24 MOAs (GWO, IGWO, 
ALO, CMAES, MTDE, MFO, PSO, FA, TLBO, SMA) 
managed to give excellent solutions with error values less 
than 1% for all the problems examined, while 12 of them 
(GWO, IGWO, ALO, CMAES, MTDE, DA, MFO, PSO, 
FA, TLBO, KH, SMA) managed to end up to very good 
solutions with error values less than 2% in all examined 
problems. The best three overall performances were the 
ones of CMAES, MTDE and TLBO, with average error 
values (average over all 6 problems) less than 0.16%, fol-
lowed by MFO, IGWO, PSO and FA with average error 
values less than 0.2%. These excellent results show the 
clear potential of MOAs in handling structural optimiza-
tion problems.

5.2 � International Student Competition in Structural 
Optimization (ISCSO 2015 to 2019)

In this section, five test examples taken from the recent 
International Student Competition in Structural Optimiza-
tion events (i.e. ISCSO2015 to ISCSO2019, [9–13]), are 
used for further challenging the efficiency of the 24 MOAs. 
These five problems refer to steel truss structures, they are 
formulated as combined sizing-shape structural optimization 
problems and their size, in terms of design variables, range 
from 54 to 328 design variables. The sizing design vari-
ables are integer values denoting the discrete standardized 
cross-section that is to be assigned to the specific 2D or 3D 
truss structural element, while the shape design variables 
are continuous denoting the value of the specific node coor-
dinate. For each problem, we report a table which presents 
the results obtained by the 20 independent optimization 
runs, performed for each problem with the same algorithm. 
In particular, each table reports the best objective function 
value found in 20 runs, the median, worst and mean value, 
as well as the coefficient of variation which is a standardized 
measure of dispersion of the results, defined as the ratio of 
the standard deviation to the mean. The number of function 
evaluations allowed for the six problems, for all algorithms, 
was equal to the dimension n of each problem times 1000.

5.2.1 � ISCSO 2015 Problem

The test example of ISCSO2015 [9] is formulated as a siz-
ing and shape optimization of the 45-bar 2D truss struc-
ture shown in Fig. 3, that is discretised with 45 sizing and 
9 shape design variables. The sizing variables denote the 

Table 8   Tension–compression string problem—collective results

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 0.012694 0.012730 0.012761 0.012729 0.12
IGWO 0.012671 0.012687 0.012703 0.012689 0.07
WOA 0.012665 0.013369 0.016708 0.013967 9.18
ALO 0.012667 0.012719 0.017741 0.013407 10.94
CMAES 0.012665 0.012665 0.012665 0.012665 0.00
MTDE 0.012667 0.012671 0.012678 0.012672 0.03
DA 0.012719 0.012869 0.017854 0.013240 8.61
GOA 0.012706 0.014500 0.024514 0.015786 19.62
GOAf 0.012864 0.015688 0.022771 0.016179 16.86
MFO 0.012665 0.012719 0.015753 0.012992 5.51
MVO 0.012739 0.014010 0.018147 0.015168 15.62
SCA 0.012840 0.013027 0.013820 0.013077 1.61
SSA 0.012678 0.012884 0.016380 0.013303 8.17
PSO 0.012685 0.012746 0.013298 0.012849 1.54
FA 0.012684 0.012719 0.012821 0.012720 0.20
ICA 0.012665 0.012670 0.012987 0.012698 0.56
DE 0.012680 0.012722 0.012825 0.012737 0.33
HS 0.012671 0.015082 0.017776 0.015229 11.47
TLBO 0.012667 0.012680 0.012706 0.012682 0.09
KH 0.012673 0.012857 0.017374 0.013204 8.46
ISA 0.012665 0.012711 0.014808 0.012823 3.70
PBA 0.012689 0.012892 0.013365 0.012942 1.49
SMA 0.012734 0.015367 0.017813 0.015145 13.29
AOA 0.012810 0.013265 0.027160 0.016390 32.74
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cross-sectional areas of the truss elements (in groups) and 
take values in the range 0.1 to 15 in2 with increments of 
0.1 in2. The constraint functions imposed refer to (i) stress 
constraints, where the stress of the truss members should 
not exceed the stress limit of 30 ksi, and (ii) displacement 
constraints where the absolute value of the displacement of 
all nodes should not exceed the limit of 2.0 in. More infor-
mation about the problem formulation (including loading 
conditions, design variables grouping etc.) and how it can 
be implemented through a simple MATLAB function for 
the structural analysis and design of this particular truss is 
provided in [9].

The best value achieved in the framework of the com-
petition was equal to 3861.1045 lb and it is taken as the 
reference value for comparison in the present study. The 
results obtained from the 24 MOAs, for the ISCSO2015 
two-dimensional truss optimization problem, are pre-
sented in Table 9. In this test example, DE outperformed 
the other algorithms resulting to the Best optimized value 
of 5046.70 lb, followed by PBA, SSA and SCA. The worst 
performance in terms of final best objective value is the 
one of GWO (7847.57 lb) followed by IGWO, ICA and 
GOAf. IGWO exhibited the least variation on the results 
obtained out of 20 independent optimization runs (4.07%), 
but its performance was overall poor when we consider the 

Fig. 2   Performance of the 24 algorithms in the group of the 6 benchmark test problems: a Algorithms 1–12, b Algorithms 13–24
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value of the objective function achieved. From the top-5 
performers in terms of best objective value achieved (DE, 
PBA, SSA, SCA and KH), SSA showed a good balance 
between best value and variation, with a best value of 
5126.45 lb and a coefficient of variation equal to 20.60%. 
Interestingly, when the median or the mean values are 
taken into account, things are different with the top per-
formers being FA, CMAES, TLBO, SMA and ICA. So, 
the top-5 performers in terms of best value achieved are 
completely different than the top-5 performers when the 
median value or the average value is taken into account.

5.2.2 � ISCSO 2016 Problem

The test example of ISCSO2016 [10] refers to the steel can-
tilever 3D truss structure shown schematically in Fig. 4. The 
structure consists of 117 members and 30 nodes in total. 
The problem is formulated as a combined sizing and shape 
optimization problem, with 117 sizing and 7 shape design 
variables. The sizing design variables can only take integer 
values ranging from 1 to 37 representing the section ID from 
a database of 37 pipe sections. The shape variables have 
to do with the vertical coordinates of the 14 top nodes of 
the structure, grouped in pairs. The structure is designed 
according to AISC-LRFD 1994 regulations, and each mem-
ber is assessed considering the limit states of tensile yielding 
and compressive buckling. Thus, the constraint functions 
imposed refer to (i) stress constraints where the truss mem-
bers should satisfy the stress requirements of the code, and 
(ii) displacement constraints where the absolute value of 
the displacement of all nodes should not exceed the limit of 
4.0 cm. More information about the problem formulation 

Fig. 3   The ISCSO2015 two-
dimensional truss problem 
(dimensions in in)

Table 9   ISCSO2015 test example—collective results (objective func-
tion values in lb)

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 7847.57 8667.70 10011.98 8695.66 6.77
IGWO 7322.22 8098.97 8473.70 8051.59 4.07
WOA 5153.90 8488.70 12175.60 8777.50 26.66
ALO 5208.14 7458.92 11850.75 7940.61 24.95
CMAES 5633.38 6038.90 6680.38 6077.00 4.77
MTDE 5469.02 8735.15 10092.62 8587.29 14.10
DA 5209.22 7823.33 12532.20 8530.07 28.06
GOA 5170.39 7970.05 12574.50 8254.99 27.90
GOAf 5844.59 9264.72 12128.22 9078.35 24.41
MFO 5423.47 8495.52 11808.38 8455.49 21.34
MVO 5205.39 8247.57 12432.26 8462.21 22.52
SCA 5128.14 9778.64 12139.61 8903.87 28.97
SSA 5126.45 9893.93 11772.47 9441.13 20.60
PSO 5373.44 8828.13 11243.41 8391.92 19.99
FA 5226.31 5797.08 6868.02 5862.77 8.19
ICA 6014.06 7301.66 8567.34 7387.79 11.08
DE 5046.70 8960.40 12341.89 9023.18 26.10
HS 5247.47 9043.99 10581.26 8655.61 16.99
TLBO 5692.23 6499.32 9156.10 6846.41 14.23
KH 5136.65 8579.90 12542.30 8753.96 30.60
ISA 5471.80 8978.11 12088.31 8932.18 24.23
PBA 5113.99 8548.61 12559.71 8780.52 27.83
SMA 5666.07 6559.16 7910.83 6730.15 9.36
AOA 5193.87 9100.84 12234.46 9072.24 26.50
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(including loading conditions, design variables etc.) and how 
it can be implemented through a simple MATLAB function 
for the structural analysis and design of this particular truss 
is provided in [10].

The best value achieved in the framework of the com-
petition is equal to 2816.0281 kg and it is taken as the ref-
erence value for comparisons. The results obtained from 
the 24 MOAs, for the ISCSO2016 three-dimensional truss 
optimization problem, are presented in Table 10. In this test 
example, CMAES outperformed the other algorithms result-
ing to the Best optimized value of 3862.19 kg, followed by 
DA, GOAf, SCA and MFO. A similar trend is seen when 
the median or average values are taken into account. In the 
median case criterion, the top-5 performers are CMAES, 
SMA, FA, IGWO and ICA. In this test example, CMAES has 
consistently shown the best performance, in terms of both 
the best value achieved and also the median value and the 
mean value over the 20 independent runs. The worst perfor-
mances in terms of the median value are the ones of PBA, 
DE, GOA, SCA and MFO, while the worst performers in 
terms of the best value are PSO, DE, MVO, HS and TLBO. 
Interestingly, CMAES also exhibited the least variation on 
the results obtained out of 20 independent optimization runs 
(0.55%), followed by IGWO, HS, MTDE and SMA in this 
criterion.

5.2.3 � ISCSO 2017 Problem

The test example of ISCSO2017 [11] refers to the 3D steel 
truss structure shown in Fig. 5. It consists of 198 members 
and 52 nodes. The problem is formulated as a sizing and 

Fig. 4   The ISCSO2016 three-dimensional truss problem (dimensions in mm)

Table 10   ISCSO2016 test example – collective results (objective 
function values in kg)

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 4965.04 5898.39 6722.70 5774.91 8.42
IGWO 4382.93 4515.26 4688.40 4508.56 1.64
WOA 4417.05 6969.41 8608.95 6862.18 19.89
ALO 4709.22 7095.62 8400.86 6842.96 13.12
CMAES 3862.19 3913.07 3941.95 3910.77 0.55
MTDE 4776.83 5063.14 5489.69 5071.87 3.90
DA 3891.69 6405.33 9296.56 6550.99 24.52
GOA 4294.78 7411.09 8637.58 7245.68 12.24
GOAf 3971.69 6084.66 9502.94 6235.25 25.00
MFO 4050.96 7309.54 9150.50 6812.72 23.94
MVO 5530.12 6299.50 7532.81 6363.06 8.35
SCA 3972.65 7334.26 9557.15 6877.93 27.51
SSA 4245.66 7044.14 9472.31 6878.10 21.04
PSO 5976.08 6904.59 8628.51 6931.45 11.01
FA 4215.88 4510.99 4939.68 4514.09 4.56
ICA 4339.00 4642.72 5083.93 4645.91 4.56
DE 5770.26 7499.07 9532.21 7439.93 18.37
HS 5303.45 5506.09 5716.85 5539.99 2.70
TLBO 5040.97 5387.82 6267.89 5465.42 7.13
KH 4441.11 5921.93 7531.86 5846.85 19.77
ISA 4361.39 6878.25 9234.16 6696.96 22.67
PBA 4181.79 7895.46 9269.37 7278.02 26.80
SMA 4306.85 4412.69 4934.29 4482.34 4.21
AOA 4979.00 6433.52 9327.49 6943.43 24.16
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shape optimization problem with 198 sizing variables (one 
for each member) and 13 shape design variables, resulting in 
211 design variables in total. The sizing variables can only 
take integer values ranging from 1 to 37 representing the 
section ID from a database of 37 pipe sections. The struc-
ture is designed according to AISC-LRFD 1994 regulations, 
considering the limit states of tensile yielding and compres-
sive buckling for each member. The constraint functions 
imposed refer to (i) stress constraints, where the truss mem-
bers should satisfy the stress requirements of AISC-LRFD 
1994, and (ii) displacement constraints where the absolute 
value of the displacement of all nodes should not exceed the 
limit of 100.0 mm. More information about the problem for-
mulation (loading conditions, design variables etc.) and how 
it can be implemented through a simple MATLAB function 
for the structural analysis and design of this particular truss 
is provided in [11].

The best value achieved in the framework of the com-
petition is equal to 44090.5356 kg and it is considered the 
reference value for comparison in the present study. The 
results obtained from the 24 MOAs, for the ISCSO2017 Fig. 5   The ISCSO2017 three-dimensional truss problem (horizontal 

dimensions in mm)

Table 11   ISCSO2017 test 
example—collective results 
(objective function values in kg)

Some algorithms achieved an optimum value close to or better than the reference value reported in the lit-
erature; these results are denoted with bold in Tables [3–13] containing the results of the investigation per-
formed. Accordingly, some algorithms depict low coefficient of variation (CoV) values, denoting robust-
ness on their performance; these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 67002.68 117756.09 153277.42 113644.64 31.33
IGWO 62172.46 120165.52 148519.88 114437.05 27.58
WOA 62472.37 88053.99 145342.98 98860.32 28.94
ALO 64920.22 86122.89 141814.45 98483.01 31.43
CMAES 79235.84 112207.46 154717.85 116872.75 23.58
MTDE 87374.94 105761.09 110090.33 102065.62 9.50
DA 76446.15 82123.40 122174.65 95670.80 23.69
GOA 88676.07 142898.32 152849.15 129227.54 21.77
GOAf 68000.43 118675.90 145884.71 116821.88 25.47
MFO 105213.86 111712.35 136461.41 117210.47 10.77
MVO 73336.95 109988.18 131288.65 103132.39 22.24
SCA 85895.53 116980.14 149377.89 122556.67 21.81
SSA 75099.34 125820.59 147015.58 118558.58 22.81
PSO 69185.98 101626.58 152751.45 102722.99 33.70
FA 99473.62 114855.25 126806.13 112697.90 9.05
ICA 84976.11 129741.57 152394.73 127943.81 21.58
DE 95835.68 98722.06 99984.35 98104.99 1.92
HS 91799.40 123280.33 138668.79 116235.70 15.96
TLBO 71876.54 90500.69 143171.23 98291.52 29.46
KH 109902.55 125320.46 150197.83 129067.13 12.23
ISA 107746.38 120473.00 154049.94 127515.43 15.31
PBA 63947.01 84796.79 113317.97 87974.23 24.34
SMA 72368.74 92391.89 129049.47 94824.73 23.61
AOA 66280.21 77992.87 111039.46 84010.68 20.00
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three-dimensional truss optimization problem, are presented 
in Table 11.

In this test example, IGWO outperformed the other algo-
rithms resulting to the Best optimized value of 62172.46 kg, 
followed by WOA, PBA, ALO and AOA. When the median 
value is taken into account, the top-5 performers are AOA, 
PBA, SMA, DA and DE while when the average value is 
taken into account, the top-5 performers are AOA, PBA, 
SMA, DA and DE. The worst performances in terms of the 
median values are the ones of GOA, ICA, SSA, KH and 
HS, while the worst performers in terms of the best value 
achieved are KH, ISA, MFO, FA and DE. DE achieved the 
least variation with a CoV value of 1.92%, followed by FA, 
MTDE, MFO and KH in this criterion.

5.2.4 � ISCSO 2018 Problem

The test example of ISCSO2018 [12] refers to the 3D 
steel truss structure shown in Fig.  6. The structure is 
composed of 314 members and 84 nodes. The problem 
is formulated as a combined sizing and shape optimiza-
tion problem having 314 sizing variables (representing the 
cross-sectional areas of the truss members) and 14 shape 
design variables (representing the z-coordinates of the 
28 top nodes, grouped in pairs). The sizing variables can 
only take integer values ranging from 1 to 37 represent-
ing the section ID from a database of 37 pipe sections. 
The structure is designed according to the regulations of 
AISC-LRFD 1994, considering the limit states of tensile 
yielding and compressive buckling for each member. The 

constraint functions refer to (i) stress constraints, accord-
ing to the stress requirements of AISC-LRFD 1994, and 
(ii) displacement constraints, where the absolute value of 
the displacement of any node should not exceed the limit 
of 50.0 mm. More information about the problem formula-
tion (including loading conditions, design variables etc.) 
is provided in [12].

The best value achieved in the framework of the com-
petition is equal to 14425.0973 kg, taken as the reference 
value for comparison in the present study. The relevant 
results obtained from the 24 MOAs, for the ISCSO2018 
three-dimensional truss optimization problem, are pre-
sented in Table 12. In this test example, SCA outperformed 
the other algorithms resulting to the Best optimized value 
of 21,341.16 kg, followed by PBA, FA, MVO and GOA. 
When the median value is used as a criterion, the top-5 
performers are MTDE (27521.62 kg), PBA, GOA, DE and 
WOA. Exactly the same are the top-5 performers if the aver-
age value is used. In terms of the CoV value and the least 
variation of the results, the top-5 performers are CMAES 
(16.30%), SSA, DE, TLBO and HS. The worst perform-
ers in terms of best objective value achieved are TLBO 
(30754.40 kg), SSA, MFO, ISA and CMAES. If we use the 
median value as the ranking criterion, the worst performers 
become MFO (49296.43 kg), GWO, FA, ISA and ALO.

5.2.5 � ISCSO 2019 Problem

The test example of ISCSO2019 [13] is formulated as a 
sizing and shape optimization of the 260-member 3D truss 

Fig. 6   The ISCSO2018 three-dimensional truss problem (horizontal dimensions in mm)
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Table 12   ISCSO2018 test example—collective results (objective 
function values in kg)

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 24645.09 47708.26 50620.89 39478.24 32.85
IGWO 24230.62 40219.53 46544.21 36938.99 28.40
WOA 26642.16 31526.44 46282.57 34898.86 23.37
ALO 25012.71 43013.61 50819.41 40600.24 23.40
CMAES 28244.96 38030.40 44975.47 37699.79 16.30
MTDE 22056.32 27521.62 48896.31 30044.00 36.66
DA 23280.23 41183.75 52325.09 38791.98 27.45
GOA 21708.44 31615.69 48482.15 33132.88 30.54
GOAf 23339.12 40642.34 50265.65 38557.28 29.24
MFO 28990.20 49296.43 51651.67 42989.19 23.48
MVO 21563.40 35968.90 44347.80 35213.84 24.26
SCA 21341.16 40146.07 51055.73 36135.45 34.78
SSA 29832.12 38218.37 45152.10 37106.54 18.65
PSO 23106.30 36025.75 50528.95 37060.66 27.86
FA 21560.03 47297.80 50730.87 42635.56 28.52
ICA 24707.18 38728.63 48458.06 38647.73 23.00
DE 26323.23 31355.72 42524.15 33843.16 18.76
HS 26401.04 40513.03 45500.21 38936.50 20.23
TLBO 30754.40 38302.58 47858.18 38270.10 19.07
KH 21811.50 38319.41 47824.84 35474.90 28.73
ISA 28387.39 43368.48 50945.76 41972.37 22.80
PBA 21492.56 30504.49 42378.49 32449.64 24.55
SMA 26122.25 40447.14 49090.18 37155.12 26.01
AOA 21854.95 42083.95 51312.41 39463.85 27.88

Fig. 7   The ISCSO2019 three-
dimensional truss problem 
(horizontal dimensions in mm)

Table 13   ISCSO2019 test example—collective results (objective 
function values in kg)

Some algorithms achieved an optimum value close to or better than 
the reference value reported in the literature; these results are denoted 
with bold in Tables [3–13] containing the results of the investigation 
performed. Accordingly, some algorithms depict low coefficient of 
variation (CoV) values, denoting robustness on their performance; 
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 18991.54 31293.86 37716.59 29968.59 23.05
IGWO 20211.42 34348.39 38904.45 32829.80 16.17
WOA 21919.76 31809.16 41527.48 32074.53 21.05
ALO 19003.75 26326.31 40925.86 27628.12 25.68
CMAES 18323.61 28785.49 43560.18 29852.75 26.81
MTDE 19421.50 31409.96 43620.59 32289.22 24.28
DA 21065.37 35332.21 43677.06 33192.22 25.72
GOA 18916.25 24385.98 41997.75 27869.24 31.01
GOAf 18696.02 29519.40 43455.02 29504.43 26.10
MFO 19721.84 31964.70 40919.61 32277.63 20.36
MVO 18597.36 30259.26 40929.23 30138.30 24.34
SCA 19942.10 34103.17 43611.44 33461.70 21.57
SSA 18331.28 24859.55 40043.42 27088.33 27.64
PSO 19287.75 27286.90 43925.87 28455.32 25.19
FA 21272.41 33280.35 41658.88 32481.87 18.97
ICA 23973.61 34020.50 43820.49 34345.02 20.15
DE 18052.67 24598.27 42599.65 28165.39 30.50
HS 21954.27 27126.90 37994.61 28601.30 20.15
TLBO 17735.41 23380.96 33541.89 25144.96 24.68
KH 18147.48 33993.82 44084.55 32554.39 28.90
ISA 19863.61 30503.88 38508.74 28701.59 24.00
PBA 18051.75 29984.21 40554.94 29450.65 20.99
SMA 29440.10 34039.64 38908.84 34063.71 6.86
AOA 17697.21 31951.31 39946.53 30512.30 22.71
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structure shown in Fig. 7. The structure is composed of 260 
members and 76 nodes. The optimization problem consists 
of 260 sizing design variables (representing the cross-
sectional areas of the truss members) and 10 shape design 
variables (representing 10 characteristic z-coordinates of the 
structure affecting the locations of 38 nodes). The sizing 
variables are discrete, taking integer values ranging from 1 
to 37 representing the section ID from a database of 37 pipe 
sections. The structure is designed according to AISC-LRFD 
1994 regulations, where each member is assessed consider-
ing the limit states of tensile yielding and compressive buck-
ling. The constraint functions refer to (i) stress constraints 
where the truss members should satisfy the stress require-
ments of the code, and (ii) displacement constraints where 

the absolute value of the displacement of any node should 
not exceed the limit of 25.0 mm. More information about the 
problem formulation (including loading conditions, design 
variables, etc.) can be found in [13].

The best objective value achieved in the framework of 
the competition is equal to 12329.1302 kg, taken as the 
reference value for comparison. The results obtained from 
the 24 MOAs, for the ISCSO2019 problem, are presented 
in Table 13. In this test example, AOA outperformed the 
other algorithms resulting to the Best optimized value of 
17,697.21 kg, followed by TLBO, PBA, DE and KH. When 
the median value is taken into account, the top-5 perform-
ers are TLBO (23380.96 kg), GOA, DE, SSA and ALO 
while for the average value, the relevant ranking is TLBO 

Fig. 8   Performance of the 24 algorithms in the group of the 5 ISCSO test problems: a Algorithms 1–12, b Algorithms 13–24
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(25144.96 kg), SSA, ALO, GOA and DE. The least coeffi-
cient of variation is exhibited by SMA (6.86%), followed by 
IGWO, FA, HS and ICA. Nevertheless, the result of SMA 
in terms of best value is very poor (29440.1 kg, the worst of 
all algorithms). The worst performers in terms of the median 
value achieved are DA (35332.21 kg), IGWO, SCA, SMA 
and ICA, while if the best achieved value is taken into con-
sideration the algorithms with the worst performances are 
SMA (29440.1 kg), ICA, HS, WOA and FA.

5.2.6 � Comparative Results

Figure 8 shows the variation (or relative error value) of 
the best achieved optimum solution by each one of the 24 
MOAs, in comparison to the reference (best) solution found 
in framework of the competitions, for each problem. Over-
all, the error values vary from the lowest value of 23.49% 
(DE optimizer, ISCSO2015 problem) to the highest value 
of 59.88% (KH optimizer, ISCSO2017 problem). A general 
finding is that these structural optimization problems are 
hard and much more demanding than the ones examined in 
the previous section where most of the algorithms did an 
excellent job in finding solutions very close to the known 
global optimum.

Considering the difficulty and overall complexity of each 
problem, it appears that the first problem of ISCSO2015 was 
the least demanding, with the optimizers managing an aver-
age error value of 29.48% (median value 26.27%) altogether 
and the best (minimum) error value of 23.49% (DE opti-
mizer). The most demanding problem appears to be the one 
of ISCSO2017, with an average error value of 43.40% for 
the 24 MOAs altogether (median value 41.81%) and the best 
(minimum) error value of 29.08% (IGWO optimizer). No 
optimizer managed to give results with error values less than 
20% in comparison to the reference (best found) solution, in 
any of the examined problems. This is a clear indications 
that these problems are very complex and hard to deal with.

6 � Conclusions

Metaheuristic optimization algorithms (MOAs) have proved 
to be very efficient, able to handle various optimization 
problems in several scientific fields during the last decades. 
The study presented a state-of-the-art review of past and 
current developments achieved so far in structural optimiza-
tion problems dealt with MOAs. In addition, 24 well-known 
MOAs are presented in short in a unified description frame-
work aiming to identify their differences and similarities, 
while they are also investigated in several structural optimi-
zation problems of varying complexity and difficulty. The 
numerical tests belong to two groups. The first six problems 
are benchmark structural optimization problems taken from 

the literature, while the next five problems are taken from 
the International Student Competition in Structural Opti-
mization (2015–2019). The investigated MOAs exhibited 
excellent performance in handling the first six problems. 
Most of the algorithms managed to find the vicinity of the 
optimum in the majority of the problems rather easily, while 
12 of them achieved optimal results leading to error values 
less than 2% in all problems examined. The top-3 perform-
ers managed to end up to solutions with average values (i.e. 
average over all 6 problems) less than 0.16% in all problems 
examined, combined. These results show the great potential 
of MOAs in handling structural optimization problems.

The results of MOAs were not so impressive in the case 
of the five problems taken from the International Student 
Competition in Structural Optimization. It appears that these 
problems are extremely hard, incorporating a large number 
of design variables. The examined MOAs were not able to 
provide solutions with error values less than 20% (in com-
parison to the reference solution) in any of the examined 
problems. The best performance was 23.49% far from the 
optimum reference value, which is not an impressive result, 
but from an engineer point of view it is not a bad result, also. 
Practically the algorithms were unable to find the vicinity 
of the optimum in the huge, multi-dimensional search space 
of these problems. At this point, it has to be noted that the 
optimizers were simply run with random initialization of the 
design variables without having any particular knowledge 
or guidance on the specific optimization problem at hand. 
There were no heuristic rules or tips that the optimizers 
could use to facilitate their search; they faced the problems 
“blindly”. In a real-life situation, an experienced engineer 
may be able to help the optimizer by providing tips and guid-
ance based on experience and intuition. For example, the 
engineer can facilitate the search by appropriately grouping 
variables based on existing symmetries on the structure, or 
can guide the optimizer towards specific areas of the search 
space based on the expected shape of the optimal structure, 
or other expected outcomes. This can boost the optimiza-
tion procedure as it can quickly guide the optimizer near the 
neighbourhood of the global minimum and thus drastically 
reduce the size of the search space in practice, especially in 
cases with a large number of design variables, such as the 
competition problems examined in this study. In this sense, 
it can be said that in structural optimization problems, an 
optimization algorithm is a powerful tool in the hands of 
an experienced engineer, rather than an expert system that 
can provide solutions merely on its own. In other words, the 
expert needs the optimizer, but the optimizer also needs the 
expert, in order to achieve the best possible results.
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