
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2022) 29:5457–5492
https://doi.org/10.1007/s11831-022-09773-0

REVIEW ARTICLE

The Mosaic of Metaheuristic Algorithms in Structural Optimization

Nikos D. Lagaros1  · Vagelis Plevris2 · Nikos Ath. Kallioras1,3

Received: 9 December 2021 / Accepted: 22 May 2022 / Published online: 11 July 2022
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022

Abstract
Metaheuristic optimization algorithms (MOAs) represent powerful tools for dealing with multi-modal nonlinear optimization
problems. The considerable attention that MOAs have received over the last decade and especially when adopted for dealing
with several types of structural optimization problems can be mainly credited to the advances achieved in computer science
and computer technology rendering possible, among others, the solution of real-world structural design optimization cases
in reasonable computational time. The primal scope of the study is to present a state-of-the-art review of past and current
developments achieved so far in structural optimization problems dealt with MOAs, accompanied by a set of tests aiming
to examine the efficiency of various MOAs in several benchmark structural optimization problems. For this purpose, 24
population-based state-of-the-art MOAs belonging in four classes, (i) swarm-based; (ii) physics-based; (iii) evolutionary-
based; and (iv) human-based, are used for solving 11 single objective benchmark structural optimization test problems of
different levels of complexity. The size of the problems employed varies, with the number of unknowns ranging from 3 to
328 and the number of constraint functions ranging from 2 to 264, related to the structural performance of the design with
reference to deformation and stress limits.

1  Introduction

During the last decades, the architectural, design and con-
struction (ADC) industry has shown excessive innovation
both in the theoretical and its practical directions [1]. These
innovations could not be made possible without the advance-
ments in fields related to computational mechanics, which
played a critical role [2]. These developments made it possi-
ble not only to provide solutions to complex traditional prob-
lems in engineering, but also to propose novel mathematical

formulations and solving techniques for practical applica-
tions, leading to innovative, unique, economic and more
environmental-friendly structural systems [3]. Nowadays,
modern numerical tools are available to provide enormous
capabilities to architects and engineers, by fulfilling the
demands of the analysis and design procedures.

During the last three decades, metaheuristic optimization
algorithms (MOAs) have conquered many areas of engineer-
ing optimization, structural design optimization problems
included, due to the easiness of implementation, their sim-
plified nature, and mainly due to their efficiency in dealing
with NP-complete problems. Structural design optimiza-
tion (SDO) explains the procedure of proposing improved
designs of structures with respect to material or construction
cost, manufacturability, structural performance, among other
design criteria. Several researchers have tried to make a sys-
tematic review and organize the broad research literature on
optimization algorithms in general, or metaheuristics in par-
ticular, applied to structural optimization problems. Sahab
et al. [4] performed a review on traditional and modern
structural optimization problems and solution techniques.
Kashani et al. [5] did a similar review work, focusing on
population-based optimization methods applied in structural
engineering, while Bekdaş et al. [6] presenting a review on
metaheuristic algorithms and their applications in civil

 *	 Nikos D. Lagaros
	 nlagaros@central.ntua.gr

	 Vagelis Plevris
	 vplevris@qu.edu.qa

	 Nikos Ath. Kallioras
	 kallioras.nikos@gmail.com; info@infersence.com

1	 Institute of Structural Analysis & Antiseismic Research,
School of Civil Engineering, National Technical University
of Athens, 9, Heroon Polytechniou Str., Zografou Campus,
15780 Athens, Greece

2	 Department of Civil and Architectural Engineering, College
of Engineering, Qatar University, P.O. Box: 2713, Doha,
Qatar

3	 Infersence, 1, Georgiou Mpakou Str., 11524 Athens, Greece

http://orcid.org/0000-0001-6114-9632
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-022-09773-0&domain=pdf

5458	 N. D. Lagaros et al.

1 3

engineering optimization problems, highlighting the recent
progress and the state-of-the-art developments in the field.
On the other hand, Yang et al. [7] focused their review on the
applications of metaheuristic algorithms in civil engineering
problems, particularly.

Most real-world structural design optimization problems
are expressed in standard mathematical terms through highly
nonlinear and multimodal expressions. A single objective
non-linear programming (NLP) problem can be formulated
as follows:

where f (s) is the objective function (e.g. minimizing the
weight of the structure that is related to the material require-
ments, improving the structural performance characterized
for instance by the modal characteristics of the structural
system, etc.), ga(s) is the ath inequality constraint, hb(s) is
the bth equality constraint, while lbj and ubj denote the lower
and upper limits, respectively, of the jth component of the
design variable vector s of size n . It has to be noted that in
the majority of structural optimization problems, no equality
constraints are used for the problem formulation.

The scope of the present study is two-fold; first to review
the achievements of the past and to present the future chal-
lenges through the state-of-the-art development of MOAs
when used for solving structural optimization problems
(SOPs). Then, in the second part of the study, several well-
known MOAs are tested into typical and large-scale bench-
mark structural optimization problems, where the common
characteristics and the similarities among the chosen MOAs
are also presented. There are three categories of SOPs,
namely (a) sizing; (b) shape; and (c) topology optimization.
In addition, when uncertainty is involved into the problem
formulation, two general types of problems can be described,
namely reliability-based structural optimization and robust
design optimization problems [8]. The structure of the work
begins with the presentation of the history of the integration
of MOAs with the various types of structural optimization
problems. Subsequently, the 24 MOAs chosen for being
tested into 11 benchmark structural optimization problems
are briefly described. The selected MOAs cover a wide range
of metaheuristic algorithms with different characteristics and
nature, from well-known and well-established algorithms
to the most recent and most promising ones that represent
the latest trends in this research field. The implementation
of these algorithms relies on the MATLAB codes provided
by the developers of the corresponding MOAs, while the
special features of each algorithm implementation together

(1)

Optimize f (s),

Subject to

ga(s) ≤ 0, a = 1, 2, ...,ma

hb(s) = 0, b = 1, 2, ...,mb

lbj ≤ sj ≤ ubj, j = 1, 2, ..., n

with the basis of comparison are provided in the next chap-
ter of this study. In the last chapter, the numerical tests are
presented, classified into two groups; in the first one three
well known truss-structure problems are presented together
with the welded beam, pressure vessel and the tension–com-
pression string design problems. In the second group, five
large-scale sizing-shape structural optimization problems
are investigated, taken from the International Student Com-
petition in Structural Optimization (ISCSO 2015 to 2019)
[9–13].

2 � The History of MOAs in Structural
Optimization

Over the last few decades, the so-called “metaheuristic tech-
niques” have been developed, to provide near-to-optimum
solutions to various problems [14]. They are especially
tailored to hard optimization problems that are difficult or
even impossible to be optimized by the exact-optimal tech-
niques, such as linear programming (LP) [15], non-linear
programming (NLP) [16], integer programming (IP) [17],
and dynamic programming (DP) [18]. Initially, these new
techniques were called “Heuristics” and each such algorithm
was exclusively developed to handle a specific problem [19],
without having any “global” problem solving properties.
After a while, the researchers started to generalize these
algorithms, building wider solving frameworks that could
be used to solve wider problems of any nature. This group of
global solvers is nowadays known as “Metaheuristics” [20].

There are two main classifications of the fundamental
mechanisms used in MOAs: (i) diversification and (ii) inten-
sification [21]. The main difference between these two is
that diversification tries to diverge the search in an attempt
to explore the entire solution space, while intensification
simply pushes the search towards the already found best
solutions. Metaheuristics can be classified according to vari-
ous criteria, such as (i) population-based or single-solution-
based; (ii) trajectory or discontinuous; (iii) memoryless or
using memory; (iv) local-oriented or global-oriented, among
others.

Figure 1 displays Metaheuristics of various types where
they have been first classified according to whether they use
a population of solutions (population-based metaheuris-
tics) or not (single-based metaheuristics). Single-based
metaheuristics use a single solution at each run while pop-
ulation-based ones maintain a set of solutions (population)
at each run. As shown in the figure, the class of popula-
tion-based metaheuristics can be further classified into four
main categories: (i) swarm-based, (ii) physics-based, (iii)
evolutionary-based, and (iv) human-based. Swarm-based
methods use swarm intelligence (SI) approaches that mimic
the behaviour of swarms in nature. Evolutionary-based

5459The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

algorithms or evolutionary algorithms (EA) are inspired
by the evolutionary phenomena in nature and they usually
use three operators: selection, recombination and mutation.
Physics-based methods are inspired by and related to physi-
cal phenomena while Human-based methods are related to
human activities and the human behaviour. The original
figure with the classification of the algorithms, that appears
in [22], includes 45 algorithms. In the new version of this
figure (Fig. 1) we have added 9 additional algorithms and
as a result the final scheme contains 54 algorithms in total.
Of them, 24, denoted with bold letters and a thicker border

in the figure, are examined in detail in the present study, as
will be discussed in the next sections.

In this section we try to identify the various ways that
MOAs have been used in structural optimization problems.
These include benchmark structural optimization test prob-
lems for assessing the efficiency of new MOAs, implemen-
tations of existing MOAs for solving new formulations of
structural optimization problems, methodologies for han-
dling the excessive computational effort that MOAs require
for solving structural optimization problems, and others.

Popula�on-based
metaheuris�cs

FA2

FA3

Bat Algorithm (BA)

Krill Herd (KH)

Grey Wolf Op�mizer
(GWO)

Moth-Flame
Op�miza�on (MFO)

Algorithm

Dragonfly Algorithm (DA)

Whale Op�miza�on
Algorithm (WOA)

Crow Search Algorithm
(CSA)

Salp Swarm Algorithm
(SSA)

Grasshoper Op�miza�on
Algorithm (GOA)

Central Force
Op�miza�on (CFO)

Gravita�onal Search
Algorithm (GSA)

Big-Bang Big-Crunch
(BBBC)

Magne�c Charged
System Search (MCSS)

Electromagne�c Field
Op�miza�on (EFO)

Water Evapora�on
Op�miza�on (WEO)

Op�cs Inspired
Op�miza�on (OIO)

Mul�-Verse Op�mizer
(MVO)

Thermal Exchange
Op�miza�on (TEO)

Henry Gas Solubility
Op�miza�on (HGSO)

Arithme�c Op�miza�on
Algorithm (AOA)

Gene�c Algorithm (GA)

Differen�al Evolu�on
(DE)

Evolu�onary
Programming (EP)

Evolu�on Strategies (ES)

Gene�c Programming
(GP)

Probability-Based
Incremental learning

(PBIL)

Biogeography-Based
Op�mizer (BBO)

Harmony Search (HS)

Imperialist Compe��ve
Algorithm (ICA)

FireWork Algorithm
(FWA)

Human Group Forma�on
(HGF)

Teaching Learning-Based
Algorithm (TLBA)

Football Game Inspired
Algorithm (FGIA)

FA2

Simulated Annealing (SA)

Tabu Search (TS)

Guided Local Search (GLS)

Iterated Local Search (ILS)

Stochas�c Local Search
(SLS)

Variable Neighborhood
Search (VNS)

Greedy Randomized
Adap�ve Search

Procedure (GRASP)

Swarm-based Physics-based Evolu�onary-based Human-based

Single-based
metaheuris�cs

Improved GWO (IGWO)

GOA faster (GOAf)

Ant Lion Op�mizer (ALO)

Covariance Matrix
Adapta�on Evolu�on
Strategies (CMAES)

Sine Cosine Algorithm
(SCA)

Interior Search Algorithm
(ISA)

Pity Beetle Algorithm
(PBA)

Slime Mould Algorithm
(SMA)

Mul�-Trial vector-based
Differen�al Evolu�on

(MTDE)

Par�cle Swarm
Op�miza�on (PSO)

Ant Colony Op�miza�on
(ACO)

Ar�ficial Bee Colony
(ABC) Algorithm

Cuckoo Search Algorithm
(CS)

Firefly Algorithm (FA)

Metaheuris�cs

Fig. 1   The mosaic of metaheuristic optimization algorithms

5460	 N. D. Lagaros et al.

1 3

Deterministic structural optimization problems that do
not involve uncertainties of any kind can be classified into
three broad categories: (i) sizing, (ii) shape, and (iii) topol-
ogy optimization. In sizing optimization, usually the design
variables have to do with some geometric characteristics of
the cross sections of the members, for example in a truss or
a frame structure, in 2D or 3D. In shape optimization, the
optimizer can change the locations of the nodes or other
control points of the geometry of the structure, changing
this way the overall shape of the structure. In topology opti-
mization, the optimizer can completely change the topology
of the structure, by adding or removing elements, creating
holes in slabs, etc. These three categories are not always
discrete and clearly distinguishable from each other. Many
times, we end up with mixed sizing-shape structural optimi-
zation problems, where both the geometric characteristics of
the sections and the locations of some nodes are subject to
change. In other cases, we have mixed shape-topology opti-
mization problems where again the shape and the topology
can be simultaneously changed by the optimizer.

2.1 � New MOAs Assessed Through SOPs

The collection of metaheuristic algorithms is being continu-
ously enriched with new methods and new, improved varia-
tions of existing methodologies. Researchers keep proposing
new optimization schemes claiming that their performance
is better than the one of other algorithms, at least in the
optimization test examples examined. Many times, these
test examples come from the field of structural engineering
as these problems are usually some of the hardest to deal
with. In other words, the performance of a new MOA is
assessed through structural optimization problems, instead
of the usual mathematical functions, or in addition to them.

Cuckoo search (CS) was originally presented by Yang
and Deb [23] as a new metaheuristic based on the obligate
brood parasitic behaviour of some cuckoo species com-
bined with the Lévy flight behaviour of certain birds and
fruit flies. The implementation of the algorithm involves
Lévy flights with random steps, providing random walk
capabilities to the method. In another study [24], the same
authors applied the algorithm to solve engineering design
optimisation problems, including the design of springs and
welded beam structures. In addition, Gandomi et al. [25]
assessed the validity and performance of the algorithm in
handling SOPs. In particular, CS is assessed with several
SOPs including the design of a pin-jointed plane frame with
a fixed base, the minimization of the vertical deflection of
an I-beam, the design of a piston component, the minimum-
weight design of the corrugated bulkhead for a tanker, the
design of a cantilever beam and a tubular column, a three-
bar truss, a reinforced concrete beam design, and others. A
multi-objective version of the CS algorithm was proposed in

[26] by Yang and Deb, assessed again through of structural
design optimization problems, such as beam design and disc
brake design.

Cheng and Prayogo proposed the symbiotic organisms
search (SOS) algorithm [27], a method which simulates the
symbiotic interaction strategies adopted by organisms to sur-
vive and propagate in an ecosystem. To show the capabilities
and the robustness of the algorithm, the authors used 26
mathematical problems as well as five engineering design
problems including the design of a cantilever beam, the min-
imization of the vertical deflection of an I-beam, and two
plane truss structures with 15 and 52 members. Yang pro-
posed a Bat-inspired optimization algorithm [28], based on
the echolocation behaviour of bats, in an attempt to combine
the advantages of existing algorithms. The new algorithm
is compared to GA and PSO in handling optimization prob-
lems. The method was first assessed through engineering
optimization problems in the work of Yang and Gandomi
[29] using eight nonlinear engineering optimization prob-
lems. Shadravan et al. [30] proposed the sailfish optimizer, a
metaheuristic inspired by a group of hunting sailfish, tailored
in solving constrained engineering optimization problems.
The particularity of the algorithm is that it maintains two
populations, one of sailfish for intensification of the search
around the best so far and one of sardines for diversification
of the search space. After evaluating the algorithm in 20 well
known unimodal and multimodal mathematical functions,
the authors proceed with testing it in different engineering
optimization problems including an I-beam design problem,
a Welded beam design problem, a Gear train design prob-
lem, a 3-bar truss design problem and a Circular antenna
array design problem.

Heidari et al. [31] introduced Harris hawks optimization
(HHO), simulating the hunting behaviour of Harris’ Hawks.
The algorithm is inspired by the cooperative behaviour and
chasing style of Harris’ hawks in nature, called surprise
pounce, where hawks pounce a prey from different direc-
tions trying to surprise it. The effectiveness and performance
of the method is tested on 29 benchmark problems and sev-
eral real-world engineering design problems. Askarzadeh
[32] introduced Crow search algorithm in 2016, for solving
constrained engineering design optimization problems. The
algorithm is based on the intelligent behaviour of crows and
based on the idea that crows store their excess food in hid-
den places and retrieve it when it is needed. The method is
applied to six engineering design problems with different
natures and level of complexity. Eskandar et al. [33] pro-
posed another nature-inspired metaheuristic, the so called
water cycle algorithm. The algorithm is based on the obser-
vation of water cycle process and how rivers and streams
flow to the sea in the real world. The algorithm comes with
an embedded constraint handling mechanism and is suited
to handling constrained engineering optimization problems.

5461The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

2.2 � MOAs for Solving New Formulations of Sizing
SOPs

Sizing optimization is one of the most important and argu-
ably the most widely applied structural optimization disci-
pline because of the simplicity of the problem formulation
and its practical significance for the design of real-world
structures composed of linear elements, such as columns,
beams and truss members. The class of sizing optimization
problems was the first application of optimization algorithms
in structural engineering.

Farshi and Alinia-ziazi [34] proposed a new methodology
for the design of truss structures with optimum weight incor-
porating the force method based on the method of center
points. The design variables of the optimization problem
are the cross-sectional areas of the members. The method
utilizes the largest hyperspheres inscribed within the feasi-
ble space and the analysis step is included in the optimiza-
tion cycle. Kociecki and Adeli [35] developed GA with two
phases to solve the problem of the design of space-frame
roof structures with minimum weight (size optimization).
They compared their results with the ones obtained with
the commercial design software SAP2000, against the fac-
tors of: (a) convergence improvement, (b) computation time
reduction, and (c) practicality of the optimum design. The
advantages of this two-phase GA approach are the following:
(a) the design process can be fully automated, even for one-
of-a-kind structures, (b) the design time, no longer based on
trial and error, can be drastically reduced, and c) a lighter
and more economic design can be achieved.

Hasançebi et al. [36] investigated the use of genetic
algorithms (GA), simulated annealing (SA), evolution
strategies (ES), particle swarm optimizer, tabu search,
ant colony optimization (ACO) and harmony search (HS)
in the optimum design of real size pin jointed structures,
where design limitations were imposed based on the allow-
able stress design code of American Institute of Steel Insti-
tution (ASD-AISC). The authors claim that HS and GA
are characterized by slow convergence in large-scale prob-
lems, while SA and ES proved to be powerful techniques.
Kaveh et al. [37] presented a performance-based optimal
seismic design of frame structures using the ACO method.
The structural response at various seismic performance
levels, is simulated and evaluated using non-linear push-
over analysis. The authors claim that ACO is more capable
than GA for handling this type of problems and the rel-
evant results are illustrated via two example steel frame
structures. Moayyeri et al. [38] applied the PSO algorithm
for the optimum design of reinforced concrete retaining
walls taking into account both geotechnical and structural
constraints for the optimization problem and considering
different methods of the bearing capacity computation.

Gholizadeh and Milany [39] proposed an improved fire-
works algorithm [40] (IFWA) for discrete sizing optimiza-
tion of steel skeletal structures. The algorithm features the
possibility of interaction among different solutions dur-
ing the optimization process. IFWA is employed to deal
with the discrete structural optimization problems of steel
frames and trusses. Bureerat and Pholdee [41] proposed an
adaptive differential evolution algorithm for the solution
of optimal truss sizing problems. The method is based on
DE while a strategically adaptive scheme is also employed,
together with an effective constraint handling technique for
dealing with constrained structural optimization problems.
Hasançebi and Kazemzadeh [42] employed an exponential
big bang-big crunch algorithm for the discrete design opti-
mization of steel frames. Two real-world numerical design
examples are used, including a 132-member unbraced steel
frame and a 209-member industrial factory building. The
method proved to be robust and efficient in tackling practi-
cal design optimization instances of steel frames. Another
work on the optimum design of steel structures is the one
by Lagaros et al. [43] where the optimum design of 3D
steel structures with perforated I-section beams is exam-
ined. The problem is formulated as a combined sizing,
shape and topology optimization problem where the cross-
sectional dimensions of beams and columns are the sizing
variables, while the number and size of web openings in
the beams are the topology and shape design variables.

Papadrakakis et al. [44] proposed the use of evolu-
tion strategies to perform structural sizing optimization
of space frames under seismic loading conditions. In this
work the authors used two methods for the dynamic analy-
sis of the structure, namely the traditional design response
spectrum approach and the direct integration approach
[45] using artificial accelerograms compatible with the
elastic design response spectrum. Fragiadakis et al. [46]
went one step further in the optimum design of structures
under dynamic loading, by proposing a performance-
based optimum design methodology for steel structures
subjected to seismic loading, considering the inelastic
behavior (via pushover analysis) and the life-cycle cost
of the structure. The life-cycle cost of the structure was
also taken into account in the work of Mitropoulou et al.
[47], for the assessment of optimally designed reinforced
concrete buildings under seismic actions. In this work, the
performance of the structure is evaluated in multiple earth-
quake hazard levels using incremental static and dynamic
analyses, while the life-cycle cost is taken into account
as an additional objective function, other than the initial
weight of the structure.

5462	 N. D. Lagaros et al.

1 3

2.3 � MOAs for Solving New Formulations of Shape
and Topology SOPs

Kociecki and Adeli, previously mentioned for their work in
sizing optimization [35], extended their work to sizing and
topology optimization also, where they used a two-phase
genetic algorithm for solving the sizing and topology optimi-
zation problem of free-form steel space frame roof structures
[48]. They applied the algorithm to two real-life space roof
structures. The initial design in both cases is a real design
performed by a design office iteratively using a general-
purpose structural analysis software in a period of several
days. The proposed method resulted in savings of 12% and
4% for the two example cases, respectively. The previously
mentioned work of Kociecki and Adeli was further extended
for handling sizing, topology, and shape optimization of
free-form steel space-frame roof structures with complex
geometries using evolutionary computing [49]. Two meth-
ods of changing the geometry of the structure are presented,
a simple one for mostly regular geometries, as well as a more
complex one. The aim was to achieve an optimal design by
changing the geometry of the roof structure while simultane-
ously optimizing the roof member, the column dimensions
and the roof topology. Additional constraints, having to do
with esthetics have been added to the algorithm as heuristic
limits to avoid undesirable changes in the architectural form.
Efficiencies in the range of 10–16% have been achieved for
the two examined example structures using the proposed
methodology.

Amir [50] introduced a new computational approach
for optimizing reinforced concrete structures. The major
goal was to reduce the amount of material (weight) used
in concrete structures, which is extremely desirable due to
the negative environmental impact of cement production.
Building lighter concrete structures can be considered an
important step towards more sustainable architecture. The
fundamental concept was to integrate realistic finite element
modelling of reinforced concrete with topology optimization
algorithms based on a sensitivity analysis. The strain soften-
ing response of concrete was treated as a continuum, with
a nonlocal damage model used to account for it. Reinforce-
ment was embedded in the continuum concrete domain and
represented as a set of all allowable rebar placements. In a
topology optimization approach combining truss-based and
continuum-based approaches, both materials, concrete, and
the steel reinforcement, were designed simultaneously. It
was discovered that the optimized designs performed 20%
to 30% better than the standard structures in terms of load-
bearing capacity per unit weight. Lagaros et al. [51] also
investigated the application of optimization methods in the
design of 3D reinforced concrete buildings, where the aim
was to minimize the eccentricity between the mass center
and the rigidity center of each story, handled as a combined

topology and sizing optimization problem. The optimized
design led to a significant reduction in the structural cost
of the building in the test examples considered. Zakian and
Kaveh [52] conducted a research study on the topology opti-
mization of shear walls considering material volume and
displacement constraints. The aim was to optimize the struc-
tural compliance under seismic loads commonly applied to a
shear wall. The one-field density approach of simplified iso-
tropic material with penalization (SIMP) was employed and
enriched with a penalty function for dealing with the drift
constraint of shear walls. The optimality criteria method was
incorporated for the solution of the optimization problem.
Various heights are defined for shear walls to obtain opti-
mized configurations under different circumstances. The
shear wall-frame interaction that influences the single and
coupled shear walls was assessed. The results of the investi-
gation revealed the material distribution of shear walls and
vital parts of the structure where openings or cut-outs should
not be created.

Kaveh and Kalatjari [53] performed size/topology opti-
mization of trusses using a genetic algorithm (GA), the
force method and concepts of graph theory. The applica-
tion of the force method, together with the theory of graphs,
allowed the generation of a suitable initial GA population.
If unstable trusses were identified during the process, they
were penalized properly. The efficiency of the method was
illustrated using numerical examples and comparisons to the
corresponding results from previous studies. Tian et al. [54]
carried out a study which aimed to apply topology optimiza-
tion approaches in offshore platform structural design and
examine how this might help produce better solutions and
methods while reducing the design, deployment, and manu-
facturing costs. The methodology can be used at an early
design stage, which helps in determining the initial structure
and transmission path. The entire design space is selected as
the available space for the design variables, and the objective
is to maximize the structural stiffness. Deformation, stress
and vibration-related constraints are imposed, all contrib-
uting to creating the constraints for a multi-criteria design
assessment. The results of the optimization procedure were
verified by FE analysis for static and dynamic performance.

De Souza et al. [55] optimized transmission line towers
by dividing the structure into modules that can take various
pre-determined topologies. Shape and size were optimized
at the same time as the topology. Two example cases were
considered, a tower with eight different load cases, and a
self-supported tower that was subjected to a cable rupture
scenario and a wind load. When compared to a classical
topology optimization procedure, the obtained results indi-
cated a reduction of up to 6.4% in the final structural weight.
Jiang et al. [56] proposed four shape optimization problems
in order to obtain reasonable shapes for free-form shell
structures with both high static and dynamic performance.

5463The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

Static performance was measured by strain energy under
static loads, whereas dynamic performance was measured
by the lower bound on the fundamental natural frequency
or strain energy under seismic stresses. The self-weight and
live loads are applied, and an optimization problem is ini-
tially developed for reducing the strain energy under fre-
quency constraints. After that, the strain energy associated
with the comparable seismic static load is minimized. In the
cases where the design variables were dense, the surface
curvature was added as the second objective function in a
multi-objective optimization problem, to avoid ending up
to an undesirable shape. The efficacy of the approach was
demonstrated in several numerical examples.

Papadrakakis et al. [57] investigated the use of combina-
torial optimization methods, in particular evolution strate-
gies, for handling structural shape optimization problems.
According to the study, the combination of ES with SQP
gives very promising results in shape optimization problems,
especially when also taking advantage of a parallel comput-
ing environment. The efficiency of the ES was confirmed
in the work of Lagaros et al. [58], which investigated the
optimum design of shell structures with stiffening beams
using an ES optimization scheme, considering sizing, shape
and topology design variables.

Belevičius et al. [59] developed a method for optimiz-
ing simultaneously the shape, size, and topology of tall,
guyed masts. Strength, stability, and slenderness constraints
were imposed while designing the mast structure against
self-weight and wind loading. The guyed mast’s nonlinear
behavior was simplified by considering the nonlinear guys
as approximate boundary conditions for the mast. Following
the selection of the best solution from a set of Evolution-
ary Algorithm (EA) solutions, the pattern search algorithm
was used to thoroughly investigate the solution’s surround-
ings, after the best solution was chosen. A conventional
96 m steel guyed mast holding a standard antenna cluster
was optimized using the method. The optimization of the
mast with various sets of design parameters revealed that
the most relevant mast schemes had three to five guys’ clus-
ters, with the optimal mat scheme being the one with five
guys’ clusters. Mam et al. [60] studied the optimization of
the shape of a timber braced framed structure with dowel-
type connections subjected to an overall drift restriction
as well as strength requirements under wind and gravity
loads. The primary goal of the study was to demonstrate the
importance of joint flexibility in achieving the best possible
solution for a truss-like construction. To establish a simpler
relationship between joint stiffness and axial load-carrying
capability, dowel-type connections are first investigated.
The established local behavior rule is then used to the shape
optimization and design of a discrete braced frame subjected
to lateral drift constraints under wind load. A two-level
optimization approach was developed, using the low-level

optimization methods fully stressed design (FSD) and a rig-
orously determined optimality criteria (OC) for size optimi-
zation and a more general optimization approach for shape
optimization. This approach provides more control over the
optimization process as well as the use of specific optimiza-
tion methods for each sub-problem. When compared to clas-
sical results, the semi-rigid behavior of connections results
in a substantial increase in the volume of wood, but it also
has an impact on the optimum form and the topology of the
X-braced frame.

Pastore et al. [61] presented a novel optimization method
for designing lightweight concrete structural components
based on an integrated Risk-Factor and Stress-Constrained
method, which can account for the asymmetrical compres-
sion and traction stresses that characterize concrete materi-
als. In a simply supported beam arrangement, the algorithm
was tested across a set of concrete material characteristics.
When compared to a traditional Von Mises stress condition,
the Risk Factor method showed to be more efficient in pro-
ducing optimal beams when dealing with a variety of asym-
metrical stress restrictions. The method was embedded in an
iterative heuristic algorithm, which was then put to the test
in a simply supported beam setup with a large number of
concrete classes. The findings of the study indicate that the
suggested approach can improve the traditional Von Mises
paradigm by producing optimized beams that can withstand
a variety of asymmetrical stress constraints. In an effort to
support and advance sustainable architecture, Frangedaki
et al. [62] investigated the design of tree-shaped structural
systems using the advanced characteristics of a bamboo
material native to South America, and to test its effective-
ness by means of a structural parametric design optimization
approach. Two structural systems, an elliptical-shaped one
and a quadrangular one were parametrized and optimized.

2.4 � Hybrid Methods Based on MOAs for Solving
SOPs

Various hybrid methods have been proposed in the literature
combining the advantages of different methodologies in an
effort to achieve higher quality results and increased speed.
Some of the hybrid approaches simply try to speed up the
convergence of the optimization algorithm, usually combin-
ing different types of optimizers that work well either in
searching the general search space or specialize mostly in
local search. Other approaches combine different numerical
methodologies, in an attempt to reduce the computational
effort of the optimization scheme, especially when handling
large-scale structural optimization problems.

Plevris and Papadrakakis [63, 64] presented a hybrid
PSO-gradient algorithm for the global optimization of
2D and 3D truss structures. In this work, the Particle
Swarm Optimization [65] method was enhanced with a

5464	 N. D. Lagaros et al.

1 3

gradient-based sequential quadratic programming (SQP)
optimizer for handling constrained optimization problems
of 2D and 3D trusses. The methodology proved to be bet-
ter in finding optimal solutions for structural optimization
problems compared to traditional (non-hybrid) optimiza-
tion approaches. Similarly, Aydilek [66] proposed a hybrid
firefly [67] and particle swarm optimization (HFPSO)
algorithm for computationally expensive numerical prob-
lems. The algorithm combines the strongest points of
firefly and particle swarm algorithms, while it mitigates
the disadvantages of both methods. The hybrid algorithm
is checked in several benchmark engineering mechanical
design problems including the pressure vessel, welded
beam, and tension and compression spring.

Using both GA and neural networks (NN), Gholizadeh
et al. [68] proposed a method to find the optimal weight
of structures subject to multiple natural frequency con-
straints. GA is used to find the optimal weight, through the
virtual sub-population (VSP) method. NN is employed to
evaluate the natural frequencies, through a wavelet radial
basis function (WRBF). This is the first time WRBF has
been employed to identify the natural frequencies of the
structure as previously it was only employed to identify
other structural characteristics. The test examples included
a 10-bar aluminum truss and a 200-bar steel double layer
grid. The result of the investigated algorithm (VSP &
WRBF) is compared to an exact analysis result and an
approximate one obtained by a single RBF neural network,
and it is found that for an efficient trial structural optimi-
zation, the best results (in terms of weight & time) are
obtained by VSP & WRBF. Nguyen and Vu [69] employed
composite differential evolution (CoDE) for structural
optimization, where the optimization scheme is accom-
panied with neural networks used as surrogate models for
speeding up the process by rapidly evaluating the fitness of
candidates. First, CoDE is used in the traditional way, but
the fitness values of the possible solutions are saved to the
database. After enough data have been generated, NN is
trained with these data to provide inexpensive estimations
of the fitness function value of other individuals. Three
structural benchmark problems are used, the 10-bar truss,
25-bar truss, and 72-bar truss. The methodology achieves
a significant reduction of the computational, by around
60%. In the same direction of employing neural networks
in an optimization procedure, Papadrakakis et al. [70]
investigated the application of NN models to substitute
the time-consuming structural analysis phase in large-
scale shape and sizing structural optimization problems,
achieving significant computational advantages, especially
in large-scale optimization problems. A similar approach
was employed by the same group in [71], where this time
the NN models were applied in a reliability-based struc-
tural optimization framework.

Lagaros et al. [72] proposed an adaptive neural network
strategy for improving the computational performance of
evolutionary structural optimization. In this work, NN is
used to predict, the feasibility or infeasibility of structural
designs in the framework of an ES optimization procedure.
The NN is adaptive, in the sense that its configuration is
updated incorporating knowledge about the search domain
acquired during the optimization phase. Lagaros and Papa-
drakakis [73] assessed the performance of differential evolu-
tion, harmony search and particle swarm optimization, with
reference to their efficiency and robustness for the opti-
mum design of real-world structures with a large number
of degrees of freedom. In addition, a neural network-based
prediction scheme of the structural response was proposed
for assessing the quality of each candidate design during the
optimization procedure. The same authors [74] proposed a
novel method to improve network training using an adap-
tive activation function with a properly updated gain param-
eter, where the efficacy of the methodology was examined
in structural optimization problems with NN being used to
replace the structural analysis phase.

Liao [75] proposed two hybrid differential evolution
algorithms for dealing with engineering design optimization
problems. One of them strengthens the exploitation ability
by providing DE [76, 77] with a local search operator, i.e. a
random walk with direction exploitation. The second hybrid
approach enhances DE with its combination with harmony
search to achieve a synergetic effect. The two hybrid algo-
rithms are assessed with 14 engineering design optimiza-
tion problems selected from different fields of engineering.
Kaveh [78] proposed a hybrid scheme where swallow swarm
optimization (SSO) [78] is implemented in the framework
of particle swarm optimization (PSO) to form the hybrid
particle swallow swarm optimization (HPSSO) algorithm,
in an attempt to achieve a good balance between global and
local search. The new scheme is evaluated by solving 11
mathematical optimization problems and 6 truss design
engineering problems.

Carbas [79] used an enhanced firefly algorithm for the
design optimization of steel frames under the load and resist-
ance factor design–American Institute of Steel Construc-
tion (LRFD-AISC) steel design code provisions, where steel
profiles for the members are selected from a given table of
steel sections. The study proposes an enhancement of firefly
algorithm by adding two new expressions for the attractive-
ness and randomness parameters. Two real-world design
examples are successfully designed using the enhanced
algorithm. Talatahari et al. [80] introduced a new hybrid
scheme, ES-DE, of Eagle Strategy [81] with Differential
Evolution, for the optimum design of frame structures.
The performance of the hybrid algorithm is evaluated by
solving four benchmark problems where the objective is to
minimize the weight of steel frames. Khalilpourazari and

5465The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

Khalilpourazary [82] proposed a hybrid algorithm based on
water cycle [33] and moth-flame optimization (MFO) [83]
algorithms for solving constrained engineering optimiza-
tion problems. In particular, the spiral movement of moths
in MFO is introduced into the water cycle algorithm in an
attempt to enhance its exploitation ability. The efficiency
of the hybrid scheme is evaluated with solving three well-
known structural engineering problems and comparing the
results with the ones of other optimizers in the literature.

2.5 � MOAs for Solving Practical, Real‑World SOPs

MOAs have been found very efficient for solving real world
problems in various disciplines and currently they are used
in the everyday professional practice with great success. In
the case of SOPs, the economic and environmental benefits
through the use of such algorithms are enormous [84, 85].
Although adopting optimization-based design procedures
can have a drastic environmental impact and contribute to
economic development, the architecture, engineering and
construction (AEC) industry appears to be reluctant in
adopting such procedures. Two of the reasons that justify the
hesitance of AEC industry is the enormous computational
effort required for solving real world SOPs and the issues
of constructability encountered on the optimized solutions
achieved. In this part of the investigation some attempts on
dealing with these issues are reported.

To speed up the optimization time in a structural opti-
mization framework based on ES, Papadrakakis et al. [86]
employed a preconditioned conjugate gradient (PCG) solu-
tion algorithm that was proved as a computationally efficient
iterative procedure for solving linear systems of equations
resulting from the FEA discretization,. The numerical tests
demonstrated the computational advantages of the meth-
odology, especially in the case of large‐scale optimization
problems and in a parallel computing environment. The
efficiency and benefits of parallel computational strategies
in structural optimization are also exhibited in [87] with
reference to ES and GA. In this work, parallel strategies
are implemented first at the optimization algorithm level
(i.e., dealing with several members of the population in
parallel), and second at the structural model (FEM analy-
sis) level, where the finite element analyses are performed
with the help of the FETI domain decomposition method.
In the same direction based on parallelism, Lagaros [8] pro-
posed the implementation of parallel computing at the level
of metaheuristic optimization, by exploiting the physical
parallelization feature of the nondominated sorting evolu-
tion strategies method. The method is accompanied by an
efficient dynamic load balancing algorithm for optimum
exploitation of the available computing resources, achieving
almost 100% speedup factors with respect to the sequential
procedure.

On the constructability issue, Lagaros [88] proposed a
generic real-world optimum design computing platform for
civil structural systems, founded on advances achieved on
MOAs, structural analysis and parallel computing. Five real-
world design projects optimized using the proposed frame-
work are presented. Lagaros and Karlaftis [89] investigated a
design procedure for steel wind towers subject to constraints
imposed by the Eurocode, formulated as a structural design
optimization problem. In this work, five test examples are
considered, in particular real-world steel wind towers with
varying heights which are optimally designed with minimum
cost.

3 � Description of the 24 MOAs

As discussed in Sect. 2, MOAs can be categorized into four
broad classes: (i) Swarm-based (SB); (ii) Physics-based
(PB); (iii) Evolutionary-based (EB); and (iv) Human-based
(HB). In this work, 24 MOAs are applied and tested into
several structural optimization problems. 14 of them belong
to the Swarm-based class, 3 to the Physics-based class, 3
to the Evolutionary-based class and 4 to the Human-based
class, as shown in Table 1. In this section a short description
of each algorithm is also provided.

An important characteristic of a MOA is the number of
main parameters that need to be adjusted for the algorithm
to work, a piece of information which is also provided in
Table 1. In this table, the variables that are adjusted ran-
domly or automatically into the range [0, 1] , and are usually
used during the search process, are not included. Based on
the number of user defined parameters ALO, SSA, TLBO
require only 2 basic parameters to be adjusted (the popu-
lation size and the maximum function evaluations), while
CMAES requires 3 parameters, the previous mentioned two
and an extra one, since there is a distinction between the
number of parents and offspring. The rest of the algorithms,
require 1 up to 7 additional user defined parameters, on top
of the two basic ones. MTDE and PBA are the most demand-
ing cases, requiring 7 extra parameters to be defined, apart
from population size and maximum function evaluations.

Although there are so many MOAs in the literature, it is
worth mentioning that according to the no free lunch (NFL)
theorem [90], there is no metaheuristic best suited for solv-
ing all optimization problems. In other words, there is no
point in trying to find the “best” overall algorithm, as it sim-
ply does not exist for all cases and all possible problems.
Different algorithms are better suited for different problems,
while also their settings and the parameters used play a very
important role in the efficiency of the algorithm for han-
dling a specific problem. As far as structural optimization
problems are concerned, it can be said that most established
metaheuristics can be used for these problems, provided that

5466	 N. D. Lagaros et al.

1 3

they can be equipped with an efficient constraint handling
mechanism for dealing with the constraints.

The above mentioned 24 optimization algorithms are
independent algorithms which have been published in dis-
tinct scientific papers, as shown in Table 1 and the relevant
references for each algorithm. For this reason, in this study,
they are treated individually, but similarities do exist among
them in some cases, in terms of their formulation, the algo-
rithmic description, and other characteristics. For example,
the multi-verse optimizer (MVO) could be considered as
a variant of differential evolution (DE), while moth-flame
optimization (MFO) has important similarities with whale
optimization algorithm (WOA). In addition, the flight equa-
tion used in dragonfly algorithm (DA) is based on the cor-
responding one of Cuckoo Search algorithm (CS) [23].

In the next sections, 3.1 to 3.24, a short description of
each of the 24 metaheuristics is presented along with their
distinct features and additional similarities with other meth-
ods and with each other. The following common notations
and characteristics have been used:

•	 si(g) is the position vector of the ith search agent, for the
gth iteration,

•	 si,j(g) is the jth element of the ith search agent,
•	 where i = 1, 2,⋯ ,NPopSize and j = 1, 2,⋯ , n,
•	 sgb(g) is the global best solution achieved so far,
•	 ubj and lbj are the upper and lower bounds of the jth

design variable (dimension),
•	 N is the maximum number of iterations,
•	 R a n d o m n u m b e r s a r e d e n o t e d a s

rk ∼ U[0, 1], (k = 1, 2, 3 and 4),
•	 The initial population is generated randomly in the design

space,
•	 The global best solution found so far is considered by

many algorithms as the target to be chased by the agents.

3.1 � Grey wolf Optimizer (GWO)

GWO refers to a swarm-based metaheuristic [91] inspired
by the hunting mechanism and leadership hierarchy of grey
wolves (Canis lupus). During the iterations of GWO, candi-
date solutions are classified into alpha, beta, delta and omega
classes. The best one constitutes class alpha, the second and
third best candidates belong to classes beta and delta, respec-
tively, while the rest ones are part of the omega class. The
three main operators of the algorithm are: chasing the prey,

Table 1   The 24 investigated
optimization algorithms

1 Population size and maximum function evaluations
2 Number of parents and offspring plus maximum function evaluations

ID Acronym Name and references Class Year Parameters

1 GWO Grey wolf optimizer [91] SB 2014 1 + 21

2 IGWO Improved GWO [92] SB 2020 1 + 21

3 WOA Whale optimization algorithm [93] SB 2016 2 + 21

4 ALO Ant lion optimizer [94] SB 2015 0 + 21

5 CMAES Covariance matrix adaptation evolution strategies [95] EB 2001 0 + 32

6 MTDE Multi-trial vector-based differential evolution [96] EB 2020 7 + 21

7 DA Dragonfly algorithm [97] SB 2016 1 + 21

8 GOA Grasshopper optimization algorithm [98] SB 2017 2 + 21

9 GOAf Improved GOA [99] SB 2020 2 + 21

10 MFO Moth-flame optimization [83] SB 2015 2 + 21

11 MVO Multi-verse optimizer [100] PB 2016 3 + 21

12 SCA Sine cosine algorithm [101] PB 2016 1 + 21

13 SSA Salp swarm algorithm [102] SB 2017 0 + 21

14 PSO Particle swarm optimization [65] SB 1995 4 + 21

15 FA Firefly algorithm [67] SB 2008 5 + 21

16 ICA Imperialist competitive algorithm [103] HB 2007 4 + 21

17 DE Differential evolution [76, 77] EB 1995 2 + 21

18 HS Harmony search [104] HB 2001 4 + 21

19 TLBO Teaching–learning-based optimization [105] HB 2011 0 + 21

20 KH Krill herd [106] SB 2012 4 + 21

21 ISA Interior search algorithm [107] HB 2014 1 + 21

22 PBA Pity beetle algorithm [108] SB 2018 7 + 21

23 SMA Slime mould algorithm [109] SB 2020 2 + 21

24 AOA Arithmetic optimization algorithm [110] PB 2021 4 + 21

5467The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

encircling and then attacking it. The position vectors si(g + 1)
are defined as follows:

and

where coefficient vectors Ai,1,Ai,2 and Ai,3 are defined as
A = 2a × r1 − a , where parameter a is decreased linearly
from 2 to 0 to switch the values of A vectors outside and
inside of [−1, 1] ; s� , s�ands� are the position vectors of the
prey for each set, i.e. the first, second and third best agents
obtained so far; D� ,D� and D� denote the distances of the
agent of the corresponding set to the prey:

where C1,C2 and C3 are coefficient vectors
(
Ci = 2 × r2

)
 .

Alpha, beta, and delta are the agents who lead the search
and omega is a follower. In every iteration, parameters a and
Ci are defined, while vectors A andD are updated.

3.2 � Improved GWO (IGWO)

An improvement of GWO algorithm [91] was proposed in
2020 [92], in an attempt to enhance the population diversity
and to improve the equilibrium amid global and local search.
The new algorithm (IGWO) can be considered as a variation
of the existing GWO algorithm. In this variation, neighbor-
ing information can be shared amongst candidates through the
dimension learning-based hunting (DLH) scheme, that aims
to improve global search domain using multi neighbors learn-
ing. According to IGWO, candidates are selected either based
on either GWO or DLH schemes depending on the quality of
their new positions:

where sn,i(g) denotes the ith dimension of a random neighbor
and sr,d(g) is an agent randomly chosen from the population.

3.3 � Whale Optimization Algorithm (WOA)

WOA metaheuristic [93] depends on the hunting scheme of
humpback whales, which is of spiral bubble-net type. The

(2)si(g + 1) =
si,1(g) + si,2(g) + si,3(g)

3

(3)
si,1(g) = s�(g) − Ai,1 × D�

si,2(g) = s�(g) − Ai,2 × D�

si,3(g) = s�(g) − Ai,3 × D�

(4)
D� = ||C1 × s�(g) − si(g)

||
D� =

|||C2 × s�(g) − si(g)
|||

D� =
||C3 × s�(g) − si(g)

||

(5)

si,DLH(g + 1) = si,j(g) + r1 ×
(
sn,j(g) − sr,j(g)

)
,

si(g + 1) =

{
si,GWO(g + 1)Eq.(2) if f

(
si,GWO

)
< f

(
si,DLH

)
si,DLH(g + 1) otherwise

search process relies on three procedures: search (explora-
tion), encircling, and bubble-net attacking (exploitation).
The later one simulates the humpback swim type of whales
around prey composed by two movements: spiral-shaped
path towards the sea surface and shrinking circle, chosen
with 50% probability each:

where D denotes the distance to the prey of the ith search
agent (whale) according to Eq. (6), A is a coefficient vector
as defined for GWO and D�

=
|||sp(g) − si(g)

||| , parameter b
controls the form of the logarithmic spiral, number l is ran-
domly chosen in [−1, 1] . The position vector of the prey sp(g)
contains the global best solution achieved so far, or a ran-
domly chosen agent out of the current iteration, depending
on whether the search purpose represents exploitation or
exploration, respectively.

3.4 � Ant Lion Optimizer (ALO)

ALO metaheuristic [94] simulates the synergy between
ants and antlions during a hunting process. During the
main procedure, the location of antlions and ants is
renewed by means of five operators up to convergence:
random walk of ants, traps building by antlions, ants
entrapment, prey catching, and re-building traps for
another prey. For numerically modelling the ants’ random
walk the following formula is used:

where cs(⋅) stands for cumulative sum function of its vec-
tor input argument, N is the maximum number of allowed
iterations, r

(
g1
)
 is a stochastic function that returns 1 when

r1 > 0.5 and 0 otherwise. In order to mimic the sliding of
ants towards the antlion in the trap, the radius of ants’ ran-
dom walk is shrunk. When a fitter prey is caught, the antlion
renews its position to the prey. The random walk of each
ant is affected by two antlions; one selected by the roulette
wheel mechanism and another which is saved in the memory
as the “elite” antlion.

3.5 � Covariance Matrix Adaptation Evolution
Strategies (CMAES)

CMAES method [95] represents a self-adaptation pat-
tern which is entirely de-randomized, where the covari-
ance of mutation is altered first aiming to enhance like-
lihood of generating the specific step. Subsequently, the

(6)

si(g + 1) =

{
sp(g) − A × D if r1 < 0.5]

D� × eb×l × cos(2𝜋 × l) + si(g) otherwise

(7)
s(g) =

[
0, cs

(
2r
(
g1
)
− 1

)
, cs

(
2r
(
g2
)
− 1

)
, cs

(
2r
(
gN

)
− 1

)]

5468	 N. D. Lagaros et al.

1 3

modification degree is updated based on the amount of
strategy parameters allowed to be altered. Then, accord-
ing to a random selection scheme the expectation of the
covariance matrix is stationary. In addition, the adaptation
mechanism is independent of the coordinate system. In the
(g + 1)th iteration, � new offspring are generated as follows:

where si(g + 1) ∈ ℜn (i = 1, ..., �) , random numbers
N
(
m(g),C(g)

)
 are normally distributed where mean value

vector m(g) ∈ ℜn and C(g) is the covariance matrix, while
global step size �(g) ∈ ℜ+.

3.6 � Multi‑trial Vector‑Based Differential Evolution
(MTDE)

The performance of differential evolution (DE) algorithm
is highly affected by the employed search strategy and the
parameter settings. In order to cover a variety of problems,
multiple search strategies should be combined [90]. In this
direction, Nadimi-Shahraki et al. [96] proposed MTDE, a
DE variant, where three different search strategies are com-
bined, producing the so called multi-trial vector (MTV)
approach. More specifically the trial vector procedures
(TVP) are the representative based (R-TVP), one which
maintains diversity, the local random based (L-TVP) one
that ensures the balance between exploration and exploita-
tion, and the global best history based (G-TVP) one that
enhances the exploitation ability:

where indices ri1 and ri2 are random integers within the cor-
responding population range, mutually exclusive and dif-
ferent than index i . Mutation factor F controls the magni-
tude of variation and coefficients a1 and a2 are functions of
seven user defined variables ( WinIter,H, ini, fin,�,�f and� )
[96]. si,b(g) and si,w(g) are the best and worst members of
R − TVP sub-population while si,gbh(g) is the ith member
of history best archive. Subsequently, crossover operator
is used based on a trial vector ui(g + 1) and then the new
population is generated by means of the search operator
(see description of DE below). In contrast with DE variants
that distribute the population into smaller subpopulations
of the same size, MTV employs a winner-based policy, that
distributes the subpopulation not in an equal manner, but

(8)
si(g + 1) ∼ N

(
m(g), �2(t) × C(g)

)
∼ m(g) + �(g)N

(
0,C(g)

)

(9)vi(g + 1) =

⎧
⎪⎨⎪⎩

si(g) + F ×
�
si,b(g) − si(g)

�
+ F ×

�
si,w(g) − si(g)

�
+ a1 ×

�
sr(g) − si(g)

�
,R − TVP

si(g) + F ×
�
sri1 (g) − sri2 (g)

�
+ a2 ×

�
sr(g) − si(g)

�
, L − TVP

si,gbh(g) + a2 ×
�
sri1(g) − sri2(g)

�
,G − TVP

i = 1, 2, ...,NR−TVP or NL−TVP or NG−TVP

using the approach “the better the search strategy, the larger
the subpopulation it will handle”. MTV approach introduces
adaptive movement steps that rely on a life-time archive that
preserves and shares information of the restored promising
solutions while also maintaining population diversity.

3.7 � Dragonfly Algorithm (DA)

DA is a swarm-intelligence metaheuristic that mimics the
surviving swarm behavior of dragonflies [97]. The algorithm
is implemented through five swarm movements. In nature,
dragonflies follow this scheme either in static swarming
(hunting), or in dynamic swarming (migration). The hunt-
ing swarming is simulated during the exploration phase of
the optimization, in which the dragonflies create sub swarms
and fly back and forth over different areas within the search
domain. The dynamic migration swarming is simulated dur-
ing the exploitation phase, where the dragonflies fly in larger
swarms and along one direction. To simulate this scheme,
the step vector is defined as follows:

where Si , Ai̇ , Ci , Fi , Ei are the five parameters of the swarm
behavior defined as, Separation that maintains avoidance of
individuals collision in a neighborhood, Alignment control-
ling the velocity matching between the neighboring agents,
Cohesion referring to the individuals’ tendency to the neigh-
borhood, Attraction to food, and Distraction from enemies.
respectively. The parameters s, a, c, f and e, are weighting
factors and w is an inertia weight. The position vector is

given by:

where

where � is a constant and � is a function of � . It is worth
mentioning that Lévy flights were first used by the Cuckoo
Search (CS) algorithm [23].

(10)
Δs(g + 1) = (s × Si + a × Ai̇ + c × Ci + f × Fi + e × Ei) + w × Δs(g)

(11)

s(g + 1) =

{
s(g) + Δs(g + 1), if neighbors around

s(g) + L
�
e vy(d) × s(g), if no neighbor around

(12)L
�
e vy(x) = 0.01 ×

r1 × �

||r2||
1

�

5469The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

3.8 � Grasshopper Optimization Algorithm (GOA)

GOA metaheuristic [98] mimics the natural swarm behavior
of grasshoppers. A grasshopper’s movement is based mainly
on the social interaction with its neighbors. It is described in
terms of three zones: attraction, repulsion, or comfort zone
state. In order for the swarm to converge to one optimal point
eventually (global optimum), two mathematical terms are
added to let the best-found solution at each iteration affect
the next swarm direction, and also to shrink gradually the 3
zones that control each grasshopper’s movement, in order to
avoid being stuck at the comfort zone so early with no fur-
ther movement (i.e. trapped in a local optimum). To model
this behavior mathematically, the following equations are
used. The position of ith grasshopper is given by:

where shrinking coefficient c ≤ 1 , and SocInt defines the
social interaction of the grasshopper with its neighbors,
where G() represents the social force, either attraction
(during exploitation) or repulsion (during exploration),
expressed as follows:

where the size of the attraction, repulsion and comfort zones
can be adjusted by the intensity of attraction f and the attrac-
tive length scale l . Convergence of grasshoppers towards
the target over the course of iterations, is actually due to
decreasing c that is a function of its maximum and minimum
values, and the target effect of pulling the swarm. The next
position of a population member is affected by its current
position, the target position, and the positions of all other
members. This behavior is in contrast to PSO, in which the
swarm particles’ positions (except for the best individual) do
not play a role in defining the next movement of a particle.

3.9 � Improved GOA (GOAf)

GOAf metaheuristic [99] is a variant of the original GOA
[98] with the change of a specific implementation feature,
in particular the update expression of coefficient c , and the
application of random walk. Given that coefficient c is used
to balance between exploitation and exploration, it should
remain close to unity during the first iterations and then be
reduced at a lower value cmin in order to support exploitation,
according to

(13)

si,j(g + 1) = c ×

�
NPopSIze∑
k=1

c ×
ubj−lbj

2
× SocInt

�
+ sgb,j(g)

SocInt = G
����sk,j(g) − si,j(g)

���
�

sk,j(g)−si,j(g)

dik

(14)G(r) = f × e
−r

l − e−r

where l is the attractive length scale ( L is the maximum
value of the length), � controls the variation of c , as it
defines the rate in which c will be decreased, with typical
values � = 3or4 . Furthermore, in order to avoid premature
convergence a biased random walk is also used, similar to
the one of cuckoo search algorithm [23].

3.10 � Moth‑Flame Optimization (MFO)

MFO algorithm [83] relies on the transverse orienta-
tion navigation patterns of moths. In particular, the spiral
movement of moths towards artificial lights is the part in
the transverse orientation method that is simulated in the
MFO’s movement operator. In the transverse orientation
approach, a moth flies by fixing a certain angle with respect
to the light source, forming a spiral fly path, which ensures
convergence. To maintain investigating the most promising
areas of the search space, moths si,M(g) (search agents) take
flames si,F(g) (best-found solutions) as the source of light
and fly spirally around them. To preserve exploration and
avoid local optima, each moth is allowed to alter its position
using only one specific flame. The new positions of moths
si,M(g + 1) are then defined as:

where S() is the spiral function calculated over the ith month
and the jth flame as follows:

It is the same spiral-shaped path expression used by the
WOA metaheuristic in Eq. (6), that was presented a year
later than MFO. Constant b defines the shape of the loga-
rithmic spiral, t is a random number in [r, 1] , and r is lin-
early decreased from − 1 to − 2 over the course of iterations
to promote the exploitation proportional to the number of
iterations (the lower g , the closer the distance to the flame).
For further promotion of the exploitation proportional to
the number of iterations, the number of flames is decreased
gradually over the course of iterations, until all moths at the
final step update their positions with respect to only one
flame.

(15)c =

⎧
⎪⎨⎪⎩

exp

�
−0.5 ×

�
l

L∕𝜎

�2�

cmin, otherwise

, if c > cmin

(16)si,M(g + 1) = S(si,M(g), sj,F(g))

(17)
S(si,M(g), sj,F(g)) =

|||si,M(g) − sj,F(g)
||| × eb×g × ���(2� × g) + sj,F(g)

5470	 N. D. Lagaros et al.

1 3

3.11 � Multi‑Verse Optimizer (MVO)

MVO metaheuristic [100] was inspired by the relevant multi-
verse theory in physics. Three concepts of multi-universe
are simulated, namely white holes, black holes, and worm-
holes, where the relevant models associated with these con-
cepts are used for exploration, exploitation and local search,
respectively. The white holes are the main component for
the birth of a universe, while black holes will attract eve-
rything towards them with their enormous gravitational
force. Wormholes, on the other hand, connect different
parts of a universe and in the multi-verse theory they can
also connect one universe to another. Objects (variables)
travel from white holes (solution with high fitness function
value) to black holes (solutions with low fitness function
value), while searching for better fitness values. The white
holes are selected using a roulette wheel mechanism. The
exchange of variables through white and black holes main-
tains the exploration of the search space, while wormholes
exist randomly in any universe (regardless of its fitness func-
tion value) to assist the MVO in exploiting the search space,
through transporting a universe’s objects within its space in
a random manner. The process starts with the creation of
a set of random solutions. In every iteration, variables in
the solution agents with high objective values tend to move
towards others with lower (better) objective values via the
white and the black holes (exploration):

where coefficients TDR and WEP are gradually modified
(increased and decreased, respectively) over the iterations as
functions of three variables (maximum and minimum values
of WEP and parameter p ). Meanwhile, all the members are
moved towards the best solution randomly regardless of their
own solution fitness value, which maintains the diversity.

3.12 � Sine Cosine Algorithm (SCA)

SCA metaheuristic algorithm [101] relies on the concept of
randomly generated agents that are forced to fluctuate either
towards or outwards the best-found solution according to a
sine–cosine behavior. The positioning of the agents is itera-
tively guided by a random-walk function:

(18)si,j(g + 1) =

⎧⎪⎨⎪⎩

�
sgb,j(g) + TDR ×

��
ubj − lbj

�
× r4 + lbj

�
, if r4 < 0.5

sgb,j(g) − TDR ×
��
ubj − lbj

�
× r4 + lbj

�
, if r4 ≥ 0.5

, if r2 < WEP

si,j(g), otherwise

(19)

si(g + 1) =

{
si(g) + r1 × 𝑠𝑖𝑛(r2) ×

|||r3×sgb(g) − si(g)
|||, if r4 < 0.5

si(g) + r1 × 𝑐𝑜𝑠(r2) ×
|||r3×sgn(g) − si(g)

|||, otherwise

where random numbers r1 indicates the region of the next
position, either inside or outside the space between the solu-
tion and its destination, r2 defines how far the movement
will be, r3 gives a random weight to control the effect of
destination in defining the distance, and r4 has the role of
switching between the sine and cosine functions. The cyclic
form of cosine and sine functions guarantee exploitation of
the search space. While exploration is achieved by modify-
ing the r1 range of the sin/cosine function, where a solution
will be able to move outwards its destination point. In order
to promote the exploitation over exploration as the iteration
number goes higher r1 is defined as:

where g and N denote the current and maximum iterations
allowed, respectively, and a is a constant.

3.13 � Salp Swarm Algorithm (SSA)

SSA is a simple and easy-to-implement metaheuristic
[102] that mimics the swarming behavior of the ocean
salps travelling in form of a salp chain. The chain consists
of a leader and a number of followers. The leader goes
towards an artificial source of food, and the followers sim-
ply enjoy the ride behind the leader. In the optimization

process, the best-found solution is considered as a target
to be chased by the salps afterwards, iteratively. The algo-
rithm is equipped with two movement equations, one for
the leader and one for the followers. The leader walk is
actually a random movement, but towards the source of
food (best-found solution so far), which maintains inves-
tigating the most promising regions in the search space
during the optimization process. On the other hand, the
followers walk with respect to each other following the
leader in a gradual movement based on Newton’s law of
motion. The following equation is used to update the posi-
tion of the leader:

where s1,j(g + 1) shows the jth dimension of the leader and
coefficient c1 balances exploration and exploitation. The
position of the followers is updated as:

(20)r1 = a − g ×
a

N

(21)

s1,j(g + 1) =

{
sgb,j(g) + c1 ×

((
ubj − lbj

)
× r2 + lbj

)
r3 ≥ 0

sgb,j(g) − c1 ×
((
ubj − lbj

)
× r2 + lbj

)
r3 < 0

5471The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

where i ≥ 2.

3.14 � Particle Swarm Optimization (PSO)

PSO [65] is an optimization algorithm that works with a
population of solutions, called particles. Each particle has
a position and a velocity in the design space while all the
particles together form the so called “swarm”. The method
mimics the behaviour of birds and particles “fly” in the
search space looking for the optimum solution. With itera-
tions, the particles adjust their velocities and positions based
on their own “experience”, the experience of neighbouring
particles and also the one of the “best” particle. The experi-
ence of a particle is about the best position they have seen,
i.e. the best objective function value they have encountered
in their path so far. This way PSO combines local and global
search, balancing exploration and exploitation. The velocity
and the position of every particle is updated as follows

where vi(g) is the velocity of ith particle and si,pb(g) is the
personal best (found by ith particle); c1 and c2 are the cog-
nitive and social parameters (constant parameters of the
method), respectively and coefficient w is a weight function.

3.15 � Firefly Algorithm (FA)

FA is a metaheuristic inspired by the natural flashing behav-
iour of fireflies [67, 111]. Each firefly is considered to be
attracted to brighter fireflies, while exploring and searching
for prey. The brightness of each firefly is associated with the
objective function value. The movement of the ith firefly
which is attracted by a brighter jth firefly is determined by
the formula:

where � is the light absorption coefficient, ag is the randomi-
zation parameter, �i(g) is a vector of random numbers gener-
ated based on a Gaussian or uniform distribution defined as
functions of � ∈ [0, 1] , �0 ∈ [0, 1] is the attractiveness when
the Cartesian distance rij = 0 , usually �0 = 1 , and � = O(1)
that characterizes the variation of attractiveness, usually var-
ies from 0.001 to 1000. The randomization parameter ag
should ideally decrease with iterations. A simple scheme to
achieve this is:

(22)si,j(g + 1) =
1

2
×
(
si,j(g) + si−1,j(g)

)

(23)vi(g + 1) = w × vi(g) + c1 × r1 ×
(
si,pb(g) − si(g)

)
+ c2 × r2 ×

(
sgb(g) − si(g)

)

(24)si(g + 1) = si(g) + vi(g + 1)

(25)
si(g + 1) = si(g) + �0 × e

−�×r2
ij ×

(
sj(g) − si(g)

)
+ ag × �i(g)

where the initial randomness a0 = 1 and � is the randomness
reduction factor which is similar to the one used for cooling
in simulated annealing. In its original version presented by
Yang [67, 111], light absorption coefficient, attractiveness β0
at r = 0 and the randomization parameter ag , are the control
parameters used. In the variant used for the purposes of this
study, also presented by Yang [112], ag is controlled by two
parameters ( a0 and � , see Eq. (26)), while the control param-
eter � is used to generate the random vector �i(g).

3.16 � Imperialist Competitive Algorithm (ICA)

ICA is an evolutionary socio-politically inspired metaheuris-
tic [103]. The idea is to consider the countries as possible
solutions, where the best ones are the imperialists ( Nimp )
and the rest are the colonies ( Ncol ). Each imperialist is sup-
posed to possess a portion of the colonies, thus forming an
empire. The evolutionary improvement of the solutions is
implemented through assimilation, revolution, title exchange

and empires’ survival/collapse operators. The normalized
power of an imperialist, i.e. the elements of the solution
vector, is given by:

where Ci denotes the normalized cost of an imperial-
ist. Given that Nimp refers to the number of imperialists,
Ncol = NPopSIze − Nimp is the number of the colonies. The
initial number of colonies of an empire will be:

and they will be randomly chosen. During the Assimilation
process (defined as function of variable �, � ), the power of
each colony approaches gradually the one of its respective
imperialist. The colonies move in random distances, along
directions towards their respective imperialist, maintaining
both exploration and exploitation capabilities. The Revolu-
tion operator maintains better exploration, in which some
colonies resist to be ruled by the imperialists, jumping out
of the empire, thus exploring new promising areas within
the search space. The Title Exchange operator is performed
to promote a colony to be an imperialist in the next itera-
tions, and vice versa. Empires’ survival/collapse occurs
after performing assimilation, revolution and title exchang-
ing processes, when the empires get either weaker or more

(26)ag = a0 × �g

(27)
si(g + 1) =

����
Ci∑Nimp

k=1
Ck

����
Ci = f

�
si(g)

�
−max

l
(f (sl(g)))

(28)Ncol,i = round
(
si(g + 1) × Ncol

)

5472	 N. D. Lagaros et al.

1 3

powerful (the power is defined through variable � ). The
weak empires collapse leaving behind their colonies that
will be taken over by the stronger ones. Convergence in ICA
occurs when either one empire finally survives (the “grand
empire”) while all the rest have collapsed, or when another
convergence criterion is met.

3.17 � Differential Evolution (DE)

Since its inception by Storn and Price in 1995 [76, 77], DE
has proven to be a powerful optimization algorithm. The
method generates a new vector through the weighted dif-
ference of two population members to a third one. Accord-
ing to the “DE/rand/1” scheme, a donor vector vi(g + 1) is
defined as:

where the indices ri1 , ri2 and ri3 are random integers within
the population range, mutually exclusive and different than
index i . The mutation factor F ∈ [0, 2] controls the magni-
tude of differential variation. The crossover operator is used
based on a trial vector ui(g + 1) which is defined from the
components of vectors si(g) and vi(g + 1):

where randi,j ∼ U[0, 1] and random integer Irand ∈ [1, n]
ensures that vi(g + 1) ≠ si(g) . The last step of the generation
procedure is the implementation of the selection operator:

Several successful variations of DE have been reported
and investigated in the literature, for general optimiza-
tion problems as well as structural optimization problems
[113–115]. It is worth mentioning that MVO metaheuristic
can be considered as a variant of DE, since the derivation
of the new design implemented by Eq. (18) represents a
combination of Eqs. (29 and 30).

3.18 � Harmony Search (HS)

HS is an algorithm inspired by music [104] which aims to
mimic the improvisation process of Jazz musicians. Every
musician (saxophonist, bassist, guitarist etc.) represents
a design variable, while the pitch range of each musical
instrument corresponds to a value of a design variable. The
Musical harmony has to do with a solution vector at a given
iteration, and the objective function is expressed by the audi-
ence’s aesthetics. Given this algorithmic concept, HS has
the following five steps: parameter initialization; harmony

(29)vi(g + 1) = sri1(g) + F × (sri2(g) − sri3(g))

(30)ui,j(g + 1) =

{
vi,j(g + 1), if randi,j ≤ CR or j = Irand
si,j(g), if randi,j > CR or j ≠ Irand

(31)si(g + 1) =

{
ui(g + 1), if f (ui(g + 1)) ≤ f (si(g))

si(g), otherwise

memory initialization; new harmony improvisation; har-
mony memory update; and termination criteria check. A
new harmony vector is defined following three rules: usage
of harmony memory, pitch adjustment and randomization.
The harmony memory has a function similar to the mutation
operator in GA. Randomization is employed to increase the
diversity of the solutions. In the case that the new generated
harmony vector is better (having a better objective function
value) than the worst harmony vector already in the harmony
memory (HM), then the new harmony vector replaces the
worst harmony. In the original variant of HS [104], the har-
mony memory consideration rate (HMCR) was the basic
control parameter, while parameters including pitch adjust-
ment rate (PAR), and fret width (FW) were fixed. In the
current version [116, 117], pitch adjustment rate, fret width
and fret width damping ratio (FWDR) are also considered as
control parameters. Thus, the main control parameters that
need to be adjusted by the user are the harmony memory
consideration rate, pitch adjustment rate, fret width and fret
width damping ratio.

3.19 � Teaching–Learning‑Based Optimization (TLBO)

TLBO is a population-based metaheuristic inspired by the
human teaching and learning behavior [105]. Using two
main operators, Teacher Phase and Learner Phase, the stu-
dents (solutions) get improved in terms of their grades (fit-
ness function value). The taught subjects are represented by
the design variables. The indication of the students’ level of
knowledge in a specific subject, is the mean value of their
grades in the subject. The best candidate (the one having the
best fitness) sgb(g) is set as a teacher, and for the rest of the
candidates, the mean value of each design variable is cal-
culated: smean,j(g) = mean

[
si,j(g)

]
 . Then, the Teacher Phase

(TF) starts, by enhancing the students’ level of knowledge,
through pulling the mean value of each design variable to
the corresponding one in the teacher’s solution:

where integer Tf is randomly set as 1 or 2, with equal prob-
ability. The second operator (Learner Phase) also provides
an improvement for the solutions through the interaction
between the candidates themselves:

where sri1 (g) and sri2 (g) are two randomly chosen solutions.

(32)

snew,i(g + 1) = si(g) + r1 × (sgb(g) − Tf × smean(g))

sTF,i(g + 1) =

{
snew,i(g + 1), if f

(
snew,i(g + 1)

)
better f

(
si(g)

)
si(g), otherwise

(33)

si(g + 1)

=

⎧⎪⎨⎪⎩

sTFi(g + 1) + r1 ×
�
sri1 (g) − sri2 (g)

�
, if f

�
sri1 (g)

�
better f

�
sri2 (g)

�

sTFi(g + 1) + r ×
�
sri2 (g) − sri1 (g)

�
, otherwise

5473The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

3.20 � Krill Herd (KH) Algorithm

KH is a metaheuristic inspired by the krill herding in nature
[106], in which the movement of each individual of the
swarm has three main pillars to determine its time-depend-
ent position: the whole swarm movement, seeking food and
random spread. The objective of Krill herd is to minimize
the distances of each individual krill from the food location.
For modelling the motion of the individuals mathematically,
the following formula is employed:

where Ni is the motion induced by the swarm movement
(function of its user defined maximum value Nmax ), Fi is
the foraging motion (function of user defined variable vf in
[0, 1] ), and Di is the physical diffusion of the ith krill [106]
(function of its user defined maximum value Dmax ). While
the position of the krill is updated as follows:

where constant Ct is a real number in [0,2]. Subsequently
the well-known crossover and mutation operators are imple-
mented over the Krills’ locations. One of the advantages of
the algorithm, according to the authors of the original study
[106], is that only one parameter, the time interval ( Ct ) needs
to be fine-tuned.

3.21 � Interior Search Algorithm (ISA)

ISA metaheuristic [107] was inspired by the architectural
process of the interior design and decoration. In the interior
design and decoration process, there are two main concepts
used to find the best view and decoration; composition and
mirror concepts. Composition refers to the process of replac-
ing the items’ position until getting the best view, while mir-
ror denotes the concept of placing mirrors near the most
beautiful items in order to emphasize their beauty. These two
concepts are followed in ISA, where the candidates (with
the exception of the fittest candidate) are randomly divided
into two groups: the composition group in which the candi-
dates change their position only when it gives fitter values,
and the mirror group in which some mirrors are placed near
the fittest candidates giving them higher weights among the
population. The position vector is defined as follows:

(34)
dsi(g)

dt
= Ni + Fi + Di

(35)si(g + 1) = si(g) + Δt ×
dsi(g)

dt

(36)Δt = Ct ×

n∑
j=1

(ubj − lbj)

where ub(g) and lb(g) denote the upper and lower bounds of
the composition group at the gth iteration, while parameter
a needs to be fine-tuned. The location of sgb(g) is slightly
changed by means of random walk using a variable �.

3.22 � Pity Beetle Algorithm (PBA)

PBA is a metaheuristic optimization algorithm [108]
inspired by the behaviour of the six-toothed bark beetle
(pityogenes chalcographus beetle) when searching for food.
This beetle feeds on the bark of the trees. PBA simulates
the searching for food behavior of this bark beetle, with
three main stages; initialization of a population consisting
of males and females, regeneration of new populations, and
location update stage. In the first stage, an initial population
consisting of males and females is randomly located within
the search space. Some males act as pioneers as they search
for the most suitable host, aggregating into it by producing
pheromone that attracts the other males and females. The
initial population in PBA should be well diversified in order
to avoid premature convergence. To ensure diversification,
the initial population is generated by means of a random
sampling technique. In the second stage, every particle will
look for a better position in the search space to create its own
population. This is done through five types of hyper volume
selection patterns: neighboring search volume, global-scale
search volume, large-scale search volume, mid-scale search
volume and memory consideration search volume. In the
last type, the best-found positions are saved and used. In the
third stage, the position of each mating male and female is
updated, removing the previous positions except those that
are kept in the memory for the memory consideration search
volume. By experiments, it is proved that PBA can handle
NP-hard optimization problems.

3.23 � Slime Mould Algorithm (SMA)

SMA is a stochastic metaheuristic [109] that simulates the
slime mold process that Physarum polycephalum forages in
a way that leads to the food through optimal paths, produc-
ing positive and negative indications out of the propagation
wave that is resulted from the bio-oscillator. The formula
for updating the location of the slime mould (wrap food) is
defined as follows:

(37)

si(g + 1)

=

{
lb(g) + (ub(g) − lb(g)) × r2, if r1 ≤ a(composition group)

r3 × si(g) + (1 + r3) × sgb(g), otherwise(mirror group)

5474	 N. D. Lagaros et al.

1 3

where z = 0.03 based on a parametric study, parameter vc
is decreased linearly from 1 to 0 and vb ∈ [−a, a] , sA(g) and
sB(g) represent two individuals, randomly selected from
slime mould, W represents the weight of the slime mould
defined as a function of the best and worst solutions cur-
rently in the iterative process, and parameter p is given by

3.24 � Arithmetic Optimization Algorithm (AOA)

AOA is a newly presented population-based metaheuristic
[110], inspired by the four main mathematical operators, i.e.
addition, division, multiplication and subtraction. In order to
switch between exploration and exploitation phases, a random
number r1 is used. If r1 > moa(g) then exploration phase is
activated, otherwise, exploitation phase is implemented, where
moa(g) stands for math optimizer accelerated function of the
gth iteration:

where min and max are minimum the maximum values of
the accelerated function and N is the maximum number of
iterations. For the exploration phase:

while for the exploitation phase:

where match optimizer probability (mop) coefficient is
defined as:

where � is a small integer number, control parameter μ aims
to emphasize on exploration not only during the first steps of
the search procedure, control parameter a is used to empha-
size on exploitation accuracy during the optimization.

(38)

si,j(g + 1) =

⎧⎪⎨⎪⎩

r1 ×
�
ubj − lbj

�
+ lbj, if r2 < z

sgb,j(g) + vb ×
�
W × sA,j(g) − sB,j(g)

�
, if r2 < p

vc × si,j(g), otherwise

(39)
p = tanh

(|||f
(
si(g)

)
− f

(
sgb(g)

)|||
)

a = arctanh
(
1 −

g

N

)

(40)moa(g) = min + g ×
max − min

N

(41)si,j(g + 1) =

{
best

(
sj
)
÷ (mop + 𝜖) ×

(
(ubj − lbj) × 𝜇 + lbj

)
if r2 < 0.5

best
(
sj
)
× (mop) ×

(
(ubj − lbj) × 𝜇 + lbj

)
otherwise

(42)

si,j(g + 1) =

{
best

(
sj
)
− (MOP) ×

(
(ubj − lbj) × 𝜇 + lbj

)
if r3 < 0.5

best
(
sj
)
+ (MOP) ×

(
(ubj − lbj) × 𝜇 + lbj

)
otherwise

(43)mop(g) = 1 −
g1∕�

N1∕�

4 � Additional Features of MOAS’
Implementation for Solving Structural
Optimization Problems

MOAs represent randomized search procedures where com-
puting is combined with concepts from physical and biological
sciences like the imitation of the evolution process, the social
behaviour of species etc., and were developed originally for
solving unconstrained NP-complete problems, while so far,
they have been used for solving any type of problems, rang-
ing from engineering design to economics, routing problems,
among others. For implementing MOAs into problems related
to structural optimization, there are some special features that
need to be integrated into their implementation, such as the
handling of constraints, either related to structural perfor-
mance or box-type constraints for the bounds of the design
variables. Before presenting the results obtained through the
implementation of the 24 state-of-the-art MOAs, the authors
need to underline that although an optimized objective func-
tion value is provided for each problem found in the literature,
the scope of this study is not to achieve better results compared
to the literature, since the conditions of the implementation of
the algorithms and the characteristics of the problems’ for-
mulations are not always clear. The main scope is to present
the efficiency of these algorithms, all assessed on a common
framework and a common basis of comparison. In order to
define the common basis of comparison, all algorithms were
implemented in MATLAB using the guidelines provided by
their own developers in the original work where they were first
presented. In addition, the same stopping criterion correspond-
ing to a specific number of function evaluations and common
technique for dealing with the problem constraints were used,
for both performance and box-type constraints. Last but not

least, the same procedure has been implemented also for the
discrete and the integer design variables.

A feasibility rules-based procedure is used for handling the
constraints. In order to calculate the fitness function of an infea-
sible individual, pviolation factor is introduced which is the indi-
vidual’s normalized maximum constraint violation multiplied
by a term that takes into account the number of the violated
constraint functions of a solution. This factor is defined as:

where the term nconstviol denotes the number of violated con-
straint functions and nconst stands for the total number of con-
straints. Then, in order to calculate the individual’s fitness
function, the pviolation factor is multiplied with the maximum

(44)

pviolation = ‖max�max�0, gj(s)
��‖ ×

�
1 +

nconstviol

nconst

�
> 1

5475The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

objective function value between the best feasible individual
found until now and the individual itself. The fitness func-
tion is formulated as:

where fbestfeasible is the global best feasible solution found so
far. The constraints of Eq. (1) can be divided into two broad
categories; function constraints and bound constraints. The
first category includes the inequality and equality constraints
and represents a more complex type of constraints, defined
as functions. The second category concerns the variable’s
upper and lower limits (bounds) which restrict the possible
values of the problem’s design variables. Most researches
try to optimize constrained problems using techniques that
handle the function constraints while only few have put sig-
nificant effort to handle properly the limits of the decision
variables implementing boundary constraint handling meth-
ods (BCHMs). These methods are controlling formulations
that try to modify and correct the position of an infeasible
variable solution vector of a problem and set it again inside
the search space in order to become feasible. Some of the
most known boundary constraints handling methods, where
yj is the new corrected variable vector, are the following:

It has to be noted that in the case of structural optimiza-
tion problems, the design variables are not always continu-
ous as many of them can only take integer or discrete values.
These variables, for every algorithm examined in this study,
are treated as equivalent continuous variables, using the cor-
rection function of the following simple expression:

For the case of discrete variables where there is no con-
stant step size, an integer variable is employed instead, used
as a pointer denoting the discrete value to be assigned to the
design variable.

5 � Numerical Tests

In this section, 11 benchmark test examples are investigated,
aiming to test the efficiency of the 24 MOAs presented previ-
ously. Each problem was solved by each algorithm 20 times
(i.e. in 20 independent runs), in order to remove any random

(45)

F(s) =

{
f (s) if ga(s) ≤ 0 ∀a = 1, 2, ...,ma

max
(
fbestfeasible, f (s)

)
× pviolation otherwise

(46)Projection ∶ yj =

⎧⎪⎨⎪⎩

sj if lbj ≤ sj ≤ ubj
lbj if sj < lbj
ubj if sj > ubj

(47)Correction ∶ yj =

{
floor(sj) for the integer variables

floor(sj × 10)∕10 for discrete variables of 0.1 step size

bias and to obtain the probabilistic characteristics of the
results. In total, 11 × 24 × 20 = 5280 optimization runs were
conducted. The parameters that need to adjusted and were
used during the implementation of the 24 algorithms can be
found in Table 2, they refer to those of Table 1 and correspond
to the suggested values provided by the developers of each
algorithm.

The constraints handling mechanism used for all the
employed optimization algorithms and test cases is such that
ensures that in the end of the of the optimization process all
constraints will be satisfied and there will be no constraint
violations, at all.

5.1 � Six Benchmark Structural Optimization
Problems

In this section, six benchmark structural optimization problems
are studied. First, three well-known benchmark structural truss
sizing optimization problems in 2D and 3D are investigated,
namely the 10-bar truss [34], the 25-bar truss [34] and the
72-bar truss structures [34]. All three problems refer to steel
truss structures, that are formulated as sizing structural opti-
mization problems, with their size in terms of design variables
ranging from 8 to 16 design variables. The sizing design varia-
bles are continuous values denoting the cross-section area that
is to be assigned to the specific structural element, or group
of elements. For all three problems the weight of the struc-
ture is used as the objective function, to be minimized. Next,
three well-known benchmark structural optimization problems
having an analytical expression of the corresponding problem
formulation are studied, namely the Welded beam design prob-
lem [118], the Pressure vessel design problem [118], and the
Tension–compression string problem [118].

For all six cases, the number of function evaluations
allowed, for all algorithms, was equal to the dimensionality
n of the problem times 10,000. This value for the maximum

number of function evaluations may not be optimal for each
individual problem, but it provides a common base of com-
parison for problems with different levels of complexity, while
also ensuring that the number of function evaluations will be
large enough to accommodate even the most difficult cases.

5.1.1 � 10‑Bar Truss

For the 10-bar truss problem, an independent design vari-
able is employed for each bar, resulting into a 10 design
variables problem, that are treated as continuous variables
in the range [0.1, 33.5] in2. The constraint functions imposed

5476	 N. D. Lagaros et al.

1 3

refer to (i) stress constraints, where the stress of the truss
members should not exceed the stress limit of 25 ksi, and
(ii) displacement constraints where the absolute value of the
displacement of all nodes should not exceed the limit of 2.0
in; more details on the problem formulation can be found
in [34]. The reference objective function value found in the
literature that refers to the weight of the structure is equal
to 5057.88 lb [34]. The results obtained for the 10-bar truss
problem are reported in Table 3, where it can be seen that
most algorithms achieved excellent results; the best result

for this problem was achieved by CMAES, FA, TLBO and
SMA algorithms resulting to the Best optimized value lower
than 5061 lb, while the least variance on the results obtained
out of the 20 independent optimization runs carried out for
each algorithm corresponds to IGWO, MTDE, MVO, FA,
DE and TLBO algorithms, as denoted by the coefficient
of variation with values lower than 0.10%. This problem
proved to be easy to handle for most optimizers, with very
few exceptions.

Table 2   Parameters of the 24 algorithms

5477The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

5.1.2 � 25‑Bar Truss

For the 25-bar truss problem, the structural elements are
grouped, resulting into a problem with 8 design variables,
that are treated as continuous variables in the range [0.01,
3.4] in2. The constraint functions imposed refer to (i) stress
constraints, where for tension members the stress should
not exceed the stress limit of 35 ksi and for compression
members the stress is limited according to AISC code, and
(ii) displacement constraints where the absolute value of the
displacement of all nodes should not exceed the threshold
of 0.35 in; more details on the problem formulation can be
found in [34]. The reference objective function value found
in the literature, referring to the weight of the structure, is
equal to 545.175 lb [34]. The results obtained for the 25-bar
truss problem are provided in Table 4, where it can be seen
that most algorithms achieved very good results. The best
result for this problem was achieved by CMAES, MTDE,

FA and TLBO algorithms resulting to the Best optimized
value lower than 545.20 lb, while the least variance on the
results obtained out of the 20 independent optimization runs
corresponds to CMAES, MTDE, MVO, FA, DE and TLBO
algorithms, with coefficient of variation values lower than
0.10%.

5.1.3 � 72‑Bar Truss

For the 72-bar truss problem, the structural elements are
grouped, resulting into a 16 design variables problem, that
are treated as continuous variables in the range [0.1, 3.0]
in2. The constraint functions imposed refer to (i) stress
constraints, where the stress of the truss members should
not exceed the stress limit of 25 ksi in general, and (ii)
displacement constraints, where the absolute value of the
displacement of the uppermost nodes should not exceed
the limit of 0.25 in; more details on the problem formula-
tion can be found in [34]. The reference objective function

Table 3   10-Bar truss example—collective results

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 5062.28 5069.68 5086.28 5071.16 0.14
IGWO 5061.55 5062.45 5063.21 5062.46 0.01
WOA 5171.54 5606.54 6987.53 5823.45 9.55
ALO 5062.28 5072.33 5097.44 5074.88 0.18
CMAES 5060.85 5060.85 5076.67 5063.23 0.11
MTDE 5060.86 5060.90 5060.95 5060.90 0.00
DA 5090.99 5235.04 5575.38 5257.89 2.67
GOA 5065.29 5088.91 5102.23 5087.51 0.17
GOAf 5077.83 5193.91 5633.45 5210.60 2.84
MFO 5062.74 5081.20 5429.34 5108.44 1.64
MVO 5061.76 5065.67 5072.91 5066.22 0.06
SCA 5158.26 5238.47 5307.14 5234.16 0.81
SSA 5061.99 5067.16 5087.15 5069.10 0.13
PSO 5061.27 5087.17 6279.92 5173.62 5.14
FA 5060.87 5060.95 5061.48 5061.00 0.00
ICA 5077.56 5134.42 5549.57 5175.55 2.30
DE 5062.10 5063.48 5070.28 5064.05 0.04
HS 5071.60 5102.72 5621.60 5128.90 2.28
TLBO 5060.87 5060.90 5076.71 5061.69 0.07
KH 5061.01 5061.96 5077.59 5068.60 0.16
ISA 5707.11 5896.29 7116.73 6007.23 5.41
PBA 5265.65 5410.69 5680.10 5422.12 1.82
SMA 5060.95 5061.37 5077.27 5063.78 0.11
AOA 5096.51 5299.32 5610.07 5320.36 2.43

Table 4   25-Bar truss example—collective results

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 545.58 546.59 549.06 546.81 0.18
IGWO 545.33 545.46 545.64 545.46 0.01
WOA 550.61 579.29 617.16 580.24 3.01
ALO 545.31 549.50 575.83 552.17 1.44
CMAES 545.16 545.16 545.16 545.16 0.00
MTDE 545.16 545.16 545.17 545.16 0.00
DA 545.49 562.41 662.15 572.15 5.02
GOA 545.44 547.30 611.04 554.85 3.51
GOAf 545.50 548.67 602.03 556.57 2.70
MFO 545.28 546.73 551.74 547.05 0.26
MVO 545.23 545.38 546.00 545.43 0.04
SCA 551.99 558.09 564.37 557.92 0.64
SSA 545.20 549.11 556.31 549.20 0.61
PSO 545.18 545.45 547.07 545.82 0.14
FA 545.16 545.19 545.28 545.20 0.01
ICA 545.45 549.52 554.11 549.42 0.39
DE 545.33 545.40 545.88 545.46 0.03
HS 545.92 549.43 567.12 550.39 0.86
TLBO 545.16 545.18 545.22 545.18 0.00
KH 545.22 545.53 549.14 545.79 0.17
ISA 557.59 557.91 592.64 562.97 1.74
PBA 550.95 563.09 576.02 562.34 1.08
SMA 545.19 545.35 546.25 545.45 0.05
AOA 553.75 563.42 601.81 570.16 2.38

5478	 N. D. Lagaros et al.

1 3

value found in the literature, referring to the weight of the
structure, is equal to 379.66 lb [34]. The results obtained
for the 72-bar truss problem are provided in Table 5. It can
be seen that most of the algorithms achieved very good
results. The best result for this problem was achieved by
GWO, IGWO, CMAES, MTDE, PSO, FA, TLBO, KH
and SMA algorithms resulting to the Best optimized value
lower than 379.70 lb, while the algorithms GWO, IGWO,
CMAES, MTDE, FA, DE, TLBO and SMA achieved the
least variance, with values of the coefficient of variation
lower than 0.10%.

5.1.4 � Welded Beam Design Problem

The well-known welded beam design problem [118] can
be formulated as follows:

w h e r e P = 6000lb  , L = 14in  , E = 30 × 106psi  ,
G = 12 × 106psi  , �max = 13600psi  , �max = 30, 000psi  ,
�max = 0.25in . More details on the problem and its formulation
can be found in [118]. The reference objective function value
found in the literature is equal to 1.72485084 [118]. The results
obtained for the welded beam problem are provided in Table 6.
It can be seen that most of the algorithms achieved very good
results managing to reach the vicinity of the optimum. The
best result for this problem was achieved by CMAES, MTDE,
MFO, PSO, FA and TLBO algorithms resulting to the Best
optimized value lower than 1.7249, while the least variance
on the results obtained out of the 20 independent optimiza-
tion runs carried out for each algorithm corresponds to IGWO,
CMAES, MTDE, FA and TLBO algorithms as denoted by the
coefficient of variation with values lower than 0.10%.

5.1.5 � Pressure Vessel Design Problem

The pressure vessel problem [119] is formulated as follows:

(48)

Minimize f (s) = 1.10471s2
1
s2 + 0.04811s3s4

�
14.0 + s2

�
Subject to

g1(s) = �(s) − �max ≤ 0

g2(s) = �(s) − �max ≤ 0

g3(s) = s1 − s4 ≤ 0

g4(s) = 1.10471s2
1
s2 + 0.04811s3s4

�
14.0 + s2

�
− 5.0 ≤ 0

g5(s) = 0.125 − s1 ≤ 0

g6(s) = �(s) − �max ≤ 0

g7(s) = P − Pc(s) ≤ 0

where

�(s) =
�

(��)2 + 2�����
s2

2R
+ (���)2

�� =
P√
2s1s2

��� =
MR

J

M = P
�
L +

s2

2

�

R =

�
s2
2
+(s1+s3)

2

4

J = 2

�√
2s1s2

�
s2
2

12
+

(s1+s3)
2

4

��

�(s) =
6PL

s4s
2
3

�(s) =
4PL3

Es3
3
s4

Pc(s) =
4.013E

√
s2
3
s6
4

6L2

�
1 −

s3

2L

�
E

4G

�

Table 5   72-Bar truss example—collective results

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 379.69 379.78 379.93 379.80 0.02
IGWO 379.69 379.75 379.90 379.75 0.01
WOA 411.27 472.21 536.62 477.52 6.97
ALO 381.05 385.22 421.12 390.83 3.07
CMAES 379.61 379.61 379.61 379.61 0.00
MTDE 379.62 379.62 379.62 379.62 0.00
DA 385.36 421.09 508.78 427.72 8.11
GOA 380.86 434.26 540.58 446.20 12.55
GOAf 381.30 403.39 579.48 423.11 11.84
MFO 379.86 380.53 447.17 391.68 4.99
MVO 379.94 381.61 387.65 382.00 0.46
SCA 415.92 428.07 445.85 429.14 2.08
SSA 380.64 383.68 412.35 387.53 2.23
PSO 379.62 379.63 467.15 391.63 6.41
FA 379.62 379.62 379.63 379.62 0.00
ICA 388.63 400.48 503.47 459.63 13.76
DE 379.66 379.69 379.74 379.69 0.01
HS 380.25 381.95 386.68 382.33 0.45
TLBO 379.62 379.62 379.62 379.62 0.00
KH 379.68 379.78 430.68 385.96 4.16
ISA 451.79 755.51 947.13 727.08 21.18
PBA 416.96 439.93 453.68 439.38 2.11
SMA 379.65 379.70 379.77 379.70 0.01
AOA 482.52 506.23 525.30 505.17 2.82

5479The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

where s1,s2 design variables are integer multipliers of 0.0625.
More details on the problem formulation can be found in
[119]. Τhe reference objective function value found in the
literature is equal to 5888.3400 [92]. The results obtained
for the welded beam problem are provided in Table 7, where
it is shown that while some algorithms achieved very good
results, others failed to do so. The best result for this prob-
lem was achieved by ALO, MTDE, FA, TLBO and SMA
algorithms. Some algorithms achieved a better (smaller)
optimum value than the reference value reported in the lit-
erature and these results are denoted with bold in the table.
The least variation of the results was exhibited by GWO,

(49)

Minimize f (s) = 0.6224s1s3s4 + 1.7781s2s
2
3
+ 3.1661s2

1
s4 + 19.84s2

1
s3

Subject to

g1(s) = −s1 + 0.0193s3 ≤ 0

g2(s) = −s2 + 0.00954s3 ≤ 0

g3(s) = −�s2
3
s4 −

4

3
�s3

3
+ 1296000 ≤ 0

g4(s) = s4 − 240 ≤ 0

IGWO, MTDE and TLBO algorithms, with values of the
coefficient of variation lower than 0.10%.

5.1.6 � Tension–Compression String Problem

The tension–compression string problem [118] can be formu-
lated as follows:

(50)

Minimize f (s) =
(
s3 + 2

)
s2s

2
1

Subject to

g1(s) = 1 −
s3
2
s3

71785s4
1

≤ 0

g2(s) =
4s2

2
−s1s2

12566(s2s31−s
4
1)
+

1

5108s2
1

− 1 ≤ 0

g3(s) = 1 −
140.45s1

s2
2
s3

≤ 0

g4(s) =
s2+s1

1.5
− 1 ≤ 0

Table 6   Welded beam design problem—collective results

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 1.725815 1.727201 1.732929 1.727801 0.10
IGWO 1.725205 1.726402 1.727412 1.726407 0.03
WOA 1.764439 2.066289 3.805661 2.320700 24.75
ALO 1.738265 2.033519 2.270306 2.077232 6.62
CMAES 1.724852 1.724852 1.724852 1.724852 0.00
MTDE 1.724861 1.724871 1.724927 1.724879 0.00
DA 1.736235 1.808789 2.497832 1.949844 13.34
GOA 1.758468 2.240731 3.395531 2.330782 16.02
GOAf 1.842398 2.275301 3.370820 2.353270 17.04
MFO 1.724852 1.967988 3.051153 1.994456 19.11
MVO 1.761176 1.964720 2.239683 1.953782 7.37
SCA 1.792420 1.869048 1.943238 1.865548 2.15
SSA 1.936579 2.037333 2.316735 2.089118 5.61
PSO 1.724852 1.724852 1.974449 1.737488 3.21
FA 1.724852 1.724852 1.724852 1.724852 0.00
ICA 1.725042 2.151993 4.197115 2.347707 28.54
DE 1.761492 1.833467 2.142021 1.875381 5.79
HS 2.356651 3.160089 4.310701 3.179208 17.22
TLBO 1.724852 1.724852 1.724852 1.724852 0.00
KH 1.731836 2.124365 3.097703 2.249855 18.47
ISA 1.890158 3.304555 4.262717 3.264702 20.62
PBA 1.797781 1.904672 2.038480 1.912669 3.46
SMA 1.725136 1.725794 1.839148 1.732070 1.46
AOA 1.950500 2.225528 2.617353 2.283393 8.51

Table 7   Pressure vessel design problem—collective results

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 5851.70 5852.63 5854.93 5853.15 0.02
IGWO 5850.65 5850.99 5851.88 5851.23 0.01
WOA 6254.77 7463.27 8490.07 7481.39 12.61
ALO 5850.38 6410.09 7332.84 6415.42 8.84
CMAES 6059.71 6370.78 7119.97 6492.28 7.16
MTDE 5850.38 5850.38 5850.39 5850.38 0.00
DA 6185.52 6198.52 7544.49 6482.06 9.19
GOA 5850.54 5940.26 6516.42 6043.91 4.48
GOAf 5850.41 6059.73 7050.68 6255.45 7.47
MFO 6073.18 6379.40 6410.56 6269.42 2.72
MVO 6092.04 6372.21 7333.59 6532.62 8.07
SCA 6352.29 6664.72 7734.11 6786.73 8.12
SSA 6068.85 6820.41 7273.51 6652.20 7.22
PSO 6059.71 6090.53 7544.49 6375.17 10.26
FA 5850.38 6090.53 6370.78 6098.55 3.02
ICA 6063.30 6074.21 6130.17 6083.42 0.46
DE 5883.62 5929.28 5991.73 5934.27 0.74
HS 6069.95 6432.58 6853.87 6453.31 4.31
TLBO 5850.38 5850.39 5850.42 5850.39 0.00
KH 6090.72 6410.60 6820.90 6437.27 5.49
ISA 7486.10 10400.00 13200.00 10150.69 23.22
PBA 6084.00 6422.30 6878.42 6438.08 4.45
SMA 5850.38 6090.53 7332.84 6421.01 9.60
AOA 7044.90 8574.39 14736.28 9940.79 30.76

5480	 N. D. Lagaros et al.

1 3

More details on the problem formulation can be found
in [118]. The reference objective function value found
in the literature is equal to 0.012665 [118]. The results
obtained for the tension–compression string problem are
provided in Table 8 where it can be seen that most of the
algorithms achieved excellent results. The best result
for this problem was achieved by WOA, ALO, CMAES,
MTDE, MFO, ICA, TLBO and ISA algorithms resulting
to the Best optimized value lower than 0.012668. The least
variance of the results was exhibited by IGWO, CMAES,
MTDE and TLBO algorithms with a value of the coef-
ficient of variation lower than 0.10%.

5.1.7 � Comparative Results

In order to present the globality of the algorithms’ effi-
ciency, Fig. 2 shows the variation (or relative error value)
of the best achieved optimum solution by each one of the

24 MOAs, in comparison to the reference (best reported)
solution found in the literature, for each problem. In this
diagram, lower bars represent better solutions and ide-
ally a zero-height bar (i.e. zero error) would mean that
the algorithm has achieved the same optimum as the one
found in the literature. 10 out of 24 MOAs (GWO, IGWO,
ALO, CMAES, MTDE, MFO, PSO, FA, TLBO, SMA)
managed to give excellent solutions with error values less
than 1% for all the problems examined, while 12 of them
(GWO, IGWO, ALO, CMAES, MTDE, DA, MFO, PSO,
FA, TLBO, KH, SMA) managed to end up to very good
solutions with error values less than 2% in all examined
problems. The best three overall performances were the
ones of CMAES, MTDE and TLBO, with average error
values (average over all 6 problems) less than 0.16%, fol-
lowed by MFO, IGWO, PSO and FA with average error
values less than 0.2%. These excellent results show the
clear potential of MOAs in handling structural optimiza-
tion problems.

5.2 � International Student Competition in Structural
Optimization (ISCSO 2015 to 2019)

In this section, five test examples taken from the recent
International Student Competition in Structural Optimiza-
tion events (i.e. ISCSO2015 to ISCSO2019, [9–13]), are
used for further challenging the efficiency of the 24 MOAs.
These five problems refer to steel truss structures, they are
formulated as combined sizing-shape structural optimization
problems and their size, in terms of design variables, range
from 54 to 328 design variables. The sizing design vari-
ables are integer values denoting the discrete standardized
cross-section that is to be assigned to the specific 2D or 3D
truss structural element, while the shape design variables
are continuous denoting the value of the specific node coor-
dinate. For each problem, we report a table which presents
the results obtained by the 20 independent optimization
runs, performed for each problem with the same algorithm.
In particular, each table reports the best objective function
value found in 20 runs, the median, worst and mean value,
as well as the coefficient of variation which is a standardized
measure of dispersion of the results, defined as the ratio of
the standard deviation to the mean. The number of function
evaluations allowed for the six problems, for all algorithms,
was equal to the dimension n of each problem times 1000.

5.2.1 � ISCSO 2015 Problem

The test example of ISCSO2015 [9] is formulated as a siz-
ing and shape optimization of the 45-bar 2D truss struc-
ture shown in Fig. 3, that is discretised with 45 sizing and
9 shape design variables. The sizing variables denote the

Table 8   Tension–compression string problem—collective results

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 0.012694 0.012730 0.012761 0.012729 0.12
IGWO 0.012671 0.012687 0.012703 0.012689 0.07
WOA 0.012665 0.013369 0.016708 0.013967 9.18
ALO 0.012667 0.012719 0.017741 0.013407 10.94
CMAES 0.012665 0.012665 0.012665 0.012665 0.00
MTDE 0.012667 0.012671 0.012678 0.012672 0.03
DA 0.012719 0.012869 0.017854 0.013240 8.61
GOA 0.012706 0.014500 0.024514 0.015786 19.62
GOAf 0.012864 0.015688 0.022771 0.016179 16.86
MFO 0.012665 0.012719 0.015753 0.012992 5.51
MVO 0.012739 0.014010 0.018147 0.015168 15.62
SCA 0.012840 0.013027 0.013820 0.013077 1.61
SSA 0.012678 0.012884 0.016380 0.013303 8.17
PSO 0.012685 0.012746 0.013298 0.012849 1.54
FA 0.012684 0.012719 0.012821 0.012720 0.20
ICA 0.012665 0.012670 0.012987 0.012698 0.56
DE 0.012680 0.012722 0.012825 0.012737 0.33
HS 0.012671 0.015082 0.017776 0.015229 11.47
TLBO 0.012667 0.012680 0.012706 0.012682 0.09
KH 0.012673 0.012857 0.017374 0.013204 8.46
ISA 0.012665 0.012711 0.014808 0.012823 3.70
PBA 0.012689 0.012892 0.013365 0.012942 1.49
SMA 0.012734 0.015367 0.017813 0.015145 13.29
AOA 0.012810 0.013265 0.027160 0.016390 32.74

5481The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

cross-sectional areas of the truss elements (in groups) and
take values in the range 0.1 to 15 in2 with increments of
0.1 in2. The constraint functions imposed refer to (i) stress
constraints, where the stress of the truss members should
not exceed the stress limit of 30 ksi, and (ii) displacement
constraints where the absolute value of the displacement of
all nodes should not exceed the limit of 2.0 in. More infor-
mation about the problem formulation (including loading
conditions, design variables grouping etc.) and how it can
be implemented through a simple MATLAB function for
the structural analysis and design of this particular truss is
provided in [9].

The best value achieved in the framework of the com-
petition was equal to 3861.1045 lb and it is taken as the
reference value for comparison in the present study. The
results obtained from the 24 MOAs, for the ISCSO2015
two-dimensional truss optimization problem, are pre-
sented in Table 9. In this test example, DE outperformed
the other algorithms resulting to the Best optimized value
of 5046.70 lb, followed by PBA, SSA and SCA. The worst
performance in terms of final best objective value is the
one of GWO (7847.57 lb) followed by IGWO, ICA and
GOAf. IGWO exhibited the least variation on the results
obtained out of 20 independent optimization runs (4.07%),
but its performance was overall poor when we consider the

Fig. 2   Performance of the 24 algorithms in the group of the 6 benchmark test problems: a Algorithms 1–12, b Algorithms 13–24

5482	 N. D. Lagaros et al.

1 3

value of the objective function achieved. From the top-5
performers in terms of best objective value achieved (DE,
PBA, SSA, SCA and KH), SSA showed a good balance
between best value and variation, with a best value of
5126.45 lb and a coefficient of variation equal to 20.60%.
Interestingly, when the median or the mean values are
taken into account, things are different with the top per-
formers being FA, CMAES, TLBO, SMA and ICA. So,
the top-5 performers in terms of best value achieved are
completely different than the top-5 performers when the
median value or the average value is taken into account.

5.2.2 � ISCSO 2016 Problem

The test example of ISCSO2016 [10] refers to the steel can-
tilever 3D truss structure shown schematically in Fig. 4. The
structure consists of 117 members and 30 nodes in total.
The problem is formulated as a combined sizing and shape
optimization problem, with 117 sizing and 7 shape design
variables. The sizing design variables can only take integer
values ranging from 1 to 37 representing the section ID from
a database of 37 pipe sections. The shape variables have
to do with the vertical coordinates of the 14 top nodes of
the structure, grouped in pairs. The structure is designed
according to AISC-LRFD 1994 regulations, and each mem-
ber is assessed considering the limit states of tensile yielding
and compressive buckling. Thus, the constraint functions
imposed refer to (i) stress constraints where the truss mem-
bers should satisfy the stress requirements of the code, and
(ii) displacement constraints where the absolute value of
the displacement of all nodes should not exceed the limit of
4.0 cm. More information about the problem formulation

Fig. 3   The ISCSO2015 two-
dimensional truss problem
(dimensions in in)

Table 9   ISCSO2015 test example—collective results (objective func-
tion values in lb)

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 7847.57 8667.70 10011.98 8695.66 6.77
IGWO 7322.22 8098.97 8473.70 8051.59 4.07
WOA 5153.90 8488.70 12175.60 8777.50 26.66
ALO 5208.14 7458.92 11850.75 7940.61 24.95
CMAES 5633.38 6038.90 6680.38 6077.00 4.77
MTDE 5469.02 8735.15 10092.62 8587.29 14.10
DA 5209.22 7823.33 12532.20 8530.07 28.06
GOA 5170.39 7970.05 12574.50 8254.99 27.90
GOAf 5844.59 9264.72 12128.22 9078.35 24.41
MFO 5423.47 8495.52 11808.38 8455.49 21.34
MVO 5205.39 8247.57 12432.26 8462.21 22.52
SCA 5128.14 9778.64 12139.61 8903.87 28.97
SSA 5126.45 9893.93 11772.47 9441.13 20.60
PSO 5373.44 8828.13 11243.41 8391.92 19.99
FA 5226.31 5797.08 6868.02 5862.77 8.19
ICA 6014.06 7301.66 8567.34 7387.79 11.08
DE 5046.70 8960.40 12341.89 9023.18 26.10
HS 5247.47 9043.99 10581.26 8655.61 16.99
TLBO 5692.23 6499.32 9156.10 6846.41 14.23
KH 5136.65 8579.90 12542.30 8753.96 30.60
ISA 5471.80 8978.11 12088.31 8932.18 24.23
PBA 5113.99 8548.61 12559.71 8780.52 27.83
SMA 5666.07 6559.16 7910.83 6730.15 9.36
AOA 5193.87 9100.84 12234.46 9072.24 26.50

5483The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

(including loading conditions, design variables etc.) and how
it can be implemented through a simple MATLAB function
for the structural analysis and design of this particular truss
is provided in [10].

The best value achieved in the framework of the com-
petition is equal to 2816.0281 kg and it is taken as the ref-
erence value for comparisons. The results obtained from
the 24 MOAs, for the ISCSO2016 three-dimensional truss
optimization problem, are presented in Table 10. In this test
example, CMAES outperformed the other algorithms result-
ing to the Best optimized value of 3862.19 kg, followed by
DA, GOAf, SCA and MFO. A similar trend is seen when
the median or average values are taken into account. In the
median case criterion, the top-5 performers are CMAES,
SMA, FA, IGWO and ICA. In this test example, CMAES has
consistently shown the best performance, in terms of both
the best value achieved and also the median value and the
mean value over the 20 independent runs. The worst perfor-
mances in terms of the median value are the ones of PBA,
DE, GOA, SCA and MFO, while the worst performers in
terms of the best value are PSO, DE, MVO, HS and TLBO.
Interestingly, CMAES also exhibited the least variation on
the results obtained out of 20 independent optimization runs
(0.55%), followed by IGWO, HS, MTDE and SMA in this
criterion.

5.2.3 � ISCSO 2017 Problem

The test example of ISCSO2017 [11] refers to the 3D steel
truss structure shown in Fig. 5. It consists of 198 members
and 52 nodes. The problem is formulated as a sizing and

Fig. 4   The ISCSO2016 three-dimensional truss problem (dimensions in mm)

Table 10   ISCSO2016 test example – collective results (objective
function values in kg)

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 4965.04 5898.39 6722.70 5774.91 8.42
IGWO 4382.93 4515.26 4688.40 4508.56 1.64
WOA 4417.05 6969.41 8608.95 6862.18 19.89
ALO 4709.22 7095.62 8400.86 6842.96 13.12
CMAES 3862.19 3913.07 3941.95 3910.77 0.55
MTDE 4776.83 5063.14 5489.69 5071.87 3.90
DA 3891.69 6405.33 9296.56 6550.99 24.52
GOA 4294.78 7411.09 8637.58 7245.68 12.24
GOAf 3971.69 6084.66 9502.94 6235.25 25.00
MFO 4050.96 7309.54 9150.50 6812.72 23.94
MVO 5530.12 6299.50 7532.81 6363.06 8.35
SCA 3972.65 7334.26 9557.15 6877.93 27.51
SSA 4245.66 7044.14 9472.31 6878.10 21.04
PSO 5976.08 6904.59 8628.51 6931.45 11.01
FA 4215.88 4510.99 4939.68 4514.09 4.56
ICA 4339.00 4642.72 5083.93 4645.91 4.56
DE 5770.26 7499.07 9532.21 7439.93 18.37
HS 5303.45 5506.09 5716.85 5539.99 2.70
TLBO 5040.97 5387.82 6267.89 5465.42 7.13
KH 4441.11 5921.93 7531.86 5846.85 19.77
ISA 4361.39 6878.25 9234.16 6696.96 22.67
PBA 4181.79 7895.46 9269.37 7278.02 26.80
SMA 4306.85 4412.69 4934.29 4482.34 4.21
AOA 4979.00 6433.52 9327.49 6943.43 24.16

5484	 N. D. Lagaros et al.

1 3

shape optimization problem with 198 sizing variables (one
for each member) and 13 shape design variables, resulting in
211 design variables in total. The sizing variables can only
take integer values ranging from 1 to 37 representing the
section ID from a database of 37 pipe sections. The struc-
ture is designed according to AISC-LRFD 1994 regulations,
considering the limit states of tensile yielding and compres-
sive buckling for each member. The constraint functions
imposed refer to (i) stress constraints, where the truss mem-
bers should satisfy the stress requirements of AISC-LRFD
1994, and (ii) displacement constraints where the absolute
value of the displacement of all nodes should not exceed the
limit of 100.0 mm. More information about the problem for-
mulation (loading conditions, design variables etc.) and how
it can be implemented through a simple MATLAB function
for the structural analysis and design of this particular truss
is provided in [11].

The best value achieved in the framework of the com-
petition is equal to 44090.5356 kg and it is considered the
reference value for comparison in the present study. The
results obtained from the 24 MOAs, for the ISCSO2017 Fig. 5   The ISCSO2017 three-dimensional truss problem (horizontal

dimensions in mm)

Table 11   ISCSO2017 test
example—collective results
(objective function values in kg)

Some algorithms achieved an optimum value close to or better than the reference value reported in the lit-
erature; these results are denoted with bold in Tables [3–13] containing the results of the investigation per-
formed. Accordingly, some algorithms depict low coefficient of variation (CoV) values, denoting robust-
ness on their performance; these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 67002.68 117756.09 153277.42 113644.64 31.33
IGWO 62172.46 120165.52 148519.88 114437.05 27.58
WOA 62472.37 88053.99 145342.98 98860.32 28.94
ALO 64920.22 86122.89 141814.45 98483.01 31.43
CMAES 79235.84 112207.46 154717.85 116872.75 23.58
MTDE 87374.94 105761.09 110090.33 102065.62 9.50
DA 76446.15 82123.40 122174.65 95670.80 23.69
GOA 88676.07 142898.32 152849.15 129227.54 21.77
GOAf 68000.43 118675.90 145884.71 116821.88 25.47
MFO 105213.86 111712.35 136461.41 117210.47 10.77
MVO 73336.95 109988.18 131288.65 103132.39 22.24
SCA 85895.53 116980.14 149377.89 122556.67 21.81
SSA 75099.34 125820.59 147015.58 118558.58 22.81
PSO 69185.98 101626.58 152751.45 102722.99 33.70
FA 99473.62 114855.25 126806.13 112697.90 9.05
ICA 84976.11 129741.57 152394.73 127943.81 21.58
DE 95835.68 98722.06 99984.35 98104.99 1.92
HS 91799.40 123280.33 138668.79 116235.70 15.96
TLBO 71876.54 90500.69 143171.23 98291.52 29.46
KH 109902.55 125320.46 150197.83 129067.13 12.23
ISA 107746.38 120473.00 154049.94 127515.43 15.31
PBA 63947.01 84796.79 113317.97 87974.23 24.34
SMA 72368.74 92391.89 129049.47 94824.73 23.61
AOA 66280.21 77992.87 111039.46 84010.68 20.00

5485The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

three-dimensional truss optimization problem, are presented
in Table 11.

In this test example, IGWO outperformed the other algo-
rithms resulting to the Best optimized value of 62172.46 kg,
followed by WOA, PBA, ALO and AOA. When the median
value is taken into account, the top-5 performers are AOA,
PBA, SMA, DA and DE while when the average value is
taken into account, the top-5 performers are AOA, PBA,
SMA, DA and DE. The worst performances in terms of the
median values are the ones of GOA, ICA, SSA, KH and
HS, while the worst performers in terms of the best value
achieved are KH, ISA, MFO, FA and DE. DE achieved the
least variation with a CoV value of 1.92%, followed by FA,
MTDE, MFO and KH in this criterion.

5.2.4 � ISCSO 2018 Problem

The test example of ISCSO2018 [12] refers to the 3D
steel truss structure shown in Fig. 6. The structure is
composed of 314 members and 84 nodes. The problem
is formulated as a combined sizing and shape optimiza-
tion problem having 314 sizing variables (representing the
cross-sectional areas of the truss members) and 14 shape
design variables (representing the z-coordinates of the
28 top nodes, grouped in pairs). The sizing variables can
only take integer values ranging from 1 to 37 represent-
ing the section ID from a database of 37 pipe sections.
The structure is designed according to the regulations of
AISC-LRFD 1994, considering the limit states of tensile
yielding and compressive buckling for each member. The

constraint functions refer to (i) stress constraints, accord-
ing to the stress requirements of AISC-LRFD 1994, and
(ii) displacement constraints, where the absolute value of
the displacement of any node should not exceed the limit
of 50.0 mm. More information about the problem formula-
tion (including loading conditions, design variables etc.)
is provided in [12].

The best value achieved in the framework of the com-
petition is equal to 14425.0973 kg, taken as the reference
value for comparison in the present study. The relevant
results obtained from the 24 MOAs, for the ISCSO2018
three-dimensional truss optimization problem, are pre-
sented in Table 12. In this test example, SCA outperformed
the other algorithms resulting to the Best optimized value
of 21,341.16 kg, followed by PBA, FA, MVO and GOA.
When the median value is used as a criterion, the top-5
performers are MTDE (27521.62 kg), PBA, GOA, DE and
WOA. Exactly the same are the top-5 performers if the aver-
age value is used. In terms of the CoV value and the least
variation of the results, the top-5 performers are CMAES
(16.30%), SSA, DE, TLBO and HS. The worst perform-
ers in terms of best objective value achieved are TLBO
(30754.40 kg), SSA, MFO, ISA and CMAES. If we use the
median value as the ranking criterion, the worst performers
become MFO (49296.43 kg), GWO, FA, ISA and ALO.

5.2.5 � ISCSO 2019 Problem

The test example of ISCSO2019 [13] is formulated as a
sizing and shape optimization of the 260-member 3D truss

Fig. 6   The ISCSO2018 three-dimensional truss problem (horizontal dimensions in mm)

5486	 N. D. Lagaros et al.

1 3

Table 12   ISCSO2018 test example—collective results (objective
function values in kg)

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 24645.09 47708.26 50620.89 39478.24 32.85
IGWO 24230.62 40219.53 46544.21 36938.99 28.40
WOA 26642.16 31526.44 46282.57 34898.86 23.37
ALO 25012.71 43013.61 50819.41 40600.24 23.40
CMAES 28244.96 38030.40 44975.47 37699.79 16.30
MTDE 22056.32 27521.62 48896.31 30044.00 36.66
DA 23280.23 41183.75 52325.09 38791.98 27.45
GOA 21708.44 31615.69 48482.15 33132.88 30.54
GOAf 23339.12 40642.34 50265.65 38557.28 29.24
MFO 28990.20 49296.43 51651.67 42989.19 23.48
MVO 21563.40 35968.90 44347.80 35213.84 24.26
SCA 21341.16 40146.07 51055.73 36135.45 34.78
SSA 29832.12 38218.37 45152.10 37106.54 18.65
PSO 23106.30 36025.75 50528.95 37060.66 27.86
FA 21560.03 47297.80 50730.87 42635.56 28.52
ICA 24707.18 38728.63 48458.06 38647.73 23.00
DE 26323.23 31355.72 42524.15 33843.16 18.76
HS 26401.04 40513.03 45500.21 38936.50 20.23
TLBO 30754.40 38302.58 47858.18 38270.10 19.07
KH 21811.50 38319.41 47824.84 35474.90 28.73
ISA 28387.39 43368.48 50945.76 41972.37 22.80
PBA 21492.56 30504.49 42378.49 32449.64 24.55
SMA 26122.25 40447.14 49090.18 37155.12 26.01
AOA 21854.95 42083.95 51312.41 39463.85 27.88

Fig. 7   The ISCSO2019 three-
dimensional truss problem
(horizontal dimensions in mm)

Table 13   ISCSO2019 test example—collective results (objective
function values in kg)

Some algorithms achieved an optimum value close to or better than
the reference value reported in the literature; these results are denoted
with bold in Tables [3–13] containing the results of the investigation
performed. Accordingly, some algorithms depict low coefficient of
variation (CoV) values, denoting robustness on their performance;
these results are also denoted with bold

Algorithm Best Median Worst Mean CoV (%)

GWO 18991.54 31293.86 37716.59 29968.59 23.05
IGWO 20211.42 34348.39 38904.45 32829.80 16.17
WOA 21919.76 31809.16 41527.48 32074.53 21.05
ALO 19003.75 26326.31 40925.86 27628.12 25.68
CMAES 18323.61 28785.49 43560.18 29852.75 26.81
MTDE 19421.50 31409.96 43620.59 32289.22 24.28
DA 21065.37 35332.21 43677.06 33192.22 25.72
GOA 18916.25 24385.98 41997.75 27869.24 31.01
GOAf 18696.02 29519.40 43455.02 29504.43 26.10
MFO 19721.84 31964.70 40919.61 32277.63 20.36
MVO 18597.36 30259.26 40929.23 30138.30 24.34
SCA 19942.10 34103.17 43611.44 33461.70 21.57
SSA 18331.28 24859.55 40043.42 27088.33 27.64
PSO 19287.75 27286.90 43925.87 28455.32 25.19
FA 21272.41 33280.35 41658.88 32481.87 18.97
ICA 23973.61 34020.50 43820.49 34345.02 20.15
DE 18052.67 24598.27 42599.65 28165.39 30.50
HS 21954.27 27126.90 37994.61 28601.30 20.15
TLBO 17735.41 23380.96 33541.89 25144.96 24.68
KH 18147.48 33993.82 44084.55 32554.39 28.90
ISA 19863.61 30503.88 38508.74 28701.59 24.00
PBA 18051.75 29984.21 40554.94 29450.65 20.99
SMA 29440.10 34039.64 38908.84 34063.71 6.86
AOA 17697.21 31951.31 39946.53 30512.30 22.71

5487The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

structure shown in Fig. 7. The structure is composed of 260
members and 76 nodes. The optimization problem consists
of 260 sizing design variables (representing the cross-
sectional areas of the truss members) and 10 shape design
variables (representing 10 characteristic z-coordinates of the
structure affecting the locations of 38 nodes). The sizing
variables are discrete, taking integer values ranging from 1
to 37 representing the section ID from a database of 37 pipe
sections. The structure is designed according to AISC-LRFD
1994 regulations, where each member is assessed consider-
ing the limit states of tensile yielding and compressive buck-
ling. The constraint functions refer to (i) stress constraints
where the truss members should satisfy the stress require-
ments of the code, and (ii) displacement constraints where

the absolute value of the displacement of any node should
not exceed the limit of 25.0 mm. More information about the
problem formulation (including loading conditions, design
variables, etc.) can be found in [13].

The best objective value achieved in the framework of
the competition is equal to 12329.1302 kg, taken as the
reference value for comparison. The results obtained from
the 24 MOAs, for the ISCSO2019 problem, are presented
in Table 13. In this test example, AOA outperformed the
other algorithms resulting to the Best optimized value of
17,697.21 kg, followed by TLBO, PBA, DE and KH. When
the median value is taken into account, the top-5 perform-
ers are TLBO (23380.96 kg), GOA, DE, SSA and ALO
while for the average value, the relevant ranking is TLBO

Fig. 8   Performance of the 24 algorithms in the group of the 5 ISCSO test problems: a Algorithms 1–12, b Algorithms 13–24

5488	 N. D. Lagaros et al.

1 3

(25144.96 kg), SSA, ALO, GOA and DE. The least coeffi-
cient of variation is exhibited by SMA (6.86%), followed by
IGWO, FA, HS and ICA. Nevertheless, the result of SMA
in terms of best value is very poor (29440.1 kg, the worst of
all algorithms). The worst performers in terms of the median
value achieved are DA (35332.21 kg), IGWO, SCA, SMA
and ICA, while if the best achieved value is taken into con-
sideration the algorithms with the worst performances are
SMA (29440.1 kg), ICA, HS, WOA and FA.

5.2.6 � Comparative Results

Figure 8 shows the variation (or relative error value) of
the best achieved optimum solution by each one of the 24
MOAs, in comparison to the reference (best) solution found
in framework of the competitions, for each problem. Over-
all, the error values vary from the lowest value of 23.49%
(DE optimizer, ISCSO2015 problem) to the highest value
of 59.88% (KH optimizer, ISCSO2017 problem). A general
finding is that these structural optimization problems are
hard and much more demanding than the ones examined in
the previous section where most of the algorithms did an
excellent job in finding solutions very close to the known
global optimum.

Considering the difficulty and overall complexity of each
problem, it appears that the first problem of ISCSO2015 was
the least demanding, with the optimizers managing an aver-
age error value of 29.48% (median value 26.27%) altogether
and the best (minimum) error value of 23.49% (DE opti-
mizer). The most demanding problem appears to be the one
of ISCSO2017, with an average error value of 43.40% for
the 24 MOAs altogether (median value 41.81%) and the best
(minimum) error value of 29.08% (IGWO optimizer). No
optimizer managed to give results with error values less than
20% in comparison to the reference (best found) solution, in
any of the examined problems. This is a clear indications
that these problems are very complex and hard to deal with.

6 � Conclusions

Metaheuristic optimization algorithms (MOAs) have proved
to be very efficient, able to handle various optimization
problems in several scientific fields during the last decades.
The study presented a state-of-the-art review of past and
current developments achieved so far in structural optimiza-
tion problems dealt with MOAs. In addition, 24 well-known
MOAs are presented in short in a unified description frame-
work aiming to identify their differences and similarities,
while they are also investigated in several structural optimi-
zation problems of varying complexity and difficulty. The
numerical tests belong to two groups. The first six problems
are benchmark structural optimization problems taken from

the literature, while the next five problems are taken from
the International Student Competition in Structural Opti-
mization (2015–2019). The investigated MOAs exhibited
excellent performance in handling the first six problems.
Most of the algorithms managed to find the vicinity of the
optimum in the majority of the problems rather easily, while
12 of them achieved optimal results leading to error values
less than 2% in all problems examined. The top-3 perform-
ers managed to end up to solutions with average values (i.e.
average over all 6 problems) less than 0.16% in all problems
examined, combined. These results show the great potential
of MOAs in handling structural optimization problems.

The results of MOAs were not so impressive in the case
of the five problems taken from the International Student
Competition in Structural Optimization. It appears that these
problems are extremely hard, incorporating a large number
of design variables. The examined MOAs were not able to
provide solutions with error values less than 20% (in com-
parison to the reference solution) in any of the examined
problems. The best performance was 23.49% far from the
optimum reference value, which is not an impressive result,
but from an engineer point of view it is not a bad result, also.
Practically the algorithms were unable to find the vicinity
of the optimum in the huge, multi-dimensional search space
of these problems. At this point, it has to be noted that the
optimizers were simply run with random initialization of the
design variables without having any particular knowledge
or guidance on the specific optimization problem at hand.
There were no heuristic rules or tips that the optimizers
could use to facilitate their search; they faced the problems
“blindly”. In a real-life situation, an experienced engineer
may be able to help the optimizer by providing tips and guid-
ance based on experience and intuition. For example, the
engineer can facilitate the search by appropriately grouping
variables based on existing symmetries on the structure, or
can guide the optimizer towards specific areas of the search
space based on the expected shape of the optimal structure,
or other expected outcomes. This can boost the optimiza-
tion procedure as it can quickly guide the optimizer near the
neighbourhood of the global minimum and thus drastically
reduce the size of the search space in practice, especially in
cases with a large number of design variables, such as the
competition problems examined in this study. In this sense,
it can be said that in structural optimization problems, an
optimization algorithm is a powerful tool in the hands of
an experienced engineer, rather than an expert system that
can provide solutions merely on its own. In other words, the
expert needs the optimizer, but the optimizer also needs the
expert, in order to achieve the best possible results.

Acknowledgements  This research has been co-financed by the Euro-
pean Union and Greek national funds through the Operational Program

5489The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH-CREATE-INNOVATE (project code: T1EDK-05603).

References

	 1.	 Dulaimi MF et al (2002) Enhancing integration and innovation
in construction. Build Res Inf 30(4):237–247. https://​doi.​org/​10.​
1080/​09613​21011​01152​07

	 2.	 Plevris V, Tsiatas G (2018) Computational structural engineer-
ing: past achievements and future challenges. Front Built Environ
4(21):1–5. https://​doi.​org/​10.​3389/​fbuil.​2018.​00021

	 3.	 Slaughter ES (1998) Models of construction innovation. J Constr
Eng Manage 124:226–231. https://​doi.​org/​10.​1061/​(ASCE)​0733-​
9364(1998)​124:​3(226)

	 4.	 Sahab MG, Toropov VV, Gandomi AH (2013) A review on tra-
ditional and modern structural optimization: problems and tech-
niques. In: Gandomi AH et al (eds) Metaheuristic applications
in structures and infrastructures. Elsevier, Oxford, pp 25–47.
https://​doi.​org/​10.​1016/​B978-0-​12-​398364-​0.​00002-4

	 5.	 Kashani AR et al (2022) Population-based optimization in struc-
tural engineering: a review. Artif Intell Rev 55(1):345–452.
https://​doi.​org/​10.​1007/​s10462-​021-​10036-w

	 6.	 Bekdaş G et al (2019) Optimization in civil engineering and
metaheuristic algorithms: a review of state-of-the-art develop-
ments. In: Platt GM, Yang X-S, Silva Neto AJ (eds) Computa-
tional intelligence, optimization and inverse problems with appli-
cations in engineering. Springer, Cham, pp 111–137. https://​doi.​
org/​10.​1007/​978-3-​319-​96433-1_6

	 7.	 Yang X-S, Bekdaş G, Nigdeli SM (2016) Review and applica-
tions of metaheuristic algorithms in civil engineering. In: Yang
X-S, Bekdaş G, Nigdeli SM (eds) Metaheuristics and optimi-
zation in civil engineering. Modeling and optimization in sci-
ence and technologies. Springer, Berlin. https://​doi.​org/​10.​1007/​
978-3-​319-​26245-1_1

	 8.	 Lagaros ND (2014) An efficient dynamic load balancing algo-
rithm. Comput Mech 53(1):59–76. https://​doi.​org/​10.​1007/​
s00466-​013-​0892-1

	 9.	 International Student Competition in Structural Optimization
(2015) (ISCSO 2015). https://​www.​brigh​topti​mizer.​com/​probl​
em_​iscso​2016/. Accessed 25 May 2021

	 10.	 International Student Competition in Structural Optimization
(2016) (ISCSO 2016). http://​www.​brigh​topti​mizer.​com/​optim​
izati​on-​probl​em-​of-​iscso-​2016/. Accessed 25 May 2021

	 11.	 International Student Competition in Structural Optimization
(2017) (ISCSO 2017). https://​www.​brigh​topti​mizer.​com/​probl​
em_​iscso​2017/. Accessed 25 May 2021

	 12.	 International Student Competition in Structural Optimization
(2018) (ISCSO 2018). https://​www.​brigh​topti​mizer.​com/​probl​
em_​iscso​2018/. Accessed 25 May 2021

	 13.	 International Student Competition in Structural Optimization
(2019) (ISCSO 2019). https://​www.​brigh​topti​mizer.​com/​probl​
em-​iscso​2019/. Accessed 25 May 2021

	 14.	 Kaveh A (2021) Advances in metaheuristic algorithms for opti-
mal design of structures, 3rd edn. Springer, Cham

	 15.	 Brockett RW (1991) Dynamical systems that sort lists, diagonal-
ize matrices, and solve linear programming problems. Linear
Algebra Appl 146:79–91. https://​doi.​org/​10.​1016/​0024-​3795(91)​
90021-N

	 16.	 Lyamin AV, Sloan SW (2002) Lower bound limit analysis using
non-linear programming. Int J Numer Meth Eng 55(5):573–611.
https://​doi.​org/​10.​1002/​nme.​511

	 17.	 Yokota T, Gen M, Li Y-X (1996) Genetic algorithm for non-
linear mixed integer programming problems and its applications.
Comput Ind Eng 30(4):905–917. https://​doi.​org/​10.​1016/​0360-​
8352(96)​00041-1

	 18.	 Dadebo SA, McAuley KB (1995) Dynamic optimization of
constrained chemical engineering problems using dynamic pro-
gramming. Comput Chem Eng 19(5):513–525. https://​doi.​org/​
10.​1016/​0098-​1354(94)​00086-4

	 19.	 Wang F-S, Chen L-H (2013) Heuristic Optimization. In: Dubi-
tzky W et al (eds) Encyclopedia of systems biology. Springer,
New York, NY, pp 885–885. https://​doi.​org/​10.​1007/​978-1-​4419-​
9863-7_​411

	 20.	 Sörensen K, Glover FW (2013) Metaheuristics. In: Gass SI, Fu
MC (eds) Encyclopedia of operations research and management
science. Springer, Boston, MA, pp 960–970. https://​doi.​org/​10.​
1007/​978-1-​4419-​1153-7_​1167

	 21.	 Glover F, Samorani M (2019) Intensification, diversification and
learning in metaheuristic optimization. J Heuristics 25(4):517–
520. https://​doi.​org/​10.​1007/​s10732-​019-​09409-w

	 22.	 Meraihi Y et al (2021) Grasshopper optimization algorithm:
theory, variants, and applications. IEEE Access 9:50001–50024.
https://​doi.​org/​10.​1109/​ACCESS.​2021.​30675​97

	 23.	 Yang X, Suash D (2009) Cuckoo Search via Lévy flights. In 2009
World Congress on Nature & Biologically Inspired Computing
(NaBIC)

	 24.	 Yang X-S, Deb S (2010) Engineering optimisation by cuckoo
search. Int J Math Model Numer Optim 1(4):330–343. https://​
doi.​org/​10.​1504/​IJMMNO.​2010.​03543

	 25.	 Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algo-
rithm: a metaheuristic approach to solve structural optimization
problems. Eng Comput 29(1):17–35. https://​doi.​org/​10.​1007/​
s00366-​011-​0241-y

	 26.	 Yang X-S, Deb S (2013) Multiobjective cuckoo search for design
optimization. Comput Oper Res 40(6):1616–1624. https://​doi.​
org/​10.​1016/j.​cor.​2011.​09.​026

	 27.	 Cheng M-Y, Prayogo D (2014) Symbiotic organisms search:
a new metaheuristic optimization algorithm. Comput Struct
139:98–112. https://​doi.​org/​10.​1016/j.​comps​truc.​2014.​03.​007

	 28.	 Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:
González JR et al (eds) Nature inspired cooperative strategies for
optimization (NICSO 2010). Springer, Berlin. https://​doi.​org/​10.​
1007/​978-3-​642-​12538-6_6

	 29.	 Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach
for global engineering optimization. Eng Comput 29(5):464–483.
https://​doi.​org/​10.​1108/​02644​40121​12358​34

	 30.	 Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish opti-
mizer: a novel nature-inspired metaheuristic algorithm for solv-
ing constrained engineering optimization problems. Eng Appl
Artif Intell 80:20–34. https://​doi.​org/​10.​1016/j.​engap​pai.​2019.​
01.​001

	 31.	 Heidari AA et al (2019) Harris hawks optimization: algorithm
and applications. Futur Gener Comput Syst 97:849–872. https://​
doi.​org/​10.​1016/j.​future.​2019.​02.​028

	 32.	 Askarzadeh A (2016) A novel metaheuristic method for solv-
ing constrained engineering optimization problems: crow search
algorithm. Comput Struct 169:1–12. https://​doi.​org/​10.​1016/j.​
comps​truc.​2016.​03.​001

	 33.	 Eskandar H et al (2012) Water cycle algorithm—a novel
metaheuristic optimization method for solving constrained engi-
neering optimization problems. Comput Struct 110–111:151–
166. https://​doi.​org/​10.​1016/j.​comps​truc.​2012.​07.​010

	 34.	 Farshi B, Alinia-ziazi A (2010) Sizing optimization of truss
structures by method of centers and force formulation. Int J Sol-
ids Struct 47(18):2508–2524. https://​doi.​org/​10.​1016/j.​ijsol​str.​
2010.​05.​009

https://doi.org/10.1080/09613210110115207
https://doi.org/10.1080/09613210110115207
https://doi.org/10.3389/fbuil.2018.00021
https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(226)
https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(226)
https://doi.org/10.1016/B978-0-12-398364-0.00002-4
https://doi.org/10.1007/s10462-021-10036-w
https://doi.org/10.1007/978-3-319-96433-1_6
https://doi.org/10.1007/978-3-319-96433-1_6
https://doi.org/10.1007/978-3-319-26245-1_1
https://doi.org/10.1007/978-3-319-26245-1_1
https://doi.org/10.1007/s00466-013-0892-1
https://doi.org/10.1007/s00466-013-0892-1
https://www.brightoptimizer.com/problem_iscso2016/
https://www.brightoptimizer.com/problem_iscso2016/
http://www.brightoptimizer.com/optimization-problem-of-iscso-2016/
http://www.brightoptimizer.com/optimization-problem-of-iscso-2016/
https://www.brightoptimizer.com/problem_iscso2017/
https://www.brightoptimizer.com/problem_iscso2017/
https://www.brightoptimizer.com/problem_iscso2018/
https://www.brightoptimizer.com/problem_iscso2018/
https://www.brightoptimizer.com/problem-iscso2019/
https://www.brightoptimizer.com/problem-iscso2019/
https://doi.org/10.1016/0024-3795(91)90021-N
https://doi.org/10.1016/0024-3795(91)90021-N
https://doi.org/10.1002/nme.511
https://doi.org/10.1016/0360-8352(96)00041-1
https://doi.org/10.1016/0360-8352(96)00041-1
https://doi.org/10.1016/0098-1354(94)00086-4
https://doi.org/10.1016/0098-1354(94)00086-4
https://doi.org/10.1007/978-1-4419-9863-7_411
https://doi.org/10.1007/978-1-4419-9863-7_411
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/s10732-019-09409-w
https://doi.org/10.1109/ACCESS.2021.3067597
https://doi.org/10.1504/IJMMNO.2010.03543
https://doi.org/10.1504/IJMMNO.2010.03543
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1016/j.cor.2011.09.026
https://doi.org/10.1016/j.cor.2011.09.026
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1108/02644401211235834
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.compstruc.2016.03.001
https://doi.org/10.1016/j.compstruc.2016.03.001
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.ijsolstr.2010.05.009
https://doi.org/10.1016/j.ijsolstr.2010.05.009

5490	 N. D. Lagaros et al.

1 3

	 35.	 Kociecki M, Adeli H (2013) Two-phase genetic algorithm for
size optimization of free-form steel space-frame roof structures. J
Constr Steel Res 90:283–296. https://​doi.​org/​10.​1016/j.​jcsr.​2013.​
07.​027

	 36.	 Hasançebi O et al (2009) Performance evaluation of metaheuris-
tic search techniques in the optimum design of real size pin
jointed structures. Comput Struct 87(5):284–302. https://​doi.​
org/​10.​1016/j.​comps​truc.​2009.​01.​002

	 37.	 Kaveh A et al (2010) Performance-based seismic design of
steel frames using ant colony optimization. J Constr Steel Res
66(4):566–574. https://​doi.​org/​10.​1016/j.​jcsr.​2009.​11.​006

	 38.	 Moayyeri N, Gharehbaghi S, Plevris V (2019) Cost-based opti-
mum design of reinforced concrete retaining walls considering
different methods of bearing capacity computation. Mathematics
7(12):1–21. https://​doi.​org/​10.​3844/​jcssp.​2018.​1351.​1362

	 39.	 Gholizadeh S, Milany A (2018) An improved fireworks algorithm
for discrete sizing optimization of steel skeletal structures. Eng
Optim 50(11):1829–1849. https://​doi.​org/​10.​1080/​03052​15X.​
2017.​14174​02

	 40.	 Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In:
Tan Y, Shi Y, Tan KC (eds) Advances in swarm intelligence.
ICSI 2010. Lecture notes in computer science. Springer, Berlin.
https://​doi.​org/​10.​1007/​978-3-​642-​13495-1_​44

	 41.	 Bureerat S, Pholdee N (2016) Optimal truss sizing using an
adaptive differential evolution algorithm. J Comput Civ Eng
30(2):04015019. https://​doi.​org/​10.​1061/​(ASCE)​CP.​1943-​5487.​
00004​87

	 42.	 Hasançebi O, Azad SK (2012) An exponential big bang-big
crunch algorithm for discrete design optimization of steel frames.
Comput Struct 110–111:167–179. https://​doi.​org/​10.​1016/j.​
comps​truc.​2012.​07.​014

	 43.	 Lagaros ND et al (2008) Optimum design of steel structures with
web openings. Eng Struct 30(9):2528–2537

	 44.	 Papadrakakis M, Lagaros ND, Plevris V (2001) Optimum design
of space frames under seismic loading. Int J Struct Stab Dyn
1(1):105–123. https://​doi.​org/​10.​1142/​S0219​45540​10000​93

	 45.	 Papazafeiropoulos G, Plevris V (2018) OpenSeismoMatlab: a
new open-source software for strong ground motion data process-
ing. Heliyon 4(9):1–39. https://​doi.​org/​10.​1016/j.​heliy​on.​2018.​
e00784

	 46.	 Fragiadakis M, Lagaros ND, Papadrakakis M (2006) Perfor-
mance-based multiobjective optimum design of steel structures
considering life-cycle cost. Struct Multidiscip Optim 32(1):1–11

	 47.	 Mitropoulou CC, Lagaros ND, Papadrakakis M (2011) Life-cycle
cost assessment of optimally designed reinforced concrete build-
ings under seismic actions. Reliab Eng Syst Saf 96(10):1311–
1331. https://​doi.​org/​10.​1016/j.​ress.​2011.​04.​002

	 48.	 Kociecki M, Adeli H (2014) Two-phase genetic algorithm for
topology optimization of free-form steel space-frame roof struc-
tures with complex curvatures. Eng Appl Artif Intell 32:218–
227. https://​doi.​org/​10.​1016/j.​engap​pai.​2014.​01.​010

	 49.	 Kociecki M, Adeli H (2015) Shape optimization of free-form
steel space-frame roof structures with complex geometries using
evolutionary computing. Eng Appl Artif Intell 38:168–182.
https://​doi.​org/​10.​1016/j.​engap​pai.​2014.​10.​012

	 50.	 Amir O (2013) A topology optimization procedure for reinforced
concrete structures. Comput Struct 114:46–58

	 51.	 Lagaros ND, Papadrakakis M, Bakas N (2006) Automatic mini-
mization of the rigidity eccentricity of 3D reinforced concrete
buildings. J Earthq Eng 10(4):533–564

	 52.	 Zakian P, Kaveh A (2020) Topology optimization of shear
wall structures under seismic loading. Earthq Eng Eng Vib
19(1):105–116. https://​doi.​org/​10.​1007/​s11803-​020-​0550-5

	 53.	 Kaveh A, Kalatjari V (2003) Topology optimization of trusses
using genetic algorithm, force method and graph theory. Int J

Numer Meth Eng 58(5):771–791. https://​doi.​org/​10.​1002/​nme.​
800

	 54.	 Tian X et al (2019) Topology optimization design for offshore
platform jacket structure. Appl Ocean Res 84:38–50. https://​doi.​
org/​10.​1016/j.​apor.​2019.​01.​003

	 55.	 de Souza RR et al (2016) A procedure for the size, shape and
topology optimization of transmission line tower structures. Eng
Struct 111:162–184

	 56.	 Jiang B, Zhang J, Ohsaki M (2021) Shape optimization of free-
form shell structures combining static and dynamic behaviors.
Structures 29:1791–1807. https://​doi.​org/​10.​1016/j.​istruc.​2020.​
12.​045

	 57.	 Papadrakakis M, Tsompanakis Y, Lagaros ND (1999) Struc-
tural shape optimization using evolution strategies. Eng Optim
31(4):515–540

	 58.	 Lagaros ND, Fragiadakis M, Papadrakakis M (2004) Opti-
mum design of shell structures with stiffening beams. AIAA J
42(1):175–184

	 59.	 Belevičius R et al (2017) Optimization of rigidly supported
guyed masts. Adv Civ Eng. https://​doi.​org/​10.​1155/​2017/​45613​
76

	 60.	 Mam K et al (2020) Shape optimization of braced frames for tall
timber buildings: influence of semi-rigid connections on design
and optimization process. Eng Struct 216:110692. https://​doi.​
org/​10.​1016/j.​engst​ruct.​2020.​110692

	 61.	 Pastore T et al (2019) Topology optimization of stress-con-
strained structural elements using risk-factor approach. Comput
Struct 224:106104. https://​doi.​org/​10.​1016/j.​comps​truc.​2019.​
106104

	 62.	 Frangedaki E, Sardone L, Lagaros ND (2021) Design opti-
mization of tree-shaped structural systems and sustainable
architecture using bamboo and earthen materials. J Archit Eng
27(4):04021033. https://​doi.​org/​10.​1061/​(ASCE)​AE.​1943-​5568.​
00004​92

	 63.	 Plevris V, Papadrakakis M (2011) A hybrid particle swarm—gra-
dient algorithm for global structural optimization. Comput-Aided
Civ Infrastruct Eng 26(1):48–68. https://​doi.​org/​10.​1111/j.​1467-​
8667.​2010.​00664.x

	 64.	 Plevris V (2009) Innovative computational techniques for the
optimum structural design considering uncertainties. National
Technical University of Athens, Athens, p 312

	 65.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In
IEEE International Conference on Neural Networks, Piscataway,
NJ, pp 1942–1948

	 66.	 Aydilek İB (2018) A hybrid firefly and particle swarm optimiza-
tion algorithm for computationally expensive numerical prob-
lems. Appl Soft Comput 66:232–249. https://​doi.​org/​10.​1016/j.​
asoc.​2018.​02.​025

	 67.	 Yang X-S (2008) Nature-inspired metaheuristic algorithms.
Luniver Press, ISBN: 1905986106

	 68.	 Gholizadeh S, Salajegheh E, Torkzadeh P (2008) Structural
optimization with frequency constraints by genetic algorithm
using wavelet radial basis function neural network. J Sound Vib
312(1):316–331. https://​doi.​org/​10.​1016/j.​jsv.​2007.​10.​050

	 69.	 Nguyen T-H, Vu A-T (2021) Speeding up composite differential
evolution for structural optimization using neural networks. J Inf
Telecommun. https://​doi.​org/​10.​1080/​24751​839.​2021.​19467​40

	 70.	 Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural
optimization using evolution strategies and neural networks.
Comput Methods Appl Mech Eng 156(1–4):309–333

	 71.	 Papadrakakis M, Lagaros ND (2002) Reliability-based structural
optimization using neural networks and Monte Carlo simulation.
Comput Methods Appl Mech Eng 191(32):3491–3507

	 72.	 Lagaros ND, Charmpis DC, Papadrakakis M (2005) An adap-
tive neural network strategy for improving the computational

https://doi.org/10.1016/j.jcsr.2013.07.027
https://doi.org/10.1016/j.jcsr.2013.07.027
https://doi.org/10.1016/j.compstruc.2009.01.002
https://doi.org/10.1016/j.compstruc.2009.01.002
https://doi.org/10.1016/j.jcsr.2009.11.006
https://doi.org/10.3844/jcssp.2018.1351.1362
https://doi.org/10.1080/0305215X.2017.1417402
https://doi.org/10.1080/0305215X.2017.1417402
https://doi.org/10.1007/978-3-642-13495-1_44
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000487
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000487
https://doi.org/10.1016/j.compstruc.2012.07.014
https://doi.org/10.1016/j.compstruc.2012.07.014
https://doi.org/10.1142/S0219455401000093
https://doi.org/10.1016/j.heliyon.2018.e00784
https://doi.org/10.1016/j.heliyon.2018.e00784
https://doi.org/10.1016/j.ress.2011.04.002
https://doi.org/10.1016/j.engappai.2014.01.010
https://doi.org/10.1016/j.engappai.2014.10.012
https://doi.org/10.1007/s11803-020-0550-5
https://doi.org/10.1002/nme.800
https://doi.org/10.1002/nme.800
https://doi.org/10.1016/j.apor.2019.01.003
https://doi.org/10.1016/j.apor.2019.01.003
https://doi.org/10.1016/j.istruc.2020.12.045
https://doi.org/10.1016/j.istruc.2020.12.045
https://doi.org/10.1155/2017/4561376
https://doi.org/10.1155/2017/4561376
https://doi.org/10.1016/j.engstruct.2020.110692
https://doi.org/10.1016/j.engstruct.2020.110692
https://doi.org/10.1016/j.compstruc.2019.106104
https://doi.org/10.1016/j.compstruc.2019.106104
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000492
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000492
https://doi.org/10.1111/j.1467-8667.2010.00664.x
https://doi.org/10.1111/j.1467-8667.2010.00664.x
https://doi.org/10.1016/j.asoc.2018.02.025
https://doi.org/10.1016/j.asoc.2018.02.025
https://doi.org/10.1016/j.jsv.2007.10.050
https://doi.org/10.1080/24751839.2021.1946740

5491The Mosaic of Metaheuristic Algorithms in Structural Optimization﻿	

1 3

performance of evolutionary structural optimization. Comput
Methods Appl Mech Eng 194(30–33):3374–3393

	 73.	 Lagaros ND, Papadrakakis M (2012) Applied soft computing
for optimum design of structures. Struct Multidiscip Optim
45(6):787–799. https://​doi.​org/​10.​1007/​s00158-​011-​0741-9

	 74.	 Lagaros ND, Papadrakakis M (2004) Learning improvement of
neural networks used in structural optimization. Adv Eng Softw
35(1):9–25

	 75.	 Liao TW (2010) Two hybrid differential evolution algorithms for
engineering design optimization. Appl Soft Comput 10(4):1188–
1199. https://​doi.​org/​10.​1016/j.​asoc.​2010.​05.​007

	 76.	 Storn R, Price K (1997) Differential evolution—a simple and
efficient heuristic for global optimization over continuous spaces.
J Global Optim 11(4):341–359. https://​doi.​org/​10.​1023/a:​10082​
02821​328

	 77.	 Storn R, Price K (1995) Differential evolution—a simple and
efficient adaptive scheme for global optimization over continuous
spaces. J Global Optim

	 78.	 Kaveh A, Bakhshpoori T, Afshari E (2014) An efficient hybrid
particle swarm and swallow swarm optimization algorithm.
Comput Struct 143:40–59. https://​doi.​org/​10.​1016/j.​comps​truc.​
2014.​07.​012

	 79.	 Carbas S (2016) Design optimization of steel frames using an
enhanced firefly algorithm. Eng Optim 48(12):2007–2025.
https://​doi.​org/​10.​1080/​03052​15X.​2016.​11452​17

	 80.	 Talatahari S et al (2015) Optimum design of frame structures
using the eagle strategy with differential evolution. Eng Struct
91:16–25. https://​doi.​org/​10.​1016/j.​engst​ruct.​2015.​02.​026

	 81.	 Yang X-S, Deb S (2010) Eagle strategy using Lévy walk and
firefly algorithms for stochastic optimization. In: González JR
et al (eds) Nature inspired cooperative strategies for optimiza-
tion (NICSO 2010). Springer, Berlin. https://​doi.​org/​10.​1007/​
978-3-​642-​12538-6_9

	 82.	 Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid
algorithm based on Water Cycle and Moth-Flame Optimization
algorithms for solving numerical and constrained engineering
optimization problems. Soft Comput 23(5):1699–1722. https://​
doi.​org/​10.​1007/​s00500-​017-​2894-y

	 83.	 Mirjalili S (2015) Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–
249. https://​doi.​org/​10.​1016/j.​knosys.​2015.​07.​006

	 84.	 Lagaros ND (2018) The environmental and economic impact of
structural optimization. Struct Multidiscip Optim 58(4):1751–
1768. https://​doi.​org/​10.​1007/​s00158-​018-​1998-z

	 85.	 Mavrokapnidis D, Mitropoulou CC, Lagaros ND (2019) Envi-
ronmental assessment of cost optimized structural systems in tall
buildings. J Build Eng 24:100730. https://​doi.​org/​10.​1016/j.​jobe.​
2019.​100730

	 86.	 Papadrakakis M et al (1998) Advanced solution methods in struc-
tural optimization based on evolution strategies. Eng Comput
15(1):12–34

	 87.	 Papadrakakis M, Lagaros ND, Fragakis Y (2003) Parallel compu-
tational strategies for structural optimization. Int J Numer Meth
Eng 58(9):1347–1380

	 88.	 Lagaros ND (2014) A general purpose real-world struc-
tural design optimization computing platform. Struct Multi-
discip Optim 49(6):1047–1066. https://​doi.​org/​10.​1007/​
s00158-​013-​1027-1

	 89.	 Lagaros ND, Karlaftis MG (2016) Life-cycle cost structural
design optimization of steel wind towers. Comput Struct
174:122–132. https://​doi.​org/​10.​1016/j.​comps​truc.​2015.​09.​013

	 90.	 Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82. https://​doi.​
org/​10.​1109/​4235.​585893

	 91.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61. https://​doi.​org/​10.​1016/j.​adven​gsoft.​
2013.​12.​007

	 92.	 Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved
grey wolf optimizer for solving engineering problems. Expert
Syst Appl 166:113917. https://​doi.​org/​10.​1016/j.​eswa.​2020.​
113917

	 93.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm.
Adv Eng Softw 95:51–67. https://​doi.​org/​10.​1016/j.​adven​gsoft.​
2016.​01.​008

	 94.	 Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–
98. https://​doi.​org/​10.​1016/j.​adven​gsoft.​2015.​01.​010

	 95.	 Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evol Comput 9(2):159–195.
https://​doi.​org/​10.​1162/​10636​56017​50190​398

	 96.	 Nadimi-Shahraki MH et al (2020) MTDE: an effective multi-trial
vector-based differential evolution algorithm and its applications
for engineering design problems. Appl Soft Comput 97:106761.
https://​doi.​org/​10.​1016/j.​asoc.​2020.​106761

	 97.	 Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic
optimization technique for solving single-objective, discrete,
and multi-objective problems. Neural Comput Appl 27(4):1053–
1073. https://​doi.​org/​10.​1007/​s00521-​015-​1920-1

	 98.	 Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation
algorithm: theory and application. Adv Eng Softw 105:30–47.
https://​doi.​org/​10.​1016/j.​adven​gsoft.​2017.​01.​004

	 99.	 Mishra P, Goyal V, Shukla A (2020) An improved grasshop-
per optimization algorithm for solving numerical optimization
problems. In: Mohanty MN, Das S (eds) Advances in intelligent
computing and communication. Springer, Singapore

	100.	 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization.
Neural Comput Appl 27(2):495–513. https://​doi.​org/​10.​1007/​
s00521-​015-​1870-7

	101.	 Mirjalili S (2016) SCA: a sine cosine algorithm for solving opti-
mization problems. Knowl-Based Syst 96:120–133. https://​doi.​
org/​10.​1016/j.​knosys.​2015.​12.​022

	102.	 Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired
optimizer for engineering design problems. Adv Eng Softw
114:163–191. https://​doi.​org/​10.​1016/j.​adven​gsoft.​2017.​07.​002

	103.	 Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive
algorithm: an algorithm for optimization inspired by imperi-
alistic competition. In 2007 IEEE Congress on Evolutionary
Computation

	104.	 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. SIMULATION 76(2):60–
68. https://​doi.​org/​10.​1177/​00375​49701​07600​201

	105.	 Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-
based optimization: a novel method for constrained mechanical
design optimization problems. Comput Aided Des 43(3):303–
315. https://​doi.​org/​10.​1016/j.​cad.​2010.​12.​015

	106.	 Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831–4845. https://​doi.​org/​10.​1016/j.​cnsns.​2012.​05.​010

	107.	 Gandomi AH (2014) Interior search algorithm (ISA): a novel
approach for global optimization. ISA Trans 53(4):1168–1183.
https://​doi.​org/​10.​1016/j.​isatra.​2014.​03.​018

	108.	 Kallioras NA, Lagaros ND, Avtzis DN (2018) Pity beetle algo-
rithm—a new metaheuristic inspired by the behavior of bark
beetles. Adv Eng Softw 121:147–166. https://​doi.​org/​10.​1016/j.​
adven​gsoft.​2018.​04.​007

	109.	 Li S et al (2020) Slime mould algorithm: a new method for sto-
chastic optimization. Futur Gener Comput Syst 111:300–323.
https://​doi.​org/​10.​1016/j.​future.​2020.​03.​055

https://doi.org/10.1007/s00158-011-0741-9
https://doi.org/10.1016/j.asoc.2010.05.007
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1016/j.compstruc.2014.07.012
https://doi.org/10.1016/j.compstruc.2014.07.012
https://doi.org/10.1080/0305215X.2016.1145217
https://doi.org/10.1016/j.engstruct.2015.02.026
https://doi.org/10.1007/978-3-642-12538-6_9
https://doi.org/10.1007/978-3-642-12538-6_9
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1007/s00500-017-2894-y
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1007/s00158-018-1998-z
https://doi.org/10.1016/j.jobe.2019.100730
https://doi.org/10.1016/j.jobe.2019.100730
https://doi.org/10.1007/s00158-013-1027-1
https://doi.org/10.1007/s00158-013-1027-1
https://doi.org/10.1016/j.compstruc.2015.09.013
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1016/j.asoc.2020.106761
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.cnsns.2012.05.010
https://doi.org/10.1016/j.isatra.2014.03.018
https://doi.org/10.1016/j.advengsoft.2018.04.007
https://doi.org/10.1016/j.advengsoft.2018.04.007
https://doi.org/10.1016/j.future.2020.03.055

5492	 N. D. Lagaros et al.

1 3

	110.	 Abualigah L et al (2021) The arithmetic optimization algorithm.
Comput Methods Appl Mech Eng 376:113609. https://​doi.​org/​
10.​1016/j.​cma.​2020.​113609

	111.	 Yang X-S (2009) Firefly algorithms for multimodal optimiza-
tion. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms:
foundations and applications. Springer, Berlin

	112.	 Yang X-S (2014) Chapter 8—firefly algorithms. In: Yang X-S
(ed) Nature-inspired optimization algorithms. Elsevier, Oxford,
pp 111–127. https://​doi.​org/​10.​1016/​B978-0-​12-​416743-​8.​
00008-7

	113.	 Georgioudakis M, Plevris V (2020) A comparative study of dif-
ferential evolution variants in constrained structural optimization.
Front Built Environ 6(102):1–14. https://​doi.​org/​10.​3389/​fbuil.​
2020.​00102

	114.	 Georgioudakis M, Plevris V (2020) On the performance of dif-
ferential evolution variants in constrained structural optimization.
Procedia Manuf 44:371–378. https://​doi.​org/​10.​1016/j.​promfg.​
2020.​02.​281

	115.	 Georgioudakis M, Plevris V (2018) A combined modal corre-
lation criterion for structural damage identification with noisy

modal data. Adv Civ Eng 2018(3183067):20. https://​doi.​org/​10.​
1155/​2018/​31830​67

	116.	 Tuo S, Geem ZW, Yoon JH (2020) A new method for analyzing
the performance of the harmony search algorithm. Mathematics
8(9):1421

	117.	 Ocak A et al (2022) Optimization of tuned liquid damper includ-
ing different liquids for lateral displacement control of single and
multi-story structures. Buildings 12(3):377

	118.	 Tsipianitis A, Tsompanakis Y (2020) Improved Cuckoo Search
algorithmic variants for constrained nonlinear optimization. Adv
Eng Softw 149:102865. https://​doi.​org/​10.​1016/j.​adven​gsoft.​
2020.​102865

	119.	 Kannan BK, Kramer SN (1994) An augmented Lagrange mul-
tiplier based method for mixed integer discrete continuous opti-
mization and its applications to mechanical design. J Mech Des
116(2):405–411. https://​doi.​org/​10.​1115/1.​29193​93

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/B978-0-12-416743-8.00008-7
https://doi.org/10.1016/B978-0-12-416743-8.00008-7
https://doi.org/10.3389/fbuil.2020.00102
https://doi.org/10.3389/fbuil.2020.00102
https://doi.org/10.1016/j.promfg.2020.02.281
https://doi.org/10.1016/j.promfg.2020.02.281
https://doi.org/10.1155/2018/3183067
https://doi.org/10.1155/2018/3183067
https://doi.org/10.1016/j.advengsoft.2020.102865
https://doi.org/10.1016/j.advengsoft.2020.102865
https://doi.org/10.1115/1.2919393

	The Mosaic of Metaheuristic Algorithms in Structural Optimization
	Abstract
	1 Introduction
	2 The History of MOAs in Structural Optimization
	2.1 New MOAs Assessed Through SOPs
	2.2 MOAs for Solving New Formulations of Sizing SOPs
	2.3 MOAs for Solving New Formulations of Shape and Topology SOPs
	2.4 Hybrid Methods Based on MOAs for Solving SOPs
	2.5 MOAs for Solving Practical, Real-World SOPs

	3 Description of the 24 MOAs
	3.1 Grey wolf Optimizer (GWO)
	3.2 Improved GWO (IGWO)
	3.3 Whale Optimization Algorithm (WOA)
	3.4 Ant Lion Optimizer (ALO)
	3.5 Covariance Matrix Adaptation Evolution Strategies (CMAES)
	3.6 Multi-trial Vector-Based Differential Evolution (MTDE)
	3.7 Dragonfly Algorithm (DA)
	3.8 Grasshopper Optimization Algorithm (GOA)
	3.9 Improved GOA (GOAf)
	3.10 Moth-Flame Optimization (MFO)
	3.11 Multi-Verse Optimizer (MVO)
	3.12 Sine Cosine Algorithm (SCA)
	3.13 Salp Swarm Algorithm (SSA)
	3.14 Particle Swarm Optimization (PSO)
	3.15 Firefly Algorithm (FA)
	3.16 Imperialist Competitive Algorithm (ICA)
	3.17 Differential Evolution (DE)
	3.18 Harmony Search (HS)
	3.19 Teaching–Learning-Based Optimization (TLBO)
	3.20 Krill Herd (KH) Algorithm
	3.21 Interior Search Algorithm (ISA)
	3.22 Pity Beetle Algorithm (PBA)
	3.23 Slime Mould Algorithm (SMA)
	3.24 Arithmetic Optimization Algorithm (AOA)

	4 Additional Features of MOAS’ Implementation for Solving Structural Optimization Problems
	5 Numerical Tests
	5.1 Six Benchmark Structural Optimization Problems
	5.1.1 10-Bar Truss
	5.1.2 25-Bar Truss
	5.1.3 72-Bar Truss
	5.1.4 Welded Beam Design Problem
	5.1.5 Pressure Vessel Design Problem
	5.1.6 Tension–Compression String Problem
	5.1.7 Comparative Results

	5.2 International Student Competition in Structural Optimization (ISCSO 2015 to 2019)
	5.2.1 ISCSO 2015 Problem
	5.2.2 ISCSO 2016 Problem
	5.2.3 ISCSO 2017 Problem
	5.2.4 ISCSO 2018 Problem
	5.2.5 ISCSO 2019 Problem
	5.2.6 Comparative Results

	6 Conclusions
	Acknowledgements
	References

