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Abstract

Humans take immense pride in their ability to be unpredictably intelligent and despite huge advances in science over the past
century; our understanding about human brain is still far from complete. In general, human being acquire the high echelon
of intelligence with the ability to understand, reason, recognize, learn, innovate, retain information, make decision, com-
municate and further solve problem. Thereby, integrating the intelligence of human to develop the optimization technique
using the human problem-solving ability would definitely take the scenario to next level thus promising an affluent solution
to the real world optimization issues. However, human behavior and evolution empowers human to progress or acclimatize
with their environments at rates that exceed that of other nature based evolution namely swarm, bio-inspired, plant-based or
physics-chemistry based thus commencing yet additional detachment of Nature-Inspired Optimization Algorithm (NIOA)
i.e. Human-Inspired Optimization Algorithms (HIOAs). Announcing new meta-heuristic optimization algorithms are at
all times a welcome step in the research field provided it intends to address problems effectively and quickly. The family of
HIOA is expanding rapidly making it difficult for the researcher to select the appropriate HIOA; moreover, in order to map
the problems alongside HIOA, it requires proper understanding of the theoretical fundamental, major rules governing HIOAs
as well as common structure of HIOAs. Common challenges and open research issues are yet another important concern
in HIOA that needs to be addressed carefully. With this in mind, our work distinguishes HIOAs on the basis of a range of
criteria and discusses the building blocks of various algorithms to achieve aforementioned objectives. Further, this paper
intends to deliver an acquainted survey and analysis associated with modern compartment of NIOA engineered upon the
perception of human behavior and intelligence i.e. Human-Inspired Optimization Algorithms (HIOAS) stressing on its theo-
retical foundations, applications, open research issues and their implications on color satellite image segmentation to further
develop Multi-Level Thresholding (MLT) models utilizing Tsallis and t-entropy as objective functions to judge their efficacy.
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Contemporary world stumble upon countless multifarious
real-time predicaments in which the underlying computa-
tion quandary are incredibly intricate to resolve generally
because of its unusually towering dimensionally allied
search space that are non-linear, non-continuous, non-dif-
ferentiable, non-convex in nature. It is not an overstatement
if said that need of optimization is all over the place rang-
ing from scheduling [1, 2] to deployment of wireless sen-
sor networks [3, 4] to engineering design [5, 6] to robotic
navigation [7] to image processing [8—10]. In more or less
all these activities, one intends to accomplish certain goals
by optimizing quality, profit or time as these resources are
valuable and inadequately available in the real world. In such
state of affairs, usage of traditional or classical optimization
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algorithms fall short and doubtlessly have an inadequate
scope in endowing inclusive elucidations thereby becom-
ing computationally demanding. This quest unquestionably
show the ways en route for the inevitability of expansion and
add-ons to the existing classical optimization techniques to
evolve into progressive modern technological optimization
processes dexterous enough to attain affluent way out appro-
priate for modern day’s practical problems. Thus, Evolu-
tionary Computation (EC) focuses on the study of the class
of global optimization algorithm principally dealing with
figurative practice of perceptions, principles, and procedures
mined from the elementary understanding of how natural
systems advances to support and solve composite computa-
tional problems to further arrive towards most suitable solu-
tion. Nonetheless, some prime challenges that tend to swivel
around EC which demands to be addressed are: Lack of
accepted benchmark problems; Lack of standard algorithms
and implementations, Lack of mechanism for fine parameter
control and tuning, Lack of methods to measure performance
etc., Presently substantial amount of work has been carried
forward concentrating typically on the procedures of natu-
ral selection thus developing new algorithms inspired by
human. However, human behavior and evolution give power
to human to familiarize with their atmospheres at rates that
surpass that of other nature based evolution namely swarm,
bio-inspired, plant-based or physics-chemistry based thus
instigation yet other compartment of Nature-Inspired Opti-
mization Algorithm (NIOA) [11-14] i.e. Human-Inspired
Optimization Algorithms (HIOAs).

Due to the thought supremacy and intelligence seized by
human, human do hold an exceptional position amongst the
entire living creatures thus anticipating that the algorithm
inspired from or based on human behavior can undoubtedly
surpass other algorithms. Numerous human-inspired opti-
mization algorithms have been proposed and the same has
been applied to solve hefty set of problems as highlighted
in Table 1. Given the significance of HIOAs in the variety
of domains, there is a strapping requirement of a study that
should provide a comprehensive overview of HIOAs high-
lighting and covering the entire major elements related to the
algorithm. Besides, huge number of human inspired opti-
mization algorithms is presented in the literature and every
algorithm is different from another in some or the other way.
Therefore, examining, reviewing and deeply learning every
algorithm is not just intricate but at times not feasible so
researcher who is not very familiar with HIOAs shall be
constantly in a dilemma about the choice of the algorithm
under variety of circumstances. This work shall try filling
up the research gap thus acting as a bridge by endowing
a brief yet inclusive overview of the different algorithms
induced by the human experiences by analyzing, assessing,
documenting and intensely testing the same over color sat-
ellite imagery. This paper classically gives attention to not
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just comparing of several human based meta-heuristics how-
ever, also tries to accumulate obligatory information such as
fundamental building blocks, common structure opted by
HIOAs, elements of HIOAs (namely nature of algorithm,
number of solution, fundamental methodology followed and
source of inspiration by each algorithm) and advancements
in the direction of accomplishing the connotation of HIOA
for MLT color satellite image segmentation and further
classification of HIOA based on few criteria such as Socio-
Political Philosophy, Socio-Competitive Behavior, Socio-
Cultural/Socio-Interaction, Socio-Musical Ideologies and
Socio-Emigration/Socio-Colonization making it easier for
the new researcher to garner idea about which HIOA would
be suitable for the problem they intend to resolve. A number
of research challenges with HIOA are discussed. Further,
open future research directions are also recommended for
researchers to pursue. Total 51 well-accepted and renowned
stochastic HIOAs are taken into account in the present work.
Consequently, this paper provides an acquainted detail of
the different HIOAs developed so far over last two decades.
Further, incredibly inadequate amount of work has been
carried out using HIOA in the field of image segmentation
thereby this paper explores and comprehends HIOA based
multilevel thresholding image segmentation carried so far
and further implements and compare few popular HIOAs
(six HIOAs namely Corona virus Herd Immunity Optimi-
zation (CHIO), Forensic-Based Investigation Optimiza-
tion (FBIO), Battle Royale Optimization (BRO), Political
Optimizer (PO), Heap-Based Optimizer (HBO) and Human
Urbanization Algorithm (HUA)) for color satellite image
segmentation. Further, six HIOAs are compared with a
popular Swarm based optimization algorithm namely Parti-
cle Swarm Optimization (PSO) [15]. For the same, Tsallis
entropy and newly developed t-entropy have been exploited
as objective functions in this paper. The t-entropy has not
been employed for MLT predominantly with HIOA and this
paper tends to draw attention to this as a major contribution.
Lastly, comparative study using the mentioned objective
functions over the color satellite images in MLT domain has
been carried out meticulously to investigate the effectiveness
of the mentioned HIOA. Some of the Human-Inspired Opti-
mization Algorithms (HIOA) introduced over the years has
been tabulated in Table 1 along with its year of introduction,
author, application areas and additionally citation has been
emphasized as per Google Scholar (Dated: 21.01.2022).
Further, line charts shown in Figs. 1 and 2 is employed to
depict the citations of different HIOAs (Harmony Search
algorithm being the highly cited) and year-wise development
of HIOAs respectively. The commonly used abbreviation is
tabulated in Table 2.

The remaining sections of the paper are organized as
follows: The elements of HIOAs and its common struc-
ture literature are put forward in Sect. 2. Section 3 draws
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Table 1 Human-Inspired Optimization Algorithms (HIOAs) and their applications

SI Name of the HIOA Year Author

Application area Citation

1 Cultural Algorithm 1994 Reynolds [35]

2 Harmony Search Algorithm 2001 Geem et al. [49]

3 Society and Civilization 2003 Ray et al. [58]
4 Seeker Optimization Algorithm 2006 Dai et al. [59]

5 Imperialist Competitive Algorithm 2007 Gargari and Lucas [64]

6 League Championship Algorithm 2009 Kashan [82]

7 Group Counseling Optimization Algo- 2010 Eita et al. [88]
rithm

8  Election Campaign Optimization 2010 Wenge et al. [91]
Algorithm

9  Social Emotional Optimization Algo- 2010 Yuechun et al. [94]
rithm

Power Networks [36], Wind Power 1208
Forecast [37], Distribution Network
[38], Wireless Sensor Network
(WSN) [3], Multi-Walled Carbon
NanoTubes (MWCNTSs) [39], Knowl-
edge Integration [40, 41], Wiener
and Hammerstein Nonlinear Systems
Identification [42], Policies and
Production Scheduling [43], Fault-
Tolerance Scheduling [44], Image
Classification (Image Processing)
[45], Neural Network [46], Rule Min-
ing [47], Forecasting Share Price [48]
Engineering Optimization Problem 6309
[50], Data Mining [51], Optimum
design of steel frames [52], Robot-
ics, Telecommunication, Health [53],
Multi-thresholding [54-57]

Engineering design problems [58] 516

Digital IIR filters design [60], Optimal 199
reactive power dispatch [61], Eco-
nomic dispatch problems [62], PID
Controller, Hybrid Power Systems
[63]

Heat Exchangers [65], Linear Induction 2739
Motor [66], Data Clustering [67],
Bit Error Rate Beam Forming [68],
Engineering Design Problems [69],
Prediction of oil flow rate [70], Mix-
Outsourcing problem [71], Electro-
magnetic [72], PID Controller Design
[73], Multi-Machine Power Systems
[74], Skin Color Segmentation, Image
Thresholding, Image Matching, Multi
thresholding (Image Processing) [75,
76], Ground Vibration Prediction
[77], Vehicle Fuzzy Controller [78],
Power Flow Problem [79], Flow Shop
Problem [80], Image Encryption [81]

Numerical Function Optimization [82], 214
Global Optimization [83], Mechani-
cal Engineering Design [6], Optimal
Power Flow [84], Task Scheduling
[85], Data Clustering [86], Extracting
Stock Trading rules [87]

Spacecraft Trajectory design problem 26
[89], Multi-Objective Optimization
problem [90]

PID controller parameters tuning 32
problem [91], Pressure Vessel Design
[92], Optimization problems [93]

Nonlinear constrained programming 62
problems [94], Chaotic systems [95]
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Table 1 (continued)

SI Name of the HIOA Year Author Application area Citation
10 Teaching Learning-Based Optimization 2011 Roa et al. [96] Mechanical Design Problems [96], 3055

11

12

13

14
15

16

17

18

19

20

Brain Storm Optimization

Anarchic Society Optimization

Cohort Intelligence

Cultural Evolution Algorithm

Backtracking Search Optimization
Algorithm

Interior Search Algorithm

Soccer League Competition Algorithm

Exchange Market Algorithm

Election Algorithm

Passing Vehicle Search

2011

2011

2013

2013
2013

2014

2014

2014

2015

2016

Yuhui Shi [109]

Ahmadi [119]

Kulkarni et al. [124]

Kuo et al. [129]
Civicioglu [130]

Gandomi [135]

Moosavian [140]

Ghorbani and Babaei [145]

Emami et al. [149]

Savsani and Savsani [153]

Design of Planar Steel Frames [97],
Non-Linear Large Scale Problems
[98], Heat Exchangers [99], Flow
Shop and Job Shop Scheduling [2],
Engineering Design Problems [100,
101], Design of Heat Pipe [102], Siz-
ing Truss Structure [103], Thermo-
electric Cooler [104], PID Controller
[105], Foundry Industry [106], Radial
Distribution System [107], Image
Segmentation, Image Thresholding
(Image Processing) [108]

Feature Selection, Image Classification,
Image Segmentation (Image Process-
ing) [110-114], Wireless Sensor
Network (WSN) [4], Robot Path Plan-
ning [7], Multi-Objective Optimi-
zation Problem [115], Clustering
Analysis [116], Matching Ontologies
[117], Automatic Carrier Landing
System [118]

PID controller [120], Flow Shop sched-
uling problem [121], Multi-Reservoir
System [122], Water Distribution
network [123]

Data Clustering [125], Optimization
problems [126], Mechanical com-
ponent design [127], Manufacturing
process problems [128]

Engineering Problems [129]

Numerical Optimization problems
[130], Optimal allocation of multi-
type distributed generators [131],
power flow [132], concentric circular
antenna arrays [133], Flood forecast-
ing [134]

COVID-19 Forecasting [136], Building
structure design [137], Engineering
Optimization Problem [138], Feature
Selection (Image Processing) [139]

Water Distribution Network design
[140], Knapsack problems [141],
Solving Non-Linear Equations [142],
Wireless Sensor Network (WSN)
[143], Optimization of truss struc-
tures [144]

Load Dispatch [146], Optimum eco-
nomic and Emission dispatch [147],
Color image segmentation (Image
Processing) [148]

Blockchain [150], Neural Network
[151], WSN (Wireless Sensor Net-
work) [152]

Structure Optimization [154], Electro-
Discharge Machining (EDM) [155],
Optimal power flow problems [156],
signal timing optimization [157]

536

51

94

59
886

337

119

165

53

133
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Table 1 (continued)

SI

Name of the HIOA

Year

Author

Application area

Citation

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36
37

38
39
40

Jaya Algorithm

Tug of War Optimization

Social Group Optimization

Social Learning Optimization
Football Game Algorithm

Ideology Algorithm
Most Valuable Player Algorithm

Human Behavior-Based Optimization

Human Mental Search

Social Engineering Optimizer

Queuing Search Algorithm

Team Game Algorithm

Socio Evolution and Learning Optimi-
zation

Volleyball Premier League Algorithm

Class Topper Optimization

Focus Group

Ludo Game-based Swarm Intelligence

Search and Rescue Optimization
Life Choice-Based Optimization
Social Ski-Driver Optimization

2016

2016

2016

2016

2016

2016
2017

2017

2017

2018

2018

2018

2018

2018

2018

2018
2019

2019
2019
2019

Rao [158]

Kaveh and Zolghadr [163]

Satapathy et al. [168]

Liu et al. [173]
Fadakar and Ebrahimi [175]

Huan et al. [177]
Bouchekara et al. [178]

S A Ahmadi [182]

M.J. Mousavirad [186]

Amir Mohammad Fathollahi-Fard
[193]

Jinhao Zhang et al. [200]

Mahmoodabadi et al. [203]
Kumar et al. [206]

Mogdhani et al. [207]

Das et al. [209]

Fattahi [213]
Singh et al. [214]

Amir Sabani et al. [216]
Khatri et al. [218]
Tharwat et al. [219]

Engineering Optimization Problem
[159], Photovoltaic Cell [160],
Surface grinding process optimization
[161], Multi-thresholding [162]

Engineering design problems [163],
Structural Damage Identification
[164], Workload prediction model
[165], Design of laterally-supported
castellated beams [166], Water distri-
bution system design [167]

Data Clustering [169], Optimization
problems [169], Image Segmentation
[170], Task Scheduling [171], Image
Processing [172]

QoS-aware cloud Service [173], Sched-
uling in Cloud Computing [174]

Optimization problems [175], Vehicle
Routing Problem [176]

Optimization problems [177]

PV Generation System [179], Wind
farm layout optimization [180], direc-
tion over current relays coordination
problem [181]

Cell Design Problem [183], S-Box
Design Problems [184], Digital Over
Current Relays (DOCRs) [185]

Image Clustering, Image Segmentation,
Multi Thresholding (Image Process-
ing) [187-190], Global Optimization
Problems [191], Color Quantization
[192]

Cross Docking System [194], Intel-
lectual Manufacturing System [195],
Data Classification [196], Closed
Loop Supply Chain System [197],
Truss Optimization [198], Informa-
tion Security [199]

Engineering Design Problems [200],
Feature Selection [201], Biochar
System [202]

Knapsack problem [204], Duffing-
Holmes chaotic problems [205]

Unconstrained optimization problems
[206]

Multi-thresholding Image Segmenta-
tion [208], Global Optimization
problem [31]

Data Clustering [209], Economic Load
Dispatch problem [210], PID Control-
ler design [211], WSN (Wireless
Sensor Network) [212]

Optimization Problem [213]

Global Optimization [214], Image
Analysis [215]

Engineering Design Problems [217]

Engineering Design Problems [218]

Feature Selection [220]

1308

57

149

81

29

42
52

42

79

135

75

17

93

103

45

13
21

41
11
24
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Table 1 (continued)

SI

Name of the HIOA

Year

Author

Application area

Citation

41

40

43

44

45

46
47

48

49

50

51

Gaining Sharing Knowledge-Based
Algorithm

Future Search Algorithm

Forensic-Based Investigation Optimiza-
tion

Political Optimizer

Heap-Based Optimizer

Human Urbanization Algorithm
Battle Royale Optimization

Dynastic Optimization Algorithm

Coronavirus Herd Immunity Optimiza-
tion

Stock Exchange Trading Optimization

Anti Coronavirus Optimization Algo-
rithm

2019

2019

2020

2020

2020

2020
2020

2020

2021

2022

2022

Mohamed [221]

Elsisi [230]

Shaheen [233]

Qamar Askari et al. [237]

Qamar Askari et al. [246]

H. Ghasemian et al. [254]
Taymaz Rahkar Farshi [256]

Wagan and Shaikh [260]

Mohammed Azmi Al-Betar [261]

Emami [271]

Emami [272]

Engineering Optimization Problem
[222], Image Multi-thresholding,
Feature Selection (Image Processing)
[223-225], Knapsack Problem [226],
Solar Photovoltaic Model [227],
Power System [228], Solid Transpor-
tation Problem [229]

Radial Distribution Network [231],
Automatic Voltage Regulators [232]

Pothole Classification [234], Structural
Design Problems Models [235],
Global Optimization Problems [236]

Truss Structure [238], Engineering
Optimization Problem [5], Fuel Cell
Parameter Estimation [239], Feature
Selection (Image Processing) [240],
Photovoltaic Systems [241], Antenna
Arrays [242], Wind Solar-Diesel
Battery Systems [243], Capacitor
Allocation Problem [244], Economic
Load Dispatch Problem [245]

Industrial Solar Generation [247],
Proton Exchange Membrane Fuel
Cell (PEMFC) Stacks [248], Radial
Feeder Distribution Systems [249],
Optimal Reactive Power Dispatch
[250], Optimal Power Flow Problem
[251], Microgrid [252], Fog Comput-
ing [253]

System Security Enhancement [255]

Artificial Neural Network (ANN)
[257], Linearized Quadruple-Tank
Process [258], Smart Grid System
[259]

Wind Turbine Micrositing (WTM)
problem [260]

Vehicle Routing Problem [262], Travel-
ling Salesman Problem [263], Feature
Selection (Image Processing) [264],
Brushless DC Motor System [265],
Network Reconfiguration [266],
Transmission Expansion Planning
[267], Microgrids [268], Intrusion
Detection System [269], Vehicle
Routing Problem [270]

Numerical and Engineering Optimiza-
tion problems [271]

Multi-variable single-objective optimi-
zation problems [272]

79

18

79

64

21

16

39

attention towards the Classification of HIOAs. Addition-
ally, challenges and open research issues have been evi-
dently brought to light in Sect. 4. Application in MLT
domain is emphasized in Sect. 5 that elaborates upon
the problem formulation, objective functions utilized,

@ Springer

literature review on HIOA in MLT domain over recent
years and to end with experimental results along with the
discussions on the same. Last but not the least, conclu-
sion alongside few future research directions is offered in
subsequent section i.e. Sect. 6.
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Fig. 1 The citation as per Google Scholar for various HIOAs available in literature
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Year

Fig.2 Various HIOAs developed and proposed over years since 1994 till date (As per surveyed)

2 Elements of Human-Inspired Optimization
Algorithms (HIOAs) and Its Common
Structure

Humans have been extensively recognized as the most
ingenious species across the globe acquiring abundant
cognitive capabilities and processing power because of

which they are referred as 'developed cultural species'.
These cultural species so called human have inimita-
ble dependence on culturally or ethnically disseminated
knowledge all through the human race (across generations,
across society) basically because of the socio-atmosphere
around. In society (human society) every individual is
speeding towards their objectives delivering the best ver-
sion of own self and disseminating knowledge in one way

@ Springer
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Table 2 Abbreviation used for Human-Inspired Optimization Algorithms (HIOAs) surveyed in this paper

Name of the HIOA Abbreviations Name of the HIOA Abbreviations
Cultural Algorithm CA Group Counseling Optimization Algorithm GCO
Imperialist Competitive Algorithm ICA Tug of War Optimization TWO
Teaching Learning-Based Optimization TLBO Most Valuable Player Algorithm MVP
Brain Storm Optimization BSO Volleyball Premier League Algorithm VPL
Human Behavior-Based Optimization HBBO Dynastic Optimization Algorithm DOA
Human Mental Search HMS Focus Group FG
Social Engineering Optimizer SEO Stock Exchange Trading Optimization SETO
Queuing Search Algorithm QS Anti Corona virus Optimization Algorithm ACVO
Search and Rescue Optimization SRO Socio Evolution and Learning Optimization SELO
Life Choice-Based Optimization LCBO Election Algorithm EA
Social Ski-Driver Optimization SSD Election Campaign Optimization Algorithm ECO
Gaining Sharing Knowledge-Based Algorithm GSK Anarchic Society Optimization ASO
Future Search Algorithm FSA Society and Civilization SC
Forensic-Based Investigation Optimization FBIO Social Emotional Optimization Algorithm SEOA
Political Optimizer PO League Championship Algorithm LCA
Heap-Based Optimizer HBO Ideology Algorithm 1A
Human Urbanization Algorithm HUA Cohort Intelligence CI
Battle Royale Optimization BRO Social Group Optimization SGO
Corona virus Herd Immunity Optimization CHIO Social Learning Optimization SLO
Harmony Search Algorithm HSA Cultural Evolution Algorithm CEA
Passing Vehicle Search PVS Backtracking Search Optimization Algorithm BSA
Jaya Algorithm JAYA Football Game Algorithm FGA
Seeker Optimization Algorithm SOA Class Topper Optimization CTO
Interior Search Algorithm ISA Ludo Game-based Swarm Intelligence LGSI
Soccer League Competition Algorithm SLC Team Game Algorithm TGA
Exchange Market Algorithm EMA

or the other may it be in the field of sports, politics, music,
stock market or searching a suitable place for oneself.
Thereby such rapid movement of human to attain their
goals leads to one important concept known as compe-
tition in the society. Considering all these, the plentiful
available variants of Human inspired Optimization Algo-
rithms, are solely inspired by the different factors associ-
ated with human and the supporting environment. This
section basically draws attention towards the same i.e.
the different resource of inspiration as one of the com-
ponent. Apart from that, Table 3 summarizes the list of
HIOAs emphasizing on the methodologies opt by each,
nature of each of the HIOAs, source of inspiration for each
HIOASs and number of solutions that each HIOAs generate.
Beside, this section also highlights the fact that though
different HIOAs tag along expansive set of perceptions
however, fundamental methodologies remain the same
for all. Despite the fact that HIOA has progressed signifi-
cantly over the years, it is being widely applied in several
research domain and application areas are thereby growing
with each passing years. This calls for the necessity of a
universal framework / structure making it simpler for the

@ Springer

researcher in terms of realization. With this perception
in mind, and scrounging the aid from Table 3, a common
framework for HIOAs has been planned and the same is
projected via a flowchart in Fig. 3. The majority of HIOA
tag along the common structure that basically consist of
five imperative steps namely Initialization process, Evalu-
ation process, Construction process, Update process and
Decision process.

3 Classification of Human-Inspired
Optimization Algorithms (HIOAs)

There are 51 Human Inspired Optimization Algorithms
have been surveyed as listed in Table 3. In this section, a
variety of categorization criterion is taken into account to
classify HIOAs and the same has been recorded in Table 4
and diagrammatically depicted in Fig. 4. Further out of the
total HIOAs surveyed, number of HIOAs falling under the
designated category has been highlighted in Fig. 5. Clas-
sifying any algorithms based on source of inspiration is
quite common yet effectual. Thereby, in this paper as well
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Fig.3 Flowchart depicting .
common structure of HIOAs Blaxt
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the categorization is carried out with in the similar way
i.e. using source of inspiration(a scrupulous realm HIOA
emulates) and based on the same, categories such as Socio-
Political Philosophy (Political HIOA), Socio-Competitive
Behavior (Competitive HIOA), Socio-Cultural / Socio-
Interaction (Interactive HIOA), Socio-Musical Ideologies
(Musical HIOA) and Socio-Emigration / Socio-Coloniza-
tion (Emigrational HIOA) has been formulated.

4 Major Challenges and Open Research
Issues

Although HIOAs have proved its efficacy and recognition
in numerous application domains, nevertheless quite a few
challenging issues predominantly from theoretical view-
point related to such algorithms does prevail [16]. The
basic methodology of all HIOAs is even though revealed
evidently for the researcher however, under what exact cir-
cumstance these algorithms needs to be employed remain

@ Springer

a foremost challenge. Further, the entire HIOAs comprises
of parameters that are essentially reliant on algorithm. The
lack of general mechanism to finely tune the parameter
scrupulously to enhance the performance of the underlying
algorithm is yet an added challenge for the researcher to
look upon. Additionally, various HIOAs need to be com-
pared and the conclusion is driven totally based on the per-
formance parameters employed to do the same. With this
comes a new challenge that researcher requires to glance
ahead i.e. the choice of suitable performance parameters.
Furthermore, it is quite evident that HIOAS is associated
with diverse applications [Table 3 clearly highlights the
same] involving diminutive or restrained problem size,
nonetheless, if these algorithm can be scaled up by means
of approaches like of parallel computing is still a core
inquest yet to be responded.
Few open research issues have been highlighted below:

(a) Constructing a unified mathematical framework for
HIOAs. To facilitate such integrated structure, multi-
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Table 4 Classification of Human-Inspired Optimization Algorithms (HIOA) as per source of inspiration

SI  Name of the HIOA Classification of HIOA
Socio-Political Philosophy Socio- Socio-Cultural /  Socio-Musical Ideologies Socio-Emigration /
Com- Socio-Interaction Socio-Colonization
petitive
Behavior
Political HIOA Com- Interactive HIOA Musical HIOA Emigrational HIOA
petitive
HIOA
1 Cultural Algorithm X X 4 X X
2 Imperialist Competitive X X X X v
Algorithm
3 Teaching Learning-Based X X v X X
Optimization
4 Brain Storm Optimization X X v X X
5  Human Behavior-Based Opti- X X v X X
mization
6  Human Mental Search X X v X X
7  Social Engineering Optimizer X X v X X
8  Queuing Search Algorithm X X v X X
9  Search and Rescue Optimiza- X X v X X
tion
10 Life Choice-Based Optimiza- X X v X X
tion
11 Social Ski-Driver Optimization X X 4 X X
12 Gaining Sharing Knowledge- X X v X X
Based Algorithm
13 Future Search Algorithm X X v X X
14  Forensic-Based Investigation =~ X X v X X
Optimization
15 Political Optimizer v X X X X
16 Heap-Based Optimizer X X X X
17 Human Urbanization Algo- X X X X
rithm
18 Battle Royale Optimization X v X X X
19  Coronavirus Herd Immunity X X v X X
Optimization
20 Harmony Search Algorithm X X X v X
21 Passing Vehicle Search X X v X X
22 Jaya Algorithm X X v X X
23 Seeker Optimization Algo- X X v X X
rithm
24 Interior Search X X v X X
25  Soccer League Competition X v X X
Algorithm
26 Exchange Market Algorithm X X 4 X X
27  Group Counseling Optimiza- X X 4 X X
tion Algorithm
28 Tug of War Optimization X v X X X
29 Most Valuable Player Algo- X v X X X
rithm
30 Volleyball Premier League X v X X X
Algorithm
31 Dynastic Optimization Algo- v/ X X X X

rithm
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Table 4 (continued)

SI  Name of the HIOA Classification of HIOA
Socio-Political Philosophy Socio- Socio-Cultural /  Socio-Musical Ideologies Socio-Emigration /
Com- Socio-Interaction Socio-Colonization
petitive
Behavior
Political HIOA Com- Interactive HIOA Musical HIOA Emigrational HIOA
petitive
HIOA
32 Focus Group X X X X
33  Stock Exchange Trading Opti- X X X X
mization
34 Anti Coronavirus Optimization X X v X X
Algorithm
35 Socio Evolution and Learning X X v X X
Optimization
36 Election Algorithm v X X X X
37 Election Campaign Optimiza- v/ X X X X
tion Algorithm
38 Anarchic Society Optimization v/ X X X X
39  Society and Civilization X X v X X
40  Social Emotional Optimization X X v X X
Algorithm
41 League Championship Algo- X v X X X
rithm
42 Ideology Algorithm v X X X X
43 Cohort Intelligence X X v X X
44 Social Group Optimization X X v X X
45  Social Learning Optimization X X v X X
46  Cultural Evolution Algorithm X X v X X
47 Backtracking Search Optimi- X X v X X
zation Algorithm
48  Football Game Algorithm X v X X X
49  Class Topper Optimization X v X X X
50 Ludo Game-based Swarm X v X X X
Intelligence
51 Team Game Algorithm X v X X X

disciplinary approach to learn algorithm from diverse
viewpoint is the requirement.

(b) Self-tuning framework for HIOAs is another chal-
lenging research issue. To achieve the same, bi-objec-
tive process for parameter tuning needs to be consid-
ered wherein algorithm to be tuned can be used to tune
itself.

(c) Significance of benchmarks and identifying useful
benchmarking to test different HIOAs.

(d) Deciding on appropriate performance measures for
fairly comparing different HOAs. To achieve the same,
unified framework for comparison of algorithm is the
necessity.

(e) Introduction of mechanism to scale up HIOAs to han-
dle broad range of predicaments. In order to achieve the

@ Springer
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€]
(h)

same, generalized method need to be established that
would cater to the need of variants of problems ranging
from small-scale to large scale to real life problems.
Establishing ways and measures to accomplish most
favorable balance of Intensification and Diversifica-
tion in HIOAs.

Launching of techniques to successfully cope up with
nonlinear restraints.

Coming up with approaches to utilize HIOAs in the
realm of Machine Learning and Deep Learning.
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Fig.4 Classification hierarchy of Human-Inspired Optimization Algorithms (HIOA) as per Table 4
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5 Application of HIOAs in Multi-Level
Thresholding Domain

Image segmentation [17, 18] is essentially the foremost
and elementary procedure to examine and construe the
acquired image in innumerable computer vision applica-
tions [19] wherein thresholding is considered enormously
imperative in this domain. Considering the two categories
of thresholding namely bi-level and multilevel, Multilevel
Thresholding (MLT) segmentation methods has certain
limitation while making a search for the best thresholding
values comprehensively to optimize the objective func-
tion in which thresholding values increases thus swelling
the computational cost. In simpler words, MLT methods
turn out to be computationally complex as the number
of thresholds grows. In order to address such imperfec-
tion and resolve other issues related to MLT, researchers
are captivated towards quite a few methodologies inspired
either by nature or from human behavior that can be exten-
sively employed.

5.1 Problem Formulation

The fundamental notion of multi-level thresholding is to
discover more than one threshold for a given image that
further permits the images that has been segmented to
accomplish the required criterion by optimizing specific
objective function/s, with the threshold values as input
parameters [20]. Assume that the image f comprising
of L gray levels needs to be segmented into p partitions
(Cl, G, ....C, ... Cp) using set of (p-1) threshold values
TH = (tl,tz, et tp_l), where t; <t, <,...., <t,_;.
For example, L =256 for an 8-bit image and the grey lev-
els are between 0 and 255 [20]. Hence, a pixel containing
certain gray level g belongs to class C; if t,_; < g < t; for
i=1,2,...,p.The technique of determining the set of opti-
mal thresholds TH°? that optimizes the objective function
F(TH) is referred to as single objective thresholding. The
mathematical expression is as follows:
TH" = arg max / min { F(TH)} )
0<TH<L-1

For multi objective MLT,

F(TH) = (FI(TH), Fy(TH), ..., F(TH), ... ,Fn(TH)) ,
where n > 1.

@ Springer

5.2 Objective Functions

Selection of objective functions plays a crucial role in
Multi-Level Thresholding-based image segmentation.
Though numerous objective functions are proposed and
available widely in the literature however, that makes it
even more difficult in terms of selection when an image
type varies making objective functions critically depend-
ent on the algorithm as well as image type. This section
elaborates on the two objective functions namely Tsal-
lis and t-entropy that have been considered alongside
six HIOAs in MLT domain for the color satellite image
segmentation.

5.2.1 Tsallis Entropy

Multi-level thresholding [21] seeks to find the best threshold
values for segmenting an image into different groups while
maintaining a desired property (objective function). The
threshold values are used as decision variables in the optimi-
zation process, which includes maximization or minimization
of an objective function.

Suppose, an image I with L gray levels are classi-
fied into K classes (C,C,,...,C;,... Cx) using a set of
nt threshold point T = (thy, th,, ..., th;, ..., thg_ ), where
thy <th, <, ....,< thg_, Here for 8 bit image L = 256 and
gray level lie within the range [0, 255]. Therefore, a pixel
with gray level g is belongs to class C;if t,_; < g < ¢, for
i=1,2,..., K. Thus single objective thresholding problem is
the process of selecting the set of thresholds T’ which opti-
mizes the objective function F(T) such that

T' = argmax / Osr%lsi?_l {F(T)} )

where, the objective function F(T) represents the desired
property to be satisfied in order to obtain the segmented
image 1. In this paper, Tsallis entropy has been taken as
objective function and the brief mathematical implementa-
tion of that is presented as follows.

Tsallis entropy is the generalization of Boltzmann—Gibbs
entropy measure which is introduced by Constant in Tsallis
[14, 22]. Based on the concept of multi-fractal theory, Tsallis
entropy measure can be generalized to a non-extensive system
using an entropy formula given in Eq. (3).

_ 1= T ()"

5= —74 ©

q

where, 0 < p; < 1 denotes the probability of the state i. In
the case of gray level image, it represents the occurrence of
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the ith gray level in the image. Tsallis parameter q signifies
the measure of non-extensivity of the system under consid-
eration. By applying pseudo additivity entropy rule it can
be written as:

S,(f +b) = S,(f) +5,(b) + (1 = 9.5, ()., () @)

Here, f and b represent the foreground and background
classes of the image which is separated by threshold value t.
Suppose,

PP > 0,i=1,2,......L;
L = number of discrete gray levels; Z pi=1
i=1
the probability distribution of the gray level intensities of the
image. Then the probability distribution of the f and b
classes are given by the following expression:

(pl,pz,...

_P1 P P _Pu1 P2 P
=R B and P, = Db pb T b 3)
where,
1 L
Pr=Y pandP’ =) p, ©)

i=1 i=t+1

Consequently for each class, Tsallis entropy can be for-
mulated as:

1= Pipr)”
q—1

>

1=YE  (Pi/p)?
Sz(t) _ zz=t+1 ( /Pb)

f(1) =
NI -

(N

For bi-thresholding, sum of the both information measure

for foreground and background is maximized. Therefore, the
finding of optimal threshold can be formulated as follows:

ton = Atg max[) 0 + S50 + 1 =) - 0 - S0)|  ®)

Subject to the following constraints:
|Pf +P°| -1 <8< 1—|P +P"| where,
S(t) =S = Sj(t) + S2(5) + (1 — q) - S}(1) - SL(B)(45).

This formulation can be easily extended to multi-level by
the following expression:

Subject to the following constraints:

P +P-1<s <1

Pl P[P+ P -1 <82
<1- (P2+P3|&|P'"+P"’+1| <M<l - |P'"+Pm+1(
(11

where, P!, P? and P™*! corresponding to S', S? and S have
been computed using ¢, #,, ... ... ,t,, respectively.

5.2.2 t-entropy

A new measure of entropy called t-entropy has been pro-
posed by Chakraborty et al. in the year 2021 [23]. Suppose,
an image [ associate with normalized histogram
P = (PosP2sP3s evve e ees Pt )Ipi 2 0,i = 0,1,2, ... L — 1; Where L

is the number of gray levels in the image / and ) p; = 1.
i=0

Then the t-entropy (HC) of the image is computed as the fol-

lowing expression:

-1
-y a(L)\_z
H.(p) = p; tan <pc> ) (12)

i=0 i

where, c is a positive constant.

Now, if there are nt = K — 1 thresholds (¢), partitioning
the normalized histogram into K classes, then the entropy
for each class may be computed as,

=1 |
H!(th) = Z Li o | —L |-

i=0 Wi (pi/Wl )C

N

thy—1
H:(thy) = Z Dijan! ;C -
i=m, "2 (Pi " )

2

18

(t1:1ps .. ..., 1,,) = Arg max [S;(r) +820) + o+ 81D + (1 =) - SYD) - S20) .. ..ng(t)] ©)

1 L

_ - Z?:l (pi/Pl)q

-3 (Pifpm)?
t+1( /P ) ,andM:m+1

, and ng(r) =

9 qg—1 qg—1

10)
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Ry I
v ()= Y —tan”' | ———|-Z 13
c( t) i; Wnt <pl/ >c 4 ( )
nt Wnt
where,

th)— thy—

1 1 L-1
wl(thl) = Z Dis wz(thz) = Z Dis coe e e s WK(thm) = Z D;
i=0

i=th, i=th,,
(14)
where, for ease of computation, two dummy thresh-
olds thy=0,th,=L—1 are introduced with
thy < th, < ... <th,_ | <th,. Then the optimum threshold
value can be found by

@(thy, thy, ... ... ,th,,) = Arg max

15
([H (thy) + B2 (thy) + ... + HX (1h,,)]) ()
During the experiment, the positive constant ¢ had been
tested over [0.01, 20] and found that ¢ = 0.1 is best for multi-
level thresholding based image segmentation over the tested
datasets.

5.3 Literature Survey on HIOAs Based MLT

Optimization is a methodology of making a design or the
system as fully functional as possible that is finely accom-
plished by a well-tuned algorithm. Nature instead of being
fully deterministic is evolutionary, vibrant and resourceful.
The nature-inspired algorithms use the best combination and
evolution strategy in a given situation However, a new meta-
heuristic Human-Inspired Optimization Algorithms (HIOA)
is introduced that uses social behavior in human dynasties.
Numerous researchers have advocated quite a lot of opti-
mization approaches wherein a variety of entropy has been
exploited as an objective functions. The recent literature of
HIOA based MLT has been presented in Table 5. Different
parameter’s and algorithms abbreviation used in the papers
surveyed in Table 3 with its full form is tabularized respec-
tively in Table 6 and Table 7. Total 21 HIOA-MLT papers
have been discussed in Table 3 where different papers col-
lected over the years is presented in Fig. 6. Whereas, Fig. 7
indicates the percentage of papers which are surveyed in
Table 5 utilizing different types of images.

5.4 Experimental Results and Discussion

This section presents the experimental results that has been
computed with the help of six HIOA namely Corona virus
Herd Immunity Optimization (CHIO), Forensic-Based
Investigation Optimization (FBIO), Battle Royale Optimiza-
tion (BRO), Political Optimizer (PO), Heap-Based Opti-
mizer (HBO) and Human Urbanization Algorithm (HUA).

@ Springer

The result of the six HIOAs considered is further compared
with very established Particle Swarm Optimization (PSO)
algorithm. Further, Tsallis entropy on one hand and t entropy
on the other over color satellite images has been considered
as an objective functions. The parameters setting of the cor-
responding methods have been prearranged in Table 8. All
seven HIOA have been used in their original versions. Nev-
ertheless, the parameters of each algorithm have been fine-
tuned to determine the best values subsequently to produce
a good segmentation result within a rational amount of time.
In order to do so, a series of experiments has been performed
where segmentation is conducted for different threshold
numbers and the test images. The value of each parameter
has been selected practically (experimentally) with the
objective of coming within the reach of the best segmenta-
tion. The experimental study includes the evaluation of Tsal-
lis’ and t entropy, as objective functions. For the reasonable
comparison amongst HIOA methodologies, each execution
of the tested objective functions considers the Number of
Function Evaluations, NFE= 1,000 * d, as stopping criterion
of the optimization process. This criterion has been desig-
nated to encourage compatibility with previously published
works in the literature. The experiments are evaluated con-
sidering the number of threshold values (TH) set to 6 and 8
which correspond to the d-dimensional search space in an
optimization problem formulation. Furthermore, FE is also
a crucial performance index used to measure the efficiency
of HIOA. In comparison to computational complexity, FE
permits some technical aspects such as the computer system
where the experiments run and is implemented, that has
direct impact on the running CPU time thereby concentrat-
ing only on the capacity of the algorithm to search within
the solution space. Each execution of the tested objective
functions considers the Number of Function Evaluations,
NFE=1,000%d, as stopping criterion of the optimization
process. For measuring the optimization ability of the
HIOAS, mean fitness (f) and standard deviation (¢) have

been calculated. On the other hand, segmentation efficiency
of the HIOA based models is measured by computing three
well known parameters in image segmentation domain i.e.
Peak Signal-to-Noise Ratio (PSNR), Feature Similarity
Index (FSIM) and Structural Similarity Index (SSIM). Mat-
labR2018b and Windows-10 OS, x 64-based PC, Intel core
i5 CPU with 8 GB RAM are the hardware and software
requirements incorporated during the experiment. With the
intention to verify the efficiency of different NIOA, experi-
ment is conducted using 20 color satellite images. The men-
tioned algorithms are tried and explored on images extracted
from the site of Indian Space Research Organization (ISRO)
[24] [https://bhuvan-app1l.nrsc.gov.in/imagegallery/bhuvan.
html#]. The original color satellite image is shown in Fig. 8.


https://bhuvan-app1.nrsc.gov.in/imagegallery/bhuvan.html#
https://bhuvan-app1.nrsc.gov.in/imagegallery/bhuvan.html#
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Table 6 Different qualitative
parameters mentioned in the
paper surveyed in Table 5 and
its full form

Parameter used

Abbreviations Parameter used

Abbreviations

Peak Signal-to-Noise Ratio PSNR Jaccard-Index
Normalized Cross-Correlation NCC Mean Fitness value
Normalized Absolute Error NAE Standard Deviation
Structural Similarity Index SSIM Computational Time
Precision PRE Root Mean Square Error
F-Measure FM Standard Deviation
Sensitivity SEN Structural Content
Specificity SPE Average Difference
Balanced Classification Rate BCR Picture-Quality-Measures
Balanced Error Rate BER Normalized Absolute Error
Accuracy ACC Image Quality Measure
False Positive Rate FPR Jaccard Coefficient

False Negative Rate FNR Dice Coefficient

J-Index
Fitm
Fitstd
CT
RMSE
STD
SC
AD
PQM
NAE
QM
JC

DC

Table 7 Different algorithms mentioned in the paper surveyed in Table 5 and its full form

Name of the algorithm

Abbreviations

Name of the algorithm

Abbreviations

Particle Swarm Optimization
Gray Wolf Optimization
Cuckoo Search Algorithm
Harmony Search

Whale Optimization Algorithm
Sine Cosine Algorithm
Volleyball Premier League
Salp Swarm Algorithm

Bat Algorithm

Crow Search Algorithm
Equilibrium Optimizer

Brain Storm Optimization
Genetic Algorithm

Exchange Market Algorithm
Human Mental Search

Genetic Algorithm

Differential Evolution

Firefly Algorithm

Krill herd Algorithm
Gravitational Search Algorithm
Fire Fly Optimizer

Artificial Bee Colony
Social-Group-Optimization
Backtracking Search Algorithm
Bacterial Foraging

Cuckoo Search

PSO
GWO
CSA
HS
WOA
SCA
VPL
SSA
BA
CSA
EO
BSO
GA
EMA
HMS
GA
DE
FA
KHA
GSA
FFO
ABC
SGO
BSA
BF
CS

Determinative Brain Storm Optimization

Parameter Less Harmony Search

Harmony Search Optimization Algorithm

Multilevel Thresholding Improved Harmony Search Algorithm
Multilevel Thresholding Salp Swarm Algorithm

Multilevel Thresholding Firefly Algorithm

Multilevel Thresholding Harmony Search Algorithm

Harmony Search Multilevel Thresholding Algorithm
Teaching-Learning Based Optimization

Harris Hawks Optimization Algorithm

Bacterial Foraging Optimization

Improved Human Mental Search Multi Level Image Thresholding
Particle Swarm Optimization Multi Level Image Thresholding
Firefly Algorithm Multi Level Image Thresholding
Biogeography Based Optimization Multi Level Image Thresholding
Cuckoo Search Multi Level Image Thresholding

Gray Wolf Optimization Multi Level Image Thresholding

Whale Optimization Algorithm Multi Level Image Thresholding
Modified Fuzzy Entropy Backtracking Search Algorithm
Electro Magnetism-like Optimization

Whale Optimization Algorithm

Volleyball Premier League Whale Optimization Algorithm
Spherical Search Optimizer

Gaining Sharing Knowledge-Based Algorithm

Imperialist Competitive Algorithm

DBSO
PLHS
HSOA
MT-IHSA
MT-SSA
MT-FA
MT-HSA
HSMA
TLBO
HHA

BFO
IHMSMLIT
PSOMLIT
FAMLIT
BBOMLIT
CSMLIT
GWOMLIT
WOAMLIT
MFE-BSA
EMO

WOA
VPLWOA
SSO

GSK

ICA

5.4.1 Results Over Tsallis Entropy for Color Satellite Image

Figure 9 highlights the visual segmented results of the origi-
nal image of Fig. 8§ using six different HIOA (PO, CHIO,
HBO, FBIO, BRO and HUA) which is further compared

with one of the popular algorithm i.e. PSO with Tsallis

entropy as objective function over 6 and 8 thresholds for a

color satellite image. Table 9 projects numerical comparison
of various aforesaid HIOA with Tsallis entropy as objective
function over 6 and 8 thresholds for the satellite image
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Fig.7 Number of surveyed HIOA-MLT paper as per types of images

considering numerous parameters such as fitness function
f >, standard deviation (o), Computational time (Time

(sec)), FSIM, PSNR and SSIM. Additionally, the entries that
are highlighted in boldface indicate the best performance
results. Table 9 clearly bring to light that PO accomplishes
the best result over the threshold value (nt=6) for every
parameters taken into account while PSO bestows the worst
end result when compared amongst all the six tested HIOAs.
Further, for thresholds value (nt=38) for parameters namely

(f), Time (sec), FSIM, PSNR and SSIM, PO exhibits the

best result whereas HUA attains the best value in terms of
(of). On the other hand for the same threshold value, yet
again PSO bestows the worst end result when compared
amongst all the six tested HIOAs. The fitness value of PO is
judged against other six HIOAs and PSO considered. A non-
parametric significance proof known as Wilcoxon’s rank test
has been performed wherein such proof authorizes to esti-
mate differences in the result amid two associated methods.

@ Springer

A p-value of less than 0.05 (5% significance level) sturdily
supports the condemnation of the null hypothesis, thereby
signifying that the best algorithm's results vary statistically
noteworthy from those of the other peer algorithms and that
the discrepancy is not due to chance. Table 10 tabulates the
pair-wise comparison among HIOA (PO vs. CHIO; PO vs.
HBO; PO vs. FBIO; PO vs. BRO; and PO vs. PSO) depend-
ing on Wilcoxon p-values over Satellite image for Tsallis
entropy for 6 and 8 number of thresholds. All the Wilcoxon
p-values obtained and thereby projected in Table 10 are less
than 0.05 (5% significance level) with =1 is an apparent
proof not in favor of the null hypothesis, inferring that the
PO fitness values for the performance are statistically supe-
rior. This further indicates that PO in amalgamation with
Tsallis entropy as objective function is proficient enough to
bring into being consistent solution irrespective of the
threshold values as in all the cases of comparison for both
nt=6 and 8 value of p < 0.05and 2 = 1.

5.4.2 Results Over t- Entropy for Color Satellite Image

Figure 10 highlights the visual segmented results of the
original image of Fig. 8 using six different HIOA (PO,
CHIO, HBO, FBIO, BRO and HUA) which is further com-
pared with one of the popular algorithm i.e. PSO with
t-entropy as objective function over 6 and 8 thresholds for
a satellite image. Table 11 projects numerical comparison
of various aforesaid HIOA with t-entropy as objective
function over 6 and 8 thresholds for the satellite image
considering numerous parameters such as fitness function

, standard deviation (o,), Computational time (Time
7 p

(sec)), FSIM, PSNR and SSIM. Additionally, the entries
that are highlighted in boldface indicate the best perfor-
mance results. Table 11 clearly bring to light that PO
accomplishes the best result over the threshold value
(nt=06) for every parameters taken into account except for
(qf) wherein CHIO attains the best (Gf) value. PSO bestows
the worst end result when compared amongst all the six
tested HIOAs. It is to be noted that for the same threshold

value i.e. nt=6, HUA in regard to fitness function (J_‘)

attains the same value as that of PSO. Further, for thresh-
olds value (nt=_8) for the entire parameters, PO exhibits
the best result. On the other hand for the same threshold
value, yet again PSO bestows the worst end result when
compared amongst all the six tested HIOAs for parameters

fitness function (f) Computational time (Time (sec)),

FSIM, PSNR and SSIM whereas BRO attains the worst
value for standard deviation (af). The fitness value of PO
is judged against other six HIOAs and PSO considered. A
non-parametric significance proof known as Wilcoxon’s
rank test has been performed wherein such proof author-
izes to estimate differences in the result amid two
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Table 8 Parameter setting of HIOAs

Algorithms Parameters

Description

Value initialized

Corona virus Herd Immunity Optimization (CHIO) C,
Max_Itr
HIS
BR,
Max,,,
HIP

Forensic-Based Investigation Optimization (FBIO) N
rand
rand,;

rand,

Political Optimizer (PO) N

Battle Royale Optimization (BRO) iter
Population_size
Threshold

Heap-Based Optimizer (HBO) T

Human Urbanization Algorithm (HUA)

Particle Swarm Optimization (PSO) (o

Number of initial infected case

1

Maximum number of iterations 1000
Population Size 50
Basic Reproduction Rate 0.01
Maximum age of the infected cases 100
Herd Immunity Population [Oor1]
Random Number [0,1]
Age Vector 1
Status Vector 1
Population Size 50
Random Number [-1,1]
Random Number [0,1]
Random Number [0,1]
Effectiveness coefficient [-1,1]
Number of parties, constituencies, and members in 5

each party
Total number of iterations 500
Random Number [0,1]
party switching rate 1
Maximum number of iterations 500
Population Size 50
Threshold 3
Random Number [0,1]
Maximum number of iterations 500
Random Number [0,1]
Random Number [0,1]
Size of Population 50
Number of Dimension (variables) 30
Number of Cycles (c=T/25) 8
Number of Iterations 500
Random Number [0,1]
Random Number [-1,1]
Controlling diversification and intensification of 2

adventurers
Balancing between diversification and intensification 1

in searching the city’s boundaries
Population Size 50
Acceleration coefficients 2
Acceleration coefficients 2
Population Size 50

associated methods. A p-value of less than 0.05 (5% sig-
nificance level) sturdily supports the condemnation of the
null hypothesis, thereby signifying that the best algo-
rithm's results vary statistically noteworthy from those of
the other peer algorithms and that the discrepancy is not
due to chance. Table 12 tabulates the pair-wise comparison
among HIOA (PO vs. CHIO; PO vs. HBO; PO vs. FBIO;
PO vs. BRO; and PO vs. PSO) depending on Wilcoxon
p-values over Satellite image for t-entropy for 6 and 8

number of thresholds. All the Wilcoxon p-values obtained
and thereby projected in Table 11 are less than 0.05 (5%
significance level) with A=1 is an apparent proof not in
favor of the null hypothesis, inferring that the PO fitness
values for the performance are statistically superior. How-
ever, Table 11 additionally indicates that PO in amalgama-
tion with t-entropy as objective function is proficient
enough to bring into being consistent solution when the
threshold value (nt=8) however, as its clear from the table

@ Springer
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Fig. 8 Original color satellite image (Input Image)

that when the threshold value (nt=06), there is no signifi-
cant difference (as p > 0.05 and & = 0) between PO and
few HIOAs namely CHIO. HBO, FBIO and BRO but PO
outperforms HUA and PSO as depicted by the value of p
and h (as p < 0.05and h = 1).

5.4.3 Discussion on the Performance Comparison Among
Different Objective Functions Employed

From the values obtained for different parameters in the
tables highlighted above (Tables 9 and 11), it is evident that
on comparing different HIOA’s for the satellite images using
two prominent objective functions namely Tsallis and
t-entropy for different threshold values (nt=6 and 8), Tsallis
entropy outperforms for every HIOA’s as well as PSO over
parameters such as fitness function (f), standard deviation

(o), Computational time (Time (sec)), FSIM, PSNR as well
as SSIM. It is noteworthy to highlight that different HIOA’s
generates high fitness values for all threshold values consid-
ering Tsallis entropy to segment the standard color images
as compared to segmentation using 7-entropy as an objective
function. Further, it can be deduced and inferred from the
experimental outcome that every HIOAs in combination
with Tsallis entropy outperforms the HIOA combination
with #-entropy in almost all cases and almost all parameters
taken into consideration. On the other hand, considering
Tables 10 and 12, it is apparent that for every parameter
considered in the scenario, every HIOA’s in combination
with Tsallis entropy generates better result and proves supe-
rior to that of HIOA combined with #-entropy as an objective
function for every threshold values. This surely indicates
that though #-entropy is the newly introduced concept rarely

@ Springer

Number of Thresholds(nz)

Different Methods

PO

CHIO

HBO

FBIO
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Fig.9 Segmented results of different HIOAs using Tsallis entropy
over nt=6 and 8
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Table 9 Numerical comparison

o i Number of HIOA f or Time (sec.) FSIM PSNR SSIM
of HIQA for T§a1115 entropy as thresholds (f)
objective function over satellite
image 6 PO 3146969.68 1.18E-12 4.0438 0.9898 22.89 0.8897
CHIO 3146863.76 3.11E-11 4.1522 0.9897 22.77 0.8884
HBO 3146853.55 4.01E-12 4.1601 0.9895 22.68 0.8882
FBIO 3146841.29 2.57E-11 4.2011 0.9892 22.65 0.8881
BRO 3146824.68 3.78E-12 4.2009 0.9891 22.61 0.8879
HUA 3146811.89 4.82E-11 4.3221 0.9886 22.59 0.8875
PSO 3146804.84 3.13E-11 4.3225 0.9884 22.51 0.8871
8 PO 79224340.77 1.70E-11 5.1361 0.9955 25.32 0.9299
CHIO 79213418.64 1.58E-11 5.3354 0.9951 25.18 0.9294
HBO 79213017.45 1.34E-11 5.3558 0.9948 25.14 0.9291
FBIO 79212899.89 5.27E-11 5.4004 0.9945 25.10 0.9286
BRO 79212575.77 2.42E-10 5.4001 0.9942 25.04 0.9282
HUA 79212455.74 2.37E-11 5.5019 0.9938 24.99 0.9278
PSO 79212244.52 3.45E-10 5.5022 0.9932 24.95 0.9275

Best results are highlighted in bold

Table 10 Comparison among HIOA depending on Wilcoxon p-values
over satellite image for Tsallis entropy

Pair of HIOA Tsallis entropy over standard color image

nt=6 nt=38

p h p h
PO vs. CHIO <0.05 1 <0.05 1
PO vs. HBO <0.05 1 <0.05 1
PO vs. FBIO <0.05 1 <0.05 1
PO vs. BRO <0.05 1 <0.05 1
PO vs. HUA <0.05 1 <0.05 1
PO vs. PSO <0.05 1 <0.05 1

employed in image segmentation, Tsallis entropy as an
objective function presents an interesting and unconven-
tional choice for satellite image segmentation task and fur-
ther, same has been clearly highlighted in Fig. 11a, b, c and
d. In addition, the another analysis made from the above
mentioned tables is that as the number of threshold enhances
computational time increases no doubt but values for FSIM,
PSNR and SSIM also amplify for the objective function con-
sidered under this scenario.

6 Conclusion and Future Research
Directions

Amongst the list of algorithms instigated and existing in
literature, deciding upon an algorithm entails not just a
meticulous understanding of its theoretical fundamentals but
also require systematically comprehending upon the

different components of algorithm along with its different
parameters and application areas. This work attempted and
strived towards concentrating on these issues and talks about
pertinent conceptions related to HIOAs such as components,
classification, common structure, application areas, work
carried out till date and many more. A number of optimiza-
tion technique inspired from human behavior and intelli-
gence for MLT color satellite image segmentation problem
considering two significant objective functions i.e. Tsallis’
and t-entropy has been discussed in this paper. To reveal the
connotation of HIOAs in the field of MLT image segmenta-
tion six different algorithms namely Corona virus Herd
Immunity Optimization (CHIO), Forensic-Based Investiga-
tion Optimization (FBIO), Battle Royale Optimization
(BRO), Political Optimizer (PO), Heap-Based Optimizer
(HBO) and Human Urbanization Algorithm (HUA) has
been implemented and further compared among themselves
and with one of the popular Swarm based optimization algo-
rithm i.e. Particle Swarm Optimization (PSQO). The compari-
son is made taking into account numerous parameters such

as fitness function (f), standard deviation (O'f), Computa-

tional time (Time (sec)), FSIM, PSNR and SSIM based on
the evaluation of two predominant objective function as
revealed earlier (Tsallis’ and #-entropy). The results and con-
tribution of this paper have been summarized as follows:

(a) The numerical outcome demonstrates that Political
Optimizer (PO) confirmed and exhibited its compe-
tence and accuracy over other HIOA’s (as depicted in
Sect. 5.4) and PSO signifying that PO is most suitable
HIOA for MLT image segmentation process of color
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Number of Thresholds(n?)

Different Method:

nt=6
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PO

CHIO

HBO

FBIO

BRO
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Fig. 10 Segmented results of different HIOAs using t- entropy over

nt=6and 8
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(b)

(©

(d

satellite image with Tsallis’ entropy as objective func-
tion.

Though t-entropy as the objective function is the
recently introduced and rarely employed in image
segmentation, Tsallis entropy as an objective function
under different circumstances provides an attention-
grabbing result and thus can be an eccentric preference
for satellite image segmentation task.

Both objective functions considered in this paper in
connection with different HIOA are though suitable for
color satellite image segmentation however, result of
t-entropy as the objective function is dependent on the
threshold value.

Lastly as mentioned earlier, it is to be noted that as the
number of threshold increases, values for FSIM, PSNR
and SSIM also intensifies for both of the objective func-
tion considered under this scenario. Also, with tsallis
entropy as objective function, different HIOAs as well
as PSO considered for the experimental purpose gener-
ated high fitness values irrespective of threshold values
considered.

No doubt, HIOAs have evidently proved itself as an effec-
tive mechanism to unravel intricate real-world optimization
problems; it can still be further explored. With this, few
research directions has been projected below that shall hope-
fully turn out to be useful for the researcher to excavate and
discover HIOAs further.

()

(b)

(©

(@

(e)

Proficient but less obscure HIOA (lesser number of
operators, tuning parameters etc.) is the need of an
hour. Parameterless HIOAs can be good work in future
[25, 26].

Development of HIOAs based image clustering espe-
cially histogram based image clustering should an
emergent research topic [27-30]

Exploring and analyzing each HIOAs that fits the best
for the problem one intend to resolve at times is not just
tiresome but also not realistic so more parameters need
to be identified to classify HIOAs making it easier for
the researcher to select the suitable one.

From the above table i.e. Table 5 that highlights the
literature review of HIOA on MLT domain undoubtedly
point out that maximum HIOAs has been employed
for MLT image segmentation for standard gray scale
images (Fig. 7) however, very less work has been per-
formed for satellite images, medical images and even
standard color images. Exploring and applying HIOAs
over these variant of images could be a good work.
Also, Table 5 brings to lights the usage of different
objective functions, wherein maximum work has been
done with Otsu and Kapur as objective functions.
Exploring more of the existing objective function and
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Table 11, Numerical Number of HIOAs ] of Time (sec.) FSIM PSNR SSIM

comparison of HIQA for . thresholds (f)

t-entropy as objective function

over satellite image 6 PO 0.893337  3.89E-20  5.4789 0.9619 18.94  0.7868
CHIO 0.893336 1.02E-21 5.4997 0.9618 18.92 0.7866
HBO 0.893336 1.39E-21 5.5004 0.9618 18.90 0.7865
FBIO 0.893336 8.36E-20 5.5858 0.9615 18.75 0.7864
BRO 0.893336 1.24E-20 5.6151 0.9611 18.74 0.7862
HUA 0.893335 1.59E-21 6.0044 0.9599 18.67 0.7859
PSO 0.893335 1. 58E-20 6.1117 0.9589 18.59 0.7853

8 PO 1.166417 5.66E-21 6.6935 0.9891 22.99 0.8961

CHIO 1.166384 5.28E-20 6.7125 0.9888 22.69 0.8958
HBO 1.166377 4.42E-20 6.7211 0.9885 22.61 0.8955
FBIO 1.166368 1.76E-20 6.7455 0.9881 22.59 0.8954
BRO 1.166361 7.98E-20 6.7401 0.9879 22.55 0.8951
HUA 1.166343 7.81E-20 7.1012 0.9875 22.49 0.8948
PSO 1.166315 1.13E-20 7.1113 0.98471 22.41 0.8945

Best results are highlighted in bold

Table 12 Comparison among HIOA depending on Wilcoxon p-values
over satellite image for -entropy

Pair of HIOA t-entropy over standard color image

nt=6 nt=38

p h p h
PO vs. CHIO >0.05 0 <0.05 1
PO vs. HBO >0.05 0 <0.05 1
PO vs. FBIO >0.05 0 <0.05 1
PO vs. BRO >0.05 0 <0.05 1
PO vs. HUA <0.05 1 <0.05 1
PO vs. PSO <0.05 1 <0.05 1

®)

applying the same or applying Two-Dimensional (2D)
objective functions like 2D Otsu, 2D Tsallis, 2D-Renyi,
2D Cross etc., over diverse HIOAs in MLT domain
could be interesting as well as challenging.

Hybridization and parallel models has always proved
efficient and could be a great future research. In this
regard, hybridization [31] of for instance Social Learn-
ing Optimization inspired Archimedes Optimization
Algorithm or a novel PSO model based on Simulating

€3]

(h)

@

Cohort Intelligence. Recently human intelligences or
human social communication based PSO models are
developed and provided outstanding results [15, 32,
33].

Though t-entropy generated acceptable result, however,
it could not be proved commendable when compared
with the other objective functions under similar circum-
stances. Consequently, improvised variant of t-entropy
could be a good work.

Initial parameters are heuristically assumed so there is
always a scope to find a specific / standard method to
fix, control and tune the initial parameters. This could
be looked upon. Introducing novel performance meas-
ures to evaluate the success of an algorithm is also a
necessity.

Lastly, inspiration taken from behavior of quantum par-
ticles to develop metaheuristic optimization algorithms
[34] is as well gaining popularity and applied in numer-
ous application domain. In this perspective, introducing
a quantum inspired HIOA could be a great research
work that can be conducted in future.

@ Springer
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