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Abstract
Images acquired in poor weather conditions (haze, fog, smog, mist, etc.) are often severely degraded. In the atmosphere, 
there exists two types of particles: dry particles (dust, smoke, etc.) and wet particles (water droplets, rain, etc.) Due to the 
scattering and absorption of these particles, various adverse effects, including reduced visibility and contrast, color distor-
tions, etc. are introduced in the image. These degraded images are not acceptable for many computer vision applications 
such as smart transportation, video surveillance, weather forecasting, remote sensing, etc. The computer vision task associ-
ated with the mitigation of this effect is known as image dehazing. A high-quality input image (haze-free) is required to 
ensure the accurate working of these applications, supplied by image dehazing methods. The haze effect in the captured 
image is dependent on the distance from the observer to the scene. Besides, the scattering of particles adds non-linear and 
data-dependent noise to the captured image. Single image dehazing utilizes the physical model of hazy image formation in 
which estimation of depth or transmission is an important parameter to obtain a haze-free image. This review article groups 
the recent dehazing methods into different categories and elaborates the popular dehazing methods of each category. This 
category-wise analysis of different dehazing methods reveals that the deep learning and the restoration-based methods with 
priors have attracted the attention of the researchers in recent years in solving two challenging problems of image dehazing: 
dense haze and non-homogeneous haze. Also, recently, hardware implementation-based methods are introduced to assist 
smart transportation systems. This paper provides in-depth knowledge of this field; progress made to date and compares 
performance (both qualitative and quantitative) of the latest works. It covers a detailed description of dehazing methods, 
motivation, popular, and challenging datasets used for testing, metrics used for evaluation, and issues/challenges in this field 
from a new perspective. This paper will be useful to all types of researchers from novice to highly experienced in this field. 
It also suggests research gaps in this field where recent methods are lacking.

1  Introduction

The computer vision is defined as a field of study that deals 
in developing techniques to help computers gain high-level 
understanding from digital images or videos. It automates 
various tasks and extracts useful information from images/
videos with the help of artificial intelligence systems. There 
are numerous computer vision applications, including smart 
transportation systems, video surveillance, object detec-
tion, weather forecasting, etc. [1] that require high-quality 
input images or videos to “see” and analyze the contents. 
Unfortunately, poor weather conditions (haze, fog, rain, etc.) 

diminish the visibility and lead to the failure of these appli-
cations. The image captured under these circumstances suf-
fers from various degradations, namely low contrast, faded 
colors and most importantly reduced visibility. These degra-
dations occur in the captured image due to the scattering of 
atmospheric particles (aerosols, water droplets, molecules, 
etc.) suspended in the atmosphere.

The role of image dehazing is to improve the visual qual-
ity of a degraded image and remove the influence of the 
weather. Therefore, the image dehazing algorithm acts as 
preprocessing tool for many computer vision applications, 
as shown in Fig. 1.

Fog, mist, and haze are the atmospheric phenomena that 
reduce the visibility of the image. Fog and mist both occur 
when the air has wet particles or water droplets. Both the 
terms are almost the same and the only difference is how 
far we can see. Fog is the term generally referred to when 
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visibility is less than 1 km. If we can see more than 1 km 
away, it is considered as mist. Haze is a slightly different 
phenomenon, in which extremely small, dry particles, for 
example, air pollutants, dust, smoke, chemicals, etc. are 
suspended in the air. These dry particles are invisible to 
the naked eyes but sufficient to degrade the quality of the 
image in terms of visibility, contrast, and color. The vis-
ibility is less than 1.25 miles in the presence of haze. These 
dry particles are generated through various sources includ-
ing farming, traffic, industry, and wildfires. Figure 2 shows 
the example image of fog, mist, and haze and also various 
sources of hazy image formation.

The hazy effect in the captured image is expressed by 
the atmospheric scattering model (ASM) or the physical 

model of hazy image formation, as shown in Fig. 3. When 
incident light is reflected from the object, reflected light is 
attenuated due to the distance between observer and scene. 
In addition, due to the scattering of particles, airlight is 
also introduced into the camera. Therefore, a hazy image is 
composed of direct attenuation and airlight. Direct attenu-
ation distorts the color whereas airlight reduces the vis-
ibility. The physical model is given as follows [2]:

where c ∈ {r, g, b} is the color channel, Ic
hazy

 is the captured 
hazy image, Jc

haze−free
 is the haze-free image, Ac

t
 is the atmos-

pheric light, Tr is the transmission medium, and x is a pixel 
position. The transmission describes the portion of light, 
directly reaching the camera without scattering. The value 
of the transmission medium lies in the range of [0, 1]. Fur-
thermore, it is expressed as an exponential function of dis-
tance and depends on two parameters: distance d and scat-
tering coefficient � , as follows:

Haze-free image Jc
haze−free

 can be obtained in the inverse 
way as follows:

(1)Ic
hazy

(x) = Jc
haze−free

Tr(x) + Ac
t
(1 − Tr(x))

(2)Tr(x) = e−� d(x)

Dehazing  
Method 

Input image/video Expected Output 

Fig. 1   An application of image dehazing

(a)  (b)       (c)         (d)              (e)                  (f) 

Fig. 2   Images of a fog, b mist, c haze, d Source: air pollutants, e Source: farming, f Source: wildfires

Captured hazy 
image 
Ihazy

Scattering 

Scattering 

Airlight  

Direct Attenuation  

Haze-free 
image 
Jhaze-free Depth (d) 

Fig. 3   Physical model of hazy image formation
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Single image dehazing (SID) is an ill-posed problem 
because we have to estimate two key parameters Ac

t
 and Tr 

from Ic
hazy

 to find hazy-free image Jc
haze−free

 . The perfor-
mance of a dehazing method depends on the estimation of 
key parameters.

In the past, many dehazing methods came into exist-
ence that utilizes various prior knowledge or assumptions 
to compute the depth information. However, the perfor-
mance of these methods depends on the validity of these 
priors and may lead to various issues, such as color dis-
tortions, incomplete haze removal, halo artifacts, etc. In 
the literature, image enhancement based dehazing meth-
ods were also reported which do not require the estima-
tion of the transmission and its costly refinement process. 
Since it does not consider the degradation mechanism 
into account while recovering an image. They suffer from 
the problem of over/under enhancement, over-saturation, 
and loss of information and are also unable to deal with 
dense hazy images. To overcome the problem of resto-
ration and enhancement-based methods, many machine 
learning and deep learning methods are successfully 
implemented to compute an accurate transmission map. 
These methods require a vast amount of hazy and corre-
sponding clean images to train the model. However, it is 
very difficult to obtain hazy images and their GT image 
in the real world. The related work section describes the 
recent dehazing methods of each category along with 
their pros and cons.

In this review article, we have mainly focused on haze 
removal methods from a single image proposed in 2016 
and onwards. The major contributions are as follows:

(1)	 This paper provides an extensive study of various recent 
the state-of-the-art dehazing methods. It classifies these 
methods into twelve categories: Image enhancement, 
Image restoration with prior, Image fusion, Superpixel, 
Machine learning, Deep learning, Polarization, DCP 
based, Airlight estimation, Hardware implementation, 
Non-homogenous and Miscellaneous. All these meth-
ods are investigated on various dehazing parameters, 
namely key technique, dataset, issues of dehazing, 
evaluation metrics, etc.

(2)	 It provides a comprehensive study of various datasets 
used in image dehazing to date. It also discusses data-
sets of various haze densities from thin haze to very 
dense haze including real hazy images and synthetic 
hazy images. These datasets are assessed on various 
parameters, namely haze concentrations, number of 
images, and performance of recent dehazing methods.

(3)Jc
haze−free

(x) =
Ic
hazy

(x) − Ac
t

Tr(x)
+ Ac

t

(3)	 This paper also explores different metrics introduced in 
recent works for the evaluation of dehazing algorithms 
with their merits and demerits.

(4)	 Furthermore, this paper focuses on the latest technol-
ogy advancement and development in this field from 
the perspective of non-homogenous haze removal, 
dense haze, hardware architecture, ensemble networks 
and deep learning methods.

(5)	 Finally, it provides research gaps in single image dehaz-
ing where recent the state-of-the-art methods are lacking.

There are few papers available in the field of single image 
dehazing, however, they are limited to certain aspects. 
For instance, [3] concentrated on discussing various haze 
removal methods and quantitative results. Later, Wang 
et al. [4] added a description of different evaluation metrics. 
Singh et al. [5] explained numerous categories of dehaz-
ing methods with their pros and cons and analyzed methods 
based on issues of dehazing. However, it did not provide the 
qualitative and quantitative analysis of dehazing methods. 
In addition, it did not talk about standard dehazing datasets 
available for assessment. In the year 2020, two survey papers 
[6, 7] were reported. However, they take into consideration 
only a few recent papers from the year 2017 to 2020. This 
article considers approximately 150 recent papers in com-
parison to 46 in [7] and 51 in [6]. The comparison with 
existing survey/review papers is illustrated in Table 1. In this 
table, we can visualize the strength on various parameters 
of image dehazing. In addition to the previous research, this 
paper explores various untouched haze removal techniques 
for handling the most challenging problems of dehazing such 
as removal of non-homogeneous haze, superpixels, dense 
haze, and real-time applicability (hardware implementation). 
This article provides an extensive review of recent and popu-
lar dehazing techniques based on qualitative and quantitative 
comparisons, challenges in dehazing, available datasets, and 
evaluation metrics. This paper aspires to serve as a guide in 
all aspects of image dehazing for the researchers to find a 
path for their work.

2 � Applications of Image Dehazing

Image dehazing is an important area of research. The output 
of dehazing algorithms acts as an input to various vision 
applications. Some of the motivations are shown in Fig. 4 
and discussed as follows:

2.1 � Video Surveillance

A video surveillance system is a key component in the field 
of security. The effectiveness and accuracy of the visual 
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surveillance system depend on the quality of visual input. 
However, the poor weather condition affects the quality of 
input. The video captured by the camera of a surveillance 
system degrades due to scattering and absorption of light 
by the atmosphere. For example, video recorded in hazy 
weather has limited visibility which could be problematic 
for police, investigating a crime. Thus, these systems do 
perform poorly in hazy weather conditions. Hence, a robust 
surveillance system is required.

2.2 � Intelligent Transportation System

The foggy weather conditions affect the driver’s capabilities 
and increase the risk of accidents and the travel time signifi-
cantly due to limited visibility. In past years, fog-related road 
fatalities have increased significantly. Road crashes, injuries 
or deaths on account of poor weather conditions like thick 
fog run in thousand every year on highways. The bad news 
is that this number is increasing every year [8].

Table 1   Comparison with existing survey/review papers

Survey/review 
paper

[4] (2017) [3] (2017) [5] (2019) [6] (2020) [7] (2020) The proposed

(1) Year coverage 2000 to 2015 1997 to 2016 from 2008 to 2017 2008 to 2019 2012 to 2020 from 2015 onward
(2) Motivation No No Yes No No Yes
(3) Classification (1) Image 

Enhancement
(2) Image Fusion
(3) Image Restora-

tion

(1) Depth estima-
tion

(2) Multi-images
(3) Polarizing 

filters
(4) Known depth
(5) single image

(1) Depth Estima-
tion

(2) Wavelet Based
(3) Enhancement
(4)Filtering
(5) Supervised 

learning
(6) Fusion
(7) Variational 

Image
(8) Meta-heuristic

(1) Depth Estima-
tion

(2) Filtering
(3) Fusion
(4) Enhancement
(5) Meta-Heuristic
(6) Transform
(7) Variational
(8) Learning

(1) Filter
(2) Color correc-

tion
(3) Simple learn-

ing
(4) Deep learning

(1) Image Enhance-
ment

(2) Image fusion
(3) Restoration with 

priors
(4) Polarization
(5) DCP based
(6) Airlight Estima-

tion
(7) Hardware
(8) Machine Learn-

ing
(9) Deep learning
(10) Non-homoge-

neous
(11) Miscellaneous
(12) Superpixels

(4) Dehazing 
datasets

No No No Yes Limited Yes

(5) Evaluation 
metrics

Yes No Yes Yes Limited Yes

(6) Analysis based 
on issues of 
dehazing

No No Yes Yes No Yes

(7) Qualitative 
and quantitative 
analysis

Yes Yes No No Yes Yes

(8) Analysis based 
on standard 
datasets

No No No Yes Limited Yes

(9) Future direc-
tion

Yes No Yes Yes Limited Yes

(a)    (b) (c)  (d) (e) (f)   (g)

Fig. 4   Applications of image dehazing, a video surveillance, b fog related road accidents, c road transportation, d railway transportation, e air 
transportation, f underwater image enhancement, g remote sensing
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In addition to roads or highways, fog also affects other 
transportation systems like airplanes and railways. Generally, 
takeoff and landing of airplanes become a very challenging 
task in a hazy environment. Due to which many flights get 
delayed or sometimes, they are canceled. Similarly, in the case 
of railway transportation, thick foggy conditions are a hazard 
to the passengers and crew members that could easily result in 
loss of life. The driver may miss the signals due to impaired 
visibility. Therefore, we require an intelligent transportation 
system that can provide a clear view to the driver in these 
transports to save life and property.

2.3 � Underwater Image Enhancement

Underwater imaging often suffers poor visibility and color 
distortions. The poor visibility is produced by the haze effect 
due to the scattering of light by water particles multiple 
times. Color distortion is due to the attenuation of light and 
makes an image bluish. Therefore, an underwater vision sys-
tem requires an image dehazing algorithm as a preprocessing 
so that a human can see the underwater objects.

2.4 � Remote Sensing

In remote sensing, images are captured to obtain information 
about objects or areas. These images are usually taken from 
satellites or aircraft. Due to the high difference of distance 
in the camera and the scene, the haze effect is introduced in 
the captured scene. Therefore, this application also demands 
image dehazing as a preprocessing tool to improve the visual 
quality of an image before analysis.

Besides these applications, image dehazing also plays 
an important role in other applications, such as astronomy, 
medical science, agronomy, border security, archaeology, 
environmental studies and many more.

Therefore, it is important for computer vision applications 
to improve the visual quality of the image and highlight the 
image details. With respect to hardware aspects of camera 
sensors, many super-telephoto lenses are designed to incor-
porate scientific filtering and coating to enhance the contrast 
of the image. However, these lenses are very expensive and 
bulky and not applicable in daily life. Therefore, the res-
toration of hazy images or videos has attracted increasing 
interest in the last few years.

3 � Issues/Challenges of Image Dehazing

The dehazed image may suffer from various types of issues 
like color shift, over enhancement, structure damage or 
incomplete haze removal, as shown in Fig. 5.

3.1 � Under/Over Enhancement

Restoration of hazy images often leads to two phenom-
ena: under enhancement and over enhancement, as shown 
in Fig. 6. In under enhancement, haze is not completely 
removed from the original image. Hence, the visibility 
is not improved as desired. In case of over enhancement, 
the original information is changed in haze-free regions 
and color shift is caused in hazy regions during dehazing 
process [9]. This problem is generally observed in dense 
hazy regions which are having low contrast. Over dehaz-
ing makes the color much darker and causes saturation of 
pixels.

The image dehazing algorithms must keep the informa-
tion of haze-free regions unchanged, meanwhile, capable 
enough to improve the visibility in hazy regions without 
color distortions.

3.2 � Halo Artifact and Noise Amplification

The existing image dehazing method generally used patch-
based method to estimate the transmission to recover the 
hazy image. Inaccurate estimation of the transmission 
may lead to distortions in the dehazed image, as shown in 
Fig. 7. Most of the method is also based on the assumption 
that local patches have similar depth. Depth discontinuities 
or abrupt jumps in an image will cause halo artifacts. To 
remove the problem of halo artifacts various refinement 
methods like Guided filtering, contextual regularization, 
total variation, etc. are utilized in many works. Still, the 
problem exists, halo artifacts are reduced but they are not 
completely removed.

Moreover, in presence of dense haze, noises and arti-
facts are not visible in the hazy images. The existing meth-
ods may amplify these noises and artifacts depending upon 
the depth and concentration of the haze during dehazing 
process [10]. Some of them introduce other distortion like 
the blurring effect in the dehazed images.

 (a) (b) (c)  (d)

Fig. 5   [9]: Various issues of image dehazing a incomplete haze 
removal, b structure damage, c color shift, d over enhancement
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3.3 � Dense Fog Removal/ Different Foggy Weather 
Conditions

In state-of-the-art dehazing methods, till now, there is not 
even a single method that can remove the effect of varying 
and challenging weather conditions like removal of all types 
of haze ranging from thin haze to very thick haze, night-time 
haze removal, non-homogenous haze (uneven distribution of 
haze), etc. as shown in Fig. 8.

Most of the methods work well in daytime scenes; they 
fail in night-time hazy conditions due to inaccurate estima-
tion of the airlight. Generally, an airlight is estimated by the 
brightest pixels. This estimator faces two challenges when 
it is applied to night-time scenes (1) it is estimated glob-
ally over the entire image, whereas there are multiple local 
sources of light and they are non-uniform in nature. (2) It 
selects the white pixels which are the brightest pixels in the 
hazy image. But, it is not true for night-time scenes that 
exhibit strong color lighting [11].

The majority of the methods are able to remove the 
mild or thin haze. In presence of dense haze, either they 
fail to remove the haze completely or may result in loss of 

information in form of saturation of pixels. In the case of 
thick fog, scene reflection becomes very small due to the 
small value of the transmission. The reason for small trans-
mission is due to the large scattering coefficient, meanwhile, 
the proportion of airlight increases significantly. Therefore, 
it is a very challenging task to remove the thick haze con-
sidering minuscule reflection.

3.4 � Adaptive Parameter Setting

The performance of the dehazing methods greatly depends 
on the selection of the different parameters, namely patch 
size, dehazing controlling parameter, Gamma correction, 
size of the filter, regularization term, scaling factor, num-
ber of superpixels, etc. For e.g., if the patch size is small, 
it may underestimate the transmission, especially for the 
regions with bright and white objects and may lead to 
over enhancement. By contrast, if the patch size is large, 
it may introduce the halo artifacts at depth discontinuities 
and also will increase the computation [12]. Therefore, 
for a good recovery result, patch size must be selected 
adaptively depending upon the pixels. Another parameter 

               (a)       (b)                            (c)                               (d) 

Fig. 6   Hazy and haze-free images related to over/under enhancement problems. a Much darker color by dehazing method [15]. b Under 
enhancement problem by method [64]. c Saturation of pixels by method [51]. d Distortion of colors by method [13]

      (a)                  (b)         (c) 

Fig. 7   Various distortion in dehazed image. a Halo artifacts by method [63]. b Blurring effect by method [51]. c Noise amplification by method 
[66]

(a)  (b)  (c)

Fig. 8   Examples of challenging weather conditions. a Dense hazy images. b Non-homogenous hazy images. c Night-time hazy images
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that is used by most of the methods is dehazing control-
ling parameter, as shown in Fig. 9.

All these parameters are set manually according to the 
experimental setup. They may not fit for different degrees 
of haze present in images. These parameters must be set 
adaptively to improve the performance because haze den-
sity on a given image varies from image to image and 
atmospheric veil.

3.5 � Speed of Dehazing

Another drawback with existing dehazing methods is the 
computational complexity of the dehazing process. It is still 
a very challenging task to dehaze an image/video in real-
time by which various vision applications, such as intel-
ligent transportation systems or video surveillance can be 
benefited. The time complexity can be reduced by joint 

estimation of airlight and transmission and to avoid the 
costly refinement process of the transmission.

4 � Related Works

In recent years, significant progress is made in the field of 
image dehazing. We present recent and popular dehazing 
methods in this section. For convenience, we have divided 
these methods into the following categories: (1) image 
enhancement based, (2) image restoration with priors (3) 
image fusion based (4) non-homogeneous haze (5) hardware 
implementation based (6) polarization based (7) traditional 
learning based (8) deep learning based (9) superpixel based. 
Furthermore, subcategories of each category are identified, 
as shown in Fig. 10.

 (a)   (b)  (c)  (d) (e)

Fig. 9   Restored images with different δ by method [30]. a Original image, b δ = 1.0, c δ = 0.8, d δ = 0.6, e δ = 0.4

Image Dehazing Methods 

Image  
enhancement 

Image  
fusion 

Polarization 

Restoration 
with priors 

Restoration Learning  

Superpixels DCP  

Non-homogenous 
haze  

Airlight 
 estimation  

Gamma correction 
Wavelet transform 
Histogram-
equalization 
Morphological 
Median filter 
White balancing 
Multi-scale Retinex 
Quadtree 

Transmission  
refinement  

Hardware 

Guided filter 
Contextual Regularization 
Anisotropic diffusion 
Total variation

Semi-supervised  Unsupervised  Supervised  

Linear  
Multi-scale  
Gradient domain 
Variational 
Guided 
High boost filtering 

Machine learning Deep learning 

Fig. 10   Different categories of image dehazing methods
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4.1 � Image Enhancement based Methods

Image enhancement-based method can be divided in two 
sub-categories (1) the methods do not consider the atmos-
pheric scattering model or degradation mechanism to 
enhance the visual quality of the hazy images. Therefore, 
they do not estimate the transmission and atmospheric light. 
(2) image enhancement operations are utilized in estimation 
of transmission or airlight. Hence, they may fall in methods 
of other categories too, such as restoration or fusion-based. 
Both sub-categories use various image enhancement tech-
niques, including histogram equalization [13, 14], Bi-histo-
gram modification [15], weighted histograms[16], Gamma 
correction [13, 17–20], multi-scale retinex [21], wavelet 
decomposition [22–25], multi-scale gradient domain con-
trast enhancement [17], texture filtering [26], bilateral filter 
[26, 27], white balance method [26, 28], median filtering 
[28, 29], Linear Transformation [30], morphological con-
structions [31], Discrete cosine transform [14], Guided filter 
[32–39], anisotropic diffusion [40, 41], contrast enhance-
ment [42–44], quadtree Decomposition: [30, 45, 46], Con-
textual Regularization: [45, 47–49], weighted L1-norm regu-
larization [50], and total variation [51–53] (Table 2).

Wang et al. [21] proposes a multi-scale Retinex based 
algorithm with color restoration to compute the transmis-
sion. The author estimated the atmospheric light by dark 
channel image and a decision image according to a thresh-
old. However, dehazed image contains small halos and also 
appears dark in the regions of small gradients and bright 
areas. Cui et al. [50] proposed a SID method based on the 
region segmentation which separates the hazy image into 
bright and non-bright regions. This removes the problem 
of overestimation of the transmission in non-bright regions 
and underestimation of the transmission in bright regions of 
the DCP method. Weighted L1-norm regularization is used 
for refining the transmission. However, this method suffers 
from over-saturation. Moreover, it underestimates the trans-
mission for the object similar to the dense haze and leads 
to the over enhancement. Liu et al. [53] proposed a solution 
for two challenging problems of existing dehazing methods. 
These two challenges are (1) halo artifacts due to insuffi-
ciency of edges in estimated transmission and (2) ampli-
fication of noise and artifacts in presence of dense haze. 
This method estimates the initial transmission by boundary 
constraint and its refinement is done by non-local total vari-
ation (NLTV) regularization. However, this method fails in 
the presence of white objects such as clouds, dense haze, 
etc. and as a result, the dehazed image looks darker. Fur-
thermore, to improve the quality of the haze-free image, a 
post-processing method is required. Moreover, lower values 

of SSIM AND CIEDE2000 indicate that performance of this 
method is not satisfactory on synthetic hazy images. Raik-
war et al. [47] estimate a lower bound on the transmission by 
considering the difference between the minimum channel of 
a hazy and haze-free image. A lower bound is characterized 
by a bounding function and a quality control parameter. The 
bounding function is estimated by a non-linear model and a 
control parameter is used to control the degree of dehazing. 
However, this method is unable to increase the contrast of 
dense hazy images. Wu et al. [54] proposed a variational 
model to remove artifacts due to noise present in the hazy 
image. They proposed a transmission-aware non-local regu-
larization that suppresses the noises and provides the fine 
details of the dehazed image without amplification of noises. 
In addition, to smooth the transmission, semantic-guided 
regularization is proposed. This method provides satisfac-
tory results without amplification of noises. However, this 
method fails on non-homogeneous hazy images. Further-
more, when objects are in the same plane and look similar, 
vanishing lines are falsely estimated and unable to update 
the segmentation process. In this case, it wrongly estimates 
the transmission, scene radiance and the segmentation map 
of a hazy image.

In summary, the image enhancement-based methods don’t 
use the physical model of haze formation and also don’t 
concentrate on the image quality. They only highlight certain 
details of the image while may reduce or remove some infor-
mation from the dehazed image. These methods suffer from 
the problem of over-saturation of pixels and over enhance-
ment. In addition, they are not able to remove the dense 
haze. However, when image enhancement-based techniques 
are combined with a physical model like [22, 30, 45], their 
performance is improved a lot.

4.2 � Image Fusion Based Methods

Image fusion is an image processing technique that selects 
the best regions from multiple images and combines them 
into a single high-quality image. A fused image is generated 
in a transformed domain such as Gaussian and Laplacian 
pyramids, Gradient-domain, Linear, High boost filtering, 
Guided filtering, Variation based, etc.(Table 3).

In [52] proposed a multiple prior based method to esti-
mate the global atmospheric light. Three priors: color satu-
ration, brightness and gradient map are combined to judge 
a pixel whether it belongs to an atmospheric light or not. 
This method computes two coarse transmission maps: pixel-
based transmission (PTM) and block level transmission map 
(BTM). A fusion procedure is employed to combine these 
two transmissions as follows:
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Laplacian Pyramid is used to compute the transmission 
map in which N is the number of decomposition levels in 
the Laplacian pyramid. Pi and Bi denote the decomposition 
result of PTM and BTM, respectively. Fi is the linear fusion 
of two transmissions Pi and Bi. Furthermore, fused transmis-
sion is refined by a total variation. This method suffers from 
various problems-e.g., incomplete haze removal, unable to 
highlight the local details of the image and also not being 
able to remove dense haze.

The existing deep learning methods are trained on syn-
thetic indoor hazy images. Therefore, their performance is 
not satisfactory on outdoor hazy images. Park et al. [55] 
proposed a heterogeneous generative adversarial network 
(GAN), consisting of a CycleGAN and a conditional GAN 
for restoring a haze-free image with the preservation of tex-
ture details. In Phase 1, a cycleGAN is trained on unpaired 
outdoor synthetic hazy images. Phase 2 utilizes various net-
works, such as atmospheric light estimation, transmission 
map estimation, and a fusion CNN. Finally, these three net-
works are trained through adversarial learning. Fusion CNN 
combines the output of Phase 1 and Phase 2 to achieve the 
dehazed image.

Zhu et al. [56] proposed a fusion-based algorithm to 
solve the image dehazing problem without considering the 
degradation mechanism. A set of under-exposed images are 
generated using Gamma correction coefficients. A Guided 
filter is used to decompose an under-exposed image into 
local components and global components. For the local 
components, the exposure quality of the image is measured 
by applying the average filter to the luminance component. 
Global components reflect the structure information of the 

(4)Fi = Pi

(
1 −

(
i

N

)3
)
+ Bi

(
i

N

)3 image and its weight is calculated using initial global com-
ponents and quadratic function of average luminance. Once 
the weights are ready for under-exposed images, they are 
fused in a pixel-wise manner. Global components Bi and 
global components Di of multiple gammas corrected input 
images are fused as shown:

where � ≥ 1 controls the local details in the fused image. 
Finally, to improve the quality of the dehazed image in terms 
of color quality, saturation adjustment is performed. The 
framework of this method is shown in Fig. 11. The overall 
performance of this method is good and achieves satisfactory 
results with computational efficiency.

Yuan et al. [57] proposed a transmission fusion strategy 
for handling normal and bright regions of the hazy image. 
They propose soft segmentation based on image matting to 
segment the image. Means and variances of local patches 
are calculated and binary classification is performed to gen-
erate the trimap. In the next step, image matting segments 
the hazy image into normal and bright regions. For normal 
regions, the transmission is calculated by DCP while trans-
mission for bright regions is calculated by the atmospheric 
veil correction method. Finally, the fuzzy fusion method 
fuses these two transmissions obtained by DCP and AVC. 
The proposed framework of the method [57] is shown in 
Fig. 12. This method is tested on various challenging hazy 
images. However, this method has high computation com-
plexity due to the estimation of two transmissions, binary 
classification and fuzzy fusion. It also suffers from the prob-
lem of over enhancement and halo artifacts.

(5)F =

n∑

i=1

WB
i
Bi + �

n∑

i=1

WD
i
Di

Fig. 11   The framework of the method [56]
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Ma et al. [58] proposed a method to enhance the visibil-
ity of sea fog images. In the fusion process, the first image 
is obtained by a linear transformation. The second image 
is generated by a high-boost filtering algorithm based on a 
Guided filter. A simple fusion process is followed to com-
bine these two images. The dehazed image is obtained by 
performing white balancing on a fused image. However, 
this method produces halo artifacts and is unable to remove 
noises in the dehazed image.

Son et al. [59] proposed a near-infrared fusion model to 
deal with the color distortions and removal of haze. This 
method develops the color and depth regularizations with 
the traditional degradation model of haze. The color regu-
larization assigns colors to the haze-free image based on 
colors from the colorized near-infrared image and visible 
color image. The depth regularization estimates the depth of 
the colorized near-infrared image. Finally, both regulariza-
tions transfer the visibility and colors into a dehazed version 
of the captured visible image. Shibata et al. [60] focused 
on developing an application adaptive importance measure 
image fusion method that can be applied to many applica-
tions, including night vision, temperature-perceptible fusion, 
depth-perceptible fusion, haze removal, image restoration, 
etc. This method is a learning-based framework that extracts 
various features (Gabor, intensity, local contrast, gradient) 
from the decomposed images and learns the important 
area of the image without knowing the application. Zhao 
et al. [61] handle two problems of dehazing: misestimation 
of transmission and oversaturation. It first identified the 
edges called TME which are misestimating the transmis-
sion. Accordingly, a hazy image is divided into two regions: 
TME and non-TME regions. Multi-scale fusion is used to 
fuse both patch-wise transmission and pixel-wise transmis-
sion. This method greatly enhances the visibility of the hazy 
image. However, it has a high computation time. Moreover, 
two post-processing methods (Fast Gradient Domain GIF 
and exposure enhancement) are utilized on a fused image to 
obtain the final haze-free image.

Agrawal et al. [62] proposed a fusion based method based 
on the joint cumulative distribution function (JCDF). This 
method dehazed the long shot hazy image without color 
distortions in nearby regions and at the same time, it can 
enhance the visibility in faraway regions. This method 
generates multiple images from different modules, such as 
faraway, nearby, CLAHE. Finally, these multiple images are 
fused into a single high-quality and artifacts-free image in 
the gradient domain.

The method uses the following JCDF equation to generate 
multiple images in nearby and faraway modules:

where z = x1 + x2 = xdmin + xdmax,dmin deals with the fog in 
nearby regions whereas dmax deals with the fog in faraway 
regions. The parameters dmin and dmax are set to 2 and 10, 
respectively. � is the dehazing parameter and used to gener-
ate the images for the fusion process. It generates 1 image 
with � = 2 in faraway region and 3 images in the nearby 
region with � = 5, 8, 40 to avoid the problem of over-sat-
uration and color distortions. Furthermore, to increase the 
contrast, CLAHE is used to generate 1 more image. Finally, 
all these images are fused in a single dehazed image in the 
gradient domain, as shown in Fig. 13.

Recently, several effective fusion-based techniques were 
introduced which combine the multiple images generated 
from image enhancement or restoration-based methods. 
These methods successfully solve the problem of DCP, edge 
preservation, dense haze removal and halo artifacts. How-
ever, the fusion procedure may be complex and the dehazing 
speed may be decreased due to the generation of multiple 
images from enhancement-based operators.

4.3 � Superpixel Based Dehazing

Another category of dehazing method introduced recently is 
superpixel based. The superpixels are utilized in dehazing 

(6)FZ(z) = e−�z(−1 − �z) + 1

Fig. 12   The framework of the method [57]
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methods in two ways. First, they are used to segment the 
sky and non-sky regions to remove the problem of color 
distortions or color artifacts of DCP in sky regions. Another 
use of superpixel segmentation is to replace the patch-based 
operations with a superpixel. It offers two advantages: good 
dehazing speed and reduction of the halo artifacts (Table 4).

The two problems are associated with superpixels based 
approaches: over enhancement and time complexity. In 
superpixel based approaches, the number of superpixels is 
decided manually. The higher number of superpixels may 
introduce the problem of darkening of color while a smaller 
number may not sufficient to remove the haze. Another prob-
lem is the selection of a superpixel segmentation algorithm. 
Some algorithms have high computational complexity. 
Therefore, it is advised to select an algorithm that extracts 
the superpixels in real-time.

4.4 � Prior Based Methods

The restoration-based method uses the physical model or 
haze formation. They compute the transmission map or 
depth map based on priors/ assumptions, such as dark chan-
nel prior [63], color attenuation prior [64], average satura-
tion prior [65], non-local prior [66], gradient profile prior 
[27], color ellipsoid prior [67], etc.

Berman et al. [66] proposed a non-local prior as opposed 
to priors based on local patches. According to this prior, a 
haze-free image can be expressed by a few hundred colors 
from the RGB cluster and these pixels of RGB clusters are 
spread over the entire image. Each cluster in RGB space can 
be represented using lines termed haze-lines. These haze 
lines are used to estimate the atmospheric light, distance 
map and haze-free image. The failure case of this method is 
the non-uniform lighting which may lead to over enhance-
ment and artifacts (Table 5).

Singh et al. [40] handles the problem of preserving the 
texture details in the presence of complex background and 
large haze gradient. They proposed a new prior called gra-
dient profile prior to evaluate the depth map. The transmis-
sion map is refined by the anisotropic diffusion and iterative 

learning base image filter. The image gradient gives the 
direction and magnitude and is calculated as follows:

where �I
�m

 represents partial derivatives of an image in m 
direction while �I

�n
 shows partial derivatives for n direction. �I

�m
 

is calculated as differences at one pixel, before it and after it 
and calculated as follows:

and similarly, �I
�n

 is written as:

The maximum gradient values in I are considered as global 
atmospheric light and is estimated as follows:

and transmission map is estimated as follows:

where Δn ∈ Ω(j)
(
Δc

Ic
m
(n)

Ac
l

)
 is the gradient profile prior of 

the normalized image. It overcomes the sky region problem of 
the DCP method as it is computed toward 1 and t(j) will be 
toward 0. Some haze � is added to the image to look more 
natural.

Most of the prior based methods follow a physical model 
of haze formation which assumes single scattering under the 
homogeneous haze. However, in a realistic environment, haze 
behavior is non-homogeneous and there are multiple sources 
of scattering [68]. Besides, the dehazing results depend on 
the validity of priors. If assumptions or priors do not hold, it 
may result in various issues, such as incomplete haze removal, 
color distortions or artifacts due to the wrong estimation of the 
transmission.

(7)ΔI =
(
�I

�m
,
�I

�n

)

(8)�I

�m
=

I(m + 1, n) − I(m − 1, n)

2

(9)�I

�m
=

I(m, n + 1) − I(m, n − 1)

2

(10)A = I(max
c

(Ic
m
)

(11)t(j) = 1 − �Δn ∈ Ω(j)

(
Δc

Ic
m
(n)

Ac
l

)

(a) (b) (c)   (d)  (e)   (f)   (g)

Fig. 13   Image generation in each module. a Hazy image, b Image generated in faraway region. c–e Images generated in nearby region. f CLAHE 
image, g Dehazed image
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4.5 � Polarization Based Dehazing

The polarization-based methods utilized the polarized 
characteristic of the light. Therefore, it restores the depth 
information of the hazy image using multiple images with 
different degrees of polarization, generally represented as 
I0 and I90. Some methods based on this category are listed 
in Table 6.

Polarization based dehazing methods have a great advan-
tage in terms of high efficiency and low computational com-
plexity. These methods are effective in all kinds of turbid 
media, including haze, fog, water, etc. They are also capa-
ble to restore dense hazy images with detailed information. 
However, it requires a precise selection of image regions 
such as the sky region to estimate the key parameters which 
are not applicable in the real world. Also, a photon noise, a 
well-known quantum–mechanical effect is ignored by most 
of the existing polarization-based methods, resulting in 
amplification of noise in the dehazed image.

4.6 � DCP Based Dehazing

Dark channel prior (DCP) is very simple and popular prior 
for haze removal. This prior is based on the observation of 
the haze-free images that at least one-color channel is signif-
icantly dark i.e. minimum color channel in a haze-free image 
is very close to 0 except the sky regions. This prior was 
introduced in the year 2010. Since 2010, a lot of research 
work is going on to improve the performance of DCP. In this 
section, we discuss recent methods based on DCP along with 
which problem of DCP they have solved (Table 7).

Atmospheric particles degrade the quality of the image in 
terms of blurring, distortion, color attenuation and cause low 
visibility. The method [69] proposed an improved version of 
DCP to handle the artifacts in the original DCP method. This 
method defines α as a square window of size l and calculates 
the dark channel as follows:

where α is a square window of size l and calculated as 
follows:

This method is managed to remove the artifact but it is not 
comparable to the DCP method in quantitative evaluation.

Chen et al. [51] proposed a DCP based method for sup-
pressing artifacts and noises using gradient residual mini-
mization. However, due to ambiguity between artifacts and 

(12)Idark
(x−⌊l∕2⌋…x+⌊l∕2⌋,y−⌊l∕2⌋…y+⌊l∕2⌋) = max

�
�(1… l), (1… l), Idark

(x−⌊l∕2⌋…x+⌊l∕2⌋,y−⌊l∕2⌋.…y+⌊l∕2⌋)

�

(13)� = ones(l, l) ∗ min
z∈Ω(x,y)

(
min

c∈(R,G,B)
Ic(z)

)

objects, it is unable to increase the contrast for the objects 
located at a far distance also slightly blurs the details.

In summary, many researchers addressed the problems 
of DCP and according presented their solution. For exam-
ple, the method [31] proposed an alternative method for fast 
computation of the transmission map using morphological 
reconstruction. Since the performance of DCP is not good 
in the sky regions, the method [46] proposed a solution 
using quadtree decomposition and a region-wise transmis-
sion map. The method [70] removes the problem of color 
distortions for bright white objects using superpixels. The 
method [71] removes the problem of halo artifacts of DCP 
using energy minimization.

4.7 � Airlight Based Methods

The existing dehazing methods focus on estimating the 
transmission only and ignore the contribution of airlight in 
the dehazing process. These methods produce over smoothed 
image without fine details. Two factors: wrong estimation 
of airlight and ignorance of multiple scattering contribute 
toward this problem. Besides, inaccurate airlight is also 
responsible for color distortions in the dehazed image. 
Therefore, recently, some works related to the estimation of 
airlight are reported in the literature (Table 8).

Therefore, the estimation of the airlight is as important as 
the estimation of the transmission. Inaccurate estimation of 
the atmospheric light may cause a haze-free image to look 
unrealistic and color distortions in the dehazed image.

4.8 � Hardware Implementation Based Methods

In recent years, significant progress is made toward the 
development of real-time dehazing applications. Real-time 
dehazing is highly demanded in smart transportation sys-
tems and advanced driver assistance systems (ADAS). These 
applications demand a higher frame rate, low-cost hardware 
and power consumption. To date, the methods which fulfill 

these requirements are very rare. Image dehazing consists 
of many steps: estimation of transmission, airlight, refine-
ment of the transmission, recovery of haze-free image and an 
optional step post-processing operation on a haze-free image 
which leads to computational complexity. Many hardware 
such as Cortex A8 processor, field-programmable gate array 
(FPGA), TSMC 0.13-μm, TSMC 0.18-μm, DSP Proces-
sor, Graphics Processing Unit (GPU), application-specific 
integrated circuit (ASIC), etc. Therefore, dehazing method 
requires hardware implementation for resource-constrained 
embedded systems to meet the real-time challenge. This 
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section discusses the state-of-the-art methods in aspects of 
hardware architecture (Table 9).

Shiau et al. [72] proposed an extremum approximate 
method to estimate the atmospheric light that uses a 3*3 
minimum filter to obtain the dark channel and contour 
preserving estimation to calculate the transmission. This 
method is implemented on 11 stage pipeline architecture for 
real-time applications. The architecture is divided into four 
modules: register bank, atmospheric light estimation, trans-
mission estimation and scene recovery, as shown in Fig. 14. 
It can process one pixel per clock cycle. It can achieve 200 
MHZ with 12,816 Gate counts by TSMC 0.13-μm technol-
ogy. The power consumption is 11.9 mW.

The register bank modules provided 9-pixel values of the 
current 3*3 window as an input to the atmospheric light 
estimation module. Line buffers are used to store the pixel 
values of 2 rows of an input hazy image. Because of the 
independent nature of ALE and TE, clock gating help to 
switch between them for power saving.

4.9 � Supervised Learning/Machine Learning Based 
Methods

Despite numerous methods proposed in the literature, they 
are restricted to only hand-crafted features. However, effec-
tive and reliable restoration of a hazy image is still an open 
challenge. The accuracy of the restoration-based methods 
depends on the validity of the prior. In a failure of prior, they 
may cause various issues, such as residual haze or an unreal-
istic hazy image. Therefore, the effort had been made toward 
developing machine learning methods for reliable estimation 
of the transmission for restoring a haze-free image. How-
ever, these techniques require a vast amount of data of hazy 
and their ground truth image, which is not available. For 
training the model, a lot of synthetic data using Eq. 1 is 
generated which limits the performance when they are tested 
on natural or realistic hazy images. For ease of understand-
ing, machine learning methods are further categorized as 
traditional or simple learning and deep learning. This sec-
tion focuses on simple learning techniques. These techniques 
used linear and non-linear regression, support vector regres-
sion, linear model, radial basis function, conditional random 
field, etc. (Table 10). 

4.10 � Deep Learning Based Methods

Recently deep learning based had attracted the researcher 
and successfully implemented in dehazing. These techniques 
not only remove the haze from an image but also offer a 
fast and quality dehazed image. Two types of methods exist 
in the literature for deep learning, one which utilize physi-
cal model [73–75], and another is without physical model 
[76–80]. Furthermore, some techniques [73–75, 77, 79] Ta

bl
e 

8  
C

om
pa

ris
on

 o
f e

xi
sti

ng
 a

irl
ig

ht
 b

as
ed

 m
et

ho
ds

Re
f. 

(Y
ea

r)
K

ey
 m

et
ho

do
lo

gy
Pe

rfo
rm

an
ce

/c
ha

ra
ct

er
ist

ic
s

Sp
ee

d
O

ve
r 

en
ha

nc
e-

m
en

t

A
rti

fa
ct

s
D

en
se

 
fo

g 
re

m
ov

al

[1
66

] (
20

19
)

Th
ey

 p
ro

po
se

d 
tw

o 
pr

io
rs

, n
am

el
y 

th
e 

de
pt

h 
ed

ge
-a

w
ar

e 
pr

io
r 

(D
EA

P)
 a

nd
 th

e 
ai

rli
gh

t i
m

pa
ct

 re
gu

la
rit

y 
pr

io
r (

A
IR

P)
Re

m
ov

e 
th

e 
pr

ob
le

m
s (

m
is

si
ng

 fi
ne

 d
et

ai
ls

 a
nd

 o
ve

r s
m

oo
th

ed
 

im
ag

e)
 o

f e
xi

sti
ng

 m
et

ho
ds

A
ve

ra
ge

N
o

Ye
s

Ye
s

[1
67

] (
20

19
)

Pr
op

os
ed

 a
n 

at
m

os
ph

er
ic

 il
lu

m
in

at
io

n 
pr

io
r b

as
ed

 o
n 

a 
de

ep
 C

N
N

 
m

od
el

Th
re

e 
co

m
po

ne
nt

s o
f w

hi
te

 h
az

y 
ex

ist
en

ce
 m

ay
 re

su
lt 

in
 u

nb
al

an
ce

 
in

 p
re

se
nc

e 
of

 w
or

se
 w

ea
th

er
 c

on
di

tio
ns

A
ve

ra
ge

N
o

N
o

Ye
s

[1
68

] (
20

20
)

Pr
op

os
ed

 a
 m

et
ho

d 
ad

ap
ta

bl
e 

to
 d

iff
er

en
t h

az
e 

co
nc

en
tra

tio
ns

 a
nd

 
lig

ht
in

g 
co

nd
iti

on
s u

si
ng

 lo
ca

l–
gl

ob
al

 il
lu

m
in

at
io

n 
ad

ju
stm

en
t

Th
is

 m
et

ho
d 

is
 a

pp
lic

ab
le

 to
 c

om
pl

ex
 a

nd
 v

ar
yi

ng
 il

lu
m

in
at

io
n 

co
nd

iti
on

s
A

ve
ra

ge
N

o
N

o
Ye

s

[1
1]

 (2
02

0)
Pr

op
os

ed
 a

 fu
si

on
 b

as
ed

 te
ch

ni
qu

e 
to

 re
co

ve
r h

az
e-

fr
ee

 im
ag

es
 

un
de

r n
ig

ht
-ti

m
e 

ha
zy

 c
on

di
tio

ns
 u

si
ng

 lo
ca

l a
irl

ig
ht

 e
sti

m
at

io
n

Th
is

 m
et

ho
d 

su
gg

es
ts

 p
at

ch
es

 o
f m

ul
tip

le
 si

ze
s i

n 
or

de
r t

o 
ge

ne
ra

te
 

se
ve

ra
l i

m
ag

es
 fo

r t
he

 fu
si

on
 p

ro
ce

ss
A

ve
ra

ge
Ye

s
N

o
Ye

s

[1
69

] (
20

20
)

Pr
op

os
ed

 a
 m

et
ho

d 
to

 re
m

ov
e 

co
lo

r c
as

t f
ro

m
 sa

nd
sto

rm
s i

m
ag

es
. 

A
 c

ol
or

 b
al

an
ci

ng
 a

lg
or

ith
m

 a
nd

 c
as

t-a
da

pt
iv

e 
re

fin
em

en
t o

f 
ai

rli
gh

t a
re

 p
ro

po
se

d

Th
is

 m
et

ho
d 

fir
st 

ca
te

go
riz

es
 th

e 
im

ag
e 

as
 c

as
t o

r n
on

-c
as

t o
ne

 o
n 

th
e 

ba
si

s o
f t

he
 sp

re
ad

 o
f h

ue
 in

 a
 h

az
y 

im
ag

e
G

oo
d

N
o

N
o

Ye
s

[1
09

] (
20

20
)

A
pp

ro
xi

m
at

e 
th

e 
ai

rli
gh

t i
n 

lo
ca

l p
at

ch
es

 o
f a

 h
az

y 
im

ag
e 

in
 Y

C
bC

r 
co

lo
r s

pa
ce

 to
 p

re
se

rv
e 

th
e 

lo
ca

l t
ex

tu
re

 o
f t

he
 im

ag
e

Th
e 

ne
ar

es
t-n

ei
gh

bo
r r

eg
ul

ar
iz

at
io

n 
au

to
m

at
ic

al
ly

 in
cr

ea
se

s t
he

 
pa

tc
h 

si
ze

 fo
r t

he
 sk

y 
re

gi
on

s t
o 

ge
t t

he
 su

ita
bl

e 
in

te
ns

ity
 v

al
ue

s
A

ve
ra

ge
Ye

s
N

o
Ye

s



4818	 S. C. Agrawal, A. S. Jalal 

1 3

Ta
bl

e 
9  

C
om

pa
ris

on
 o

f e
xi

sti
ng

 h
ar

dw
ar

e 
im

pl
em

en
ta

tio
n-

ba
se

d 
m

et
ho

ds

Re
f. 

(Y
ea

r)
K

ey
 m

et
ho

do
lo

gy
Pe

rfo
rm

an
ce

/c
ha

ra
ct

er
ist

ic
s

Sp
ee

d
O

ve
r 

en
ha

nc
e-

m
en

t

A
rti

fa
ct

s
D

en
se

 fo
g 

re
m

ov
al

[7
2]

 (2
01

3)
B

as
ed

 o
n 

m
in

im
um

 fi
lte

r a
nd

 D
C

P
Th

is
 m

et
ho

d 
is

 im
pl

em
en

te
d 

on
 1

1 
st

ag
e 

pi
pe

lin
e 

ar
ch

i-
te

ct
ur

e 
fo

r r
ea

l-t
im

e 
ap

pl
ic

at
io

ns
G

oo
d

Ye
s

N
o

Ye
s

[1
31

] (
20

17
)

D
C

P 
m

et
ho

d 
to

 e
sti

m
at

e 
th

e 
ai

rli
gh

t a
nd

 tr
an

sm
is

si
on

Sa
tis

fy
 th

e 
re

qu
ire

m
en

t i
n 

re
al

-ti
m

e 
w

ith
 g

oo
d 

re
co

ve
ry

 
re

su
lts

G
oo

d
Ye

s
Ye

s
Ye

s

[1
32

] (
20

19
)

D
C

P 
ba

se
d 

m
et

ho
d 

w
ith

 se
ve

n-
st

ag
e 

pi
pe

lin
ed

 h
ar

dw
ar

e 
ar

ch
ite

ct
ur

e
Th

is
 m

et
ho

d 
so

lv
es

 th
e 

pr
ob

le
m

 o
f fl

ic
ke

r i
n 

th
e 

vi
de

o.
 

H
ow

ev
er

, r
es

ul
ts

 a
re

 o
ve

r-b
rig

ht
en

ed
 in

 lo
ng

-r
an

ge
 

re
gi

on
s o

r s
ky

 re
gi

on
s. 

Fr
am

e 
ra

te
 is

 n
ot

 so
 g

oo
d 

fo
r 

hi
gh

-s
pe

ed
 a

pp
lic

at
io

ns
 su

ch
 a

s A
D

A
S

G
oo

d
Ye

s
N

o
N

o

[1
70

] (
20

19
)

Th
is

 a
pp

ro
ac

h 
co

ns
ist

s o
f t

w
o 

m
od

ul
es

: l
ow

 c
om

pl
ex

ity
 

at
m

os
ph

er
ic

 li
gh

t e
sti

m
at

io
n 

(L
A

E)
 a

nd
 in

de
pe

nd
en

t 
tra

ns
m

is
si

on
 e

sti
m

at
io

n 
(I

TR
E)

 w
ith

ou
t r

el
yi

ng
 o

n 
ai

rli
gh

t

(1
) T

he
 d

eh
az

ed
 im

ag
e 

m
ay

 b
e 

da
rk

 in
 p

re
se

nc
e 

of
 

sh
ad

ow
s

(2
) T

he
 h

ar
dw

ar
e 

re
so

ur
ce

s r
eq

ui
re

m
en

t i
s h

ig
h 

an
d 

la
ck

s 
vi

de
o 

de
ha

zi
ng

 c
ap

ab
ili

ty

A
ve

ra
ge

Ye
s

N
o

N
o

[1
71

] (
20

19
)

Pr
es

en
te

d 
a 

m
ul

ti-
sp

ec
tra

l t
ra

ns
m

is
si

on
 m

ap
 fu

si
on

 
m

et
ho

d 
to

 e
nh

an
ce

 th
e 

qu
al

ity
 o

f v
is

ib
le

 b
an

d 
im

ag
es

 
us

in
g 

ne
ar

-in
fr

ar
ed

 d
at

a

Th
e 

lo
w

-c
os

t h
ar

dw
ar

e 
im

pl
em

en
ta

tio
n 

m
ak

es
 th

is
 

m
et

ho
d 

su
ita

bl
e 

fo
r r

ea
l-t

im
e 

pr
oc

es
si

ng
G

oo
d

Ye
s

N
o

de
pe

nd
in

g 
on

 o
pt

ed
 m

et
ho

d

[1
01

] (
20

20
)

Pr
es

en
te

d 
a 

co
m

pu
ta

tio
na

l e
ffi

ci
en

t h
ar

dw
ar

e 
ar

ch
ite

c-
tu

re
 th

at
 c

on
si

sts
 o

f t
w

o 
m

od
ul

es
: d

ep
th

 re
fin

em
en

t 
tra

ns
m

is
si

on
 e

sti
m

at
io

n 
(D

RT
E)

 a
nd

 d
ist

rib
ut

e 
ai

rli
gh

t 
es

tim
at

io
n 

(D
A

T)

Th
is

 a
pp

ro
ac

h 
is

 su
pe

rio
r i

n 
te

rm
s o

f e
ne

rg
y,

 a
re

a 
an

d 
re

du
ct

io
n 

of
 li

ne
 b

uff
er

s
G

oo
d

N
o

N
o

Ye
s

[1
72

] (
20

20
)

Th
is

 a
lg

or
ith

m
 is

 im
pl

em
en

te
d 

on
 tw

o 
ha

rd
w

ar
e 

pl
at

-
fo

rm
s:

 D
SP

 p
ro

ce
ss

or
 a

nd
 Z

yn
q-

70
6 

w
ith

 1
4-

st
ag

e 
pi

pe
lin

e 
str

uc
tu

re
s

Th
e 

pr
op

os
ed

 m
et

ho
d 

ca
nn

ot
 b

e 
ap

pl
ie

d 
to

 re
al

-ti
m

e 
vi

de
o 

de
ha

zi
ng

 d
ue

 to
 sl

ow
 p

ro
ce

ss
in

g
A

ve
ra

ge
Ye

s
N

o
N

o

[1
33

] (
20

20
)

Pr
op

os
ed

 a
 V

LS
I a

rc
hi

te
ct

ur
e 

fo
r t

he
 re

so
ur

ce
-c

on
-

str
ai

ne
d 

en
vi

ro
nm

en
t f

or
 re

al
-ti

m
e 

vi
de

o 
de

ha
zi

ng
Th

is
 m

et
ho

d 
is

 c
om

pu
ta

tio
na

lly
 e

ffi
ci

en
t a

nd
 te

ste
d 

on
 

di
ffe

re
nt

 d
at

as
et

s. 
H

ow
ev

er
, d

ue
 to

 D
C

P 
an

d 
ph

ys
ic

al
 

m
od

el
, i

t i
s n

ot
 v

al
id

 w
he

n 
th

e 
ob

je
ct

s i
n 

th
e 

im
ag

e 
ar

e 
si

m
ila

r t
o 

ai
rli

gh
t

G
oo

d
Ye

s
N

o
Ye

s

[1
73

] (
20

21
)

Pr
op

os
ed

 a
 tr

an
sp

os
ed

 fi
lte

r a
lg

or
ith

m
, c

om
bi

ne
d 

w
ith

 
pa

ra
lle

l m
in

im
um

 fi
lte

r a
nd

 p
ar

al
le

l m
ea

n 
fil

te
r a

lg
o-

rit
hm

 to
 sp

ee
d 

up
 th

e 
pr

oc
es

si
ng

Th
is

 m
et

ho
d 

is
 h

ar
d 

to
 im

pl
em

en
t i

n 
an

 e
m

be
dd

ed
 sy

s-
te

m
 d

ue
 to

 m
or

e 
co

ns
um

pt
io

n 
of

 p
ow

er
 in

 G
PU

s
G

oo
d

Ye
s

N
o

N
o



4819A Comprehensive Review on Analysis and Implementation of Recent Image Dehazing Methods﻿	

1 3

require mapping of hazy and their corresponding GT image 
for training the model while other techniques do not need 
hazy images and corresponding haze-free images for train-
ing [76, 80, 81]. Several deep learning base techniques are 
reported, including multi-scale convolutional neural net-
work (MSCNN) [73], Dehaze Net [74], All-in-One Dehaz-
ing Network (AOD-Net) [75], Cycle-Dehaze [76], Gated 
Fusion Network [77], Generic Model-Agnostic (GMAN) 
[78], back projected pyramid network [79], Double DIP 
[80] (Table 11).

In [82], proposed a variational and deep CNN based 
dehazing method for estimating transmission, airlight and 
dehazed image simultaneously. The deep CNN is employed 
to teach haze-relevant priors (fidelity terms and prior terms). 
Furthermore, an iterative optimization method based on gra-
dient descent is utilized to solve the variational model.

The method [83] proposed a GAN based method that 
jointly learns the transmission and haze-free image using 
loss functions (perceptual loss and Euclidean distance). In 
the first step, the transmission is estimated by a hazy image 
and it is combined with high dimension features. Afterward, 
both features and transmission are fed to the Guided dehaz-
ing module to recover a haze-free image. This approach is 
shown in Fig. 15.

The traditional methods used hand-crafted features such 
as contrast maximization, dark channel, etc. The method 
[84] used an encoder-decoder based structure called gated 
context aggregation network (GCANet) to directly recover a 
haze-free image. This architecture utilized smoothed dilated 
convolution to avoid the artifact. Moreover, a subnetwork is 
proposed to fuse the features at different levels.

Zhang et al. [85] presented a multi-scale dehazing net-
work called the perceptual pyramid deep network. This 
encoder and decoder-based method directly learn the map-
ping between a hazy and a clear image without estimating 
the transmission map. An encoder is constructed through 
the dense block and residual block while a decoder consists 
of a dense residual block with a pyramid pooling module 

to retain contextual information of the scene, as shown in 
Fig. 16. The network is optimized by mean squared error 
and perceptual losses.

Qin et al. [86] proposed FFA-net (feature fusion attention 
network) to obtain a haze-free image. This method consists 
of three modules: feature attention module (which combines 
channel attention and pixel attention and focuses on thick 
haze removal), local residual learning (deal with thin haze) 
and feature fusion attention (adaptively learns the weights 
from the feature attention module. As shown in Fig. 17, a 
hazy image is provided input to a shallow feature extraction 
module. After that, it is fed into an N block structure with 
skip connection and output is fused into a feature fusion 
module. Finally, global residual learning is used to restore 
a haze-free image.

The prior based methods estimate the transmission on the 
basis of haze-relevant priors. As a result, dehazed image may 
suffer from darkened or brightened artifacts.

Recently, end to end CNN based deep learning methods 
had shown great potential in image dehazing. However, 
these methods fail to handle non-homogenous haze. In 
addition, the existing popular multi-scale approaches are 
utilized to solve various issues of dehazing, namely color 
distortions, artifacts and some of them also can handle dense 
haze, but they are not computationally and memory efficient. 
Deep learning methods produce a visually pleasing result 
for most hazy images. However, their performance relies 
heavily on several training samples and the quality of these 
sample images.

4.11 � Miscellaneous Category

In this section, we present the miscellaneous category of 
dehazing methods. This category includes semi-supervised, 
unsupervised and ensemble network. In semi-supervised 
learning, both approaches supervised and unsupervised 
are utilized in deep CNN. For example, in [87] supervised 
learning is performed using supervised loss (mean squared, 

Fig. 14   General framework of Hardware based implementation [72]
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adversarial and perceptual loss) of clean image and hazy 
image for synthetic images and unsupervised learning is 
exploited using DCP and gradient prior on real images.

Unsupervised learning does not require the hazy and 
haze-free image pairs for training the deep neural net-
work. These methods avoid the need for a large-scale 
synthetic dataset required for training the model. Recent 

learning-based methods utilized a deep learning model 
to establish the relationship between hazy and clear 
images. However, it is difficult to collect a vast amount 
of hazy and clear images for the training. Therefore, these 
models are trained on synthetic images, generated using 
indoor images and corresponding depth images. The per-
formance of these methods is degraded on outdoor hazy 

Fig. 15   A framework of the 
GAN based image dehazing 
method [83]

Fig. 16   Encoder-decoder structure framework of image dehazing [85]

Fig. 17   Feature fusion attention network [86]
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images. Some research works use unsupervised learning 
which does not require hazy images and corresponding 
GT images during the training phase [88]. It uses only 
a single captured hazy image to learn and inference the 
haze-free image.

Another interesting category of image dehazing 
method is the ensemble, where multiple deep CNN are 
exploited. For example, in method [89], multiple neural 
networks were utilized to estimate the transmission to 
solve the problem of overfitting. Yu et al. [90] proposed 
three ensemble models: EDN-AT, EDN-EDU and EDN-
3J. One of them, EDN-EDU is an ensemble (Encoder-
decode and U-net) of two sequential hierarchical different 
dehazing networks. The ensemble networks can remove 
the non-homogeneous haze (Table 12).

The atmospheric model assumes the global airlight and 
scattering coefficient. Therefore, it introduces unrealis-
tic color distortions in dehazed images. The method [91] 
proposed a color constrained dehazing model to produce 
a realistic haze-free image. This method solves the dehaz-
ing problem as an optimization problem where cost func-
tion considers color, local smoothness of transmission 
and airlight. Moreover, this method can be developed as 
a semi-supervised dehazing model. It is modeled as three 
networks by training on synthetic datasets for estimat-
ing airlight, transmission and haze-free image. The pro-
posed loss function considers loss in the reconstruction 
of the hazy image, reconstruction loss of haze-free image, 
smoothing loss of airlight and transmission map. Golts 
et al. [92] proposed a deep energy method that offers an 
unsupervised energy function that replaces the super-
vised loss. This deep neural network performs training 
on real world input without the requirement of manually 
annotated labels. This method is used in three different 
tasks: Single image dehazing, image matting and seeded 
segmentation. Experiments are performed on RESIDE 
dataset.

Li et al. [93] proposed an unsupervised and untrained 
neural network for image dehazing, called as you only 
look yourself (YOLY). This method utilized three subnet-
works to decompose the hazy image into three latent lay-
ers, i.e., haze-free layer, transmission layer and airlight.

Figure 18 shows the input hazy image x is decom-
posed into three layers using three joint subnetworks. 
This approach feed x simultaneously into a haze-free esti-
mation network (J-net), a transmission network (T-net) 
and airlight network (A-net). After that, a hazy image is 
reconstructed through an atmospheric scattering model. 
In this way, it is learned in an unsupervised manner, and 
networks are optimized by the loss function. For the J-net 
network, a loss function considers the minimization of 
loss by taking the difference of brightness and saturation.

4.12 � Non‑Homogeneous Haze

Although deep learning-based methods had been success-
fully implemented in image dehazing, one of the most 
challenging problems is to remove the non-homogeneous 
haze. Most of the method works effectively in presence of 
homogeneous haze. However, in a real scenario, haze is not 
homogeneous i.e., not evenly distributed across the image. 
A dehazing method is required to enhance the visibility 
without color distortions under the non-uniform airlight 
(Table 13).

The traditional methods either directly recovering haze-
free image (J) with image enhancement or fusion based 
methods or restoration-based method which estimate trans-
mission map and airlight, fail in case of non-homogenous 
haze where there is an uneven distribution of haze in the 
image, i.e., some part of the image is covered with denser 
haze and other parts with the thin haze. The method [94] 
takes advantage of both methods to estimate a weight map 
w. w combines the result of directly estimated J by a physical 
model. This architecture uses one encoder and four decod-
ers to estimate dehazing parameters J, A, t and w, as shown 
in Fig. 19. Channel attention is added to generate unique 
feature maps for these decoders. Moreover, dilation incep-
tion is proposed to fill the missing information by non-local 
features.

Wu et al. [95] proposed a knowledge transfer dehaz-
ing network (KTTD) which consists of two networks, i.e., 
teacher network and dehazing network, as shown in Fig. 20. 
The teacher network learns the knowledge about clear image 
and transfers this knowledge to the dehazing network. Fur-
thermore, a feature attention module comprises channel 
attention and pixel attention is employed to extract impor-
tant details of the image. Finally, an enhancing module is 
developed to refine the texture details.

5 � Datasets Used for Image Dehazing

At the beginning of this field, there were very limited data-
sets available and also the size of these datasets was very 
small. The researcher used only a few images for validating 
the performance of their proposed haze removal algorithm. 
They download the hazy images from the Internet for the 
dehazing task. The drawback of this approach is that these 
images do not contain the ground truth images. The lack 
of ground truth images manifests a great challenge for the 
researchers in evaluating their methods qualitatively and 
quantitatively. Therefore, various blind dehazing metrics 
were introduced but these metrics were not accepted by the 
global community to conclude due to a lack of haze-free 
images.
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Now a day, two types of datasets are used in this field: 
a natural hazy image without reference image known as a 
real image and a synthetic hazy image along with the depth 
image or ground truth image. The assessment methods are 
also different for both types of hazy images, which will be 
discussed in the next section. We discuss all the datasets 
used in this field based on various parameters, namely the 
process of hazy image generation, number of images, types 
of hazy images, etc. The performance of different dehazing 
methods on these datasets is also explained in the experi-
ment and results section.

5.1 � Frida Dataset [96]

The dataset foggy road image database consists of 90 syn-
thetic images of 18 urban road scenes. Frida2 comprises 330 
synthetic images of 66 diverse road scenes. Each fog-free 
image contains 4 foggy images and a depth map, as shown in 
Fig. 21. The dataset considers four types of fog: uniform fog, 
heterogeneous fog, cloudy fog, and cloudy heterogeneous 
fog. Uniform fog is synthesized according to the physical 
model and Perlin’s noise between 0 and 1 is added to simu-
late heterogeneous fog. This dataset is helpful to improve the 
performance of a camera-based driver assistance systems 
whose objective is to provide a clearer view of the road in 
the presence of fog to minimize accidents.

5.2 � Fattal’s Dataset [97]

This is the most popular dataset available to the research 
community for the assessment of dehazing capability. This 
dataset provided 12 synthetic hazy images along with 31 

realistic hazy images. This dataset contains various bench-
marks hazy images, consisting of several challenges: night-
time haze, heavily dense haze, white objects, depth discon-
tinuities, different illumination conditions, sky regions, etc. 
Some sample images from this dataset are shown in Fig. 22a.

5.3 � Waterloo IVC [98]

The dataset consists of 25 realistic hazy images of diverse 
scenes in an outdoor and indoor environment. There are 22 
outdoor real-world hazy images, captured in different haze 
concentrations while 3 indoor images are simulated using 
physical mode. This dataset is widely used in single image 
dehazing to evaluate performance. Some sample images 
from this dataset are shown in Fig. 22b.

5.4 � 500 Foggy Images [99]

The dataset consists of 500 natural foggy images, used in 
many research papers for evaluation of their method. These 
images comprise different sizes, different fog densities rang-
ing from light fog to dense fog, and diverse image contents. 
Some sample images from this dataset are shown in Fig. 22c.

5.5 � D‑Hazy [100]

This dataset contains 1400+ pairs of synthetic hazy and 
haze-free images of indoor scenes. This dataset is gener-
ated using Middlebury and NYU depth datasets, contain-
ing their corresponding depth maps. For each image, the 
transmission map is computed based on atmospheric light 
and the scattering coefficient. Atmospheric light is assumed 

Fig. 18   General framework of unsupervised image dehazing [93]
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to be pure white [101] and the scattering coefficient is set 
by default as 1. Some sample images from this dataset are 
shown in Fig. 23a.

5.6 � Semantic Understanding of Foggy Scenes [102]

Sakaridis et al. [102] presented two distinct datasets: foggy 
cityscapes and foggy driving. The foggy cityscapes dataset 
was derived from the cityscape dataset and contains outdoor 
synthetic hazy images with different scattering coefficients. 
It preserves the semantic annotation of the original images. 
Foggy driving was comprised of 101 real-world foggy 
road scenes with annotation and a maximum resolution of 
960*1280 pixels, as shown in Fig. 23b.

5.7 � Haze RD Dataset [103]

This dataset contains 15 outdoor scenes with realistic hazy 
conditions. Each hazy scene is simulated with five different 
weather conditions, ranging from thin haze to dense haze 
and visible range from 50 to 1000 m, as shown in Fig. 24. 
These images are of high resolutions and justify the scatter-
ing theory of the physical model. A depth map of each hazy 
scene is estimated by fusing structure from motion and lidar.

5.8 � I‑Haze Dataset [104]

The dataset contains 35 indoor image pairs of hazy and cor-
responding haze-free images. The real haze appearance is 
produced by a professional haze machine and captured in a 
controlled environment under the same illumination for both 
hazy and haze-free images. Some sample images along with 
their GT images from this dataset are shown in Fig. 25a.

5.9 � O‑Haze [105]

This dataset is an outdoor scene dataset comprised pairs of 
real hazy and corresponding haze-free images. O-haze con-
tains 45 different outdoor scenes in which real haze is pro-
duced by a professional haze machine that simulates a hazy 
environment. These scenes were captured on cloudy days, 
morning, sunset or when wind speed was below 3 km/h. 
Some sample images along with GT images from this data-
set are shown in Fig. 25b.

5.10 � Dense‑Haze [106]

Ancuti et al. [106] proposed a Dense-haze dataset containing 
real-world hazy images, characterized by dense and homog-
enous haze. It consists of 33 pairs of real hazy and their 
corresponding haze-free images. Some sample images along 
with GT images from this dataset are shown in Fig. 25c.Ta
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5.11 � RESIDE [107]

This is the recent and large-scale dataset of hazy images 
containing both synthetic and realistic hazy images, called 
realistic single image dehazing (RESIDE). This dataset is 
available in RESIDE standard and RESIDE-β. The standard 
RESIDE contains three subsets: indoor training test (ITS), 

synthetic objective testing set (SOTS), and hybrid subjective 
testing set (HSTS). The ITS contains 13,990 synthetic hazy 
images generated using 1399 haze-free images from NYU2 
and Middlebury stereo indoor datasets. For each haze-free 
image, 10 synthetic hazy images are generated. Atmos-
pheric light is taken uniformly randomly in between [0.7, 
1.0] and the scattering coefficient is also randomly uniform 

Fig. 19   U-net structure for non-homogeneous haze removal [94]

Fig. 20   The dual network 
(knowledge transfer dehazing 
network) for non-homogeneous 
haze removal [95]
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 (d)             (e)                         (f) (a)  (b) (c)

Fig. 21   Images a without fog, b with uniform fog, c with inhomogeneous fog, d with fog and clouds, e with clouds and inhomogeneous, f Depth 
map

(a)  (b) (c)

Fig. 22   Sample images of datasets a [97], b [98], c [99]

(a)                                          (b) 

Fig. 23   Haze images from datasets, a [100], b varying visibility scenes from foggy Cityscapes [55]

 (a)   (b) (c) (d) (e) (f)

Fig. 24   HazeRD samples from left to right, a Haze-free image, b depth map, simulated hazy images with the visual range of c 50 m, d 100 m, e 
200 m, and f 500 m, respectively

 (a)   (b) (c)

Fig. 25   Sample hazy images along with GT images from a [104], b [105], c [106]
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in between [0.6, 1.8]. Testing sets are designed for evalu-
ation purposes. The SOTS contains 500 different images 
with white scenes and dense haze synthesized from NYU2 
which are not used in the training set. HSTS selects 10 syn-
thetic outdoor hazy images, together with 10 realistic hazy 
images. Besides, RESIDE-β provides two more subsets: out-
door training set (OTS) and real-world task-driven testing set 
(RTTS). The OTS contains 72,135 hazy images and RTTS 
contains 4322 images.

This dataset provided a new dimension in the single 
image dehazing for the evaluation of various dehazing meth-
ods on a large-scale dataset in terms of full reference metric, 
no-reference metric, and human subjective rating in visual 
analysis. The sample images from each part of the RESIDE 
datasets are shown in Fig. 26.

5.12 � NH‑Haze [108]

In the previous datasets, haze is characterized as homoge-
neous over the entire image. Since, haze is not distributed 
uniformly across the scene in reality, Ancuti et al. [108] 
proposed a non-homogenous realistic dataset. This dataset 
contains 55 real outdoor hazy images along with their cor-
responding haze-free images, generated by a professional 
haze machine by simulating the real conditions, as shown 
in Fig. 27.

Table 14 illustrates the different datasets used in the state-
of-the-art methods. Two types of datasets are available for 
evaluation: real hazy images and synthetic hazy images. For 
real images, no GT image or depth map is available. Many 
works are reported on these datasets. After analysis of the 

(a)                  (b)  (c)   (d)                    (e) 

Fig. 26   Sample images from different category of RESIDE dataset [107] a ITS, b SOTS, c HSTS, d OTS, e RTTS

Fig. 27   Non-homogenous hazy 
image and GT image from 
[108], a hazy images, b GT 
images

(b) 

(a) 

Table 14   Standard datasets 
description

Dataset (Reference, year) Synthetic Real

Indoor Outdoor Outdoor Annotated

(1) Frida ([96], 2012) – 420 – –
(2) Fattal ([97], 2014) 4 8 31 –
(3) Waterloo IVC ([98], 2015) 3 – 22 –
(4) 500 Foggy images ([99], 2015) – – 500 –
(6) D-Hazy ([100], 2016) 1449 – – –
(5) Foggy Cityscapes ([102], 2017) – 25,000 101 101
(7) HazeRD ([103], 2017) – 14 – –
(8) I-HAZE ([104], 2018) 35 – – –
(9) O-HAZE ([105], 2018) – 45 – –
(10) Dense-Haze ([106], 2019) – 33 – –
(11) RESIDE ([107], 2019) 14,490 72,135 9129 4322
(12) NH-Haze ([108], 2020) – 55 – –
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dataset used by the recent methods, we found that Fattal’s 
dataset [97] and RESIDE [107] are the first choices for real 
and synthetic images, respectively.

6 � Evaluation Metrics

There are several evaluation metrics used for testing the 
capability of the dehazing algorithms (DHA). At present, 
the images used in assessment can be divided into two cat-
egories: when ground truth image is available and when 
ground truth image is not available. Therefore, two catego-
ries of quantitative metrics depending upon the availability 
of images are introduced: full reference metric and no-refer-
ence metric, as shown in Fig. 28. Since it is difficult to obtain 
a haze-free image of the same scene. Therefore, no-reference 
metrics are often used for the assessment of DHA.

During dehazing, various issues may remain unresolved, 
including residual haze, structure damage, color distortions, 
over enhancement, halo artifacts, noise amplification, blur-
ring effects, edge preservation, etc. To measure these dis-
tortions, many dehazing quality assessment methods were 
introduced in the literature. In this section, we will explore 
all these metrics.

6.1 � No‑Reference Metrics

A good DHA must ensure the following qualities in the 
dehazed image: improved visibility, removal of artifacts, over 
enhancement, contrast enhancement, structure preservation, 
and edge preservations. By considering all these qualities, 

many dehazing metrics were introduced. Unfortunately, there 
is no single DHA that can test all the dehazing capabilities. 
In this section, we discuss some well-known and dehazing 
metrics introduced in recent years.

6.1.1 � Blind Contrast Enhancement Assessment [110]

The contrast of the image under adverse weather conditions is 
reduced significantly due to the scattering of the particles. This 
method is widely accepted in many dehazing works where the 
reference image is not available. This method is based on the 
assessment of contrast in terms of visible edges before and 
after restoration. It uses three descriptors: rate of new visible 
edges (e), the gain of visibility level (r), and saturated pixel 
ration (σ). The value of the e metric specifies the ability of the 
dehazing method in terms of new visible edges in the restored 
image that are not seen in the original hazy image. It is calcu-
lated as follows:

where nh and nhf  represent the cardinality of visible edges 
in hazy and haze-free images, respectively.

The second metric r is the ratio of the visibility level of 
objects in the restored image and the visibility level of objects 
in a hazy image. This metric considers visible and invisible 
edges both in the hazy image as follows:

where �hf  represents the set of visible edges in a haze-free 
image and ri is the gradient of pi and the corresponding pixels 
in a hazy image.

The third metric is the saturated pixel ratio. This metric 
talks about pixels which become saturated (black or white) 
after applying the dehazing process.

where ns is the number of saturated pixels and dimx and 
dimy represent the width and height of the image, respectively.

A high value of e and r indicates good quality of a 
dehazed image in terms of edges preservation and contrast 
enhancement while a small value of σ is an indication that a 
dehazed image has fewer saturated pixels or color distortions 
than a hazy image.

6.1.2 � Non‑Reference Image Quality Assessment based 
Blockiness and Luminance Change (BALC) [111]

This metric is designed to measure the two distortions in an 
image: blocking artifacts and improper luminance change. 

(14)e =
nhf − nh

nh

(15)
r = e

−

�
1

nhf

∑
pi∈ �hf

log ri

�

(16)� =
ns

dimx × dimy

Fig. 28   Assessment criteria of real and synthetic hazy images [9]
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It is a no-reference metric and obtains the quality score of 
a dehazed image based on these distortions. These distor-
tions in the dehazed image are estimated based on gradient. 
Usually, halo artifacts appear in the image at depth discon-
tinuities. This method divides the image into 8*8 non-over-
lapping blocks. The blockiness of a block is measured by 
taking the average of discontinuities along the four bounda-
ries of the block. For luminance change or blurring effect, it 
calculates the average of gradients inside the block. Finally, 
two measures are combined into a single metric as follows:

where Bhf  and Lhf  denote artifact and blurring effect of 
the haze-free image. � ≥ 0 is a parameter, used to adjust the 
importance of these two distortions.

A small value of BALC indicates the good quality of the 
haze-free image in terms of artifacts and blurring effects.

6.1.3 � Blur Metric [112]

After the dehazing process, some methods introduce a blur-
ring effect in the haze-free image. To check the quality of 
the dehazed image in terms of blur perception, many recent 
works used this metric.

This metric applies the low-pass filter on the dehazed 
image to obtain a blurred version of this image. The com-
parison of intensity variations between two images (the 
dehazed image and the blurred dehazed image) indicates 
blur annoyance. Thus, a high variation in intensity values 
between these two images signifies that the dehazed image 

(17)BALC = Bhf ∗ L−�
hf

is not blurred whereas a small difference indicates that the 
dehazed image is blurred.

Blur metric provides a score ranging from 0 to 1 which 
represents the best and the worst quality, respectively in 
aspects of blur perception.

6.1.4 � Blind Image Quality Assessment (BLIIND‑II) [113]

BLIIND-II is a no-reference image quality assessment met-
ric based on a probabilistic model that predicts the quality 
score of an image. This metric uses the natural scene statis-
tics (NSS) model which relies on discrete cosine transform 
coefficients. NSS model is built from undistorted natural 
scenes and requires a small number of training examples. 
The estimation of the predicted score consists of four stages. 
In the first stage, the image is divided into n*n blocks, then 
computing the DCT coefficients for each block. In the sec-
ond stage, a generalized Gaussian density model is applied 
to each block that provides the model parameters. Four fea-
tures: shape parameter, coefficient of variation, energy sub-
band ratio measure and orientation features are extracted in 
the third stage from model parameters. Finally, the fourth 
stage consists of a Bayesian model that predicts the percep-
tual quality of the dehazed image. The steps for the computa-
tion of this metric are shown in Fig. 29.

It considers various types of distortions, such as arti-
facts, white noise, Gaussian blur, fast fading channel, etc. 
in the estimation of a quality score. The values of this met-
ric are in the range of [0, 100]. A higher value of BLIIND-
II indicates the poor quality or distortions in the image. 
During dehazing, many periodic patterns (checkerboard 

Fig. 29   Steps of computing BLIIND-II [113] metric
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and blocking artifacts) are generated in the haze-free 
image. Therefore, this metric can be used to identify these 
distortions in the image.

6.1.5 � Blind/No‑Reference Image Spatial Quality Evaluator 
(BRISQUE) [114]

Mittal et al. [114] proposed a blind/no-reference image 
spatial quality evaluator (BRISQUE) metric which meas-
ures the losses of naturalness of an image without calcu-
lating the distortion-specific features, such as blocking, 
artifacts, blur, ringing artifacts, etc. It computes the local 
luminance coefficients and observed that these normalized 
luminance coefficients follow a Gaussian distribution for 
the natural scene. They extracted 36 natural scene statistics 
features at 2 scales-18 features per scale, used to identify 
all types of distortions. Finally, a regression module, sup-
port vector regression is used to calculate the quality score 
of an image. This model is tested on a LIVE IQA database 
which consists of 29 reference images and 779 distorted 
images spanning different types of distortions.

6.1.6 � Fog Aware Density Evaluator (FADE) [99]

This metric is specially designed for the evaluation of 
DHA to judge the visibility of the restored image. This 
fog-aware density evaluator (FADE) metric does not con-
sider the various approaches used previously, such as esti-
mation of the transmission, salient region, human-related 
opinion, etc. This makes the judgment of visibility based 
on deviations in the spatial domain, seen in hazy and haze-
free images. A set of fog-aware statistical features, namely 
MSCN (mean subtracted contrast normalized) coefficients, 
sharpness, contrast energy, colorfulness, color saturation, 
image entropy and dark channel prior are extracted from 
foggy images. It used 500 foggy and 500 fog-free images 
to extract these features. A test foggy image is divided 
into p*p patches and average feature values for statisti-
cal features for each patch are extracted. A multivariate 
Gaussian (MVG) probability density in the d dimension 
is computed between a test foggy image and 500 natural 
fog-free images as follows:

where f represents fog aware features while � and � 
denote mean and covariance, respectively. In the next step, 
the Mahalanobis distance measure is computed between the 
MVG fit to features extracted from a test foggy image and 
the MVG model of 500 fog-free images as follows:

(18)

MVG(f ) =
1

(2�)d∕2|�|1∕2
exp

(
−
1

2
(f − �)t �−1(f − �)

)

where �1,�2 and �1, �2 are the mean and covariance of 
the MVG model of the 500 fog-free images and a test foggy 
image, respectively. Similarly, Dff  is calculated between the 
MVG of 500 foggy images and a test image. Finally, the fog 
density of a hazy image is calculated as follows:

Constant 1 is added to the denominator to prevent divide 
by zero exception. Smaller values of D represent lower fog 
density, i.e. A DHA is improving the visibility of the hazy 
image to great extent.

A smaller FADE value indicates less residual haze pre-
sent in the dehazed result. The residual haze, artifacts and 
noises, on images reduce the FADE scores. However, the 
bright scenes may be mistaken as residual haze by FADE 
and increase the value of FADE.

6.1.7 � Natural Image Quality Evaluator (NIQE) [115]

This is another no-reference metric used in DHA for measur-
ing the distortion during the dehazing process. This metric 
provides a natural image quality evaluator based on quality-
aware features of the natural scene statistics model. These 
features are extracted from a corpus of undistorted natural 
images. The 36 features are extracted from a dehazed image 
(whose quality is to be analyzed) by dividing the image into 
p*p patches and then comparing its MVG fit to the MVG 
model.

6.1.8 � Dehazing Quality (DHQ) [116]

Min et al. [116] proposed an objective measure for the quan-
titative evaluation of dehazed images. To assess overall 
dehazing quality, first, they constructed a database of 1750 
dehazed images generated from 250 real hazy images using 
7 dehazing algorithms of different haze densities. Afterward, 
subjective quality evaluation is conducted on this dataset. 
Finally, the regression module predicts the dehazing quality 
(DHQ) by extracting several features from a dehazed image. 
The overall dehazing quality is measured in three aspects: 
haze removal, preservation of structure and over enhance-
ment, as shown in Fig. 30.

Haze removing features aim to design haze-relevant 
descriptors to evaluate haze removing effect. It consid-
ers five features: pixel wise DCP, image entropy, local 
variance, normalized local variance and contrast energy. 
Another important parameter is structure preservation 

(19)

Df (�1,�2, �1, �2) =

√

(�1 − �2)
t

(
�1 + �2

2

)−1

(�1 − �2)

(20)D =
Df

Dff + 1
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used to judge the quality of the dehazed image. The dehaz-
ing process sometimes can introduce structure degradation 
or artifacts. To account for structure preservation, various 
features, such as variance similarity, normalized variance 
similarity and normalized image similarity are used. The 
third important quality indicator of the dehazing process is 
the identification of over enhancement problem in dehazed 
images. During the dehazing process, details in low con-
trast areas are darkened; colors are distorted or may intro-
duce structural artifacts. It is measured in the form of low 
contrast areas and blockiness.

6.2 � Full‑Reference Metrics

Full-reference metrics are used to evaluate a method when 
a GT image is available. This method is applicable to test 
the performance of synthetic images. Recently, several 
metrics: PSNR, SSIM, LPIPS, CIEDE 2000 and SHRQ 
had been utilized in many works. In this section, we have 
explored all such metrics.

6.2.1 � Learned Perceptual Image Patch Similarity Metric 
(LPIPS) [117]

Pixel-wise metrics such as PSNR and SSIM disagree with 
human judgment in assessing the perceptual quality of the 
dehazed image. Therefore, Zhang et al. [118] proposed a 
learned perceptual image patch similarity metric (LPIPS) 
that establishes the perceptual similarity between two 
images that resemble human opinion. It is based on deep 
features, trained on some well-known deep learning frame-
works like supervised, self-supervised, unsupervised, etc. 
This metric can identify a wide range of distortions in the 
image, including photometric (color shift, contrast, satura-
tion), noise (white, artifacts), blur, and compression. Three 
network architectures including AlexNet, SqueezeNet and 
VGG are considered for supervised training. The overall 
framework of this metric is shown in Fig. 31.

This diagram shows how the distance between two 
patches x (patch of GT image) and x0 (patch of dehazed 
image) is calculated by a network F. The features are 
extracted from many layers, normalize in channel dimension, 

Fig. 30   Quantitative evaluation to measure overall issues of dehazing in real hazy images using non-reference based metric DHQ [116]

Fig. 31   Deep learning framework to measure perceptual quality of the dehazed image
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scale each channel by vector w and compute the l2 norm. 
Finally, the average of spatial and channel-wise is taken. 
G is a network trained to predict perceptual quality h from 
distance pair d0 and d1.

The lower LPIPS score indicates a higher similarity 
between the two images.

6.2.2 � Peak Signal to Noise Ratio (PSNR) [119]

Peak signal to noise ratio (PSNR) measures the degree of 
signal distortion between a haze-free image obtained by a 
DHA and GT image. A high value of PSNR signifies the 
good quality of the dehazed image. It is calculated as:

where MSE is used to calculate the error between dehazed 
image and ground truth image. It must be minimized and 
calculated as follows:

where G and Ihf are the ground truth and dehazed images, 
respectively.

6.2.3 � Structural Similarity Index Metric (SSIM) [120]

Since PSNR is not effective in terms of human visual judg-
ment. Therefore, many researchers utilized the structural 
similarity index metric (SSIM) which evaluates the dehazing 
performance in terms of contrast, luminance and structure 
between ground truth and dehazed images. It is calculated 
as follows:

Here, �r and �i are means of r (restored image) and i (GT 
image), respectively. �2

r
 and �2

i
 are the variances of r and i 

and �ri is the cross-variance between r and i. Default values 
of c1 and c2 are 0.01 and 0.03.

SSIM yields a decimal score between 0 and 1. The score 
value of 1 indicates that the two images are identical. SSIM 
is highly sensitive to variations of contrast and illumina-
tion. Therefore, it can judge the issues of dehazing, such as 
incomplete haze removal or over-saturation of pixels.

6.2.4 � CIEDE 2000 [121, 122]

During the dehazing process, color distortions may be intro-
duced in a restored image. It cannot be reliably evaluated 

(21)PSNR = 10 log10

(
2552

MSE

)

(22)MSE =
1

M × N

M∑

i=1

N∑

j=1

(
G(i, j) − Ihf (i, j)

)2

(23)SSIM(r, i) =

(
2�r�i + c1

�2
r
+ �2

i
+ c1

)(
2�ri + c2

�2
r
+ �2

i
+ c2

)

by PSNR or SSIM. Therefore, researchers in this field also 
used an accurate color difference metric CIEDE 2000 which 
assesses dehazing in terms of color restoration closer to 
human eye perception in color difference.

It yields values in the range [0,100] with smaller values 
indicating better color preservation, and values less than 1 
corresponding to imperceptible by the human eye. A value 
of 100 indicates that colors are the opposite of two images.

6.2.5 � Synthetic Haze Removing Quality (SHRQ) [9]

Min et al. [123] proposed a full reference metric called syn-
thetic haze removing quality (SHRQ) to evaluate the overall 
quality of a dehazed image. The proposed dehazing quality 
evaluator integrates many quality parameters raised during 
the dehazing process. These issues of dehazing are structure 
recovery, color rendition and over-enouncement. The author 
first creates an SHRQ database that consists of two subsets: 
regular and aerial images. The regular image dataset consists 
of 45 haze-free images while the aerial dataset contains 30 
high-quality aerial images. The ASM model is utilized to get 
the synthetic hazy images. These hazy images are processed 
by eight state-of-the-art methods. The overall quality of a 
dehazed image is estimated as follows:

where Ssim is the structure map, Cren is the color rendi-
tion map and O represents over-enhancement in low contrast 
areas. z represents the total number of pixels, α is set empiri-
cally to adjust the importance of color information.

7 � Experimental Results

In this section, experimental results are presented in three 
ways. First, we evaluate the recent state-of-the-art methods 
based on dehazing assessment criteria. Second, we discuss 
the qualitative or visual analysis of dehazing methods. 
Finally, we discuss the performance of different methods 
quantitatively on different datasets.

7.1 � Comparison of the State‑of‑the‑art Methods 
based on Dehazing Assessment

This section presents the assessment criteria of different 
dehazing methods based on parameter setting during experi-
mentation, dataset(s) selected and evaluation metrics used 
for the assessment. For comparison, we have collected this 
data from their manuscript. This analysis is illustrated in 
Table 15.

(24)Q =
1

z

∑

i,j

Ssim(i, j).[Cren(i, j)]
� .O
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Table 15 demonstrates the datasets and metrics used by 
the respective dehazing method. We can notice in the table; 
the recent state-of-the-art methods utilize a variety of dehaz-
ing metrics including full reference and no reference met-
rics for comparison purposes. Most of the methods focus on 
selecting the number of metrics for evaluation. In this regard, 
the method [43, 56, 124] utilized sufficient metrics for evalu-
ation. Besides, a good DHA must be tested on diverse data-
sets of different haze concentrations including dense haze, 
non-homogeneous haze, sky regions, night-time hazy con-
ditions, mild haze, etc. The method [40, 61] is tested on 
a large number of datasets as compared to other methods. 
We can also notice in this table that all DHA requires some 
parameters to be adjusted adaptively or manually, irrespec-
tive of their category. The number of parameters increases 
the overhead and reduces the efficiency of a method. Hence, 
they must be minimized as methods [40, 125].

7.2 � Qualitative Evaluation

Figure 32 shows the visual analysis of restoration-based 
methods with prior on two hazy images from HSTS of 
RESIDE dataset along with GT image. We can observe in 
this figure that all the methods are unable to preserve the 
color and contrast of the image. All the dehazed images in 
the sky regions are darker than the GT image. In addition to 

color distortions, the DCP [63] also suffers from halo arti-
facts. However, the dehazed image by [47] has fewer color 
distortions as compared to other methods and resembles the 
GT image.

Furthermore, Fig. 33 shows the qualitative results of dif-
ferent machine learning and deep learning methods on the 
HSTS dataset along with the GT image. It is observed in 
this figure that dehazed result by the Deep DCP method has 
residual haze. The methods [73, 75], and [76] have color 
distortions in the image. The other methods [74] and [126] 
have fewer color distortions. The dehazed image obtained 
by [89] resembles the GT and also all the details are visible.

Figure 34 shows a visual comparison of state-of-the-art 
methods on two hazy images taken from O-Haze datasets. 
We can notice in this figure that NLD [66], PDN [127] 
highly distort the color of the image. The AOD-net and 
DCPDN are unable to remove haze completely. The method 
GFN [77] is managed to remove haze and also has fewer 
color distortions. The dehazed image achieved by method 
[128] is much closer to the GT image.

The visual analysis in Fig. 35 reveals that removing dense 
haze is still a challenging task. The performance of most of 
the methods (deep learning and prior based) on this data-
set is not satisfactory. The details of the images are imper-
ceptible under the dense haze. All earlier methods [73–75] 
and [85] are unable to remove the haze. However, the 

(a)     (b) (c)   (d) (e) (f) (g)       (h)

Fig. 32   Reside HSTS: Prior based restoration methods, a Hazy image, b DCP [63], c NLD [66], d CAP [64], e BCCR [49], f CEP [67], g LBF 
[47], h GT

(a)                   (b)               (c)      (d)              (e)                        (f)             (g)                       (h)                       (i) 

Fig. 33   RESIDE HSTS: learning based methods, a hazy image, b AOD net [75], c DehazeNet [74], d deep DCP [88], e MSCNN [73], f PQC 
[126], g cycle-dehaze [76], h DFIDSE [89], i GT
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restoration-based method DCP and NLD attempt to remove 
the haze at the cost of high color distortions. The method 
[84] produces dark images in which details are not visible. 
The method [79] and [129] perform better than other meth-
ods except for the first image.

Figure 36 represents non-homogeneous hazy images, 
different from other dehazing datasets in which haze is 
characterized by homogeneous haze. The performance of 
most state-of-the-art methods drops significantly due to the 
non-homogeneous nature. The color distortions problem is 
noticed in dehazed images by the DCP method due to the 
homogeneous assumption of the physical model. In addi-
tion to color distortions, the method [74] also introduced 
the noise in the dehazed image. The AOD and GCA net 
are unable to remove the haze in dense hazy regions. The 
DCPDN is succeeded to remove the haze without color dis-
tortion. However, some artifacts are observed. The method 
[95] generates pleasing results and is able to deal with non-
homogeneous haze in presence of dense haze to some extent.

Figure 37 shows the qualitative analysis of different 
methods on a sample image taken from HazeRD datasets. 

The results of DCP, CAP, PDN and DehazeNet suffer from 
color distortions while the haze-free obtained by the method 
DCPDN and GFN are over brightened as compared to GT. 
The MSCNN and NLD leave some haze in the dehazed 
result. The method [130] and [75] perform satisfactorily. 
However, they are also not able to restore the color of sky 
regions in addition to other methods.

In Fig.  38, hardware architecture-based methods are 
tested on three real images from Fattal’s dataset. The meth-
ods [72] and [131] used the simple concept of DCP to 
remove the haze. Therefore, their dehazed images are hav-
ing the problem of color distortions and over-saturation of 
pixels. The dehazed images of the method [132] are over 
brightened also suffer from over-saturation of pixels. The 
method of [133] generates pleasing results. However, vis-
ibility in long-range regions is not up to the mark.

Finally, we present dehazing results on some sample 
images from the dataset [99] in Fig. 39. The quantitative 
results are also illustrated in Table 22. Here, we consider 
four popular categories of methods: image enhancement 
[22], image fusion [13], and [62], machine learning: 

(a)                   (b)             (c)                   (d)           (e)                   (f)         (g)                   (h)                

Fig. 34   Haze removal results by various methods on hazy images from O-HAZE a hazy image, b NLD [66], c AOD-net [75], d PDN [127], e 
GFN [77], f DCPDN [142], g DM2F-Net [128], h GT

 (a) (b) (c)  (d) (e) (f) (g)  (h)          (i)            (j)                (k) 

Fig. 35   Qualitative comparison of results on images from the Dense-Haze dataset, a Hazy image, b DehazeNet [74], c MSCNN [73], d AOD-
Net [75], e PPDNet [85], f HR-Dehazer [129], g DCP [63], h NLD [66], i BPPNet [79], j GCANet [84], k GT
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[134] and [64] and restoration with priors [63, 66] and 
[51]. Fusion based method [13] distorts the color also 
leaves haze in some parts of the images while another 
method [62] better preserves the color in nearby regions 
and enhances the visibility in faraway regions. Machine 
learning methods [134] and [64] do not distort the color 
but they failed to remove the haze completely. In compari-
son to restoration with prior methods, DCP has pleasing 
results as compared to NLD with fewer color distortions. 
The RASD method better handles the artifacts but it blurs 
the details of dehazed images due to gradient residual min-
imization. The enhancement-based method [22] on DCP 
has a better-dehazed image as compared to the restoration-
based method.

7.3 � Quantitative Evaluation

This section provides a comparison of recent and popu-
lar methods of dehazing on different standard datasets. 
Tables 16, 17, 18, 19, 20, 21, 22, provide the quantitative 
evaluation of HazeRD, RESIDE, I-Haze, O-Haze, Dense-
haze and D-Hazy, respectively. Since all these datasets are 
having GT images. Their assessment is done using full-
reference metrics: PSNR and SSIM. Moreover, Table 22 
provides the quantitative analysis of the real images used in 
Fig. 39. GT images are not available for these images; there-
fore, evaluation is done by a variety of non-reference met-
rics including FADE, Blur, BALC,� , e, r, NIQE, BRISQUE, 
BLIINDSII and BIQI.

  (a)   (b) (c)  (d)  (e)   (f)  (g) (h)  

Fig. 36   Quantitative comparisons of the state-of-the-art dehazing methods on NTIRE-2020 challenge: NH-HAZE. a Hazy image, b DCP [63], c 
DehazeNet [74], d AOD net [75], e GCAnet [84], f DCPDN [142], g KTDN [95], h GT

(a)   (b) (c) (d) (e)   (f)           (g)                          (h)              

(i)                          (j)  (k)          (l) 

Fig. 37   Comparison with state-of-the-art methods on a hazy image from HazeRD dataset. a hazy image, b GT, c DCP [63], d CAP [64], e NLD 
[66], f MSCNN [73], g DehazeNet [74], h AOD-net [75], i GFN [77], j DCPDN [142], k PDN [127], l DHRNT [130]
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We have opted for different methods in comparison tables 
because we have considered the top performers in respec-
tive datasets. We conclude from the quantitative analysis of 
datasets that a method that is ranked no 1 on one dataset is 
not the best on other datasets too. The haze density is also 
different when moving from one dataset to another dataset. 
Considering this fact in the mind, the performance of meth-
ods differs according to the level of the haze.

Table 16 illustrates the performance of the most popular 
and recent dehazing method on the HazeRD dataset. This 
dataset contains synthetic images of different haze concen-
trations. For the assessment of dehazing quality, we use 
two metrics: PSNR and SSIM. Most of the methods have 
lower PSNR and SSIM values except for one or two meth-
ods. The lower PSNR and SSIM values indicate that these 
methods are not able to remove the haze completely or there 
is a higher color distortion. The higher values of PSNR and 
SSIM indicate that the dehazed image by the method LDP 
[82] is visually closer to the GT images and is ranked no 
1among all the compared methods.

Table 17 illustrates the performance of recent dehazing 
methods on the most popular RESIDE dataset. This dataset 
contains both real and synthetic images with a mild haze. 
The table presents the results of the SOTS indoor and SOTS 
outdoor part of RESIDE dataset. The evaluation metric used 
is PSNR and SSIM. We can observe that DCP suffers from 
the problem of color distortions due to invalidity of prior for 
white brighter objects or high depth regions. AOD-Net has 
residual haze and dehazed images are having low bright-
ness. The dehazed images by the Dehazenet method are 
over brightened as compared to the GT. GCANet has higher 
PSNR and SSIM values and indicates better-dehazed images 
as compared to other methods except for FFA-Net [86] and 
DM2F-Net [128]. However, its performance is degraded at 
high-frequency components such as edges or blue sky. The 
dehazed result of [86] and [129] are better than state-of-the-
art methods with a large margin of PSNR and SSIM values. 
GMAN method [78] performs better on SOTS outdoor but 
average on SOTS indoor. The performance of DM2F-Net 
[128] is also noticeable on SOTS indoor which is in the 

(a)  (b)  (c)   (d)  (e)

Fig. 38   Hardware based methods a Hazy image, b Shiau et al. [72], c Zhang et al. [131], d Shiau et al. [132], e Kumar et al. [133]

(a)                 (b)                  (c)                      (d)                     (e)     (f)                      (g)                      (h)          (i) 

Fig. 39   Hazy images with sky region and their dehazed images by different methods a Hazy image, b AMEF [13], c CAP [64], d NLD [66], e 
ESIDD [22], f DCP [63], g RASD [51], h MLP [134], i The JCDF method [62]
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second position after the FFANet [86]. The dehazing capa-
bility of other methods is not satisfactory. The FFANet has 
good dehazing capability on both datasets and ranked no 
1 and deals with many problems of sky regions, avoiding 
darkening of colors, color fidelity and image details.

Tables 18 and 19 illustrate the PSNR and SSIM values of 
recent and popular dehazing methods on I-Haze and O-Haze 
datasets, respectively. These datasets contain high-resolu-
tion images with a mild haze density. The restoration-based 
methods [63, 66, 135–137] and [138] again suffer from the 
problem of color distortions and are unable to preserve the 

Table 16   PSNR and SSIM comparison of existing techniques on 
HazeRD dataset

Methods PSNR SSIM

DCP [63] 14.64 0.78
CAP [64] 14.15 0.74
NLD [66] 14.58 0.81
MSCNN [73] 15.62 0.82
DehazeNet [74] 15.30 0.79
AOD-Net [75] 15.64 0.80
GFN [77] 13.73 0.67
DCPDN [142] 15.86 0.77
PDN [127] 14.48 0.75
LDP [82] 17.51 0.85

Table 17   PSNR and SSIM comparison of existing techniques on 
RESIDE dataset

Method SOTS Outdoor SOTS Indoor

PSNR SSIM PSNR SSIM

DCP [63] 19.13 0.82 16.62 0.82
AOD-Net [75] 20.29 0.88 19.06 0.85
DehazeNet [74] 22.46 0.85 21.14 0.85
GFN [77] 21.55 0.84 22.30 0.88
FFA-Net [86] 33.57 0.98 35.77 0.98
GMAN [78] 28.19 0.96 20.53 0.81
Deep DCP [88] 24.08 0.93 19.25 0.83
CAP [64] 22.30 0.91 19.05 0.84
MSCNN [73] 21.73 0.83 17.57 0.81
NLD [66] 18.07 0.80 17.29 0.75
BCCR [49] 15.49 0.78 16.88 0.79
Y-NET [23] 26.61 0.95 – –
Deep Energy (Network) [92] 24.07 0.93 – –
Improved CycleGAN [178] 21.78 0.80 – –
GCANet [84] – – 30.23 0.98
HIDEGAN [185] 25.54 0.88 24.71 0.87
RYFNet [186] – – 21.44 0.87
DM2F-Net [128] – – 34.29 0.98
DPDP-Net [141] – – 20.18 0.88

Table 18   PSNR and SSIM comparison of existing techniques on 
I-Haze dataset

Method PSNR SSIM

DCP [63] 14.43 0.752
CAP [64] 12.24 0.606
MSCNN [73] 15.22 0.7545
NLD [66] 14.12 0.653
AOD-Net [75] 13.98 0.732
PPDNet [85] 22.53 0.870
BPPNet [79] 22.56 0.899
Feature Forwarding [139] 18.56 0.809
IDE [136] 15.77 –
NCC [137] 15.84 0.534
NRIS [135] 12.62 0.574
ICycleGAN [180] 15.92 0.745
CFCEMD [152] 15.21 0.698
DCPDN [142] 14.37 0.724
GFN [77] 11.87 0.527
Cycle-Dehaze [76] 14.89 0.744
DehazeNet [74] 16.73 0.626
DFIN [140] 16.04 0.633
IDGCP [138] 16.10 –

Table 19   PSNR and SSIM comparison of existing techniques on 
O-Haze dataset

Method PSNR SSIM

DCP [63] 16.78 0.65
CAP [64] 16.08 0.60
MSCNN [73] 17.56 0.65
NLD [66] 15.98 0.58
AOD-Net [75] 15.03 0.54
PPDNet [85] 24.24 0.72
BPPNet [79] 24.27 0.89
Feature Forwarding [139] 22.07 0.75
IDE [136] 14.19 –
AMEF [13] 8.31 0.00
NRIS [135] 7.37 0.35
Cycle-Dehaze [76] 19.62 0.67
Doble-DIP [80] 18.82 –
ICycleGAN [180] 18.22 0.85
CFCEMD [152] 16.06 0.62
DCPDN [142] 14.52 0.59
GFN [77] 17.18 0.62
Cycle-Dehaze [76] 17.35 0.86
DehazeNet [74] 17.90 0.55
DFIN [140] 17.46 0.53
IDGCP [138] 15.71 –
DM2F-Net [128] 25.19 0.78
HR-Dehazer [129] 21.46 0.69
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structure of the image due to the invalidity of priors. Earlier, 
simple machine learning and deep learning methods: [64, 
73–77], etc. are unable to remove the haze effect completely. 
In comparison with other methods, the overall results of [79, 
85, 139] and [128] are better with higher PSNR and SSIM 
values. From Tables 18 and 19, we conclude that BPPNet 
[79] is the top performer on the I-Haze dataset while DM2F-
Net [128] is the best among all the methods on the O-Haze 
dataset.

Table 20 shows the results of the comparison on the 
Dense-Haze dataset. This dataset greatly differs from other 
datasets (I-Haze and O-Haze) in terms of increased haze 
levels. This dataset contains hazy images with very dense 
fog. The state-of-the-art methods are generally trained on 
images having sparse haze. For example, the method [85] is 
trained on O-Haze (Mild hazy images). Therefore, its per-
formance is degraded when tested on dense hazy images, as 
indicated by the PSNR and SSIM values of PPDNet. Moreo-
ver, PSNR and SSIM values of most of the methods are 
very low indicating higher color distortions and incapable 

to deal with dense haze except for two or three methods. In 
comparison with other methods, BPPNet, HR-Dehazer and 
Feature Forwarding methods have got the satisfactory val-
ues of PSNR and SSIM because these methods are trained 
on dense hazy images. BPPNet is ranked no 1 and capable 
to remove the dense haze. However, the color restoration 
of dehazed images does not resemble the GT images. The 
quantitative analysis of the Dense-Haze dataset confirms the 
qualitative analysis in Fig. 35.

Furthermore, we compared the state-of-the-art meth-
ods on the D-Hazy dataset. The D-Hazy dataset is divided 
into two parts: NYU depth and Middlebury (MB) portions. 
This dataset contains synthetic images with medium haze. 
Table 21 presents the quantitative results. The analysis of 
this table demonstrates that the dehazing results of a learn-
ing-based method [73–75, 140] and [141] are better than 
prior based methods [63] and [64]. In the comparison of 
PSNR and SSIM values, DFIN [140] and DPDP-Net [141] 
are ranked no 1 in NYU-depth and MB portion, respectively.

Furthermore, we have analyzed the performance of the 
state-of-the-art methods on natural images using multiple 
metrics, to identify the pitfalls of these methods, available 
as non-reference image quality assessment. The dehazing 
results are better suggested by FADE. A smaller FADE 
indicates less residual haze present in the dehazed result; 
BLIINDS-2 and BRISQUE are the indicators of perceptually 
pleasing results; a higher Gradient Ratio implies that more 
edge details are preserved after dehazing. The small value 
of NIQE represents that the haze-free image is more natural 
and realistic.

Finally, Table 22 shows the quantitative results of the real 
images shown in Fig. 39 using different metrics listed in the 
table. In this table, the red color of numbers denotes the first 
position, the green color the second position and the blue 
color represents the third position. The smaller values of all 
metrics except the e and r metrics denote the good dehaz-
ing capability in terms of distortions (blur, BALC), percep-
tual quality (NIQE, BLIINDSII, etc.), visibility after haze 
removal (FADE score), preservation of edges in restored 
images (e and r), color distortions (saturated pixel ratio). 
Different categories of methods are involved in the com-
parison. We can notice in this table that method [62] is at 
the first position in the overall quality of the dehazed image. 
The dehazed image has improved visibility, with no over-
saturation of pixels and artifacts. In the second place, the 
DCP method is there with good perceptual quality and pres-
ervation of edges. However, it suffers from the halo artifacts 
problem at depth discontinuities. The performance of the 
NLD method is reported at the third position with the high-
est FADE score (no residual haze). However, it suffers from 
the problem of over-saturation of pixels and lacks perceptual 
quality. The performance of other methods is average.

Table 20   PSNR and SSIM comparison of existing techniques on 
Dense-Haze dataset

Method PSNR SSIM

DCP [63] 14.56 0.398
BCCR [49] 14.62 0.352
DCL [97] 12.11 0.326
DehazeNet [74] 11.36 0.374
NTDF [200] 13.67 0.306
NLD [66] 13.18 0.358
MSCNN [73] 12.52 0.369
Feature Forwarding [139] 16.37 0.569
BPPNet [79] 17.01 0.613
AOD-Net [75] 12.79 0.423
HR-Dehazer [129] 16.47 0.518
PPDNet [85] 12.04 0.428

Table 21   PSNR and SSIM comparison of existing techniques on 
D-Hazy dataset

Method D-Hazy-NYU D-Hazy-MB

PSNR SSIM PSNR SSIM

DCP [63] 11.56 0.67 12.13 0.68
CAP [64] 13.29 0.73 14.36 0.75
DehazeNet [74] 13.02 0.73 13.78 0.73
MSCNN [73] 13.67 0.74 13.97 0.75
AOD-Net [75] 12.44 0.71 13.48 0.75
DFIN [140] 18.11 0.83 15.63 0.73
DPDP-Net [141] – – 18.76 0.91
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8 � Conclusions and Future Direction

The haze removal methods have drawn the attention of 
researchers in the recent years due to the various applica-
tions in computer vision, especially in video surveillance 
and transportation systems. In this paper, the recent haze 
removal methods are investigated. First, for better under-
standing, these methods are grouped into different categories 

based on their similar characteristics. From each group, the 
prominent methods are selected for analysis on various 
issues of dehazing. It also introduces many recent categories 
including non-homogeneous haze removal, hardware archi-
tecture, superpixels, ensemble, etc. Then, this survey paper 
explores most of the evaluation metrics and datasets used 
by the recent works. Finally, qualitative and quantitative 
analysis on many datasets including Reside, I-Haze, O-Haze, 

Table 22   Quantitative Comparison of different methods using well known no reference quality assessment metrics

S.No Metric AMEF [13] CAP [64] NLD [66] ESIDD [22] DCP [63] RASD [51] MLP [134] JCDF [62]

1 FADE ↓ 0.224 0.267 0.110 0.242 0.209 0.390 0.258 0.214
0.371 0.328 0.196 0.293 0.300 0.463 0.366 0.312
0.231 0.316 0.114 0.154 0.151 0.274 0.184 0.115

Mean FADE values 0.275 0.304 0.140 0.230 0.220 0.376 0.269 0.214
2 Blur ↓ 0.163 0.164 0.153 0.180 0.171 0.183 0.160 0.164

0.278 0.294 0.286 0.300 0.289 0.353 0.287 0.302
0.216 0.240 0.221 0.271 0.228 0.249 0.215 0.213

Mean Blur values 0.219 0.233 0.220 0.250 0.229 0.262 0.221 0.227
3 BALC ↓ 0.552 1.239 1.588 1.122 1.617 1.647 0.749 0.051

1.935 1.573 2.268 1.937 2.079 1.828 1.908 2.228
1.307 2.102 1.605 1.785 1.940 1.985 1.607 0.638

Mean BALC values 1.265 1.638 1.821 1.615 1.879 1.820 1.421 0.972
4 σ ↓ 0.430 0.020 0.290 0.120 0.020 0.030 0.080 0.000

0.090 0.050 0.150 0.200 0.060 0.050 0.170 0.010
0.000 5.600 0.320 1.330 0.140 0.420 0.270 0.000

Mean σ values 0.173 1.890 0.253 0.550 0.073 0.167 0.173 0.003
5 e ↑ 0.460 0.400 0.810 0.250 0.540 0.150 0.320 0.690

0.370 0.220 0.620 0.260 0.530 0.140 0.260 0.580
0.910 1.210 1.260 1.060 1.430 0.800 0.800 1.420

Mean e values 0.580 0.610 0.897 0.523 0.833 0.363 0.460 0.897
6 r ↑ 1.840 1.160 1.870 1.260 1.820 1.070 1.420 2.360

1.940 1.020 1.950 1.320 1.760 1.100 1.270 2.780
2.330 0.980 2.490 1.990 1.670 1.220 1.870 4.520

Mean r values 2.037 1.053 2.103 1.523 1.750 1.130 1.520 3.220
7 NIQE ↓ 3.299 3.208 3.261 3.253 2.862 2.735 3.371 3.140

2.410 2.853 2.456 2.628 2.479 3.058 2.413 2.349
3.582 3.592 3.880 4.381 3.712 3.368 3.563 3.629

Mean NIQE values 3.097 3.218 3.199 3.421 3.017 3.054 3.116 3.039
8 BRISQUE ↓ 32.216 25.376 35.929 31.805 25.994 17.691 27.695 26.971

14.709 17.816 17.214 18.581 15.044 19.861 15.163 15.026
13.528 13.018 13.365 22.095 12.482 9.854 13.058 13.762

Mean BRISQUE values 20.151 18.737 22.169 24.160 17.840 15.802 18.639 18.586
9 BLIINDS2 ↓ 11.000 9.000 17.500 26.000 5.500 7.500 12.000 7.500

3.000 15.000 9.000 18.500 12.000 16.000 7.000 8.000
12.000 13.500 12.500 34.500 12.500 13.000 13.000 18.000

Mean BLIINDS2 values 8.667 12.500 13.000 26.333 10.000 12.167 10.667 11.167
10 BIQI ↓ 45.944 31.035 47.024 25.650 39.868 19.761 38.707 41.288

27.115 19.930 30.340 30.652 27.440 26.991 26.901 28.494
26.718 46.322 41.917 36.291 53.668 32.936 33.812 40.487

Mean BIQI values 33.259 32.429 39.760 30.864 40.325 26.563 33.140 36.757
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D-Hazy, Dense-Haze conducted. Although, this field has 
achieved remarkable progress. However, many problems or 
open challenges need to be addressed as follows:

(1) In most of the dehazing methods, a large number of 
parameters are selected empirically or manually. It limits the 
dehazing performance and may suffer from various issues 
of dehazing, such as incomplete haze removal, color distor-
tions or halo artifacts when they are tested on hazy images 
of different haze concentrations. Adaptive selection of these 
parameters can cope up with these issues.

(2) There are very limited metrics available and designed 
especially for dehazing. The researcher in this field used 
many individual metrics for the assessment of their method. 
In the future, a single image quality assessment method is 
required to design that can deal with residual haze, over 
enhancement, artifacts, color distortions, structure damage, 
perceptual quality, etc. instead of using multiple metrics.

(3) After a literature study, we found that there exists no 
single method which can handle different weather condi-
tions such as dense fog, night-time, non-homogeneous, etc. 
Most of the existing methods are capable to remove mild 
fog or homogeneous fog. Therefore, fusion based methods 
and ensemble learning methods may be investigated to meet 
these challenges that will integrate the advantages of restora-
tion based and deep learning-based methods.

(4) Most of the methods focus on the removal of fog from 
a single image. There are limited methods that remove the 
fog of the video with a moving camera. Video fog removal 
(e.g., video surveillance and transportation system) requires 
good recovery results with real-time processing. In this 
direction, hardware implementation-based methods require 
more attention which processes high-resolution video with 
low-cost hardware and power consumption.
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