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Abstract

Images acquired in poor weather conditions (haze, fog, smog, mist, etc.) are often severely degraded. In the atmosphere,
there exists two types of particles: dry particles (dust, smoke, etc.) and wet particles (water droplets, rain, etc.) Due to the
scattering and absorption of these particles, various adverse effects, including reduced visibility and contrast, color distor-
tions, etc. are introduced in the image. These degraded images are not acceptable for many computer vision applications
such as smart transportation, video surveillance, weather forecasting, remote sensing, etc. The computer vision task associ-
ated with the mitigation of this effect is known as image dehazing. A high-quality input image (haze-free) is required to
ensure the accurate working of these applications, supplied by image dehazing methods. The haze effect in the captured
image is dependent on the distance from the observer to the scene. Besides, the scattering of particles adds non-linear and
data-dependent noise to the captured image. Single image dehazing utilizes the physical model of hazy image formation in
which estimation of depth or transmission is an important parameter to obtain a haze-free image. This review article groups
the recent dehazing methods into different categories and elaborates the popular dehazing methods of each category. This
category-wise analysis of different dehazing methods reveals that the deep learning and the restoration-based methods with
priors have attracted the attention of the researchers in recent years in solving two challenging problems of image dehazing:
dense haze and non-homogeneous haze. Also, recently, hardware implementation-based methods are introduced to assist
smart transportation systems. This paper provides in-depth knowledge of this field; progress made to date and compares
performance (both qualitative and quantitative) of the latest works. It covers a detailed description of dehazing methods,
motivation, popular, and challenging datasets used for testing, metrics used for evaluation, and issues/challenges in this field
from a new perspective. This paper will be useful to all types of researchers from novice to highly experienced in this field.
It also suggests research gaps in this field where recent methods are lacking.

1 Introduction

The computer vision is defined as a field of study that deals
in developing techniques to help computers gain high-level
understanding from digital images or videos. It automates
various tasks and extracts useful information from images/
videos with the help of artificial intelligence systems. There
are numerous computer vision applications, including smart
transportation systems, video surveillance, object detec-
tion, weather forecasting, etc. [1] that require high-quality
input images or videos to “see” and analyze the contents.
Unfortunately, poor weather conditions (haze, fog, rain, etc.)
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diminish the visibility and lead to the failure of these appli-
cations. The image captured under these circumstances suf-
fers from various degradations, namely low contrast, faded
colors and most importantly reduced visibility. These degra-
dations occur in the captured image due to the scattering of
atmospheric particles (aerosols, water droplets, molecules,
etc.) suspended in the atmosphere.

The role of image dehazing is to improve the visual qual-
ity of a degraded image and remove the influence of the
weather. Therefore, the image dehazing algorithm acts as
preprocessing tool for many computer vision applications,
as shown in Fig. 1.

Fog, mist, and haze are the atmospheric phenomena that
reduce the visibility of the image. Fog and mist both occur
when the air has wet particles or water droplets. Both the
terms are almost the same and the only difference is how
far we can see. Fog is the term generally referred to when
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Fig.1 An application of image dehazing

visibility is less than 1 km. If we can see more than 1 km
away, it is considered as mist. Haze is a slightly different
phenomenon, in which extremely small, dry particles, for
example, air pollutants, dust, smoke, chemicals, etc. are
suspended in the air. These dry particles are invisible to
the naked eyes but sufficient to degrade the quality of the
image in terms of visibility, contrast, and color. The vis-
ibility is less than 1.25 miles in the presence of haze. These
dry particles are generated through various sources includ-
ing farming, traffic, industry, and wildfires. Figure 2 shows
the example image of fog, mist, and haze and also various
sources of hazy image formation.

The hazy effect in the captured image is expressed by
the atmospheric scattering model (ASM) or the physical

Haze

model of hazy image formation, as shown in Fig. 3. When
incident light is reflected from the object, reflected light is
attenuated due to the distance between observer and scene.
In addition, due to the scattering of particles, airlight is
also introduced into the camera. Therefore, a hazy image is
composed of direct attenuation and airlight. Direct attenu-
ation distorts the color whereas airlight reduces the vis-
ibility. The physical model is given as follows [2]:

I;Zy(x) = J,‘,'aze_fm T.(x) +A (1 = T,(x)) (1
where ¢ € {r, g, b} is the color channel, I;azy is the captured
hazy image, J; free
pheric light, 7', is the transmission medium, and x is a pixel
position. The transmission describes the portion of light,
directly reaching the camera without scattering. The value
of the transmission medium lies in the range of [0, 1]. Fur-
thermore, it is expressed as an exponential function of dis-
tance and depends on two parameters: distance d and scat-
tering coefficient f, as follows:

is the haze-free image, Af is the atmos-

T,(x) = ¢7# 4@ )

can be obtained in the inverse
aze—free

Haze-free image J;
way as follows:

(d)

Fig.2 Images of a fog, b mist, ¢ haze, d Source: air pollutants, e Source: farming, f Source: wildfires
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Single image dehazing (SID) is an ill-posed problem
because we have to estimate two key parameters A;‘ and T,
from IZazy to find hazy-free image JZazg_free. The perfor-
mance of a dehazing method depends on the estimation of
key parameters.

In the past, many dehazing methods came into exist-
ence that utilizes various prior knowledge or assumptions
to compute the depth information. However, the perfor-
mance of these methods depends on the validity of these
priors and may lead to various issues, such as color dis-
tortions, incomplete haze removal, halo artifacts, etc. In
the literature, image enhancement based dehazing meth-
ods were also reported which do not require the estima-
tion of the transmission and its costly refinement process.
Since it does not consider the degradation mechanism
into account while recovering an image. They suffer from
the problem of over/under enhancement, over-saturation,
and loss of information and are also unable to deal with
dense hazy images. To overcome the problem of resto-
ration and enhancement-based methods, many machine
learning and deep learning methods are successfully
implemented to compute an accurate transmission map.
These methods require a vast amount of hazy and corre-
sponding clean images to train the model. However, it is
very difficult to obtain hazy images and their GT image
in the real world. The related work section describes the
recent dehazing methods of each category along with
their pros and cons.

In this review article, we have mainly focused on haze
removal methods from a single image proposed in 2016
and onwards. The major contributions are as follows:

(1) This paper provides an extensive study of various recent
the state-of-the-art dehazing methods. It classifies these
methods into twelve categories: Image enhancement,
Image restoration with prior, Image fusion, Superpixel,
Machine learning, Deep learning, Polarization, DCP
based, Airlight estimation, Hardware implementation,
Non-homogenous and Miscellaneous. All these meth-
ods are investigated on various dehazing parameters,
namely key technique, dataset, issues of dehazing,
evaluation metrics, etc.

(2) It provides a comprehensive study of various datasets
used in image dehazing to date. It also discusses data-
sets of various haze densities from thin haze to very
dense haze including real hazy images and synthetic
hazy images. These datasets are assessed on various
parameters, namely haze concentrations, number of
images, and performance of recent dehazing methods.

(3) This paper also explores different metrics introduced in
recent works for the evaluation of dehazing algorithms
with their merits and demerits.

(4) Furthermore, this paper focuses on the latest technol-
ogy advancement and development in this field from
the perspective of non-homogenous haze removal,
dense haze, hardware architecture, ensemble networks
and deep learning methods.

(5) Finally, it provides research gaps in single image dehaz-
ing where recent the state-of-the-art methods are lacking.

There are few papers available in the field of single image
dehazing, however, they are limited to certain aspects.
For instance, [3] concentrated on discussing various haze
removal methods and quantitative results. Later, Wang
et al. [4] added a description of different evaluation metrics.
Singh et al. [5] explained numerous categories of dehaz-
ing methods with their pros and cons and analyzed methods
based on issues of dehazing. However, it did not provide the
qualitative and quantitative analysis of dehazing methods.
In addition, it did not talk about standard dehazing datasets
available for assessment. In the year 2020, two survey papers
[6, 7] were reported. However, they take into consideration
only a few recent papers from the year 2017 to 2020. This
article considers approximately 150 recent papers in com-
parison to 46 in [7] and 51 in [6]. The comparison with
existing survey/review papers is illustrated in Table 1. In this
table, we can visualize the strength on various parameters
of image dehazing. In addition to the previous research, this
paper explores various untouched haze removal techniques
for handling the most challenging problems of dehazing such
as removal of non-homogeneous haze, superpixels, dense
haze, and real-time applicability (hardware implementation).
This article provides an extensive review of recent and popu-
lar dehazing techniques based on qualitative and quantitative
comparisons, challenges in dehazing, available datasets, and
evaluation metrics. This paper aspires to serve as a guide in
all aspects of image dehazing for the researchers to find a
path for their work.

2 Applications of Image Dehazing

Image dehazing is an important area of research. The output
of dehazing algorithms acts as an input to various vision
applications. Some of the motivations are shown in Fig. 4
and discussed as follows:

2.1 Video Surveillance

A video surveillance system is a key component in the field
of security. The effectiveness and accuracy of the visual
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Table 1 Comparison with existing survey/review papers

Survey/review [4] (2017) [3] (2017) [5] (2019) [6] (2020) [7] (2020) The proposed
paper
(1) Year coverage 2000 to 2015 1997 to 2016 from 2008 to 2017 2008 to 2019 2012 to 2020 from 2015 onward
(2) Motivation No No Yes No No Yes
(3) Classification (1) Image (1) Depth estima- (1) Depth Estima- (1) Depth Estima- (1) Filter (1) Image Enhance-
Enhancement tion tion tion (2) Color correc- ment
(2) Image Fusion ~ (2) Multi-images ~ (2) Wavelet Based (2) Filtering tion (2) Image fusion
(3) Image Restora- (3) Polarizing (3) Enhancement  (3) Fusion (3) Simple learn-  (3) Restoration with
tion filters (4)Filtering (4) Enhancement ing priors
(4) Known depth  (5) Supervised (5) Meta-Heuristic (4) Deep learning  (4) Polarization
(5) single image learning (6) Transform (5) DCP based
(6) Fusion (7) Variational (6) Airlight Estima-
(7) Variational (8) Learning tion
Image (7) Hardware
(8) Meta-heuristic (8) Machine Learn-
ing
(9) Deep learning
(10) Non-homoge-
neous
(11) Miscellaneous
(12) Superpixels
(4) Dehazing No No No Yes Limited Yes
datasets
(5) Evaluation Yes No Yes Yes Limited Yes
metrics
(6) Analysis based No No Yes Yes No Yes
on issues of
dehazing
(7) Qualitative Yes Yes No No Yes Yes
and quantitative
analysis
(8) Analysis based No No No Yes Limited Yes
on standard
datasets
(9) Future direc- Yes No Yes Yes Limited Yes

tion

(@ (®)

e il
© (d ()
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Fig.4 Applications of image dehazing, a video surveillance, b fog related road accidents, ¢ road transportation, d railway transportation, e air

transportation, f underwater image enhancement, g remote sensing

surveillance system depend on the quality of visual input.
However, the poor weather condition affects the quality of
input. The video captured by the camera of a surveillance
system degrades due to scattering and absorption of light
by the atmosphere. For example, video recorded in hazy
weather has limited visibility which could be problematic
for police, investigating a crime. Thus, these systems do
perform poorly in hazy weather conditions. Hence, a robust
surveillance system is required.

@ Springer

2.2 Intelligent Transportation System

The foggy weather conditions affect the driver’s capabilities
and increase the risk of accidents and the travel time signifi-
cantly due to limited visibility. In past years, fog-related road
fatalities have increased significantly. Road crashes, injuries
or deaths on account of poor weather conditions like thick
fog run in thousand every year on highways. The bad news
is that this number is increasing every year [8].
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In addition to roads or highways, fog also affects other
transportation systems like airplanes and railways. Generally,
takeoff and landing of airplanes become a very challenging
task in a hazy environment. Due to which many flights get
delayed or sometimes, they are canceled. Similarly, in the case
of railway transportation, thick foggy conditions are a hazard
to the passengers and crew members that could easily result in
loss of life. The driver may miss the signals due to impaired
visibility. Therefore, we require an intelligent transportation
system that can provide a clear view to the driver in these
transports to save life and property.

2.3 Underwater Image Enhancement

Underwater imaging often suffers poor visibility and color
distortions. The poor visibility is produced by the haze effect
due to the scattering of light by water particles multiple
times. Color distortion is due to the attenuation of light and
makes an image bluish. Therefore, an underwater vision sys-
tem requires an image dehazing algorithm as a preprocessing
so that a human can see the underwater objects.

2.4 Remote Sensing

In remote sensing, images are captured to obtain information
about objects or areas. These images are usually taken from
satellites or aircraft. Due to the high difference of distance
in the camera and the scene, the haze effect is introduced in
the captured scene. Therefore, this application also demands
image dehazing as a preprocessing tool to improve the visual
quality of an image before analysis.

Besides these applications, image dehazing also plays
an important role in other applications, such as astronomy,
medical science, agronomy, border security, archaeology,
environmental studies and many more.

Therefore, it is important for computer vision applications
to improve the visual quality of the image and highlight the
image details. With respect to hardware aspects of camera
sensors, many super-telephoto lenses are designed to incor-
porate scientific filtering and coating to enhance the contrast
of the image. However, these lenses are very expensive and
bulky and not applicable in daily life. Therefore, the res-
toration of hazy images or videos has attracted increasing
interest in the last few years.

3 Issues/Challenges of Image Dehazing

The dehazed image may suffer from various types of issues
like color shift, over enhancement, structure damage or
incomplete haze removal, as shown in Fig. 5.

Fig.5 [9]: Various issues of image dehazing a incomplete haze
removal, b structure damage, ¢ color shift, d over enhancement

3.1 Under/Over Enhancement

Restoration of hazy images often leads to two phenom-
ena: under enhancement and over enhancement, as shown
in Fig. 6. In under enhancement, haze is not completely
removed from the original image. Hence, the visibility
is not improved as desired. In case of over enhancement,
the original information is changed in haze-free regions
and color shift is caused in hazy regions during dehazing
process [9]. This problem is generally observed in dense
hazy regions which are having low contrast. Over dehaz-
ing makes the color much darker and causes saturation of
pixels.

The image dehazing algorithms must keep the informa-
tion of haze-free regions unchanged, meanwhile, capable
enough to improve the visibility in hazy regions without
color distortions.

3.2 Halo Artifact and Noise Amplification

The existing image dehazing method generally used patch-
based method to estimate the transmission to recover the
hazy image. Inaccurate estimation of the transmission
may lead to distortions in the dehazed image, as shown in
Fig. 7. Most of the method is also based on the assumption
that local patches have similar depth. Depth discontinuities
or abrupt jumps in an image will cause halo artifacts. To
remove the problem of halo artifacts various refinement
methods like Guided filtering, contextual regularization,
total variation, etc. are utilized in many works. Still, the
problem exists, halo artifacts are reduced but they are not
completely removed.

Moreover, in presence of dense haze, noises and arti-
facts are not visible in the hazy images. The existing meth-
ods may amplify these noises and artifacts depending upon
the depth and concentration of the haze during dehazing
process [10]. Some of them introduce other distortion like
the blurring effect in the dehazed images.

@ Springer



4804

S.C. Agrawal, A. S. Jalal

3.3 Dense Fog Removal/ Different Foggy Weather
Conditions

In state-of-the-art dehazing methods, till now, there is not
even a single method that can remove the effect of varying
and challenging weather conditions like removal of all types
of haze ranging from thin haze to very thick haze, night-time
haze removal, non-homogenous haze (uneven distribution of
haze), etc. as shown in Fig. 8.

Most of the methods work well in daytime scenes; they
fail in night-time hazy conditions due to inaccurate estima-
tion of the airlight. Generally, an airlight is estimated by the
brightest pixels. This estimator faces two challenges when
it is applied to night-time scenes (1) it is estimated glob-
ally over the entire image, whereas there are multiple local
sources of light and they are non-uniform in nature. (2) It
selects the white pixels which are the brightest pixels in the
hazy image. But, it is not true for night-time scenes that
exhibit strong color lighting [11].

The majority of the methods are able to remove the
mild or thin haze. In presence of dense haze, either they
fail to remove the haze completely or may result in loss of

(a)

information in form of saturation of pixels. In the case of
thick fog, scene reflection becomes very small due to the
small value of the transmission. The reason for small trans-
mission is due to the large scattering coefficient, meanwhile,
the proportion of airlight increases significantly. Therefore,
it is a very challenging task to remove the thick haze con-
sidering minuscule reflection.

3.4 Adaptive Parameter Setting

The performance of the dehazing methods greatly depends
on the selection of the different parameters, namely patch
size, dehazing controlling parameter, Gamma correction,
size of the filter, regularization term, scaling factor, num-
ber of superpixels, etc. For e.g., if the patch size is small,
it may underestimate the transmission, especially for the
regions with bright and white objects and may lead to
over enhancement. By contrast, if the patch size is large,
it may introduce the halo artifacts at depth discontinuities
and also will increase the computation [12]. Therefore,
for a good recovery result, patch size must be selected
adaptively depending upon the pixels. Another parameter

(d)

Fig.6 Hazy and haze-free images related to over/under enhancement problems. a Much darker color by dehazing method [15]. b Under
enhancement problem by method [64]. ¢ Saturation of pixels by method [51]. d Distortion of colors by method [13]

Fig. 7 Various distortion in dehazed image. a Halo artifacts by method [63]. b Blurring effect by method [51]. ¢ Noise amplification by method

[66]

(@) ' ®

) ©

Fig. 8 Examples of challenging weather conditions. a Dense hazy images. b Non-homogenous hazy images. ¢ Night-time hazy images
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that is used by most of the methods is dehazing control-
ling parameter, as shown in Fig. 9.

All these parameters are set manually according to the
experimental setup. They may not fit for different degrees
of haze present in images. These parameters must be set
adaptively to improve the performance because haze den-
sity on a given image varies from image to image and
atmospheric veil.

3.5 Speed of Dehazing

Another drawback with existing dehazing methods is the
computational complexity of the dehazing process. It is still
a very challenging task to dehaze an image/video in real-
time by which various vision applications, such as intel-
ligent transportation systems or video surveillance can be
benefited. The time complexity can be reduced by joint

estimation of airlight and transmission and to avoid the
costly refinement process of the transmission.

4 Related Works

In recent years, significant progress is made in the field of
image dehazing. We present recent and popular dehazing
methods in this section. For convenience, we have divided
these methods into the following categories: (1) image
enhancement based, (2) image restoration with priors (3)
image fusion based (4) non-homogeneous haze (5) hardware
implementation based (6) polarization based (7) traditional
learning based (8) deep learning based (9) superpixel based.
Furthermore, subcategories of each category are identified,
as shown in Fig. 10.

(a) (b)

(©) (d

Fig.9 Restored images with different 6 by method [30]. a Original image, b 6=1.0,¢ 6=0.8,d 6=0.6,e §=0.4

Image Dehazing Methods
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Fig. 10 Different categories of image dehazing methods
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4.1 Image Enhancement based Methods

Image enhancement-based method can be divided in two
sub-categories (1) the methods do not consider the atmos-
pheric scattering model or degradation mechanism to
enhance the visual quality of the hazy images. Therefore,
they do not estimate the transmission and atmospheric light.
(2) image enhancement operations are utilized in estimation
of transmission or airlight. Hence, they may fall in methods
of other categories too, such as restoration or fusion-based.
Both sub-categories use various image enhancement tech-
niques, including histogram equalization [13, 14], Bi-histo-
gram modification [15], weighted histograms[16], Gamma
correction [13, 17-20], multi-scale retinex [21], wavelet
decomposition [22-25], multi-scale gradient domain con-
trast enhancement [17], texture filtering [26], bilateral filter
[26, 27], white balance method [26, 28], median filtering
[28, 29], Linear Transformation [30], morphological con-
structions [31], Discrete cosine transform [14], Guided filter
[32-39], anisotropic diffusion [40, 41], contrast enhance-
ment [42-44], quadtree Decomposition: [30, 45, 46], Con-
textual Regularization: [45, 47-49], weighted L1-norm regu-
larization [50], and total variation [51-53] (Table 2).
Wang et al. [21] proposes a multi-scale Retinex based
algorithm with color restoration to compute the transmis-
sion. The author estimated the atmospheric light by dark
channel image and a decision image according to a thresh-
old. However, dehazed image contains small halos and also
appears dark in the regions of small gradients and bright
areas. Cui et al. [50] proposed a SID method based on the
region segmentation which separates the hazy image into
bright and non-bright regions. This removes the problem
of overestimation of the transmission in non-bright regions
and underestimation of the transmission in bright regions of
the DCP method. Weighted L1-norm regularization is used
for refining the transmission. However, this method suffers
from over-saturation. Moreover, it underestimates the trans-
mission for the object similar to the dense haze and leads
to the over enhancement. Liu et al. [53] proposed a solution
for two challenging problems of existing dehazing methods.
These two challenges are (1) halo artifacts due to insuffi-
ciency of edges in estimated transmission and (2) ampli-
fication of noise and artifacts in presence of dense haze.
This method estimates the initial transmission by boundary
constraint and its refinement is done by non-local total vari-
ation (NLTV) regularization. However, this method fails in
the presence of white objects such as clouds, dense haze,
etc. and as a result, the dehazed image looks darker. Fur-
thermore, to improve the quality of the haze-free image, a
post-processing method is required. Moreover, lower values

@ Springer

of SSIM AND CIEDE2000 indicate that performance of this
method is not satisfactory on synthetic hazy images. Raik-
war et al. [47] estimate a lower bound on the transmission by
considering the difference between the minimum channel of
a hazy and haze-free image. A lower bound is characterized
by a bounding function and a quality control parameter. The
bounding function is estimated by a non-linear model and a
control parameter is used to control the degree of dehazing.
However, this method is unable to increase the contrast of
dense hazy images. Wu et al. [54] proposed a variational
model to remove artifacts due to noise present in the hazy
image. They proposed a transmission-aware non-local regu-
larization that suppresses the noises and provides the fine
details of the dehazed image without amplification of noises.
In addition, to smooth the transmission, semantic-guided
regularization is proposed. This method provides satisfac-
tory results without amplification of noises. However, this
method fails on non-homogeneous hazy images. Further-
more, when objects are in the same plane and look similar,
vanishing lines are falsely estimated and unable to update
the segmentation process. In this case, it wrongly estimates
the transmission, scene radiance and the segmentation map
of a hazy image.

In summary, the image enhancement-based methods don’t
use the physical model of haze formation and also don’t
concentrate on the image quality. They only highlight certain
details of the image while may reduce or remove some infor-
mation from the dehazed image. These methods suffer from
the problem of over-saturation of pixels and over enhance-
ment. In addition, they are not able to remove the dense
haze. However, when image enhancement-based techniques
are combined with a physical model like [22, 30, 45], their
performance is improved a lot.

4.2 Image Fusion Based Methods

Image fusion is an image processing technique that selects
the best regions from multiple images and combines them
into a single high-quality image. A fused image is generated
in a transformed domain such as Gaussian and Laplacian
pyramids, Gradient-domain, Linear, High boost filtering,
Guided filtering, Variation based, etc.(Table 3).

In [52] proposed a multiple prior based method to esti-
mate the global atmospheric light. Three priors: color satu-
ration, brightness and gradient map are combined to judge
a pixel whether it belongs to an atmospheric light or not.
This method computes two coarse transmission maps: pixel-
based transmission (PTM) and block level transmission map
(BTM). A fusion procedure is employed to combine these
two transmissions as follows:
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Laplacian Pyramid is used to compute the transmission
map in which N is the number of decomposition levels in
the Laplacian pyramid. P; and B; denote the decomposition
result of PTM and BTM, respectively. F, is the linear fusion
of two transmissions P; and B;. Furthermore, fused transmis-
sion is refined by a total variation. This method suffers from
various problems-e.g., incomplete haze removal, unable to
highlight the local details of the image and also not being
able to remove dense haze.

The existing deep learning methods are trained on syn-
thetic indoor hazy images. Therefore, their performance is
not satisfactory on outdoor hazy images. Park et al. [55]
proposed a heterogeneous generative adversarial network
(GAN), consisting of a CycleGAN and a conditional GAN
for restoring a haze-free image with the preservation of tex-
ture details. In Phase 1, a cycleGAN is trained on unpaired
outdoor synthetic hazy images. Phase 2 utilizes various net-
works, such as atmospheric light estimation, transmission
map estimation, and a fusion CNN. Finally, these three net-
works are trained through adversarial learning. Fusion CNN
combines the output of Phase 1 and Phase 2 to achieve the
dehazed image.

Zhu et al. [56] proposed a fusion-based algorithm to
solve the image dehazing problem without considering the
degradation mechanism. A set of under-exposed images are
generated using Gamma correction coefficients. A Guided
filter is used to decompose an under-exposed image into
local components and global components. For the local
components, the exposure quality of the image is measured
by applying the average filter to the luminance component.
Global components reflect the structure information of the

image and its weight is calculated using initial global com-
ponents and quadratic function of average luminance. Once
the weights are ready for under-exposed images, they are
fused in a pixel-wise manner. Global components Bi and
global components Di of multiple gammas corrected input
images are fused as shown:

F = ; WPB, +a Z‘ WPD, 5)

where @ > 1 controls the local details in the fused image.
Finally, to improve the quality of the dehazed image in terms
of color quality, saturation adjustment is performed. The
framework of this method is shown in Fig. 11. The overall
performance of this method is good and achieves satisfactory
results with computational efficiency.

Yuan et al. [57] proposed a transmission fusion strategy
for handling normal and bright regions of the hazy image.
They propose soft segmentation based on image matting to
segment the image. Means and variances of local patches
are calculated and binary classification is performed to gen-
erate the trimap. In the next step, image matting segments
the hazy image into normal and bright regions. For normal
regions, the transmission is calculated by DCP while trans-
mission for bright regions is calculated by the atmospheric
veil correction method. Finally, the fuzzy fusion method
fuses these two transmissions obtained by DCP and AVC.
The proposed framework of the method [57] is shown in
Fig. 12. This method is tested on various challenging hazy
images. However, this method has high computation com-
plexity due to the estimation of two transmissions, binary
classification and fuzzy fusion. It also suffers from the prob-
lem of over enhancement and halo artifacts.

Gamma correction / Yy
; Multi-exposure Image Fusion A
/ f
. - .| | The weight F
3 I]’hf‘delg'l > of detail || > WD, |+
A / ayer D, layer W, o]
e i " oA
== e
Guided | | Saturation
Filtering m adjustment
Original image I The Dehazed image H
N The base || weieht 2‘; B ’ =
layer B, of base oM G
layer "
Multi-exposure images ‘."

L

Fig. 11 The framework of the method [56]
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Fig. 12 The framework of the method [57]

Ma et al. [58] proposed a method to enhance the visibil-
ity of sea fog images. In the fusion process, the first image
is obtained by a linear transformation. The second image
is generated by a high-boost filtering algorithm based on a
Guided filter. A simple fusion process is followed to com-
bine these two images. The dehazed image is obtained by
performing white balancing on a fused image. However,
this method produces halo artifacts and is unable to remove
noises in the dehazed image.

Son et al. [59] proposed a near-infrared fusion model to
deal with the color distortions and removal of haze. This
method develops the color and depth regularizations with
the traditional degradation model of haze. The color regu-
larization assigns colors to the haze-free image based on
colors from the colorized near-infrared image and visible
color image. The depth regularization estimates the depth of
the colorized near-infrared image. Finally, both regulariza-
tions transfer the visibility and colors into a dehazed version
of the captured visible image. Shibata et al. [60] focused
on developing an application adaptive importance measure
image fusion method that can be applied to many applica-
tions, including night vision, temperature-perceptible fusion,
depth-perceptible fusion, haze removal, image restoration,
etc. This method is a learning-based framework that extracts
various features (Gabor, intensity, local contrast, gradient)
from the decomposed images and learns the important
area of the image without knowing the application. Zhao
et al. [61] handle two problems of dehazing: misestimation
of transmission and oversaturation. It first identified the
edges called TME which are misestimating the transmis-
sion. Accordingly, a hazy image is divided into two regions:
TME and non-TME regions. Multi-scale fusion is used to
fuse both patch-wise transmission and pixel-wise transmis-
sion. This method greatly enhances the visibility of the hazy
image. However, it has a high computation time. Moreover,
two post-processing methods (Fast Gradient Domain GIF
and exposure enhancement) are utilized on a fused image to
obtain the final haze-free image.

@ Springer
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Agrawal et al. [62] proposed a fusion based method based
on the joint cumulative distribution function (JCDF). This
method dehazed the long shot hazy image without color
distortions in nearby regions and at the same time, it can
enhance the visibility in faraway regions. This method
generates multiple images from different modules, such as
faraway, nearby, CLAHE. Finally, these multiple images are
fused into a single high-quality and artifacts-free image in
the gradient domain.

The method uses the following JCDF equation to generate
multiple images in nearby and faraway modules:

F,(z)=e % (=1-A2) + 1 (6)

where z = x; + x, = xnin + x®mad . deals with the fog in
nearby regions whereas d,,,, deals with the fog in faraway
regions. The parameters d,;, and d,,, are set to 2 and 10,
respectively. 4 is the dehazing parameter and used to gener-
ate the images for the fusion process. It generates 1 image
with 4 =2 in faraway region and 3 images in the nearby
region with A =5, 8,40 to avoid the problem of over-sat-
uration and color distortions. Furthermore, to increase the
contrast, CLAHE is used to generate 1 more image. Finally,
all these images are fused in a single dehazed image in the
gradient domain, as shown in Fig. 13.

Recently, several effective fusion-based techniques were
introduced which combine the multiple images generated
from image enhancement or restoration-based methods.
These methods successfully solve the problem of DCP, edge
preservation, dense haze removal and halo artifacts. How-
ever, the fusion procedure may be complex and the dehazing
speed may be decreased due to the generation of multiple
images from enhancement-based operators.

4.3 Superpixel Based Dehazing

Another category of dehazing method introduced recently is
superpixel based. The superpixels are utilized in dehazing
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Fig. 13 Image generation in each module. a Hazy image, b Image generated in faraway region. c—e Images generated in nearby region. f CLAHE

image, g Dehazed image

methods in two ways. First, they are used to segment the
sky and non-sky regions to remove the problem of color
distortions or color artifacts of DCP in sky regions. Another
use of superpixel segmentation is to replace the patch-based
operations with a superpixel. It offers two advantages: good
dehazing speed and reduction of the halo artifacts (Table 4).

The two problems are associated with superpixels based
approaches: over enhancement and time complexity. In
superpixel based approaches, the number of superpixels is
decided manually. The higher number of superpixels may
introduce the problem of darkening of color while a smaller
number may not sufficient to remove the haze. Another prob-
lem is the selection of a superpixel segmentation algorithm.
Some algorithms have high computational complexity.
Therefore, it is advised to select an algorithm that extracts
the superpixels in real-time.

4.4 Prior Based Methods

The restoration-based method uses the physical model or
haze formation. They compute the transmission map or
depth map based on priors/ assumptions, such as dark chan-
nel prior [63], color attenuation prior [64], average satura-
tion prior [65], non-local prior [66], gradient profile prior
[27], color ellipsoid prior [67], etc.

Berman et al. [66] proposed a non-local prior as opposed
to priors based on local patches. According to this prior, a
haze-free image can be expressed by a few hundred colors
from the RGB cluster and these pixels of RGB clusters are
spread over the entire image. Each cluster in RGB space can
be represented using lines termed haze-lines. These haze
lines are used to estimate the atmospheric light, distance
map and haze-free image. The failure case of this method is
the non-uniform lighting which may lead to over enhance-
ment and artifacts (Table 5).

Singh et al. [40] handles the problem of preserving the
texture details in the presence of complex background and
large haze gradient. They proposed a new prior called gra-
dient profile prior to evaluate the depth map. The transmis-
sion map is refined by the anisotropic diffusion and iterative

learning base image filter. The image gradient gives the
direction and magnitude and is calculated as follows:

AI:(aI 61)

3’ n @)

al . L . .

where — represents partial derivatives of an image in m

. A om ol . . . . . ol

direction while - shows partial derivatives for n direction. ™

is calculated as differences at one pixel, before it and after it
and calculated as follows:

ol _ Im+1,n)—I(m—1,n)
om 2

. ol - .
and similarly, E written as:
n

®

ol _Im,n+1)—I(mn—-1)
om 2

®

The maximum gradient values in I are considered as global
atmospheric light and is estimated as follows:

A= I(mglx(lf;,) (10)

and transmission map is estimated as follows:

17 (n)
tj)=1-pAne Qg)<Ac T ) (11)
l

where An € Q()) (ACI'EZ% > is the gradient profile prior of
1

the normalized image. It overcomes the sky region problem of
the DCP method as it is computed toward 1 and t(j) will be
toward 0. Some haze f is added to the image to look more
natural.

Most of the prior based methods follow a physical model
of haze formation which assumes single scattering under the
homogeneous haze. However, in a realistic environment, haze
behavior is non-homogeneous and there are multiple sources
of scattering [68]. Besides, the dehazing results depend on
the validity of priors. If assumptions or priors do not hold, it
may result in various issues, such as incomplete haze removal,
color distortions or artifacts due to the wrong estimation of the
transmission.
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4.5 Polarization Based Dehazing

The polarization-based methods utilized the polarized
characteristic of the light. Therefore, it restores the depth
information of the hazy image using multiple images with
different degrees of polarization, generally represented as
I and Iy,. Some methods based on this category are listed
in Table 6.

Polarization based dehazing methods have a great advan-
tage in terms of high efficiency and low computational com-
plexity. These methods are effective in all kinds of turbid
media, including haze, fog, water, etc. They are also capa-
ble to restore dense hazy images with detailed information.
However, it requires a precise selection of image regions
such as the sky region to estimate the key parameters which
are not applicable in the real world. Also, a photon noise, a
well-known quantum—mechanical effect is ignored by most
of the existing polarization-based methods, resulting in
amplification of noise in the dehazed image.

4.6 DCP Based Dehazing

Dark channel prior (DCP) is very simple and popular prior
for haze removal. This prior is based on the observation of
the haze-free images that at least one-color channel is signif-
icantly dark i.e. minimum color channel in a haze-free image
is very close to O except the sky regions. This prior was
introduced in the year 2010. Since 2010, a lot of research
work is going on to improve the performance of DCP. In this
section, we discuss recent methods based on DCP along with
which problem of DCP they have solved (Table 7).

Atmospheric particles degrade the quality of the image in
terms of blurring, distortion, color attenuation and cause low
visibility. The method [69] proposed an improved version of
DCP to handle the artifacts in the original DCP method. This
method defines a as a square window of size 1 and calculates
the dark channel as follows:

Idark
x=11/2]) ... x+[1/2]y—11/2]...y+[1/2])

— dark
= max ("‘(1 D, (L l)’I(x—[l/ZJ4..x+[l/2J,y—U/2J.,..y+LI/ZJ))

objects, it is unable to increase the contrast for the objects
located at a far distance also slightly blurs the details.

In summary, many researchers addressed the problems
of DCP and according presented their solution. For exam-
ple, the method [31] proposed an alternative method for fast
computation of the transmission map using morphological
reconstruction. Since the performance of DCP is not good
in the sky regions, the method [46] proposed a solution
using quadtree decomposition and a region-wise transmis-
sion map. The method [70] removes the problem of color
distortions for bright white objects using superpixels. The
method [71] removes the problem of halo artifacts of DCP
using energy minimization.

4.7 Airlight Based Methods

The existing dehazing methods focus on estimating the
transmission only and ignore the contribution of airlight in
the dehazing process. These methods produce over smoothed
image without fine details. Two factors: wrong estimation
of airlight and ignorance of multiple scattering contribute
toward this problem. Besides, inaccurate airlight is also
responsible for color distortions in the dehazed image.
Therefore, recently, some works related to the estimation of
airlight are reported in the literature (Table 8).

Therefore, the estimation of the airlight is as important as
the estimation of the transmission. Inaccurate estimation of
the atmospheric light may cause a haze-free image to look
unrealistic and color distortions in the dehazed image.

4.8 Hardware Implementation Based Methods

In recent years, significant progress is made toward the
development of real-time dehazing applications. Real-time
dehazing is highly demanded in smart transportation sys-
tems and advanced driver assistance systems (ADAS). These
applications demand a higher frame rate, low-cost hardware
and power consumption. To date, the methods which fulfill

12)

where o is a square window of size 1 and calculated as
follows:

I“(z)) (13)

a = ones(l,]) * min < min
z€Q(x,y) \ ce(R,G,B)

This method is managed to remove the artifact but it is not
comparable to the DCP method in quantitative evaluation.
Chen et al. [51] proposed a DCP based method for sup-

pressing artifacts and noises using gradient residual mini-
mization. However, due to ambiguity between artifacts and

these requirements are very rare. Image dehazing consists
of many steps: estimation of transmission, airlight, refine-
ment of the transmission, recovery of haze-free image and an
optional step post-processing operation on a haze-free image
which leads to computational complexity. Many hardware
such as Cortex A8 processor, field-programmable gate array
(FPGA), TSMC 0.13-pm, TSMC 0.18-pm, DSP Proces-
sor, Graphics Processing Unit (GPU), application-specific
integrated circuit (ASIC), etc. Therefore, dehazing method
requires hardware implementation for resource-constrained
embedded systems to meet the real-time challenge. This
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Table 8 Comparison of existing airlight based methods

Artifacts Dense

Over

Speed

Performance/characteristics

Key methodology

Ref. (Year)

fog

enhance-
ment

removal

Yes

Yes

Average No

Remove the problems (missing fine details and over smoothed

[166] (2019) They proposed two priors, namely the depth edge-aware prior

image) of existing methods

(DEAP) and the airlight impact regularity prior (AIRP)
[167] (2019) Proposed an atmospheric illumination prior based on a deep CNN  Three components of white hazy existence may result in unbalance Average No

Yes

No

in presence of worse weather conditions

model

Yes

No

Average No

[168] (2020) Proposed a method adaptable to different haze concentrations and ~ This method is applicable to complex and varying illumination

conditions

lighting conditions using local-global illumination adjustment

Yes

No

This method suggests patches of multiple sizes in order to generate Average Yes

Proposed a fusion based technique to recover haze-free images

[11] (2020)

several images for the fusion process

under night-time hazy conditions using local airlight estimation

No Yes

No

Good

This method first categorizes the image as cast or non-cast one on

[169] (2020) Proposed a method to remove color cast from sandstorms images.

the basis of the spread of hue in a hazy image

A color balancing algorithm and cast-adaptive refinement of

airlight are proposed

Yes

No

Average Yes

[109] (2020) Approximate the airlight in local patches of a hazy image in YC,C, The nearest-neighbor regularization automatically increases the

patch size for the sky regions to get the suitable intensity values

color space to preserve the local texture of the image

section discusses the state-of-the-art methods in aspects of
hardware architecture (Table 9).

Shiau et al. [72] proposed an extremum approximate
method to estimate the atmospheric light that uses a 3*3
minimum filter to obtain the dark channel and contour
preserving estimation to calculate the transmission. This
method is implemented on 11 stage pipeline architecture for
real-time applications. The architecture is divided into four
modules: register bank, atmospheric light estimation, trans-
mission estimation and scene recovery, as shown in Fig. 14.
It can process one pixel per clock cycle. It can achieve 200
MHZ with 12,816 Gate counts by TSMC 0.13-um technol-
ogy. The power consumption is 11.9 mW.

The register bank modules provided 9-pixel values of the
current 3*3 window as an input to the atmospheric light
estimation module. Line buffers are used to store the pixel
values of 2 rows of an input hazy image. Because of the
independent nature of ALE and TE, clock gating help to
switch between them for power saving.

4.9 Supervised Learning/Machine Learning Based
Methods

Despite numerous methods proposed in the literature, they
are restricted to only hand-crafted features. However, effec-
tive and reliable restoration of a hazy image is still an open
challenge. The accuracy of the restoration-based methods
depends on the validity of the prior. In a failure of prior, they
may cause various issues, such as residual haze or an unreal-
istic hazy image. Therefore, the effort had been made toward
developing machine learning methods for reliable estimation
of the transmission for restoring a haze-free image. How-
ever, these techniques require a vast amount of data of hazy
and their ground truth image, which is not available. For
training the model, a lot of synthetic data using Eq. 1 is
generated which limits the performance when they are tested
on natural or realistic hazy images. For ease of understand-
ing, machine learning methods are further categorized as
traditional or simple learning and deep learning. This sec-
tion focuses on simple learning techniques. These techniques
used linear and non-linear regression, support vector regres-
sion, linear model, radial basis function, conditional random
field, etc. (Table 10).

4.10 Deep Learning Based Methods

Recently deep learning based had attracted the researcher
and successfully implemented in dehazing. These techniques
not only remove the haze from an image but also offer a
fast and quality dehazed image. Two types of methods exist
in the literature for deep learning, one which utilize physi-
cal model [73-75], and another is without physical model
[76-80]. Furthermore, some techniques [73-75, 77, 79]
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Fig. 14 General framework of Hardware based implementation [72]

require mapping of hazy and their corresponding GT image
for training the model while other techniques do not need
hazy images and corresponding haze-free images for train-
ing [76, 80, 81]. Several deep learning base techniques are
reported, including multi-scale convolutional neural net-
work (MSCNN) [73], Dehaze Net [74], All-in-One Dehaz-
ing Network (AOD-Net) [75], Cycle-Dehaze [76], Gated
Fusion Network [77], Generic Model-Agnostic (GMAN)
[78], back projected pyramid network [79], Double DIP
[80] (Table 11).

In [82], proposed a variational and deep CNN based
dehazing method for estimating transmission, airlight and
dehazed image simultaneously. The deep CNN is employed
to teach haze-relevant priors (fidelity terms and prior terms).
Furthermore, an iterative optimization method based on gra-
dient descent is utilized to solve the variational model.

The method [83] proposed a GAN based method that
jointly learns the transmission and haze-free image using
loss functions (perceptual loss and Euclidean distance). In
the first step, the transmission is estimated by a hazy image
and it is combined with high dimension features. Afterward,
both features and transmission are fed to the Guided dehaz-
ing module to recover a haze-free image. This approach is
shown in Fig. 15.

The traditional methods used hand-crafted features such
as contrast maximization, dark channel, etc. The method
[84] used an encoder-decoder based structure called gated
context aggregation network (GCANet) to directly recover a
haze-free image. This architecture utilized smoothed dilated
convolution to avoid the artifact. Moreover, a subnetwork is
proposed to fuse the features at different levels.

Zhang et al. [85] presented a multi-scale dehazing net-
work called the perceptual pyramid deep network. This
encoder and decoder-based method directly learn the map-
ping between a hazy and a clear image without estimating
the transmission map. An encoder is constructed through
the dense block and residual block while a decoder consists
of a dense residual block with a pyramid pooling module

®—» Transmission 7 ' {
I Estimation 1
PR, Cwi |
Scene Recovery
1 A° with Saturation Ly
® ~ Correction
Stazed StegeS | Stage6 ! Stage7! Stage$ ! Staged ! Stagel0 {Slagcll

to retain contextual information of the scene, as shown in
Fig. 16. The network is optimized by mean squared error
and perceptual losses.

Qin et al. [86] proposed FFA-net (feature fusion attention
network) to obtain a haze-free image. This method consists
of three modules: feature attention module (which combines
channel attention and pixel attention and focuses on thick
haze removal), local residual learning (deal with thin haze)
and feature fusion attention (adaptively learns the weights
from the feature attention module. As shown in Fig. 17, a
hazy image is provided input to a shallow feature extraction
module. After that, it is fed into an N block structure with
skip connection and output is fused into a feature fusion
module. Finally, global residual learning is used to restore
a haze-free image.

The prior based methods estimate the transmission on the
basis of haze-relevant priors. As a result, dehazed image may
suffer from darkened or brightened artifacts.

Recently, end to end CNN based deep learning methods
had shown great potential in image dehazing. However,
these methods fail to handle non-homogenous haze. In
addition, the existing popular multi-scale approaches are
utilized to solve various issues of dehazing, namely color
distortions, artifacts and some of them also can handle dense
haze, but they are not computationally and memory efficient.
Deep learning methods produce a visually pleasing result
for most hazy images. However, their performance relies
heavily on several training samples and the quality of these
sample images.

4.11 Miscellaneous Category

In this section, we present the miscellaneous category of
dehazing methods. This category includes semi-supervised,
unsupervised and ensemble network. In semi-supervised
learning, both approaches supervised and unsupervised
are utilized in deep CNN. For example, in [87] supervised
learning is performed using supervised loss (mean squared,

@ Springer
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Fig. 15 A framework of the Transmission Map Estimation
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Fig. 16 Encoder-decoder structure framework of image dehazing [85]
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Fig. 17 Feature fusion attention network [86]

adversarial and perceptual loss) of clean image and hazy
image for synthetic images and unsupervised learning is
exploited using DCP and gradient prior on real images.
Unsupervised learning does not require the hazy and
haze-free image pairs for training the deep neural net-
work. These methods avoid the need for a large-scale
synthetic dataset required for training the model. Recent

Channel Pixel
Attention Attention
Block
Structure Conv Layer
‘Group Element-wise
Structure Sum

learning-based methods utilized a deep learning model
to establish the relationship between hazy and clear
images. However, it is difficult to collect a vast amount
of hazy and clear images for the training. Therefore, these
models are trained on synthetic images, generated using
indoor images and corresponding depth images. The per-
formance of these methods is degraded on outdoor hazy
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images. Some research works use unsupervised learning
which does not require hazy images and corresponding
GT images during the training phase [88]. It uses only
a single captured hazy image to learn and inference the
haze-free image.

Another interesting category of image dehazing
method is the ensemble, where multiple deep CNN are
exploited. For example, in method [89], multiple neural
networks were utilized to estimate the transmission to
solve the problem of overfitting. Yu et al. [90] proposed
three ensemble models: EDN-AT, EDN-EDU and EDN-
3J. One of them, EDN-EDU is an ensemble (Encoder-
decode and U-net) of two sequential hierarchical different
dehazing networks. The ensemble networks can remove
the non-homogeneous haze (Table 12).

The atmospheric model assumes the global airlight and
scattering coefficient. Therefore, it introduces unrealis-
tic color distortions in dehazed images. The method [91]
proposed a color constrained dehazing model to produce
a realistic haze-free image. This method solves the dehaz-
ing problem as an optimization problem where cost func-
tion considers color, local smoothness of transmission
and airlight. Moreover, this method can be developed as
a semi-supervised dehazing model. It is modeled as three
networks by training on synthetic datasets for estimat-
ing airlight, transmission and haze-free image. The pro-
posed loss function considers loss in the reconstruction
of the hazy image, reconstruction loss of haze-free image,
smoothing loss of airlight and transmission map. Golts
et al. [92] proposed a deep energy method that offers an
unsupervised energy function that replaces the super-
vised loss. This deep neural network performs training
on real world input without the requirement of manually
annotated labels. This method is used in three different
tasks: Single image dehazing, image matting and seeded
segmentation. Experiments are performed on RESIDE
dataset.

Li et al. [93] proposed an unsupervised and untrained
neural network for image dehazing, called as you only
look yourself (YOLY). This method utilized three subnet-
works to decompose the hazy image into three latent lay-
ers, i.e., haze-free layer, transmission layer and airlight.

Figure 18 shows the input hazy image x is decom-
posed into three layers using three joint subnetworks.
This approach feed x simultaneously into a haze-free esti-
mation network (J-net), a transmission network (T-net)
and airlight network (A-net). After that, a hazy image is
reconstructed through an atmospheric scattering model.
In this way, it is learned in an unsupervised manner, and
networks are optimized by the loss function. For the J-net
network, a loss function considers the minimization of
loss by taking the difference of brightness and saturation.

@ Springer

4.12 Non-Homogeneous Haze

Although deep learning-based methods had been success-
fully implemented in image dehazing, one of the most
challenging problems is to remove the non-homogeneous
haze. Most of the method works effectively in presence of
homogeneous haze. However, in a real scenario, haze is not
homogeneous i.e., not evenly distributed across the image.
A dehazing method is required to enhance the visibility
without color distortions under the non-uniform airlight
(Table 13).

The traditional methods either directly recovering haze-
free image (J) with image enhancement or fusion based
methods or restoration-based method which estimate trans-
mission map and airlight, fail in case of non-homogenous
haze where there is an uneven distribution of haze in the
image, i.e., some part of the image is covered with denser
haze and other parts with the thin haze. The method [94]
takes advantage of both methods to estimate a weight map
w. w combines the result of directly estimated J by a physical
model. This architecture uses one encoder and four decod-
ers to estimate dehazing parameters J, A, t and w, as shown
in Fig. 19. Channel attention is added to generate unique
feature maps for these decoders. Moreover, dilation incep-
tion is proposed to fill the missing information by non-local
features.

Wu et al. [95] proposed a knowledge transfer dehaz-
ing network (KTTD) which consists of two networks, i.e.,
teacher network and dehazing network, as shown in Fig. 20.
The teacher network learns the knowledge about clear image
and transfers this knowledge to the dehazing network. Fur-
thermore, a feature attention module comprises channel
attention and pixel attention is employed to extract impor-
tant details of the image. Finally, an enhancing module is
developed to refine the texture details.

5 Datasets Used for Image Dehazing

At the beginning of this field, there were very limited data-
sets available and also the size of these datasets was very
small. The researcher used only a few images for validating
the performance of their proposed haze removal algorithm.
They download the hazy images from the Internet for the
dehazing task. The drawback of this approach is that these
images do not contain the ground truth images. The lack
of ground truth images manifests a great challenge for the
researchers in evaluating their methods qualitatively and
quantitatively. Therefore, various blind dehazing metrics
were introduced but these metrics were not accepted by the
global community to conclude due to a lack of haze-free
images.
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Fig. 18 General framework of unsupervised image dehazing [93]

Now a day, two types of datasets are used in this field:
a natural hazy image without reference image known as a
real image and a synthetic hazy image along with the depth
image or ground truth image. The assessment methods are
also different for both types of hazy images, which will be
discussed in the next section. We discuss all the datasets
used in this field based on various parameters, namely the
process of hazy image generation, number of images, types
of hazy images, etc. The performance of different dehazing
methods on these datasets is also explained in the experi-
ment and results section.

5.1 Frida Dataset [96]

The dataset foggy road image database consists of 90 syn-
thetic images of 18 urban road scenes. Frida2 comprises 330
synthetic images of 66 diverse road scenes. Each fog-free
image contains 4 foggy images and a depth map, as shown in
Fig. 21. The dataset considers four types of fog: uniform fog,
heterogeneous fog, cloudy fog, and cloudy heterogeneous
fog. Uniform fog is synthesized according to the physical
model and Perlin’s noise between 0 and 1 is added to simu-
late heterogeneous fog. This dataset is helpful to improve the
performance of a camera-based driver assistance systems
whose objective is to provide a clearer view of the road in
the presence of fog to minimize accidents.

5.2 Fattal’s Dataset [97]
This is the most popular dataset available to the research

community for the assessment of dehazing capability. This
dataset provided 12 synthetic hazy images along with 31
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realistic hazy images. This dataset contains various bench-
marks hazy images, consisting of several challenges: night-
time haze, heavily dense haze, white objects, depth discon-
tinuities, different illumination conditions, sky regions, etc.
Some sample images from this dataset are shown in Fig. 22a.

5.3 Waterloo IVC[98]

The dataset consists of 25 realistic hazy images of diverse
scenes in an outdoor and indoor environment. There are 22
outdoor real-world hazy images, captured in different haze
concentrations while 3 indoor images are simulated using
physical mode. This dataset is widely used in single image
dehazing to evaluate performance. Some sample images
from this dataset are shown in Fig. 22b.

5.4 500 Foggy Images [99]

The dataset consists of 500 natural foggy images, used in
many research papers for evaluation of their method. These
images comprise different sizes, different fog densities rang-
ing from light fog to dense fog, and diverse image contents.
Some sample images from this dataset are shown in Fig. 22c.

5.5 D-Hazy[100]

This dataset contains 1400+ pairs of synthetic hazy and
haze-free images of indoor scenes. This dataset is gener-
ated using Middlebury and NYU depth datasets, contain-
ing their corresponding depth maps. For each image, the
transmission map is computed based on atmospheric light
and the scattering coefficient. Atmospheric light is assumed
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Table 13 Comparison of Non-homogeneous haze removal

Artifacts Dense

Over

Speed

Performance/characteristics

Key methodology

Ref. (Year)

fog

enhance-
ment

removal

Yes

No

Average Yes

EDN-AT and EDN-EDU models perform better in terms of fidel-

Proposed an ensemble method to solve the problem of non-

[90] (2020)

ity and perceptual quality

homogenous haze. This method utilized three models: EDN-3 J,

EDN-AT and EDN-EDU

Yes

No

Average No

To further improve the result, it requires post-processing

The proposed method takes the advantage of both direct dehaz-

[94] (2020)

ing and restoration-based method to remove non-homogeneous

haze. A spatially varying weight map (w) is used to combine the

results of both methods

Yes

No

Average Yes

This method is able to restore non- homogeneous dense hazy

Proposed a knowledge transfer dehazing network (KTTD) which
consists of two networks, i.e., teacher network and dehazing

network

[95] (2020)

images. However, it is unable to restore the original colors of the

image

No Yes

No

Good

The number of levels and patches at each level are decided manu-

[183] (2020) Proposed a fast-deep multi-patch hierarchical network having a

ally

different number of patches at each level
[184] (2021) Proposed a skyGAN method for removal of haze from aerial

No Yes

No

Poor

The method is applicable to aerial images of different haze densi-

ties under non-homogeneous environment

images by combining HSI guidance and multi-cue color

to be pure white [101] and the scattering coefficient is set
by default as 1. Some sample images from this dataset are
shown in Fig. 23a.

5.6 Semantic Understanding of Foggy Scenes [102]

Sakaridis et al. [102] presented two distinct datasets: foggy
cityscapes and foggy driving. The foggy cityscapes dataset
was derived from the cityscape dataset and contains outdoor
synthetic hazy images with different scattering coefficients.
It preserves the semantic annotation of the original images.
Foggy driving was comprised of 101 real-world foggy
road scenes with annotation and a maximum resolution of
960*1280 pixels, as shown in Fig. 23b.

5.7 Haze RD Dataset[103]

This dataset contains 15 outdoor scenes with realistic hazy
conditions. Each hazy scene is simulated with five different
weather conditions, ranging from thin haze to dense haze
and visible range from 50 to 1000 m, as shown in Fig. 24.
These images are of high resolutions and justify the scatter-
ing theory of the physical model. A depth map of each hazy
scene is estimated by fusing structure from motion and lidar.

5.8 |-Haze Dataset [104]

The dataset contains 35 indoor image pairs of hazy and cor-
responding haze-free images. The real haze appearance is
produced by a professional haze machine and captured in a
controlled environment under the same illumination for both
hazy and haze-free images. Some sample images along with
their GT images from this dataset are shown in Fig. 25a.

5.9 0-Haze[105]

This dataset is an outdoor scene dataset comprised pairs of
real hazy and corresponding haze-free images. O-haze con-
tains 45 different outdoor scenes in which real haze is pro-
duced by a professional haze machine that simulates a hazy
environment. These scenes were captured on cloudy days,
morning, sunset or when wind speed was below 3 km/h.
Some sample images along with GT images from this data-
set are shown in Fig. 25b.

5.10 Dense-Haze[106]

Ancuti et al. [106] proposed a Dense-haze dataset containing
real-world hazy images, characterized by dense and homog-
enous haze. It consists of 33 pairs of real hazy and their
corresponding haze-free images. Some sample images along
with GT images from this dataset are shown in Fig. 25c.

@ Springer



4828

S.C. Agrawal, A. S. Jalal

,!%,pm l Decoders
rans
/ Trans 2 Bottlenecks A-Lecodkr, 'f
¥ A
r-Decodkr .
y B t
Lot

© g _Input 1-w,
vﬁip - Lecodkr il ==

i v = ,‘ & b £ v ‘, W A

i 4
L JIns s

Hazy Image ‘ e o rlnalf_

Input

Decoder Structure

Batch Norm.( Dilated sg [ Ave. ((Linear @@ Lincar
+ReLU | Conv. Pool. [J/+ReLU [[/+Sigm.

Dense  Transition /" Residual / 4
Block | Block || Block N Concat- DL SE| Refine.

Fig. 19 U-net structure for non-homogeneous haze removal [94]

Fig.20 The dual network

. ./ Teacher network
(knowledge transfer dehazing

network) for non-homogeneous
haze removal [95]

Clear image

+ Dehazing network

Hazy image

Lgn 48

5.11 RESIDE[107]

This is the recent and large-scale dataset of hazy images
containing both synthetic and realistic hazy images, called
realistic single image dehazing (RESIDE). This dataset is
available in RESIDE standard and RESIDE-f. The standard
RESIDE contains three subsets: indoor training test (ITS),
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synthetic objective testing set (SOTS), and hybrid subjective
testing set (HSTS). The ITS contains 13,990 synthetic hazy
images generated using 1399 haze-free images from NYU2
and Middlebury stereo indoor datasets. For each haze-free
image, 10 synthetic hazy images are generated. Atmos-
pheric light is taken uniformly randomly in between [0.7,
1.0] and the scattering coefficient is also randomly uniform
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Fig.21 Images a without fog, b with uniform fog, ¢ with inhomogeneous fog, d with fog and clouds, e with clouds and inhomogeneous, f Depth
map
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Fig.22 Sample images of datasets a [97], b [98], ¢ [99]

(b

Fig. 23 Haze images from datasets, a [100], b varying visibility scenes from foggy Cityscapes [55]

(2) (b) © (d)

Fig.24 HazeRD samples from left to right, a Haze-free image, b depth map, simulated hazy images with the visual range of ¢ 50 m, d 100 m, e
200 m, and f 500 m, respectively
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Fig.25 Sample hazy images along with GT images from a [104], b [105], ¢ [106]

~
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in between [0.6, 1.8]. Testing sets are designed for evalu-
ation purposes. The SOTS contains 500 different images
with white scenes and dense haze synthesized from NYU2
which are not used in the training set. HSTS selects 10 syn-
thetic outdoor hazy images, together with 10 realistic hazy
images. Besides, RESIDE-f provides two more subsets: out-
door training set (OTS) and real-world task-driven testing set
(RTTS). The OTS contains 72,135 hazy images and RTTS
contains 4322 images.

This dataset provided a new dimension in the single
image dehazing for the evaluation of various dehazing meth-
ods on a large-scale dataset in terms of full reference metric,
no-reference metric, and human subjective rating in visual
analysis. The sample images from each part of the RESIDE
datasets are shown in Fig. 26.

5.12 NH-Haze[108]

In the previous datasets, haze is characterized as homoge-
neous over the entire image. Since, haze is not distributed
uniformly across the scene in reality, Ancuti et al. [108]
proposed a non-homogenous realistic dataset. This dataset
contains 55 real outdoor hazy images along with their cor-
responding haze-free images, generated by a professional
haze machine by simulating the real conditions, as shown
in Fig. 27.

Table 14 illustrates the different datasets used in the state-
of-the-art methods. Two types of datasets are available for
evaluation: real hazy images and synthetic hazy images. For
real images, no GT image or depth map is available. Many
works are reported on these datasets. After analysis of the

R TN N |
m& SO ST R

o e eT———

Fig.26 Sample images from different category of RESIDE dataset [107] a ITS, b SOTS, ¢ HSTS, d OTS, e RTTS

Fig. 27 Non-homogenous hazy
image and GT image from
[108], a hazy images, b GT
images

Table 14 Standard datasets
description

Dataset (Reference, year) Synthetic Real

Indoor Outdoor Outdoor Annotated
(1) Frida ([96], 2012) - 420 - -
(2) Fattal ([97], 2014) 4 8 31 -
(3) Waterloo IVC ([98], 2015) 3 - 22 -
(4) 500 Foggy images ([99], 2015) - - 500 -
(6) D-Hazy ([100], 2016) 1449 - - -
(5) Foggy Cityscapes ([102], 2017) - 25,000 101 101
(7) HazeRD ([103], 2017) - 14 - -
(8) I-HAZE ([104], 2018) 35 - - -
(9) O-HAZE ([105], 2018) - 45 - -
(10) Dense-Haze ([106], 2019) - 33 - -
(11) RESIDE ([107], 2019) 14,490 72,135 9129 4322
(12) NH-Haze ([108], 2020) - 55 - -
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dataset used by the recent methods, we found that Fattal’s
dataset [97] and RESIDE [107] are the first choices for real
and synthetic images, respectively.

6 Evaluation Metrics

There are several evaluation metrics used for testing the
capability of the dehazing algorithms (DHA). At present,
the images used in assessment can be divided into two cat-
egories: when ground truth image is available and when
ground truth image is not available. Therefore, two catego-
ries of quantitative metrics depending upon the availability
of images are introduced: full reference metric and no-refer-
ence metric, as shown in Fig. 28. Since it is difficult to obtain
a haze-free image of the same scene. Therefore, no-reference
metrics are often used for the assessment of DHA.

During dehazing, various issues may remain unresolved,
including residual haze, structure damage, color distortions,
over enhancement, halo artifacts, noise amplification, blur-
ring effects, edge preservation, etc. To measure these dis-
tortions, many dehazing quality assessment methods were
introduced in the literature. In this section, we will explore
all these metrics.

6.1 No-Reference Metrics

A good DHA must ensure the following qualities in the
dehazed image: improved visibility, removal of artifacts, over
enhancement, contrast enhancement, structure preservation,
and edge preservations. By considering all these qualities,

Using Synthetic Hazy Image
Depth

Using Real Hazy Image

Haze Synthesizing

Synthetic
Hazy

FR DHA Evaluation

NR DHA Evaluation

Fig. 28 Assessment criteria of real and synthetic hazy images [9]

many dehazing metrics were introduced. Unfortunately, there
is no single DHA that can test all the dehazing capabilities.
In this section, we discuss some well-known and dehazing
metrics introduced in recent years.

6.1.1 Blind Contrast Enhancement Assessment [110]

The contrast of the image under adverse weather conditions is
reduced significantly due to the scattering of the particles. This
method is widely accepted in many dehazing works where the
reference image is not available. This method is based on the
assessment of contrast in terms of visible edges before and
after restoration. It uses three descriptors: rate of new visible
edges (e), the gain of visibility level (r), and saturated pixel
ration (o). The value of the e metric specifies the ability of the
dehazing method in terms of new visible edges in the restored
image that are not seen in the original hazy image. It is calcu-
lated as follows:
Ny = 1y,
e=— (14)

ny

where n,, and n,, represent the cardinality of visible edges
in hazy and haze-free images, respectively.

The second metric r is the ratio of the visibility level of
objects in the restored image and the visibility level of objects
in a hazy image. This metric considers visible and invisible
edges both in the hazy image as follows:

(L log r:
F=e ("”f PiEZth * > (15)

where y, represents the set of visible edges in a haze-free
image and r; is the gradient of p; and the corresponding pixels
in a hazy image.

The third metric is the saturated pixel ratio. This metric
talks about pixels which become saturated (black or white)
after applying the dehazing process.

&

° = dim, xdim, (16)

where n, is the number of saturated pixels and dim, and
dim, represent the width and height of the image, respectively.

A high value of e and r indicates good quality of a
dehazed image in terms of edges preservation and contrast
enhancement while a small value of ¢ is an indication that a
dehazed image has fewer saturated pixels or color distortions
than a hazy image.

6.1.2 Non-Reference Image Quality Assessment based
Blockiness and Luminance Change (BALC) [111]

This metric is designed to measure the two distortions in an
image: blocking artifacts and improper luminance change.
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It is a no-reference metric and obtains the quality score of
a dehazed image based on these distortions. These distor-
tions in the dehazed image are estimated based on gradient.
Usually, halo artifacts appear in the image at depth discon-
tinuities. This method divides the image into 8*8 non-over-
lapping blocks. The blockiness of a block is measured by
taking the average of discontinuities along the four bounda-
ries of the block. For luminance change or blurring effect, it
calculates the average of gradients inside the block. Finally,
two measures are combined into a single metric as follows:
BALC = By, * L;f’1 (17)

where B, and L, denote artifact and blurring effect of
the haze-free image. 4 > 0 is a parameter, used to adjust the
importance of these two distortions.

A small value of BALC indicates the good quality of the
haze-free image in terms of artifacts and blurring effects.

6.1.3 Blur Metric[112]

After the dehazing process, some methods introduce a blur-
ring effect in the haze-free image. To check the quality of
the dehazed image in terms of blur perception, many recent
works used this metric.

This metric applies the low-pass filter on the dehazed
image to obtain a blurred version of this image. The com-
parison of intensity variations between two images (the
dehazed image and the blurred dehazed image) indicates
blur annoyance. Thus, a high variation in intensity values
between these two images signifies that the dehazed image

Block DCT
coefficients

Image

Local DCT

computation

DCT coefficient

is not blurred whereas a small difference indicates that the
dehazed image is blurred.

Blur metric provides a score ranging from O to 1 which
represents the best and the worst quality, respectively in
aspects of blur perception.

6.1.4 Blind Image Quality Assessment (BLIIND-I1) [113]

BLIIND-II is a no-reference image quality assessment met-
ric based on a probabilistic model that predicts the quality
score of an image. This metric uses the natural scene statis-
tics (NSS) model which relies on discrete cosine transform
coefficients. NSS model is built from undistorted natural
scenes and requires a small number of training examples.
The estimation of the predicted score consists of four stages.
In the first stage, the image is divided into n*n blocks, then
computing the DCT coefficients for each block. In the sec-
ond stage, a generalized Gaussian density model is applied
to each block that provides the model parameters. Four fea-
tures: shape parameter, coefficient of variation, energy sub-
band ratio measure and orientation features are extracted in
the third stage from model parameters. Finally, the fourth
stage consists of a Bayesian model that predicts the percep-
tual quality of the dehazed image. The steps for the computa-
tion of this metric are shown in Fig. 29.

It considers various types of distortions, such as arti-
facts, white noise, Gaussian blur, fast fading channel, etc.
in the estimation of a quality score. The values of this met-
ric are in the range of [0, 100]. A higher value of BLIIND-
II indicates the poor quality or distortions in the image.
During dehazing, many periodic patterns (checkerboard

Model
parameters

Model-based
feature
extraction

generalized
Gaussian
modeling

Lowpass

image
: Down-
sampled i
: image

Multiscale Image generation block

Fig. 29 Steps of computing BLIIND-II [113] metric
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and blocking artifacts) are generated in the haze-free
image. Therefore, this metric can be used to identify these
distortions in the image.

6.1.5 Blind/No-Reference Image Spatial Quality Evaluator
(BRISQUE) [114]

Mittal et al. [114] proposed a blind/no-reference image
spatial quality evaluator (BRISQUE) metric which meas-
ures the losses of naturalness of an image without calcu-
lating the distortion-specific features, such as blocking,
artifacts, blur, ringing artifacts, etc. It computes the local
luminance coefficients and observed that these normalized
luminance coefficients follow a Gaussian distribution for
the natural scene. They extracted 36 natural scene statistics
features at 2 scales-18 features per scale, used to identify
all types of distortions. Finally, a regression module, sup-
port vector regression is used to calculate the quality score
of an image. This model is tested on a LIVE IQA database
which consists of 29 reference images and 779 distorted
images spanning different types of distortions.

6.1.6 Fog Aware Density Evaluator (FADE) [99]

This metric is specially designed for the evaluation of
DHA to judge the visibility of the restored image. This
fog-aware density evaluator (FADE) metric does not con-
sider the various approaches used previously, such as esti-
mation of the transmission, salient region, human-related
opinion, etc. This makes the judgment of visibility based
on deviations in the spatial domain, seen in hazy and haze-
free images. A set of fog-aware statistical features, namely
MSCN (mean subtracted contrast normalized) coefficients,
sharpness, contrast energy, colorfulness, color saturation,
image entropy and dark channel prior are extracted from
foggy images. It used 500 foggy and 500 fog-free images
to extract these features. A test foggy image is divided
into p*p patches and average feature values for statisti-
cal features for each patch are extracted. A multivariate
Gaussian (MVG) probability density in the d dimension
is computed between a test foggy image and 500 natural
fog-free images as follows:
MVG() = ————exp (=3 =) u'( ~ o)
@) | 2
18)

where f represents fog aware features while x4 and o
denote mean and covariance, respectively. In the next step,
the Mahalanobis distance measure is computed between the
MVG fit to features extracted from a test foggy image and
the MVG model of 500 fog-free images as follows:

. o+
Df(ﬂl,//lz,o'pffz) = (/41 - /42) 5

-1
"2> (41— )

19)

where yu;, 4, and o}, o, are the mean and covariance of

the MVG model of the 500 fog-free images and a test foggy

image, respectively. Similarly, Dy is calculated between the

MVG of 500 foggy images and a test image. Finally, the fog
density of a hazy image is calculated as follows:

(20)

Constant 1 is added to the denominator to prevent divide
by zero exception. Smaller values of D represent lower fog
density, i.e. A DHA is improving the visibility of the hazy
image to great extent.

A smaller FADE value indicates less residual haze pre-
sent in the dehazed result. The residual haze, artifacts and
noises, on images reduce the FADE scores. However, the
bright scenes may be mistaken as residual haze by FADE
and increase the value of FADE.

6.1.7 Natural Image Quality Evaluator (NIQE) [115]

This is another no-reference metric used in DHA for measur-
ing the distortion during the dehazing process. This metric
provides a natural image quality evaluator based on quality-
aware features of the natural scene statistics model. These
features are extracted from a corpus of undistorted natural
images. The 36 features are extracted from a dehazed image
(whose quality is to be analyzed) by dividing the image into
p*p patches and then comparing its MVG fit to the MVG
model.

6.1.8 Dehazing Quality (DHQ) [116]

Min et al. [116] proposed an objective measure for the quan-
titative evaluation of dehazed images. To assess overall
dehazing quality, first, they constructed a database of 1750
dehazed images generated from 250 real hazy images using
7 dehazing algorithms of different haze densities. Afterward,
subjective quality evaluation is conducted on this dataset.
Finally, the regression module predicts the dehazing quality
(DHQ) by extracting several features from a dehazed image.
The overall dehazing quality is measured in three aspects:
haze removal, preservation of structure and over enhance-
ment, as shown in Fig. 30.

Haze removing features aim to design haze-relevant
descriptors to evaluate haze removing effect. It consid-
ers five features: pixel wise DCP, image entropy, local
variance, normalized local variance and contrast energy.
Another important parameter is structure preservation

@ Springer



4834

S.C. Agrawal, A. S. Jalal

Labeled dehazing image pairs
|

%

Feature extraction
module

Structure-preserving

Feature regression
module

Haze-removing

=
&0 S
= 2
g %
(=3
S E
j=4 Q
z s
< =
A s

=

Over-enhancement

Fig. 30 Quantitative evaluation to measure overall issues of dehazing in real hazy images using non-reference based metric DHQ [116]

used to judge the quality of the dehazed image. The dehaz-
ing process sometimes can introduce structure degradation
or artifacts. To account for structure preservation, various
features, such as variance similarity, normalized variance
similarity and normalized image similarity are used. The
third important quality indicator of the dehazing process is
the identification of over enhancement problem in dehazed
images. During the dehazing process, details in low con-
trast areas are darkened; colors are distorted or may intro-
duce structural artifacts. It is measured in the form of low
contrast areas and blockiness.

6.2 Full-Reference Metrics

Full-reference metrics are used to evaluate a method when
a GT image is available. This method is applicable to test
the performance of synthetic images. Recently, several
metrics: PSNR, SSIM, LPIPS, CIEDE 2000 and SHRQ
had been utilized in many works. In this section, we have
explored all such metrics.

6.2.1 Learned Perceptual Image Patch Similarity Metric
(LPIPS) [117]

Pixel-wise metrics such as PSNR and SSIM disagree with
human judgment in assessing the perceptual quality of the
dehazed image. Therefore, Zhang et al. [118] proposed a
learned perceptual image patch similarity metric (LPIPS)
that establishes the perceptual similarity between two
images that resemble human opinion. It is based on deep
features, trained on some well-known deep learning frame-
works like supervised, self-supervised, unsupervised, etc.
This metric can identify a wide range of distortions in the
image, including photometric (color shift, contrast, satura-
tion), noise (white, artifacts), blur, and compression. Three
network architectures including AlexNet, SqueezeNet and
VGG are considered for supervised training. The overall
framework of this metric is shown in Fig. 31.

This diagram shows how the distance between two
patches x (patch of GT image) and x, (patch of dehazed
image) is calculated by a network F. The features are
extracted from many layers, normalize in channel dimension,
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Fig.31 Deep learning framework to measure perceptual quality of the dehazed image
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scale each channel by vector w and compute the 12 norm.
Finally, the average of spatial and channel-wise is taken.
G is a network trained to predict perceptual quality h from
distance pair dj and d,.

The lower LPIPS score indicates a higher similarity
between the two images.

6.2.2 Peak Signal to Noise Ratio (PSNR) [119]

Peak signal to noise ratio (PSNR) measures the degree of
signal distortion between a haze-free image obtained by a
DHA and GT image. A high value of PSNR signifies the
good quality of the dehazed image. It is calculated as:
PSNR = 1010 ﬁ 21
= g\ 35E (21
where MSE is used to calculate the error between dehazed

image and ground truth image. It must be minimized and
calculated as follows:

1 M
MSE= 5 X

N
(GGi.)) = Iy )’ (22)
=1 j=1

where G and I; are the ground truth and dehazed images,
respectively.

6.2.3 Structural Similarity Index Metric (SSIM) [120]

Since PSNR is not effective in terms of human visual judg-
ment. Therefore, many researchers utilized the structural
similarity index metric (SSIM) which evaluates the dehazing
performance in terms of contrast, luminance and structure
between ground truth and dehazed images. It is calculated
as follows:

. 2p,.4; + ¢ 2, +c
SSIM(r, i) = ( —--r T (23)
2+ u; +c J\o2+0o +c,

Here, y, and y; are means of r (restored image) and i (GT
image), respectively. arz and o-l.2 are the variances of r and i
and p,, is the cross-variance between r and i. Default values
of ¢, and ¢, are 0.01 and 0.03.

SSIM yields a decimal score between 0 and 1. The score
value of 1 indicates that the two images are identical. SSIM
is highly sensitive to variations of contrast and illumina-
tion. Therefore, it can judge the issues of dehazing, such as
incomplete haze removal or over-saturation of pixels.

6.2.4 CIEDE 2000 (121, 122]

During the dehazing process, color distortions may be intro-
duced in a restored image. It cannot be reliably evaluated

by PSNR or SSIM. Therefore, researchers in this field also
used an accurate color difference metric CIEDE 2000 which
assesses dehazing in terms of color restoration closer to
human eye perception in color difference.

It yields values in the range [0,100] with smaller values
indicating better color preservation, and values less than 1
corresponding to imperceptible by the human eye. A value
of 100 indicates that colors are the opposite of two images.

6.2.5 Synthetic Haze Removing Quality (SHRQ) [9]

Min et al. [123] proposed a full reference metric called syn-
thetic haze removing quality (SHRQ) to evaluate the overall
quality of a dehazed image. The proposed dehazing quality
evaluator integrates many quality parameters raised during
the dehazing process. These issues of dehazing are structure
recovery, color rendition and over-enouncement. The author
first creates an SHRQ database that consists of two subsets:
regular and aerial images. The regular image dataset consists
of 45 haze-free images while the aerial dataset contains 30
high-quality aerial images. The ASM model is utilized to get
the synthetic hazy images. These hazy images are processed
by eight state-of-the-art methods. The overall quality of a
dehazed image is estimated as follows:

Q = % Z Ssim(i»j)-[cren(i’j)]a'o (24)
ij

where S;,, is the structure map, C,,, is the color rendi-
tion map and O represents over-enhancement in low contrast
areas. z represents the total number of pixels, o is set empiri-
cally to adjust the importance of color information.

7 Experimental Results

In this section, experimental results are presented in three
ways. First, we evaluate the recent state-of-the-art methods
based on dehazing assessment criteria. Second, we discuss
the qualitative or visual analysis of dehazing methods.
Finally, we discuss the performance of different methods
quantitatively on different datasets.

7.1 Comparison of the State-of-the-art Methods
based on Dehazing Assessment

This section presents the assessment criteria of different
dehazing methods based on parameter setting during experi-
mentation, dataset(s) selected and evaluation metrics used
for the assessment. For comparison, we have collected this
data from their manuscript. This analysis is illustrated in
Table 15.

@ Springer
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Table 15 demonstrates the datasets and metrics used by
the respective dehazing method. We can notice in the table;
the recent state-of-the-art methods utilize a variety of dehaz-
ing metrics including full reference and no reference met-
rics for comparison purposes. Most of the methods focus on
selecting the number of metrics for evaluation. In this regard,
the method [43, 56, 124] utilized sufficient metrics for evalu-
ation. Besides, a good DHA must be tested on diverse data-
sets of different haze concentrations including dense haze,
non-homogeneous haze, sky regions, night-time hazy con-
ditions, mild haze, etc. The method [40, 61] is tested on
a large number of datasets as compared to other methods.
We can also notice in this table that all DHA requires some
parameters to be adjusted adaptively or manually, irrespec-
tive of their category. The number of parameters increases
the overhead and reduces the efficiency of a method. Hence,
they must be minimized as methods [40, 125].

7.2 Qualitative Evaluation

Figure 32 shows the visual analysis of restoration-based
methods with prior on two hazy images from HSTS of
RESIDE dataset along with GT image. We can observe in
this figure that all the methods are unable to preserve the
color and contrast of the image. All the dehazed images in
the sky regions are darker than the GT image. In addition to

color distortions, the DCP [63] also suffers from halo arti-
facts. However, the dehazed image by [47] has fewer color
distortions as compared to other methods and resembles the
GT image.

Furthermore, Fig. 33 shows the qualitative results of dif-
ferent machine learning and deep learning methods on the
HSTS dataset along with the GT image. It is observed in
this figure that dehazed result by the Deep DCP method has
residual haze. The methods [73, 75], and [76] have color
distortions in the image. The other methods [74] and [126]
have fewer color distortions. The dehazed image obtained
by [89] resembles the GT and also all the details are visible.

Figure 34 shows a visual comparison of state-of-the-art
methods on two hazy images taken from O-Haze datasets.
We can notice in this figure that NLD [66], PDN [127]
highly distort the color of the image. The AOD-net and
DCPDN are unable to remove haze completely. The method
GFN [77] is managed to remove haze and also has fewer
color distortions. The dehazed image achieved by method
[128] is much closer to the GT image.

The visual analysis in Fig. 35 reveals that removing dense
haze is still a challenging task. The performance of most of
the methods (deep learning and prior based) on this data-
set is not satisfactory. The details of the images are imper-
ceptible under the dense haze. All earlier methods [73—75]
and [85] are unable to remove the haze. However, the

Fig.32 Reside HSTS: Prior based restoration methods, a Hazy image, b DCP [63], ¢ NLD [66], d CAP [64], e BCCR [49], f CEP [67], g LBF

[47], h GT

(b

(d

® (@ (b

Fig.33 RESIDE HSTS: learning based methods, a hazy image, b AOD net [75], ¢ DehazeNet [74], d deep DCP [88], e MSCNN [73], f PQC

[126], g cycle-dehaze [76], h DFIDSE [89], i GT
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(®) © (d)

Fig. 34 Haze removal results by various methods on hazy images from O-HAZE a hazy image, b NLD [66], ¢ AOD-net [75], d PDN [127], e

GFN [77], f DCPDN [142], g DM2F-Net [128], h GT

Fig. 35 Qualitative comparison of results on images from the Dense-Haze dataset, a Hazy image, b DehazeNet [74], ¢ MSCNN [73], d AOD-
Net [75], e PPDNet [85], f HR-Dehazer [129], g DCP [63], h NLD [66], i BPPNet [79], j GCANet [84], k GT

restoration-based method DCP and NLD attempt to remove
the haze at the cost of high color distortions. The method
[84] produces dark images in which details are not visible.
The method [79] and [129] perform better than other meth-
ods except for the first image.

Figure 36 represents non-homogeneous hazy images,
different from other dehazing datasets in which haze is
characterized by homogeneous haze. The performance of
most state-of-the-art methods drops significantly due to the
non-homogeneous nature. The color distortions problem is
noticed in dehazed images by the DCP method due to the
homogeneous assumption of the physical model. In addi-
tion to color distortions, the method [74] also introduced
the noise in the dehazed image. The AOD and GCA net
are unable to remove the haze in dense hazy regions. The
DCPDN is succeeded to remove the haze without color dis-
tortion. However, some artifacts are observed. The method
[95] generates pleasing results and is able to deal with non-
homogeneous haze in presence of dense haze to some extent.

Figure 37 shows the qualitative analysis of different
methods on a sample image taken from HazeRD datasets.

The results of DCP, CAP, PDN and DehazeNet suffer from
color distortions while the haze-free obtained by the method
DCPDN and GFN are over brightened as compared to GT.
The MSCNN and NLD leave some haze in the dehazed
result. The method [130] and [75] perform satisfactorily.
However, they are also not able to restore the color of sky
regions in addition to other methods.

In Fig. 38, hardware architecture-based methods are
tested on three real images from Fattal’s dataset. The meth-
ods [72] and [131] used the simple concept of DCP to
remove the haze. Therefore, their dehazed images are hav-
ing the problem of color distortions and over-saturation of
pixels. The dehazed images of the method [132] are over
brightened also suffer from over-saturation of pixels. The
method of [133] generates pleasing results. However, vis-
ibility in long-range regions is not up to the mark.

Finally, we present dehazing results on some sample
images from the dataset [99] in Fig. 39. The quantitative
results are also illustrated in Table 22. Here, we consider
four popular categories of methods: image enhancement
[22], image fusion [13], and [62], machine learning:

@ Springer
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(a) (b) () ()

(e) ® (® ()

Fig. 36 Quantitative comparisons of the state-of-the-art dehazing methods on NTIRE-2020 challenge: NH-HAZE. a Hazy image, b DCP [63], ¢
DehazeNet [74], d AOD net [75], e GCAnet [84], f DCPDN [142], g KTDN [95], h GT

Fig. 37 Comparison with state-of-the-art methods on a hazy image from HazeRD dataset. a hazy image, b GT, ¢ DCP [63], d CAP [64], e NLD
[66], f MSCNN [73], g DehazeNet [74], h AOD-net [75], i GEN [77], j DCPDN [142], k PDN [127], 1 DHRNT [130]

[134] and [64] and restoration with priors [63, 66] and
[51]. Fusion based method [13] distorts the color also
leaves haze in some parts of the images while another
method [62] better preserves the color in nearby regions
and enhances the visibility in faraway regions. Machine
learning methods [134] and [64] do not distort the color
but they failed to remove the haze completely. In compari-
son to restoration with prior methods, DCP has pleasing
results as compared to NLD with fewer color distortions.
The RASD method better handles the artifacts but it blurs
the details of dehazed images due to gradient residual min-
imization. The enhancement-based method [22] on DCP
has a better-dehazed image as compared to the restoration-
based method.

@ Springer

7.3 Quantitative Evaluation

This section provides a comparison of recent and popu-
lar methods of dehazing on different standard datasets.
Tables 16, 17, 18, 19, 20, 21, 22, provide the quantitative
evaluation of HazeRD, RESIDE, I-Haze, O-Haze, Dense-
haze and D-Hazy, respectively. Since all these datasets are
having GT images. Their assessment is done using full-
reference metrics: PSNR and SSIM. Moreover, Table 22
provides the quantitative analysis of the real images used in
Fig. 39. GT images are not available for these images; there-
fore, evaluation is done by a variety of non-reference met-
rics including FADE, Blur, BALC,o, e, r, NIQE, BRISQUE,
BLIINDSII and BIQI.
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(a) (b)

Fig.39 Hazy images with sky region and their dehazed images by different methods a Hazy image, b AMEF [13], ¢ CAP [64], d NLD [66], e
ESIDD [22], f DCP [63], g RASD [51], h MLP [134], i The JCDF method [62]

We have opted for different methods in comparison tables
because we have considered the top performers in respec-
tive datasets. We conclude from the quantitative analysis of
datasets that a method that is ranked no 1 on one dataset is
not the best on other datasets too. The haze density is also
different when moving from one dataset to another dataset.
Considering this fact in the mind, the performance of meth-
ods differs according to the level of the haze.

Table 16 illustrates the performance of the most popular
and recent dehazing method on the HazeRD dataset. This
dataset contains synthetic images of different haze concen-
trations. For the assessment of dehazing quality, we use
two metrics: PSNR and SSIM. Most of the methods have
lower PSNR and SSIM values except for one or two meth-
ods. The lower PSNR and SSIM values indicate that these
methods are not able to remove the haze completely or there
is a higher color distortion. The higher values of PSNR and
SSIM indicate that the dehazed image by the method LDP
[82] is visually closer to the GT images and is ranked no
lamong all the compared methods.

Table 17 illustrates the performance of recent dehazing
methods on the most popular RESIDE dataset. This dataset
contains both real and synthetic images with a mild haze.
The table presents the results of the SOTS indoor and SOTS
outdoor part of RESIDE dataset. The evaluation metric used
is PSNR and SSIM. We can observe that DCP suffers from
the problem of color distortions due to invalidity of prior for
white brighter objects or high depth regions. AOD-Net has
residual haze and dehazed images are having low bright-
ness. The dehazed images by the Dehazenet method are
over brightened as compared to the GT. GCANet has higher
PSNR and SSIM values and indicates better-dehazed images
as compared to other methods except for FFA-Net [86] and
DM2F-Net [128]. However, its performance is degraded at
high-frequency components such as edges or blue sky. The
dehazed result of [86] and [129] are better than state-of-the-
art methods with a large margin of PSNR and SSIM values.
GMAN method [78] performs better on SOTS outdoor but
average on SOTS indoor. The performance of DM*F-Net
[128] is also noticeable on SOTS indoor which is in the
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Table 16 PSNR and SSIM comparison of existing techniques on
HazeRD dataset

Table 18 PSNR and SSIM comparison of existing techniques on
I-Haze dataset

Methods PSNR SSIM Method PSNR SSIM
DCP [63] 14.64 0.78 DCP [63] 14.43 0.752
CAP [64] 14.15 0.74 CAP [64] 12.24 0.606
NLD [66] 14.58 0.81 MSCNN [73] 15.22 0.7545
MSCNN [73] 15.62 0.82 NLD [66] 14.12 0.653
DehazeNet [74] 15.30 0.79 AOD-Net [75] 13.98 0.732
AOD-Net [75] 15.64 0.80 PPDNet [85] 22.53 0.870
GFN [77] 13.73 0.67 BPPNet [79] 22.56 0.899
DCPDN [142] 15.86 0.77 Feature Forwarding [139] 18.56 0.809
PDN [127] 14.48 0.75 IDE [136] 15.77 -
LDP [82] 17.51 0.85 NCC [137] 15.84 0.534
NRIS [135] 12.62 0.574
ICycleGAN [180] 15.92 0.745
Table 17 PSNR and SSIM comparison of existing techniques on CFCEMD [152] 15.21 0.698
RESIDE dataset DCPDN [142] 14.37 0.724
GFN [77] 11.87 0.527
Method SOTS Outdoor SOTS Indoor Cycle-Dehaze [76] 14.89 0744
PSNR  SSIM  PSNR  SSIM DehazeNet [74] 16.73 0.626
DCP [63] 1913 082 1662  0.82 DFIN [140] 16.04 0.633
AOD-Net [75] 2029 088 1906 085 IDGCP [138] 16.10 -
DehazeNet [74] 22.46 0.85 21.14 0.85
GFN [77] 21.55 0.84 22.30 0.88
FFA-Net [86] 33.57 0.98 35.77 0.98
GMAN (78] 28.19 0.96 20.53 0.81 Table 19 PSNR and SSIM comparison of existing techniques on
Deep DCP [88] 2408 093 1925 083 O-Haze dataset
CAP [64] 22.30 091 19.05 0.84 Method PSNR SSIM
MSCNN [73] 21.73 0.83 17.57 0.81
NLD [66] 1807 080 1729 075 DCP[63] 16.78 0.65
BCCR [49] 1549 078 1688  0.79 CAP [64] 16.08 0.60
Y-NET [23] 26.61 0.95 _ _ MSCNN [73] 17.56 0.65
Deep Energy (Network) [92]  24.07  0.93 - - NLD [66] 15.98 0.58
Improved CycleGAN [178] 2178 0.80 - - AOD-Net [75] 15.03 0.54
GCANet [84] _ _ 30.23 0.98 PPDNet [85] 24.24 0.72
HIDEGAN [185] 2554 0.88 2471 087 BPPNet [79] 24.27 0.89
RYFNet [186] _ _ 21.44 0.87 Feature Forwarding [139] 22.07 0.75
DM2F-Net [128] - - 3429 098 IDE [136] 14.19 -
DPDP-Net [141] - - 2018 0.88 AMEF [13] 8.31 0.00
NRIS [135] 7.37 0.35
Cycle-Dehaze [76] 19.62 0.67
second position after the FFANet [86]. The dehazing capa- Doble-DIP [80] 18.82 B
bility of other methods is not satisfactory. The FFANet has [CycleGAN [180] 18.22 0.85
good dehazing capability on both datasets and ranked no CFCEMD [152] 16.06 0.62
1 and deals with many problems of sky regions, avoiding DCPDN [142] 14.52 059
darkening of colors, color fidelity and image details. GENT77] 17.18 0.62
Tables 18 and 19 illustrate the PSNR and SSIM values of Cycle-Dehaze [76] 17.35 0.86
recent and popular dehazing methods on I-Haze and O-Haze DehazeNet [74] 17.90 0.35
datasets, respectively. These datasets contain high-resolu- DFIN[140] 1746 0.53
tion images with a mild haze density. The restoration-based IDGZC P138] 1571 -
methods [63, 66, 135-137] and [138] again suffer from the DM F-et [128] 25.19 0.78
HR-Dehazer [129] 21.46 0.69

problem of color distortions and are unable to preserve the
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Table20 PSNR and SSIM comparison of existing techniques on
Dense-Haze dataset

Method PSNR SSIM
DCP [63] 14.56 0.398
BCCR [49] 14.62 0.352
DCL [97] 12.11 0.326
DehazeNet [74] 11.36 0.374
NTDF [200] 13.67 0.306
NLD [66] 13.18 0.358
MSCNN [73] 12.52 0.369
Feature Forwarding [139] 16.37 0.569
BPPNet [79] 17.01 0.613
AOD-Net [75] 12.79 0.423
HR-Dehazer [129] 16.47 0.518
PPDNet [85] 12.04 0.428

Table21 PSNR and SSIM comparison of existing techniques on
D-Hazy dataset

Method D-Hazy-NYU D-Hazy-MB
PSNR SSIM PSNR SSIM

DCP [63] 11.56 0.67 12.13 0.68
CAP [64] 13.29 0.73 14.36 0.75
DehazeNet [74] 13.02 0.73 13.78 0.73
MSCNN [73] 13.67 0.74 13.97 0.75
AOD-Net [75] 12.44 0.71 13.48 0.75
DFIN [140] 18.11 0.83 15.63 0.73
DPDP-Net [141] - - 18.76 0.91

structure of the image due to the invalidity of priors. Earlier,
simple machine learning and deep learning methods: [64,
73-77], etc. are unable to remove the haze effect completely.
In comparison with other methods, the overall results of [79,
85, 139] and [128] are better with higher PSNR and SSIM
values. From Tables 18 and 19, we conclude that BPPNet
[79] is the top performer on the I-Haze dataset while DM2F-
Net [128] is the best among all the methods on the O-Haze
dataset.

Table 20 shows the results of the comparison on the
Dense-Haze dataset. This dataset greatly differs from other
datasets (I-Haze and O-Haze) in terms of increased haze
levels. This dataset contains hazy images with very dense
fog. The state-of-the-art methods are generally trained on
images having sparse haze. For example, the method [85] is
trained on O-Haze (Mild hazy images). Therefore, its per-
formance is degraded when tested on dense hazy images, as
indicated by the PSNR and SSIM values of PPDNet. Moreo-
ver, PSNR and SSIM values of most of the methods are
very low indicating higher color distortions and incapable

to deal with dense haze except for two or three methods. In
comparison with other methods, BPPNet, HR-Dehazer and
Feature Forwarding methods have got the satisfactory val-
ues of PSNR and SSIM because these methods are trained
on dense hazy images. BPPNet is ranked no 1 and capable
to remove the dense haze. However, the color restoration
of dehazed images does not resemble the GT images. The
quantitative analysis of the Dense-Haze dataset confirms the
qualitative analysis in Fig. 35.

Furthermore, we compared the state-of-the-art meth-
ods on the D-Hazy dataset. The D-Hazy dataset is divided
into two parts: NYU depth and Middlebury (MB) portions.
This dataset contains synthetic images with medium haze.
Table 21 presents the quantitative results. The analysis of
this table demonstrates that the dehazing results of a learn-
ing-based method [73-75, 140] and [141] are better than
prior based methods [63] and [64]. In the comparison of
PSNR and SSIM values, DFIN [140] and DPDP-Net [141]
are ranked no 1 in NYU-depth and MB portion, respectively.

Furthermore, we have analyzed the performance of the
state-of-the-art methods on natural images using multiple
metrics, to identify the pitfalls of these methods, available
as non-reference image quality assessment. The dehazing
results are better suggested by FADE. A smaller FADE
indicates less residual haze present in the dehazed result;
BLIINDS-2 and BRISQUE are the indicators of perceptually
pleasing results; a higher Gradient Ratio implies that more
edge details are preserved after dehazing. The small value
of NIQE represents that the haze-free image is more natural
and realistic.

Finally, Table 22 shows the quantitative results of the real
images shown in Fig. 39 using different metrics listed in the
table. In this table, the red color of numbers denotes the first
position, the green color the second position and the blue
color represents the third position. The smaller values of all
metrics except the e and r metrics denote the good dehaz-
ing capability in terms of distortions (blur, BALC), percep-
tual quality (NIQE, BLIINDSII, etc.), visibility after haze
removal (FADE score), preservation of edges in restored
images (e and r), color distortions (saturated pixel ratio).
Different categories of methods are involved in the com-
parison. We can notice in this table that method [62] is at
the first position in the overall quality of the dehazed image.
The dehazed image has improved visibility, with no over-
saturation of pixels and artifacts. In the second place, the
DCP method is there with good perceptual quality and pres-
ervation of edges. However, it suffers from the halo artifacts
problem at depth discontinuities. The performance of the
NLD method is reported at the third position with the high-
est FADE score (no residual haze). However, it suffers from
the problem of over-saturation of pixels and lacks perceptual
quality. The performance of other methods is average.
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Table 22 Quantitative Comparison of different methods using well known no reference quality assessment metrics

SNo Metric AMEF[13] CAP[64] NLD[66] ESIDD[22] DCP[63] RASD[51] MLP[134] JCDF [62]
1 FADE | 0.224 0.267 0.110 0.242 0.209 0.390 0.258 0.214
0.371 0.328 0.196 0.293 0.300 0.463 0.366 0.312
0.231 0.316 0.114 0.154 0.151 0.274 0.184 0.115
Mean FADE values 0.275 0.304 0.140 0.230 0.220 0.376 0.269 0.214
2 Blur | 0.163 0.164 0.153 0.180 0.171 0.183 0.160 0.164
0.278 0.294 0.286 0.300 0.289 0.353 0.287 0.302
0.216 0.240 0.221 0.271 0.228 0.249 0215 0.213
Mean Blur values 0.219 0.233 0.220 0.250 0.229 0.262 0.221 0.227
3 BALC | 0.552 1.239 1.588 1.122 1.617 1.647 0.749 0.051
1.935 1.573 2.268 1.937 2.079 1.828 1.908 2228
1.307 2.102 1.605 1.785 1.940 1.985 1.607 0.638
Mean BALC values 1.265 1.638 1.821 1.615 1.879 1.820 1.421 0.972
4 ol 0.430 0.020 0.290 0.120 0.020 0.030 0.080 0.000
0.090 0.050 0.150 0.200 0.060 0.050 0.170 0.010
0.000 5.600 0.320 1.330 0.140 0.420 0.270 0.000
Mean c values 0.173 1.890 0.253 0.550 0.073 0.167 0.173 0.003
5 et 0.460 0.400 0.810 0.250 0.540 0.150 0.320 0.690
0.370 0.220 0.620 0.260 0.530 0.140 0.260 0.580
0.910 1.210 1.260 1.060 1.430 0.800 0.800 1.420
Mean e values 0.580 0.610 0.897 0.523 0.833 0.363 0.460 0.897
6 r] 1.840 1.160 1.870 1.260 1.820 1.070 1.420 2.360
1.940 1.020 1.950 1.320 1.760 1.100 1.270 2.780
2.330 0.980 2.490 1.990 1.670 1.220 1.870 4520
Mean r values 2.037 1.053 2.103 1.523 1.750 1.130 1.520 3.220
7 NIQE | 3.299 3.208 3.261 3.253 2.862 2.735 3.371 3.140
2.410 2.853 2.456 2.628 2.479 3.058 2413 2.349
3.582 3.592 3.880 4381 3712 3.368 3.563 3.629
Mean NIQE values 3.097 3.218 3.199 3.421 3.017 3.054 3.116 3.039
8 BRISQUE | 32216 25.376 35.929 31.805 25.994 17.691 27.695 26.971
14.709 17.816 17.214 18.581 15.044 19.861 15.163 15.026
13.528 13.018 13.365 22.095 12.482 9.854 13.058 13.762
Mean BRISQUE values ~ 20.151 18.737 22.169 24.160 17.840 15.802 18.639 18.586
9 BLIINDS2 | 11.000 9.000 17.500 26.000 5.500 7.500 12.000 7.500
3.000 15.000 9.000 18.500 12.000 16.000 7.000 8.000
12.000 13.500 12.500 34.500 12.500 13.000 13.000 18.000
Mean BLIINDS2 values  8.667 12.500 13.000 26.333 10.000 12.167 10.667 11.167
10  BIQI} 45.944 31.035 47.024 25.650 39.868 19.761 38.707 41.288
27.115 19.930 30.340 30.652 27.440 26.991 26.901 28.494
26.718 46.322 41.917 36.291 53.668 32.936 33.812 40.487
Mean BIQI values 33.259 32.429 39.760 30.864 40.325 26.563 33.140 36.757

8 Conclusions and Future Direction

The haze removal methods have drawn the attention of
researchers in the recent years due to the various applica-
tions in computer vision, especially in video surveillance
and transportation systems. In this paper, the recent haze
removal methods are investigated. First, for better under-
standing, these methods are grouped into different categories

@ Springer

based on their similar characteristics. From each group, the
prominent methods are selected for analysis on various
issues of dehazing. It also introduces many recent categories
including non-homogeneous haze removal, hardware archi-
tecture, superpixels, ensemble, etc. Then, this survey paper
explores most of the evaluation metrics and datasets used
by the recent works. Finally, qualitative and quantitative
analysis on many datasets including Reside, I-Haze, O-Haze,
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D-Hazy, Dense-Haze conducted. Although, this field has
achieved remarkable progress. However, many problems or
open challenges need to be addressed as follows:

(1) In most of the dehazing methods, a large number of
parameters are selected empirically or manually. It limits the
dehazing performance and may suffer from various issues
of dehazing, such as incomplete haze removal, color distor-
tions or halo artifacts when they are tested on hazy images
of different haze concentrations. Adaptive selection of these
parameters can cope up with these issues.

(2) There are very limited metrics available and designed
especially for dehazing. The researcher in this field used
many individual metrics for the assessment of their method.
In the future, a single image quality assessment method is
required to design that can deal with residual haze, over
enhancement, artifacts, color distortions, structure damage,
perceptual quality, etc. instead of using multiple metrics.

(3) After a literature study, we found that there exists no
single method which can handle different weather condi-
tions such as dense fog, night-time, non-homogeneous, etc.
Most of the existing methods are capable to remove mild
fog or homogeneous fog. Therefore, fusion based methods
and ensemble learning methods may be investigated to meet
these challenges that will integrate the advantages of restora-
tion based and deep learning-based methods.

(4) Most of the methods focus on the removal of fog from
a single image. There are limited methods that remove the
fog of the video with a moving camera. Video fog removal
(e.g., video surveillance and transportation system) requires
good recovery results with real-time processing. In this
direction, hardware implementation-based methods require
more attention which processes high-resolution video with
low-cost hardware and power consumption.
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