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Abstract
Breast cancer is a common health problem in women, with one out of eight women dying from breast cancer. Many women 
ignore the need for breast cancer diagnosis as the treatment is not secure due to the exposure of radioactive rays. The breast 
cancer screening techniques suffer from non-invasive, unsafe radiations, and specificity of diagnosis of tumor in the breast. 
The deep learning techniques are widely used in medical imaging. This paper aims to provide a detailed survey dealing with 
the screening techniques for breast cancer with pros and cons. The applicability of deep learning techniques in breast cancer 
detection is studied. The performance measures and datasets for breast cancer are also investigated. The future research 
directions associated with breast cancer are studied. The primary aim is to provide a comprehensive study in this field and 
to help motivate the innovative researchers.

1 Introduction

Breast cancer is categorized among the most frequently 
reported cancers in the World. It has been reported in both 
males and females. However, its frequency with females 
is far beyond the comparison. In 2018, it is estimated that 
6,27,000 women died due to breast cancer, which is approxi-
mately 15% of all cancer deaths among women [1, 2]. The 
early detection of breast cancer may help the patient to be 
recovered in time. However, it is advisable not to go for 
frequent breast cancer screening due to lack of convenience 
and discomfort with traditional examinations such as mam-
mograms. It is reported in literature that 2,68,600 females 
suffered from breast cancer out of 2,71,270 cases. Breast 
cancer alone accounts for 30% of all new cancer diagnoses 
in women. The estimated number of deaths in both cases 
is 42,260. However, the death rate (number of deaths) of 
women (i.e., 41,760) is much higher than men (i.e., 500). 
The early screening and treatment of this cancer can be help-
ful to decrease the mortality rate.

According to National Centre for Disease Informatics 
and Research (NCDIR), the estimated breast cancer cases 
and mortality in females in India are shown in Fig. 1. It is 
observed from Fig. 1 that the estimated number of breast 
cancer cases in 2016 was 1,56,423 and increased to 1,78,361 
in 2020. The estimated number of deaths in 2016 was 
80,973. 90,408 women died due to breast cancer in 2020. 
Figure 2 shows the number of new cancer cases in India 
in 2020. According to National Agency for Research on 
Cancer, the number of new breast cancer cases is 1,78,361, 
which is approximately 26% of all cancer-related cases reg-
istered in 2020.

Male breast cancer represents 1% only of all breast cancer 
cases [4]. The frequency of breast cancer in transgender indi-
viduals, as well as the impact of gender-affirming hormo-
nal treatment (GAHT) on the risk of breast cancer, remains 
largely unexplored. It is less clear however, what risk breast 
cancer poses to the transgender individual and how, if at 
all, physicians should screen these patients. Reports of 
transgender men breast cancer have been mentioned in the 
medical literature [5]. Number on the incidences of breast 
cancer in trans women receiving GAHT remains vague. As 
of 2018, two population-based studies assessed the breast 
cancer risk attributable to GAHT. Both studies were lim-
ited by small number of breast cancer cases and a lack of 
genetic risk stratification [6, 7]. In the trans man case, ductal 
carcinoma in-situ (DCIS) was diagnosed in the course of 
chest reconstruction surgery. To maintain masculinization, 
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low dose transdermal application of testosterone may be 
applied as these doses may minimize the amount of circu-
lating testosterone and thus avoid unnecessary aromatiza-
tion to estradiol [8]. In [7], authors suggested the risk of 
breast cancer in transgender people is lower than cisgender 
women, however, it is comparable to the risk in cisgender 
men. They also concluded that the overall risk of breast can-
cer in transgender people remains low. Therefore, it seems 
sufficient for transgender people using hormone treatment to 
follow screening guidelines as for cisgender people. Table 1 
shows the cancer data statistics 2020 for India. This data is 

obtained from National Centre for Disease Informatics and 
Research (NCDIR). According to the data, Breast Cancer is 
amongst the top 5 most frequent cancers in India.

Normally, patients with breast tumors undergo multiple 
different examinations including B-ultrasonography, Mam-
mography, Computed Tomography (CT), and Nuclear Mag-
netic Resonance Imaging (MRI) [9]. Mammography is the 
main method used for screening breast cancer. Mammogra-
phy is the only imaging test that reduces breast cancer mor-
tality [10–12]. Mammogram does not prevent cancer. How-
ever, the early detection of cancer can be possible through 
mammography [13]. The sensitivity of mammography is 
estimated between the range of 77% and 95%. The specific-
ity estimated through the mammography lies in the range of 
92% to 97% [14]. However, mammography is suboptimal in 
breasts with dense tissue [15]. Due to this, approximately 
38% of tumors are missed or misdiagnosed [16]. Another 
drawback of mammography is subject discomfort and radia-
tion exposure. The interpretation of mammograms is a time-
consuming and error-prone task [17].

1.1  Motivation

From the literature, it is observed that while substantial 
strides have been made, the prevalence of cancer tends to 
increase. For women globally, breast cancer is the most 
prevalent disease. A woman's chance of breast cancer today 
is one in eight [18]. Altering is a co-morbidity of breast 
cancer that can promote the development of breast cancer 
due to aging-related transcriptome changes [19, 20]. How-
ever, the age of females diagnosed with cancer is shifting 
from +50 years of age to 40 years of age or less [21]. Early 
identification of breast cancer improves prognoses accord-
ing to the World Health Organization (WHO) [22]. Mam-
mography is the main method for breast cancer detection. 
The sensitivity of mammography decreases with increase 
in thickness of breast [23, 24]. Hence, it is important to 
understand breast cancer detection techniques so that the 

Fig. 1  Breast cancer cases and mortality in females in India [3]

Fig. 2  Number of new cases of cancer found in India during 2020

Table 1  Statistics of Cancer 
Data in India during 2020

Male Female Total

Population 717,100,976 662,903,415 1,380,004,378
Number of cancer cases 646,030 678,383 1,324,413
Number of cancer deaths 438,297 413,381 851,678
Age-standardized incidence rate (World) 95.7 99.3 97.1
Age-standardized mortality rate (World) 65.4 61 63.1
5-year prevalent cases 1,208,835 1,511,416 2,720,251
Top 5 most frequent cancers excluding non-

melanoma skin cancer (ranked by cases)
Lip, oral cavity
Lung
Stomach, Colorec-

tum, Oesophagus

Breast
Cervix uteri
Ovary, oral cavity
Colorectum

Breast
Lip, oral cavity
Cervix uteri
Lung
Colorectum
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quality of diagnosis can be improved for good in upcoming 
years. The following factors are motivated us to perform 
this research:

(1) The first factor is the analysis of different types of 
screening techniques. Various type of screening tech-
niques has a different representation of the targeted 
area. They have their own pros and cons. This fact 
motivated us to study the properties of different types 
of breast cancer screening techniques so that appro-
priate screening techniques can be selected for breast 
cancer detection.

(2) The use of deep learning techniques in the identification 
of breast cancer is another factor. In medical research, 
deep learning techniques are commonly used. We are 
studying and analyzing these strategies for breast can-
cer detection because of the development of novel opti-
mization functions and techniques.

(3) Different types of evaluation parameters are used to 
validate breast cancer detection techniques. The nature 
of evaluation measures varies from one to the next. The 
new technique may perform better on some parame-
ters while performs poorly on others. This feature moti-
vates us to investigate the effectiveness of breast cancer 
detection evaluation measures.

1.2  Contribution

This paper focuses on the study of breast cancer screening 
techniques with their pros and cons. This study discusses 
mainly:

(1) Theoretical aspects of breast cancer for females, males, 
transgenders including deep learning implementations 
for the detection of breast cancer.

(2) The different breast cancer screening approaches/tech-
niques, risk factors, target connection, and common 
datasets.

(3) The mathematical representations of performance eval-
uation measures

(4) The comparative analysis of deep learning-based breast 
cancer prediction techniques in terms of performance 
measures.

(5) The possible future research directions for breast cancer 
detection

To the best of our knowledge, no review of breast cancer 
detection involving all of the above mentioned contributions 
has been reported so far. This study provides a thorough 
review of the published literature on breast cancer detection 
screening methods and techniques. Undoubtedly, this study 
is going to be beneficial for young researchers. Figure 3 
depicts the layout of this paper.

The remaining structure of this paper is as follows. Sec-
tion 2 presents the research methodology used in this study. 
The datasets for breast cancer detection are discussed in 
Sect. 3. Section 4 deliberates the performance evaluation 
measures. Section 5 presents the brest cancer screening 
techniques. The deep learning techniques for breast cancer 
detection are mentioned in Sect. 6. Section 7 covers the dis-
cussion followed by future research directions in Sect. 8. The 
concluding remarks are drawn in Sect. 9.

2  Research Methodology

This section presents the survey papers related to breat can-
cer detection techniques followed by the papere selection 
and exculsion methodology used in this study.

2.1  Existing Surveys

In the recent past, several research papers were published 
to summarize the breast cancer detection techniques. The 
relevant survey papers are discussed as below:

Yassin et al. [25] presented the findings of a systematic 
review (SR) aimed at determining the current state-of-
the-art for computer aided diagnosis and detection (CAD) 
systems for breast cancer. They provided a broad assess-
ment of CAD systems for image modalities and machine 
learning-based classifiers. Prospective research studies 
to develop more objective and efficient CAD systems 
have been discussed. A brief review of various reported 
methods and systems for early breast cancer detection 
was presented by Gupta et al. [26]. A variety of micro-
wave imaging approaches such as microwave tomography 
and radar-based imaging were investigated. Lu et al. [27] 
presented some diagnostic imaging methods for breast 
cancer diagnosis. The breast cancer detection using com-
puter vision and machine learning techniques were inves-
tigated. The performance of various methods was analyzed 
on mammographic images. Huppe et al. [28] presented a 
comprehensive review on molecular breast imaging. Their 
research covered the current literature, indications, clinical 
application, biopsy approach, and MBI integration into 
medical practice. Oyelade et al. [29] analyzed various 
deep learning methods for the detection of architectural 
distortion from digital mammography. The main focus 
of their study was the detection of abnormalities such as 
masses and micro-calcification, which are indicators of 
the disease's advanced stage. Their study indicated that 
about 70% of the existing literature used Gabor Filters, 
while only 10% used survey results in computer vision and 
deep learning to build outstanding computational mod-
els for the detection of architectural distortion. Husaini 
et al. [30] studied the use of thermography and artificial 
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intelligence techniques for breast cancer detection. Various 
deep learning models such as Radial Basis Function Net-
work (RBFN), K-Nearest Neighbors (KNN), Probability 
Neural Network (PNN), Support Vector Machine (SVM), 
ResNet50, SeResNet50, V Net, Bayes Net, Convolutional 
Neural Networks (CNN), Convolutional and De-Convo-
lutional Neural Networks (C-DCNN), VGG-16, Hybrid 
(ResNet-50 and V-Net), ResNet101, DenseNet and Incep-
tionV3 were analyzed to process thermographic images of 
breast cancer. Some research works discussed the breast 
cancer in transgender patients [5, 31]. The qualitative 
analysis was performed on patient demographics, breast 
cancer characteristics, breast cancer presentation and man-
agement. According to their study, breast cancer present 
in transgender men is mainly depends upon the top surger.

Due to advancement in deep learning techniques for 
medical imaging, a need was felt to prepare a survey of 
research articles summarizing the applications of deep 
learning techniques for breast cancer detection. Our survey 
presents the computational studies on breast cancer detec-
tion over the last decade, i.e., from 2000 to 2020. The main 

focus of this study is to investigate the existing breast can-
cer detection techniques using deep learning, risk factors 
associated with techniques, and open challenges associated 
with the existing techniques.

2.2  Survey Methodology

This study on breast cancer detection is conducted through 
PRISMA [32, 33]. The reason behind the use of PRISMA 
is that it helps enhance the delineation of CR. It provides 
the guidance to choose, recognize, and evaluate the studies.

Four different databases namely Google Scholar, Scopus, 
PubMed, and Preprint plateforms have been used for this 
study. Four preprint plateforms namely ArXiv, TechRxiv, 
MedRxiv, and ChemRxiv have been used to conduct the 
search for appropriate papers. The search string consists 
of “breast cancer” or “cancer” or “((deep learning) AND 
(breast cancer))” or “((machine learning) AND (breast 
cancer))” or “((Artificial Intelligence) AND (breast can-
cer) AND (detection techniques))” or “breast cancer detec-
tion techniques”. Figure 4 shows the search string used for 

Fig. 3  Structure of paper
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conducting the search. Manual search was also conducted 
to find out the relevant research papers. In the identification 
phase, a total of 1600 research publications were chosen.

In the screening phase, 900 research articles were selected 
after the removal of unsuitable, duplicate, and unrelevant 
research articles. 750 research articles were excluded after 
reading the title, abstract, and introduction. The remaining 
150 research articles were analyzed through removal crite-
ria and 90 research articles were excluded. Thereafter, 60 
research articles were moved to the next phase. In eligibility 
phase, 30 research articles were eliminated after the evalu-
ation of whole papers. Ultra wideband radar imaging [34], 
ensemble empirical mode decomposition by ultra-wide 
band [35], flexible 16 antenna array for microwave [1], Ion-
Sensitive Field-Effect Transistor based CMOS integrated 
Lab-on-Chip system [36] are few related schemes other 
than deep learning, used for detection of breast cancer. The 
research articles on these techniques were also eliminated. 
30 research articles were designated for review of breast 
cancer detection techniques. The selection and removal cri-
teria for research articles are mentioned in Table 2. Figure 5 
depicts the different phases of PRISMA for this review.

2.3  Research Questions Asked by Researchers

The primary goal of this review is to inspire the young 
researchers in this area. This paper addresses a number of 
breast cancer detection-related questionnaire, some of which 
are listed in Table 3. This will assist innovative researchers 

in grasping the fundamental concepts of breast cancer detec-
tion and determining the open challenges in this field.

Table 4 summarizes the comparsion between the exist-
ing surveys and the proposed one in terms of research 
questions. In this table, denotes that the survey has 
answered the respective research question, while indicates 
otherwise.

3  Datasets Used

A variety of datasets is required to develop the computa-
tional methods fro breast cancer detection. The datasets 
are varied in nature. Some datasets have small number 
of features and tuples. Wheras, some datasets have large 
number of features and tuples. Researchers use a variety 
of breast cancer databases for the development and evalu-
ation of computational methods. Some datasets are open 
to the public and some are limited to specific categories. 
Table  5 shows the detail description of breast cancer 
datasets. Table 6 shows the dataset used by researchers 
in recent years.

Fig. 4  Search string for searching the research articles

Table 2  Selection and removal criteria for selection of research articles

S. 
no.

Parameter Selection criteria Removal criteria

1 Time duration Research article published from 2010–2021 Research article published before 2010
2 Analysis Research article including breast cancer detection Research article including different cancer detection
3 Comparison Research article focus on deep learning techniques used for breast 

cancer detection
Research article focus on other techniques used for 

breast cancer detection
4 Study Research involving mathematical foundation and experimental 

results
Research involving case study and articles in differ-

ent language other than English
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Fig. 5  PRISMA flow diagram on breast cancer review strategy

Table 3  Research questions related to breast cancer detection

Questions Research questions

Q1 What is breast cancer?
Q2 Explain breast cancer in females, males, trans males, and trans females, along with detection techniques
Q3 What are the risk factors associated with breast cancer?
Q4 What are different types of screening methods involved in breast cancer detection?
Q5 What are different types of deep learning techniques in breast cancer detection?
Q6 What are the performance evaluation measures for validating deep learning based breast cancer detec-

tion techniques?
Q7 What are the challenges of breast cancer detection using deep learning?
Q8 What are the future research directions for breast cancer detection using deep learning?
Q9 What is the role of deep learning in breast cancer detection?
Q10 How breast cancer detection using deep learning is different from the other approaches?

Table 4  Comparative analysis 
of survey papers on breast 
cancer detection in terms of 
research questions

Survey Review year Research questions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

VYassin et al. [25] 2018 ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✔ ✘ ✘
Gupta et al. [26] 2020 ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘
Lu et al. [27] 2018 ✔ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘
Huppe et al. [28] 2017 ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘
Oyelade et al. [29] 2020 ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘
Husaini et al. [30] 2020 ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✔
Hartley et al. [31] 2018 ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
Stone et al. [5] 2018 ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
Proposed study 2021 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
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4  Performance Evaluation Measures

Different performance measures are used to evaluate the 
performance of breast cancer prediction models. The per-
formance measures are generally claasified into two main 
categories namely, prediction and classification measures 
[56]. Figure 6 shows the classification of performance 
measures.

4.1  Prediction Measures

Mean, standard deviation, mean square error (MSE), root 
mean square error (RMSE), and peak signal to noise ratio 
(PSNR) are the well-known prediction measures. The math-
ematical formulation of these measures is given in succeed-
ing subsections.

4.1.1  Mean (µ)

Mean represents the average brightness of an image. If the 
average intensity of a breast cancer image is much high, then 
the density of tissue is also high. The mathematical formula-
tion of mean (μ) is defined as [57]:

where m and n signify the number of rows and columns in 
an image. pA is the coefficient of approximation. The value 
of mean should be high for better results [57].

4.1.2  Standard Deviation (σ)

Standard deviation (σ) can be described as a measure of 
how much the contrast intensity increases when the texture 
irregularity increases [58]. It is defined as:

(1)� =
1

mn

m
∑

a=1

n
∑

b=1

pA(a, b),

Table 6  Breast cancer datasets used by researchers in recent years

References Year Dataset

MIAS DDSM INbreast US1 US2 BUSI ABUS DCE-MRI DBT-TU-JU DMR

[48] 2015 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘
[49] 2016 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[47] 2017 ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘
[50] 2018 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔
[41] 2018 ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘
[51] 2019 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔
[52] 2019 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘
[53] 2020 ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
[54] 2020 ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[55] 2020 ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Fig. 6  Classification of performance measures
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4.1.3  Mean Square Error

The differential between observed and predicted values is 
measured using the mean square error (MSE) [59]. The 
mathematical formulation of MSE is given below:

where Io and Ip denote the observed and predicted values, 
respectively.

4.1.4  Root Mean Square Error

The square root of second moment of difference between 
the observed and predicted values is known as root mean 
square error (RMSE) [60]. It can be defined as the standard 
deviation of prediction errors.

RMSE is a reliable indicator of the accuracy obtained from 
the prediction model. RMSE has a non-negative value at all 
times. It is proportional to the scale. It is sensitive towards 
the outliers.

4.1.5  Peak Signal to Noise Ratio

Peak signal-to-noise ratio (PSNR) is the ratio of an image's 
maximum achievable power to the power of degrading noise 
that influences its representation quality [61].

where l is the number of highest allowable intensity levels 
in an image.

4.2  Classification Measures

The performance of breast cancer prediction model is evalu-
ated by using classification measures. These measures are 
positive predictive value, sensitivity, accuracy, specific-
ity, and area under receiver operating characteristics. The 

(2)� =

√

√

√

√

1

mn

m
∑

a=1

n
∑

b=1

(pA(a, b) − �)2

(3)MSE =
1

mn

m
∑

a=1

n
∑

b=1

(Io − Ip)
2
,

(4)RMSE =

√

√

√

√

1

mn

m
∑

a=1

n
∑

b=1

(Io − Ip)
2

(5)PSNR = 10log10
(l − 1)2

MSE
,

mathematical formulation of these measures is mentioned 
in the succeeding subsections.

4.2.1  Positive Predictive Value (PPV)

Positive predictive value (PPV) is the fraction of suitable 
instances among the recovered instances [62]. It is also 
known as Precision and is defined as [62]:

 where TP is the number of true positives and FP is the 
number of false positives, respectively. The true positives 
are the positive tuples that the prediction model accurately 
predicts. The false positives are the negative tuples that the 
model predicts incorrectly. The value of PPV  lies in the 
range of [0, 1].

4.2.2  Sensitivity

Sensitivity ( Sn ) is a metric for assessing the efficacy of breast 
cancer detection prediction models. Sn is also known as the 
rate of recognition [62]. It specifies the percentage of positive 
tuples that the prediction model successfully predicts.

 where FN shows the number of false negatives. The false 
negatives are the positive tuples that the prediction model 
predicts incorrectly.

4.2.3  Accuracy

The percentage difference of projected synergy scores from 
observed results within the allowable error range is called 
accuracy [62]. It is defined as:

 where TN represents the number of true negatives. The term 
“true negative” refers to negative tuples that the prediction 
model accurately predicts.

4.2.4  Specificity

True negative rate is used to describe the specificity. It refers 
to the percentage of negative tuples properly predicted by the 
prediction model [63].

(6)PPV =
TP

TP + FP
,

(7)Sn =
TP

TP + FN
,

(8)Ac =
(TP + TN)

(TP + TN + FN + FP)
× 100,

(9)Sf =
TN

TN + FP
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4.2.5  Area Under Receiver Operating Characteristics Curve

Receiver Operating Characteristic (ROC) represents the trade-
off between true positive rate (TPr) and false positive rate (FPr) 
[63]. The false positive rate and true positive rate are repre-
sented by the x-axis and y-axis of ROC curve, respectively. 
The area under ROC curve (AUC-ROC) is a metric for com-
puting the model accuracy. The value of AUC-ROC lies in the 
ranges of [0.5, 1]. 5  Breast Cancer Screening Techniques

This section discusses the risk factor associated with breast 
cancer followed by the breast cancer screening techniques.

5.1  Risk Factor Associated with Breast Cancer

According to the American Cancer Society, many factors are 
responsible for enhancing the likelihood of breast cancer [7]. 
Figure 7 depicts the risk factor associated with breast cancer. 
The well-known risk factors are age, family history, repro-
ductive factors, earlier therapies, and lifestyle. The detail 
description of these factors is mentioned in Table 7.

5.2  Screening Techniques

Breast cancer awareness provides help to the affected peo-
ple so that they can take better decisions about their health. 

(10)TPr =
TP

TP + FN

(11)FPr =
FP

FP + TN

Fig. 7  Risk factors associated with breast cancer

Table 7  Description of risk factors related to breast cancer

Risk factor Factor Explanation

Generalized Gender Being a female is perhaps the most critical risk factors for breast cancer growth
Age The risk of breast cancer rises as the woman grows older
Race Pretty much across the globe, white women tend to get breast cancer marginally more often than 

African-American women
Body Menstrual history The risk of breast cancer is marginally higher among women who start menstruation early 

(before age 12) and/or menopause early (after the age 55). This rise in risk may have been 
caused by the progesterone and estrogen hormones being released longer in life

High breast density Dense breast tissue means more tissue and less tissue is contained in the gland. The risk of 
breast cancer is higher for women with denser breast tissue

Not having offspring Females who do not have babies or who were later pregnant might be more likely to develop 
breast cancer. Breastfeeding may contribute to reducing your risk of breast cancer

Weight Fat tissue can increase estrogen after menopause, and high estrogen levels can increase the risk 
of breast cancer. Adult weight gain and excess corporeal fat may also be significant around the 
waist

Lifestyle Inactive Lifestyle Breast cancer risk reduction is helped by physical activity
Alcohol Increased risk of breast cancer is associated with consumption of alcohol. With alcohol con-

sumed, the risk increases
Earlier therapies Therapy with DES The risk of breast cancer is marginally higher for women who have been given DES (diethylstil-

bestrol) in the course of pregnancy
Hormone treatment 

after menopause
The risk of breast cancer is raised by the use of estrogen and progesterone during menopause

Biological vulnerability Family Background A mother, sister or daughter who experiences breast cancer may increase the risk
Ancestral Factor Hereditary modifications (genetic changes) may increase risk in certain genes, such as BReast 

CAncer gene (BRCA) 1 and 2
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Hormonal changes, genetics, breast density, and lifestyle are 
greatly affected the appearance of breasts. Understanding 
the morphology and physiology of usual breast tissue is an 
essential for predicting the any development of breast can-
cer and may aid in the early diagnosis of abnormal lesions. 
Figure 8 shows breast cancer detection in asymptomatic 
females.

Breast cancer diagnosis entails a variety of screening 
techniques to improve the accuracy of diagnosis. The well-
known breast cancer screening techniques are X-ray mam-
mography, breast ultrasound, Magnetic Resonance Imaging 
(MRI), and Positron Emission Mammography (PEM) [8]. 
X-ray mammography is the most effective technique. Breast 
Ultrasound uses sound waves to create a picture of tissues 
inside the breast. However, this technique suffers from low 
specificity, high cost, and a lack of availability [23]. The 
accuracy of breast ultrasound is approximately 67.8%. MRI 
is the another technique for breast cancer detection. It cre-
ates detailed images of organs by combining a large magnet, 
radio waves, and a computer. This technique has a higher 
sensitivity, however, high cost and low specificity that can 

lead to overdiagnosis [23, 64, 65]. The accuracy obtained 
from MRI may lie in the range of 70% to 72%. PEM is an 
alternate method for breast cancer screening [66]. It has high 
specificity as compared to the other techniques. However, 
it suffers from low sensitivity and high radiation expose. 
Breast cancer screening techniques are broadly categorized 
into three main groups such as physical, electrical, and 
mechanical (see Fig. 9).

5.2.1  Physcial Screening Techniques

The well-known physical screening techniques are mam-
mography, ultrasound, and MRI. The detail description of 
these techniques are given in the succeeding subsections.

5.2.1.1 Mammography Breast self-examination (BSE), 
Clinical breast examination (CBE), and mammography 
are commonly used screening techniques for breast cancer 
detection [67, 68]. Nowadays, digital mammograms are 
widely used for breast cancer detection. In digital mam-
mogram, X-rays are replaced with solid-state detectors that 

Fig. 8  Breast Cancer detection for asymptomatic women
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translate X-rays into electrical signals. It is also known as 
full-field digital mammography (FFDM). The detectors in 
digital cameras are identical. Electrical impulses are used 
to create breast images and displayed on a computer screen 
[69]. Computer-aided detection (CAD) solutions are cre-
ated to read mammographs. CAD systems usually interpret 
a mammogram and identify questionable places, which are 
investigated by the radiologist [70].

Ribli et al. [50] proposed a CAD program focused on 
Faster R-CNN. This program was able to classifiy malignant 
or benign tumors in a mammogram without user interven-
tion. Wang et al. [53] proposed an end-to-end method for 
mammographic diagnosis. This approach eliminated the 
manual preprocessing. The treatment of mammograms was 
introduced in one situation with a different approach focused 
on Multiscale (MS) system and Multi-Instance (MI) system. 
MS module selects the basic features of mammograms and 
MI module took the general situation into account in one 
event. The output of these modules are combined to get the 
better results. Heidari et al. [71] introduced a new computer-
aided diagnosis (CADx) scheme based on analysis of global 
mammographic image features. This research demonstrates 
the possibility to build a modern CADx mammogram 
high-performance global picture processing scheme. This 
technique is more effective and reliable than the previous 
techniques. Ekici et al. [51] utilized a convolution neural 
network (CNN) for thermographic breast cancer screening. 
They used five different processes namely, data acquisition, 
image processing, segmentation, extraction, and classifica-
tion. CNN provides better results than the other techniques 
in terms of prediction results.

5.2.1.2 Ultrasound Breast ultrasound is a common way to 
test for breast cancer as it allows the screening sensitivity 
can be increased in thick breasts [72–74]. Wang et al. [54] 

developed an automatic breast cancer diagnosis of Auto-
mated Breast Ultrasound System (ABUS). They showed a 
lack of control for the existence of the adaptive barrier at 
voxel stages for cancer and non-cancer patients. The sug-
gested network allows for an effective breast cancer screen-
ing scheme by utilizing ABUS with small false positives. 
Shen et al. [75] studied the comparative analysis of both 
mammography and breast ultrasound. It is observed that 
China's breasts appear to be tiny and compact. Ultrasound 
is a standard tool for screening the breast cancer in China. 
For clinical experiments, though, the efficacy and risks of 
mammograms were not measured. Nyayapathi et al. [76] 
introduced a new photoacoustic tomography device that 
displays angiographic features with mammogram-like 
images in the breast. The  mechanism  portrays a highly 
compact breast of two flat, 2.25 MHz transceiver clusters 
of 128 components, and line optical fiber bundles from 
top to bottom. The soft compression is done using silicone 
prints, which allows the woman more relaxed than hard 
metal plate used with conventional mammograms. Dual 
Scan Mammoscope (DSM) technology developed in this 
study acquired both ultrasound and photoacoustic breasts.

5.2.1.3 Magnetic Resonance Imaging Magnetic reso-
nance imaging (MRI) plays a significant role in medical 
field. The scan in this method is used to produce detailed 
images of the inner body utilizing intense magnetic fields 
and radio waves [77]. MRI scans are being used to inves-
tigate nearly any area of the body including the brain, 
bones, breasts, heart, and even  internal organs. MRI is 
widely used in breast cancer imaging. Sun et al. [78] iden-
tified glioma classification methods for the prediction of 
radiomics feature. MRI extracted quantitative features 
from tumor areas. The modality of extraction by radiom-
ics was greater than the other combinations of tumor area. 

Fig. 9  Classification of breast screening techniques
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Whereas, Li et  al. [35] used ultra-wideband microwave 
imaging for early breast cancer detection. They also used 
an ensemble empirical mode decomposition (EEMD) for 
direct extraction of tumor. Only isolated signals from as-
detected waveforms are required for the reconstruction of 
the picture for tumor detection. They used MRI to create 
more precise models for electromagnetic analysis. Here, 
a tumor of 4 mm in diameter within the glandular or at 
the interface between fat and the gland has been shown 
by the proposed procedure. In case the glandular tissue 
has a bigger dielectric constant of 35, tumor reaction may 
also be identified. Their research showed that the solu-
tion presented could serve as an important alternative to 
direct tumor response extraction. Mahrooghy et  al. [48] 
suggested the spatiotemporal dynamic properties of wave-
let from dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) to quantify breast cancer intra-tumor 
heterogeneity.

The receiver operating characteristic (ROC) and area 
under the curve (AUC) were computed to assess the perfor-
mance of classifier using leave-one-out (LOO) cross-valida-
tion. The heatwave features outperformed the other features. 
The combination of heatwave and standard features can fur-
ther enhance the performance of classifier [62]. Table 8 sum-
marize the physical scrrening techniques for breast cancer.

5.2.2  Electrical Screening Techniques

Impedance spectroscopy, thermography, transillumination, 
microwave imaging, and tomography are the well-known 
electrical screening techniques. The detail description of 
these techniques are given in the succeeding subsections.

5.2.2.1 Impedance Spectroscopy Researchers are using 
this technique to improve breast cancer detection tech-
niques. Haeri et al. [82] introduced two experimental breast 
cancer screening instruments namely, electrical impedance 
spectroscopy (EIS)-Probe and the EIS-Hand-Breast (EIS-
HB). EIS-Probe and EISHB system were able to assess 
the electrical properties of breast tissue. Cancerous tis-
sues were identified by determining the change in param-
eters of healthy tissues. Huerta-Nuñez et  al. [83] utilized 
the bioimpedance spectroscopy to investigate the cancer 
cells in an aqueous media. Experimental results revealed 
that impedance spectroscopy has a sufficient sensitivity for 
identification of extraordinarily low cancer cell composi-
tion in an aqueous solution. Lederman et al. [84] designed 
a seven-probe resonance-frequency-based electrical imped-
ance spectroscopy (REIS) system and used the data of 174 
females. Artificial neural network (ANN), support vector 
machine (SVM), and Gaussian mixture model (GMM) were 
used. The results revealed that ANN attained the maximum 
values of ROC and AUC as compared to the other classifi-

ers. REIS examinations provide the relevant information to 
build classifier for the stratification of breast cancer risk. 
Ward et  al. [85] evaluated the inter-arm impedance ratio 
range for evaluating the value of threshold as a standard for 
detecting lymphedema associated with breast cancer. When 
an impedance of 1106 is surpassed by a danger to the neu-
ronal limb and 1134 when the dominant limb is at danger, 
relative to those currently in use of 1066 and 1139, the exist-
ence of lymphedema is recorded. The variation in these val-
ues can be considered as the minor significance towards the 
clinical practice.

5.2.2.2 Thermography A special camera is used to meas-
ure skin temperature on the surface of the breast and is 
known as thermography. It is a non-invasive and radiation-
free research [86]. Ekici et al. [51] developed an automatic 
breast cancer detection technique. They used image process-
ing and analytics techniques to analyze the thermal images 
of breast. The feature extraction algorithm was proposed 
to extract the features for identification of breast images as 
regular or suspicious. Their technique attained the accuracy 
of 98.95% for the thermal images of 140 females. Jose-Luis 
et al. [87] proposed a technique to solve the inverse thermal 
transfer problem in the Levenberg Marquardt algorithm. 
This technique was used to identify and locate malignant 
tumors within the breast using a patient-specific digital 
breast model and clinical infrared imaging (IRI) images. 
Digital heat amplification systems were used to tackle the 
challenges occurred during the identification of size and 
position of malignant tumor within the breast. This tech-
nique can be combined with mammography to detect the 
breast cancer, especially in the case of dense breasts. In 
[52], the advancements in thermography-based techniques 
were investigated for breast cancer detection. It is observed 
from breast thermograms that breast cancer signs can be 
detected through the asymmetrical thermal spreads between 
breasts. Their study showed that the neural network systems 
enhanced the prediction accuracy of breast cancer ther-
mograms. Mambou et al. [88] explored an infrared digital 
imaging techniques for breast cancer. The basic assumption 
in this technique is that the increase in thermal activity in the 
precancerous tissues and the areas surrounding developing 
breast cancer. They concluded that infrared image process-
ing techniques require a CAD system for detection. Roslida 
et  al. [76] studied the three convolutional  neural network 
(CNN) models namely, ResNet101, DenseNet201, Mobile-
NetV2, and ShuffleNetV2 for breast cancer detection. Data-
base for Mastology Research (DMR) was used to evaluate 
the performance of above-mentioned models. DenseNet201 
was capable to classify both static or dynamic images. Tran-
sillumination.

Transillumination is a procedure used in an organ or 
part of the body to detect anomalies. The examination is 
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conducted in a dark room with a light-reflecting on a particu-
lar body segment to look under the skin [89]. It is an invasive 
method and is not being used much nowadays.

5.2.2.3 Microwave Imaging Microwave imaging is a 
promising method for detecting the early-stage breast can-
cer [90]. Li et al. [35] proposed a direct tumor response 
extraction technique based on the ensemble empiri-
cal mode decomposition for  early breast cancer detec-
tion. The extracted signals were used to reconstruct the 
image for tumor detection. diFlorio [91] designed some 
enhancements in both hardware and software for micro-
wave breast imaging. The hardware monitors the signals 
down to sub-centimeter screen resolution compatible with 
a test time of fewer than 2 min. The software resolves the 
huge time workload and produces accurate images in less 
than 20 min. They were able to produce the first micro-
wave tomographic images. Klemm et al. [90] studied the 
imaging of inhomogeneous breast phantoms for micro-
wave breast cancer. They introduced an image enhance-
ment algorithm, which utilizes the concepts of the delay 
and sum  algorithm (DAS) and coherence factor. Their 
proposed approach was able to reduce clutter and provide 
better images as compared to the previous techniques. 
Tuncay et al. [92] presented an effective way to design 3D 
microwave  models. Yin et  al. [34] suggested ultrawide-
band radar imaging for the breast cancer detection. Robust 
and Artifact Resistant (RAR) algorithm was developed to 
overcome the negative effects of both artifact and glan-
dular tissues. RAR enhanced the identification capacity, 
robust artefact resistance, and high detection range.

5.2.2.4 Tomography Tomography is a technique that 
creates images of single planes of tissue. Kao et al. [94] 
studied Electrical Impedance Spectroscopy (EIS) to locate 
and differentiate  cancer from normal tissues and benign 
tumors. The tumors are different from the normal tissue in 
terms of their conductivity and permittivity. The high con-
trast tissue, occurs between several kHz and several MHz, 
can be able to distinguish the malignant from benign. In 
a silicone phantom breast, the system can detect a 10 mm 
tumor in a silicone phantom breast. Baran et  al. [95] 
investigated the potential clinical usability phase-contrast 
micro-computed tomography (micro-CT)  with high spa-
tial Resolutions. SYRMEP beamline of the Elettra Syn-
chrotron was scanned with 10 breast tissue specimens of 
2 mm in diameter using the phase-contrast micro-tomog-
raphy propagation method. The high-resolution images 
was able to provide the detail tissue design assessment 
at a close-to-histological level. Table  9 summarizes the 
electrical screening techniques in terms of performance 
measures and datasets.
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5.2.3  Mechanical Screening Techniques

MR elastrography is a well-known mechanical screening 
technique. The detail description of this technique is men-
tioned in the succeeding subsection.

5.2.3.1 MR Elastrography In [96], electromechanical 
operators vibrate the breast in MR electrography and pro-
duce the acoustic sound waves. An algorithm was used 
to produce the quantative images from these waves. This 
technique was evaluated on six healthy persons and six 
patients. then described by MRI [96]. Goddi et  al. [97] 
presented a review on breast elastography. They discussed 
future techniques, which are not yet in clinical practice. 
Table 10 depicts the classification of breast cancer detec-
tion using MS Elastography.

6  Deep Learning Techniques for Breast 
Cancer

This section presents the importance of deep learning in the 
field of breast cancer followed by the classification of deep 
learning-based breast cancer detection techniques.

6.1  Importance of Deep Learning in Breast Cancer

The literature reports that machine learning is widely used 
technique for breast cancer research. K-Nearest Neighbor 
(KNN), support vector machines (SVM), and naive bayes 
classifier perform better in their respective fields. However, 
the tracking and detection processes in machine learning are 
done manually. For efficient cancer detection, the system 
needs to process 200 to 300 cells per frame, which is not 
possible through manual tracking. Hence, there is a need to 
develop the efficient methods for breast cancer detection. 
Whereas, deep learning can identify the complex patterns 
in raw data. Nowadays, deep learning is widely used to 
identify the breast cancer. According to a study published 
in Nature Medicine, deep learning models are capable of 
detecting breast cancer 1 to 2 years earlier than those with 
the standard clinical methods [98] would have. Deep learn-
ing models can learn the most relevant features to solve the 
problem optimally. Due to this, deep learning models can 
serve as the best hierarchical feature extractors [99]. The 
above-mentioned facts motivate the researchers to use learn 
and hence apply the deep learning techniques for breast can-
cer detection.

Ta
bl

e 
10

  
C

la
ss

ifi
ca

tio
n 

of
 b

re
as

t c
an

ce
r d

et
ec

tio
n 

us
in

g 
M

S 
El

as
to

gr
ap

hy

Re
fe

re
nc

es
C

la
ss

ifi
ca

tio
n 

m
od

el
Pe

rfo
rm

an
ce

 m
ea

su
re

s
C

ha
lle

ng
es

A
dv

an
ta

ge
s

[9
6]

A
co

us
tic

 sh
ea

r w
av

es
 g

en
er

at
in

g 
de

vi
ce

 +
 el

as
tic

ity
 im

ag
in

g +
 an

 a
lg

or
ith

m
 

fo
r p

ro
ce

ss
in

g 
th

e 
w

av
e 

im
ag

es
 to

 g
en

er
-

at
e 

qu
an

tit
at

iv
e 

im
ag

es
 d

ep
ic

tin
g 

tis
su

e 
sti

ffn
es

s +
 pr

ot
ot

yp
ic

 b
re

as
t M

R
 e

la
sto

g-
ra

ph
y 

te
ch

ni
qu

e +
 re

su
lts

Th
e 

re
su

lts
 c

on
fir

m
 th

e 
hy

po
th

es
is

 th
at

 
th

e 
pr

ot
ot

yp
ic

 b
re

as
t M

R
 e

la
sto

gr
ap

hi
c 

te
ch

ni
qu

e 
ca

n 
qu

an
tit

at
iv

el
y 

de
pi

ct
 th

e 
el

as
tic

 p
ro

pe
rti

es
 o

f b
re

as
t t

is
su

es
 in

 v
iv

o 
an

d 
re

ve
al

 h
ig

h 
sh

ea
r e

la
sti

ci
ty

 in
 k

no
w

n 
br

ea
st 

tu
m

or
s

C
on

si
de

ra
bl

e 
sc

op
e 

ex
ist

s f
or

 te
ch

ni
ca

l 
im

pr
ov

em
en

t t
o 

de
te

rm
in

e 
th

e 
po

ss
ib

le
 

pe
rfo

rm
an

ce
 o

f a
n 

op
tim

iz
ed

 M
R

 e
la

sto
-

gr
ap

hi
c 

te
ch

ni
qu

e 
in

 te
rm

s o
f r

es
ol

ut
io

n 
an

d 
qu

an
tit

at
iv

e 
ac

cu
ra

cy

Th
ei

r w
or

k 
sh

ow
s t

ha
t i

t i
s f

ea
si

bl
e 

to
 u

se
 

a 
te

ch
ni

qu
e 

co
m

bi
ni

ng
 M

R
 im

ag
in

g 
an

d 
ac

ou
sti

c 
te

ch
no

lo
gi

es



4617A Systematic Review on Breast Cancer Detection Using Deep Learning Techniques  

1 3

6.2  Deep Learning‑Based Breast Cancer Detection 
Techniques

Deep learning architectures are successfully used in the 

detection of breast cancer. Figure 10 shows the general 
framework for breast cancer detection using deep learning 
technique.

Fig. 10  General framework for breast cancer detection using deep learning

Fig. 11  Classification of Breast 
Cancer Detection Techniques
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The breast cancer detection techniques are broadly cat-
egorized into four classes such as image enhancement, 
lesion segmentation, feature extraction, and classification 
techniques (see Fig. 11). Deep learning techniques are used 
in fourth category, i.e., classification. Figure 12 shows the 
connection of authors with the deep learning techniques that 
are used for breast cancer detection from last 5 years.

Wang et al. [53] used ResNet-50 to detect breast lesion 
regions. They used self-created dataset with the help of West 
China Hospital. Wang et al. [54] created a dataset using 

the Invenia ABUS system in Sun Yat-Sen University Can-
cer Center. They used Unet and DDS pooling to enhance 
the detection sensitivity for breast cancer. The sensitivity 
obtained from their model was 0.95. Shu et al. [55] used 
INbreast dataset and CBIS dataset for breast cancer detec-
tion. Pre-trained CNNs and deep machine learning models 
were used for classification of breast lesion region. Heidari 
et al. [4] used SVM classifier for breast image. Fu et al. [100] 
proposed a model to predict Invasive Disease-Free Survival 
(iDFS) for the early-stage breast cancer patients. They used 

Fig. 12  Chord chart showing the connection of author with deep learning and machine learning techniques from last 5 years
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XGBoosting and attained the AUC of 0.845. The dataset was 
self-created with the help of CRCB in West China Hospi-
tal of Sichuan University. Nyayapathi et al. [76] shown the 
fusion of ultrasound images with photoacoustic images for 
the early detection of breast cancer. Experimental results 
revealed the improvement in probability, speed, and also the 
patient's comfort zone. Ekici et al. [51] used CNN classifier 
on DMR dataset and obtained the accuracy of 98.95%.

Yin et al. [34] proposed a new scheme for the early detec-
tion using UWCEM database. They created 3-D anatomi-
cally accurate FDTD-based breast models, which resulted 
in improved identification capability, robust artifact resist-
ance, and high detectability of tumors. Srivastava et al. [81] 
used different SVM classifiers (i.e., MLP, Quadratic, linear, 
and RBF) to achieve good accuracy. SVM-RBF performed 
better than the others. SVM-RBF attained the accuracy 
of 87.5%. Dheeba et al. [101] worked on the detection of 
tumors from breast tissue structure using a mammogram. 
MIAS dataset and ANN classifier were used. The recogni-
tion score obtained from this method was 97.8%. Wang et al. 
[53] used SoftMax classifier on DDSM dataset to detect the 
size of breast lesions. The value of AUC obtained from this 
method was 0.865. However, there is a need to develop more 
advance automatic breast cancer detection techniques to 
improve the diagnosis of breast cancer. Table 11 shows the 
advancement in breast cancer detection techniques.

6.3  Comparative analysis

The effectiveness of deep learning-based breast cancer 
detection  techniques is assessed using the performance 
measures mentioned in Sect. 4. Table 12 shows the com-
parative analysis of deep learning and machine learning 
techniques in terms of performance measures. In this table, 
denotes that the approach has used the associated perfor-
mance meaures, while indicates otherwise. The quantative 
analysis of different deep learning and machine learning 
techniques is illustrated in Table 13.

7  Discussion

In order to assist in cancer treatment, diagnostic imaging 
modalities are important for tumor classification. Over the 
last few years, imaging is considered an important tool 
for the diagnosis of tumors. Various screening techniques 
are used to detect and characterize the tumors. Screening 
techniques do not prevent cancer, however, they make early 
detection possible to make the patient alert for their treat-
ment. Every screening technique has its own advantages 
and disadvantages. The most common screening method 
for breast cancer detection is an X-ray mammogram. Breast 

Ultrasound creates an image of tissues inside the breast 
using sound waves. The advantages involve non-invasive, 
quick visualization of breast tissue, the area closest to the 
chest wall, which is difficult to study with a mammogram, 
can be seen with ultrasound. Breast ultrasound has a low 
specificity and is more expensive. MRIs use a large magnet 
and radio waves to produce excellent tissue differentiation 
and sensitivity for breast cancer detection. CT scan images 
are made up of X-rays taken from various angles. Patients 
look for non-invasive and non-contact screening techniques 
as all the above-mentioned techniques involve contact. 
Thermography is one such technique. It uses infrared sen-
sors to detect heat and increased vascularity as the result of 
biochemical reactions. Table 14 depicts the comparison of 
different breast tumor screening techniques in terms of pros 
and cons.

The performance of system can be judged by its accu-
racy, sensitivity, and specificity. The value of these measures 
should be high to achieve good results. When the likelihood 
of malignancy is established using a system, lively observa-
tion or biopsy can be recommended to evade inadequate and 
further invasive treatment. The main focus of this study is 
multi-scale module to improve the performance.

7.1  Relevance of Clinical Validation

Cancer severity can be measured through cancer research 
by describing a normal or abnormal state of cancer in the 
individual [113–115]. For this, the performance measures of 
cancer detection techniques are analyzed. In terms of clini-
cal relevance, a cancer detection study may assess the risk 
of developing cancer in a specific tissue, or it may assess 
the risk of cancer progression or response to therapy. The 
conceptual framework of cancer research is mentioned in 
Fig. 13. The framework involves multiple processes, link-
ing initial discovery in basic studies, validation, and clinical 
implementation.

A  technique is discovered at the start of any cancer 
research technique development, and it is typically validated 
within the same initial report. When independent patient 
sets are not available, cross-validation-based methods are 
frequently used to replace validation based on a predefined 
prediction rule in an independent patient series. Prior to the 
analysis, the research question and plan, as well as the fun-
damental use of the technique, research design is clearly 
defined. Analytical validation is carried out after the new 
cancer research development phase  [116]. This demon-
strates how accurately and consistently the test measures 
the patient's analyte(s). Next is clinical validation, it tests to 
confirm its ability to predict or diagnose the clinical phe-
notype or outcome of interest, as demonstrated during the 
discovery and initial validation phases. A cancer detection 
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technique that has been analytically and clinically validated 
is now ready for use in clinical care.

8  Future Research Directions

Many females overlook the need of breast cancer diagnosis 
because they find it discomforting. Most of the breast cancer 
screening techniques are invasive. An alternative technique 
is required for breast cancer screening in which the skin is 
not pierced. The possible future research directions are as 
follows:

8.1  Ensure Safe Engagement

Safety is a major issue when radioactive rays or ionizing 
radiation are directly exposed to one's body. Many screening 
techniques use harmful waves that may cause the allergic 
reaction or contraindicate in some patients [117–119]. A 
system should be designed in such a way that it uses non-
ionizing radiations and also provides accurate results.

8.2  Multimodal Approaches

Multimodality-based approach should be considered for 
the detection of breast cancer at an early stage. Screening 
tools for breast cancer need to expand their expertise by 
providing the multimodal method to enhance the preci-
sion by improving the outcome of screening techniques.

Table 12  Comparative analysis 
of braest cancer detection 
techniques in terms of 
performance measures

References Technique Prediction measure Classification measure

µ σ MSE RMSE PSNR PPV Sn Ac Sf AUC-ROC

[104] Resnet-34, VGG16 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔
[105] Resnet50, VGG16 ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔
[50] VGG16 ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔
[106] Linear regression ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘
[54] 3D-Unet ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[55] DenseNet169 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔
[107] MVPNet ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔
[108] EfficientNet ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔
[109] AFExNet ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔
[110] GoogLeNet, AlexNet ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✔
[111] Random forest ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔
[112] DTree, RF, XGBoost ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘

Table 13  Quantitative 
assessment of breast cancer 
prediction technique on 
classification measures

References Technique Classification measures

PPV Sn Ac Sf AUC-ROC

[104] Resnet-34, VGG16 – – 89.0% – 0.950
[105] Resnet50, VGG16 – 86.7% – 96.1% 0.98
[50] VGG16 – 0.9 – – 085
[106] Linear Regression – – 92.43 ± 0.657 – –
[54] 3D–Unet 0.84 95% – – –
[55] DenseNet169 – 0.923 ± 0.0003

0.762 ± 0.0002
0.762 ± 0.0002
0.838 ± 0.0001

[107] MVPNet – 94.2 ± 2.2% 92.2% 92.3 ± 2.4% 0.91 = /–0.05
[108] EfficientNet 0.819 0.74 90.2% 95% 0.93
[109] AFExNet 98.57 98.58 98.57 98.57 –
[110] GoogLeNet, AlexNet 0.7051 – – – 0.925
[111] Random forest – – 84% – 0.84–0.86
[112] DTree, RF, XGBoost – 0.8429 86.96% 0.8964 –
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8.3  Model Generalization

A variety of deep learning models are used in breast 
cancer research. Deep learning models provide different 
results for different application site [120, 121]. Hence, 

there is a necessity to develop the generalized model for 
breast cancer detection.

8.4  Clinical Implementation

Deep learning-based breast cancer detection models proved 
their significance in the medical research. However, the 
practical implementation of these models in clinics is still 
not done [122]. The implementation of these model in clin-
cis will be beneficial for doctors.

Table 14  Comparison of different breast tumor screening techniques for diagnosis of tumor

Screening Technique Spatial Resolution Advantages Disadvantages Image

Mammogram Lower
Spatial
resolution

Time efficient, requires 
lower average radiation 
dosage

Lower spatial resolution, 
uses X-rays, costly

 
CT Scan High spatial reso-

lution
Precise, High spatial resolu-

tion,
Uses X-rays, can cause 

allergic reaction

 
MRI High spatial reso-

lution
No-ionizing radiation, high 

sensitivity, good tissue dif-
ferentiation

Costly, invasive procedure, 
low specificity

 
Ultrasound Moderate spatial 

resolution
Less expensive, uses sound-

waves
Low specificity, not able to 

detect all types of tumors

 
Thermography Low spatial resolu-

tion
Non-invasive, does not 

involve exposure to radia-
tion

It can only alert a person 
to changes that may need 
further investigation
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9  Conclusions

There are several methods for diagnosis and planning of 
initial breast cancer screening such as mammography, CT, 
breast ultrasound, MRI, and thermography. The outcome 
of these screening procedures help the doctors to aid in the 
selection of treatment or track the status of recovery. The 
aim of this paper is to provide the useful information to 
recognize and classify the breast tumor to make the early 
detection so that life can be saved. An attempt has been 
made to investigate the breast cancer detection using dif-
ferent intelligent systems along with their datasets. In addi-
tion to recent developments in various imaging techniques, 
the problems associated with the existing techniques have 
also been discussed. The possible future research direc-
tions for the ideal imaging modality are also suggested. 
In the wake of the limitations of existing techniques, it is 
imperative to improve the existing techniques for breast 
cancer detection as the core of personalized medicine and 
healthcare remains to determine the most suitable screen-
ing modality for the proper diagnosis of breast cancer.
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