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Abstract
Linear solvers for reservoir simulation applications are the objective of this review. Specifically, we focus on techniques for 
Fully Implicit (FI) solution methods, in which the set of governing Partial Differential Equations (PDEs) is properly discre-
tized in time (usually by the Backward Euler scheme), and space, and tackled by assembling and linearizing a single system 
of equations to solve all the model unknowns simultaneously. Due to the usually large size of these systems arising from 
real-world models, iterative methods, specifically Krylov subspace solvers, have become conventional choices; nonethe-
less, their success largely revolves around the quality of the preconditioner that is supplied to accelerate their convergence. 
These two intertwined elements, i.e., the solver and the preconditioner, are the focus of our analysis, especially the latter, 
which is still the subject of extensive research. The progressive increase in reservoir model size and complexity, along with 
the introduction of additional physics to the classical flow problem, display the limits of existing solvers. Intensive usage of 
computational and memory resources are frequent drawbacks in practice, resulting in unpleasantly slow convergence rates. 
Developing efficient, robust, and scalable preconditioners, often relying on physics-based assumptions, is the way to avoid 
potential bottlenecks in the solving phase. In this work, we proceed in reviewing principles and state-of-the-art of such linear 
solution tools to summarize and discuss the main advances and research directions for reservoir simulation problems. We 
compare the available preconditioning options, showing the connections existing among the different approaches, and try to 
develop a general algebraic framework.

1  Introduction

Reservoir simulators play a central role for the proper man-
agement of oil and gas fields during their whole life cycle, 
from early explorations to decommissioning. These tools 
have witnessed a constant evolution during the decades, from 
the first pioneering flow models to the actual general purpose 
simulators, capable of reproducing a number of physical pro-
cesses taking place at the subsurface. The drivers of such 

development include, in particular, the demand for a higher 
accuracy of the simulation and the ambition of reproducing 
the most recent and complex field exploitation techniques, 
such as cutting-edge Enhanced Oil Recovery (EOR) strate-
gies [1–4] or environmental impact mitigation projects, e.g., 
Carbon Capture and Storage (CCS) and Carbon Capture, 
Utilization and Storage (CCUS) [5–7]. The expansion of the 
simulation capabilities, however, goes hand in hand with the 
explosion of the numerical challenges to be faced and results 
in a growing complexity of the simulators.

The algorithmic structure of a reservoir simulator 
includes several different modules, as illustrated in Fig-
ure 1. Developing or simply utilizing a simulation tool 
requires an adequate knowledge of its components, start-
ing from the underlying physical model, which is math-
ematically described by a set of continuous Partial Dif-
ferential Equations (PDEs), and the relevant discretization 
schemes used to convert it into a system of discrete equa-
tions that can be solved numerically. The PDEs govern-
ing the flow of multiple fluids in a porous medium form 
a set of nonlinear coupled equations. Non-linearity is 
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frequently treated with a Newton-like scheme, while cou-
pling is addressed with the Fully Implicit (FI) approach. 
The core of the simulator is the linear solver, which is 
usually part of a library of different linear algebra tools 
linked to the code. The Newton iteration requires the solu-
tion to a sequence of large-size, often non-symmetric and 
ill-conditioned, linear(ized) systems of equations. This is 
the most time and resource consuming task during a full-
transient reservoir simulation, generally requiring from 
60% to 80% of the total simulation time [8–11]. Moreo-
ver, the fact that a set of simulations is customarily run, 
for either history matching, production optimization, or 
uncertainty quantification purposes, can make the compu-
tational load not affordable even with the most recent and 
powerful platforms.

It is not unusual that users and programmers of reservoir 
simulators consider the linear solver library as a “black-
box”, supplied with a system of linear(ized) equations 
and somehow producing the solution. Understanding and 

managing the linear solver, however, is crucial to have a 
full control of the simulator and minimize the solution time 
through an efficient setup.

Roughly speaking, linear solvers can be classified as 
either direct or iterative, the latter being practically man-
datory on modern computational architectures and for the 
current model sizes. While preconditioned Krylov subspace 
methods [12] stand out clearly for their flexibility and ease 
of use, the choice of the preconditioner is key for the overall 
solver efficiency and robustness.

Since hardware technology and software development 
are strictly interwoven, the opportunities and challenges 
of parallel computing must be considered as well, as this 
has become the standard playground for linear solvers. 
Multicore CPUs, massively distributed memories and, 
more recently, GPU-based architectures have strongly 
impacted the way a linear(ized) system of equations is 
solved, often stimulating the development of novel tech-
niques specifically designed to fully exploit the new 

Fig. 1   Typical workflow of an FI reservoir simulator. The red boxes 
highlight the task and tools reviewed in this work. In the figure, t 
denotes time, T the end-point simulated time, Δt the time increment, 

� the tolerance of the nonlinear solver and x(j)n  is the vector gathering 
the problem unknowns with j the iteration counter and n the time step
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hardware capabilities. In this regard, new supercomput-
ers worldwide are equipped with an increasing number 
of GPUs and the trend is to take over CPUs, thereby pro-
viding most of the peak floating-point performance (see 
also [13]).

As any other specific simulator, reservoir models 
are characterized by particular challenges that require a 
special treatment also from the linear solver viewpoint. 
Especially in the past two decades, several works have 
been dedicated to the preconditioning of linear solvers 
for reservoir simulators, tackling the problem from dif-
ferent perspectives. In this work, we aim at reviewing the 
current state-of-the-art about linear solvers in reservoir 
simulators, with particular care devoted to the available 
options for the preconditioning of Krylov subspace meth-
ods. The objective is to fix a standpoint on the state of the 
research on this topic, also trying to identify and develop 
a sort of unitary algebraic framework enveloping most 
of them.

The audience targeted by this paper consists of spe-
cialists in reservoir simulation and users of linear solvers. 
Therefore, before moving on to higher-level discussions 
of recent advancements in the field, we will try to lay the 
groundwork by recalling some necessary theoretical fun-
damentals about Krylov subspace solvers and precondi-
tioning techniques.

The rest of the paper is structured as follows. First, the 
model problem for reservoir simulation will be presented 
with its governing PDEs. Based on the associated proto-
type system of equations, the most efficient iterative solv-
ers will be presented and subsequently the issue of precon-
ditioning addressed. The systems of equations originating 
in reservoir simulations typically exhibit a mixed elliptic/
hyperbolic character, with the pressure block being nearly 
elliptic and the saturation/concentration part being almost 
hyperbolic. The preconditioning of such systems leverages 
this internal partition into elliptic/hyperbolic blocks by 
establishing a global strategy built on top of local pre-
conditioners, which exploit the specific algebraic prop-
erties of each block. This approach is thus based on an 
interplay between a global preconditioning framework and 
the local preconditioners. Therefore, after reviewing the 
most popular preconditioners suitable for local problems, 
we will consider global techniques. A comparison of the 
available preconditioning options, with the development 
of a unifying framework, concludes the paper, along with 
a discussion of the outlook and future directions.

2 � The Model Problem

Reservoir simulation is the generic identification of several 
different types of models based on flow and transport equa-
tions in porous media (see, for instance, [14] for a system-
atic review). The differences depend on the number of fluid 
phases being considered, the thermal state of the reservoir, 
either isothermal or nonisothermal, the presence of fractures 
or whether hydrocarbon components are modeled or not, just 
to cite a few common features.

With the aim at being as general as possible, we present 
here the mathematical model describing the multiphase, 
multi-component, and nonisothermal flow of compressible 
fluids in porous media including gravitational and capillary 
effects. It represents a general mathematical framework from 
which other models can be derived, usually by neglecting 
some components. Note that the following model formula-
tion serves only as a reference to introduce the quantities 
and operators that are typically encountered in the applica-
tions of interest. The solving techniques that will be intro-
duced in the sequel are not restricted to a particular model 
formulation.

2.1 � Nonisothermal Multiphase Multi‑Component 
Flow Model

The model describes the flow of a number of fluid compo-
nents partitioned into three coexisting phases: aqueous, oleic 
liquid, and gaseous/vapor. The governing equations can be 
grouped into three sets, namely, conservation, thermody-
namic and local constraint equations.

2.1.1 � Conservation Equations

In a multi-component nonisothermal flow model, the con-
servation of both mass and energy is enforced. Let np and 
nc denote the number of phases and components, respec-
tively, whereas Ω is the physical domain and t is the time 
variable spanning the open temporal domain � =]0, T[ . The 
mass conservation equation is written for each component 
c ∈ {1,… , nc} [14, 15]:

where � is the medium porosity and �c� , �� , S� and q
�
 denote 

the concentration of component c in phase � , the relevant 
phase density, saturation and sink/source term, respectively.

(1)

�

�t

(

�

np
∑

�=1

�c���S�

)

+ ∇ ⋅

(

np
∑

�=1

�c���v�

)

=

np
∑

�=1

�c���q� , on Ω × � ,
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The velocity vector v
�
 is provided by Darcy’s equation, 

rearranged by Muskat and Meres [16] to account for the 
simultaneous flow of multiple fluids in a porous medium:

Here K is the permeability tensor, �
�
= kr�∕��

 is the phase 
mobility factor, with kr� and �

�
 the relative permeability and 

the dynamic viscosity of phase � , p
�
 is the phase pressure, 

�
�
 is the specific gravity and h is the depth.
The capillary pressure is defined as the difference 

between the pressures of a non-wetting ( � ) and wetting ( � ) 
phase:

Typically, pc,�� depends non-linearly on the saturation of 
the wetting phase.

The energy conservation equation reads [14, 17]:

where U
�
 and H

�
 are the internal energy and enthalpy of 

phase � , respectively, �r and Cr are the density and specific 
heat capacity of the rock, T is temperature and �T is the 
thermal conductivity.

Following the natural variables formulation [18], the 
phase pressures, p

�
 , the phase saturations, S

�
 , the molar 

fractions of the components, �c� , and temperature, T, are 
elected as primary unknowns. The material parameters in 
Equations (1), (2), and (4) generally depend on the position 
vector and the primary variables through empiric tables or 
analytical relationships, such as Brooks-Corey’s model [19] 
for the relative permeability. The nature of these relation-
ships is often nonlinear and, in some cases, hysteretic.

2.1.2 � Thermodynamic Equilibrium Equations

A usual assumption in multiphase multi-component models 
is the instantaneous thermodynamic equilibrium, which pre-
scribes the equality of the fugacities for each component [14, 
20]:

Moreover, the following relationships hold:

(2)v
�
= −�

�
K
(

∇p
�
− �

�
∇h

)

, ∀� = {1,… , np}.

(3)p
�
− p

�
= pc,�� , ∀� ≠ �.

(4)
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(5)
fc�(p,�c�) = fc�(p,�c�),

∀� ≠ � ∈ {1,… , np} ∧ c ∈ {1,… , nc}.

In Equations (6) and (7), zc is the overall molar fraction of 
component c and �

�
 is the molar fraction of phase �:

Usually, the fugacity, fc� , is a nonlinear function of p and 
�c� . Here it is assumed that p and zc are known, whereas �c� 
and �

�
 are not.

In compositional simulations, the phase state of the sys-
tem is determined with a two-step procedure performed at 
the element level. At the first stage, the number and type of 
coexisting phases is evaluated and three possibilities apply: 
hydrocarbons are present as oleic liquid, gaseous/vapor or 
both. This evaluation is traditionally carried out by either 
minimizing Gibbs energy or resorting to the phase stabil-
ity analysis [15]. Whether the first stage analysis indicates 
a transition from a single-phase to a two-phase condition, 
flash calculations are performed, as a second step, in order 
to determine the �c� components and �

�
 molar fractions.

2.1.3 � Local Constraint Equations

The set of Equations (1)-(7) is under-constrained, hence 
additional relationships are needed to mathematically close 
the system. Usually they have a local nature, in the sense 
that they depend only on the unknowns belonging to a single 
element, and read:

The problem outlined by Equations (1), (2), and (4) with 
the supporting relationships (3), (5)- (9), is well-posed once 
appropriate initial and boundary conditions are supplied.

2.2 � The Numerical Model

The mathematical model, described by the set of govern-
ing PDEs and constraint equations defined in Sect. 2.1, 

(6)zc −

np
∑

�=1

�
�
�c� = 0, ∀c ∈ {1,… , nc},

(7)
np
∑

�=1

�
�
= 1.

zc =

∑np

�=1
�c�S���

∑np

�=1
S
�
�
�

,

�
�
=

S
�
�
�

∑np

�=1
S
�
�
�

.

(8)
nc
∑

c=1

�c� = 1, ∀� ∈ {1,… , np},

(9)
np
∑

�=1

S
�
= 1.
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is highly nonlinear and requires an appropriate numeri-
cal treatment to be solved. Beside the FI method, sequen-
tial techniques, such as the classical Implicit Pressure 
Explicit Saturation (IMPES) [21], the Sequential Implicit 
(SI)  [22–24], and, more recently, the Sequential Fully 
Implicit (SFI)  [25–33] schemes, have been proposed. 
These methods leverage the mixed elliptic/hyperbolic 
character of reservoir problems to decouple the flow and 
transport processes and tackle them sequentially. This 
allows to use specialized and efficient solvers for each 
problem, with the overall success of the method depend-
ing on the strength of the pressure/transport coupling. 
Notice that this factor can change during a transient simu-
lation due to the variable flow conditions that are often 
experienced in highly heterogeneous media and com-
plex well operations [34]. Recent advancements with the 
SFI method can prove close to the FI approach in a wide 
number of applications. The Adaptive Implicit Method 
(AIM) [11, 35, 36] is another popular approach blending 
the robustness of the FI method with the computational 
efficiency of explicit techniques. In this paper, we stick 
to the FI method because of its unconditional stability, 
robustness, good convergence rate, and broad use in many 
academic and industrial simulators. On the other hand, the 
need for the solution to a sequence of large-size, usually 
non-symmetric, and possibly ill-conditioned systems of 
linearized equations makes the FI method computation-
ally expensive and motivates the design of robust and fast 
linear solvers.

A second key ingredient for the design of a reservoir 
simulator is the use of appropriate discretization schemes, 
which allow to convert the governing continuous PDEs 
into a discrete nonlinear problem. A number of schemes 
is available from the literature. As to Darcy’s law in Equa-
tion (2), a quite common choice is the Two-Point Flux 
Approximation (TPFA) [21], whose popularity is due to 
the straightforward implementation, compact stencil and 
monotonicity. However, an accuracy loss can be observed 
with non �-orthogonal grids and full-tensor permeabilities 
(see, for instance, [37–39] and references therein). Other 
schemes have been introduced to cope with this limitation 
at the cost of a greater complexity, e.g., the Multi-Point 
Flux Approximation (MPFA) [39–44], the family of Mixed 
Finite Element (MFE) methods with its hybridized ver-
sion, the Mixed Hybrid Finite Element (MHFE) [45–52], 
or, more recently, the Mimetic Finite Difference (MFD) 
method [44, 53–61], to mention some. Conversely, the 
continuity equations (1) and (4) are usually discretized by 
the Finite Volume (FV) method, where the grid elements 
are used as control volumes. This guarantees that the mass/
energy balance is enforced locally and the velocity field is 
conservative, the latter being a key requirement for accu-
rate transport computations. Finally, the time dependency 

is usually addressed by means of low-order Finite Dif-
ference (FD) methods, such as the unconditionally stable 
Backward Euler scheme.

2.3 � The Solving Phase

As mentioned earlier, addressing the discretized coupled 
Equations (1), (2), and (4) with the FI method and a New-
ton-like linearization technique requires the solution to a 
sequence of large-size, and possibly ill-conditioned, sys-
tems of linear equations at each time step, where all the 
unknowns, i.e., pressures, saturations, temperature, and 
molar fractions of the components, are updated simultane-
ously. For the sake of generality, we can organize the Jaco-
bian matrix and unknown vector in homogeneous blocks, 
according to the different nature of the variables involved. 
This approach is also denoted as unknown-wise ordering. 
While pressures exhibit an elliptic behavior with a global 
effect on the system solution, saturations and molar frac-
tions of the components have a hyperbolic nature, affecting 
the solution locally and propagating in time. On the other 
hand, temperature shows a hybrid character, i.e., elliptic or 
hyperbolic whether the diffusive or advective component 
prevails, respectively. In any case, following the subdivision 
into elliptic (or pressure-like) and hyperbolic (or saturation-
like) unknowns, the Jacobian system of equations can be 
arranged in a 2 × 2 prototypical structure:

where App ∈ ℝ
n1×n1 ,  Aps ∈ ℝ

n1×n2  ,  Asp ∈ ℝ
n2×n1 and 

Ass ∈ ℝ
n2×n2.

The properties of the blocks in A can differ significantly 
according to the selected discretization schemes. Assess-
ing such properties beforehand is crucial in order to select 
the most appropriate solver and design an efficient precon-
ditioning strategy for the application at hand. A is sparse, 
but the stencil, hence its sparsity degree and structure, may 
vary substantially with the discretization schemes. From the 
algebraic stance, important properties are symmetry and 
definiteness of the leading blocks, while the whole matrix 
A is usually non-symmetric. The different reservoir simula-
tion models and available discretization schemes produce 
linearized systems with the structure shown in Equation (10) 
and variable properties. This observation motivates why a 
unique robust and efficient solver is not yet available in lit-
erature, but a wide range of methods and preconditioners 
has been developed.

In the next section, we will review and summarize the 
most used iterative solvers for reservoir simulators, while in 

(10)Ax = b ⇒

[

App Aps

Asp Ass

] [

xp
xs

]

=

[

bp
bs

]

,
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Sect. 4 we will deal with the issue of preconditioning and 
describe the most common techniques.

3 � Linear Solvers

Let us assume existence and uniqueness of the solu-
tion of system (10). Of course, simply inverting A , i.e., 
x = A

−1b , is not an option. The numerical solution to 
a system of linear equations must be rather carried out 
with the aid of sparse direct or iterative solvers. In their 
basic setup, direct solvers recast the system to a triangular 
structure by a smart sequence of linear combinations of 
the equations. The interested reader is referred to [62] 
for an exhaustive survey of such solvers. By distinction, 
iterative methods build a sequence of approximations 
converging to the solution by successive corrections. Let 
x ∈ ℝ

n , with n = n1 + n2 , be the solution A−1b of sys-
tem (10) and x0 an arbitrary guess of x . Iterative methods 
exploit a recurrent algorithm whose application gener-
ates the sequence of vectors xk , with k the iteration coun-
ter, starting from the seed x0 . The algorithm converges 
if limk→+∞ xk = x , or, alternatively, limk→+∞ rk = 0 , with 
rk = b −Axk the residual vector. In practice, the loop 
is stopped when xk is “close enough” to x according to 
some exit criteria. A typical stopping criterion relies on 
checking the size of a norm of the residual, ‖rk‖ , e.g., 
‖rk‖ < 𝜏‖r0‖ for a user-specified tolerance �.

It is beyond the scope of this work to discuss the pros 
and cons of direct and iterative solvers. Generally speak-
ing, direct solvers are highly competitive for relatively 
small-size systems, while iterative methods become more 
and more efficient as the number of unknowns increases. 
In this context, by “efficiency” we mean a measure of 
the computational burden and memory storage required 
to solve a system of equations at a given precision. For 
the systems arising from reservoir simulations, Krylov 
subspace solvers are mandatory in practice because of 
(i) their low storage requirement, (ii) the small set of 
computational kernels needed for their implementation, 

i.e., sparse matrix-by-vector, scalar products, and vec-
tor updates only, and (iii) their scalability in parallel 
simulations [12].

3.1 � Krylov Subspace Solvers

Given an arbitrary initial guess, x0 , and the associated 
residual, r0 , Krylov subspace methods look for the approxi-
mate solution xm at the m-th step of the recurrent procedure 
as [12]:

with Km(A, r0) the so-called Krylov subspace of size m gen-
erated by A and r0:

Km(A, r0) , also referred to as trial space, is progressively 
enlarged at each iteration by adding a new vector to the basis 
r0 , Ar0 , … , Am−1r0 (Figure 2a). At m = n + 1 , the newly 
added vector, Anr0 , is linearly dependent with the previous 
ones and the subspace can be no longer expanded. Hence, 
Kn(A, r0) ≡ ℝ

n and it necessarily contains x . This entails 
that, in exact arithmetic, Krylov subspace methods have a 
finite termination, finding x at most after n iterations. At 
each step, xm is computed by orthogonalizing the current 
residual, rm , to a second vector subspace, Tm , also called test 
space. Depending on the choice of Tm , manifold variants can 
be defined, and for some of them the iterative solution xm 
satisfies some optimal properties in the current trial space.

The family of Krylov subspace solvers consists of sev-
eral different methods. Among them, the most popular tech-
niques used in reservoir simulators are: the Conjugate Gra-
dient (CG), the Generalized Minimum Residual (GMRES) 
and the Bi-Conjugate Gradient Stabilized (Bi-CGStab). 
CG is suitable for Symmetric Positive Definite (SPD) sys-
tems, while GMRES and Bi-CGStab can be used with any 
matrix. The interested reader is referred to [63] for a thor-
ough presentation of the solvers’ algorithms. Other solvers 
are part of the Krylov subspace family, such as Minimal 

(11)xm = x0 + y, for y ∈ Km(A, r0),

(12)Km(A, r0) = span
{

r0,Ar0,A
2r0,… ,Am−1r0

}

.

(a) (b)(a) (b)

Fig. 2   Graphical interpretation of the Krylov subspace Km(A, r0) enlargement within a vector space Q = ℝ
n
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Residual (MINRES) [64] or Orthogonal Minimum Residual 
(ORTHOMIN) [65] for indefinite and non-symmetric sys-
tems, respectively. The latter, in particular, was developed 
within the reservoir simulation community and enjoyed 
some popularity during the ’70s and ’80s (see, for instance, 
[36, 66, 67]), being later shadowed by the introduction of 
GMRES and Bi-CGStab, as shown, for example, in [68]. 
These solvers are, in fact, the usual default choice in most 
of the mainstream commercial simulators, e.g., [11, 69–72], 
although ORTHOMIN is still used in Eclipse 100 [71].

CG for SPD systems was originally introduced by 
Hestenes and Stiefel [73]. The test space is set equal to the 
trial space, i.e., Tm ≡ Km(A, r0) . It can be proven (see [12] for 
details) that the m-th iterate, xm , is optimal in the sense that 
it minimizes the energy norm of the error ‖em‖A = eT

m
Aem , 

where em = xm − x . In other words, it means that xm is the 
optimal solution within Km(A, r0) with respect to the prop-
erty above. Since the basis r0,Ar0,… ,Am−1r0 is only mildly 
independent, CG builds an orthonormal basis for Km(A, r0) 
through the three-term Lanczos recurrence [74]. This allows 
xm to be generated just by updating the last iteration, while 
the complete basis of Km(A, r0) is not needed explicitly. This 
is key for the CG performance, as it allows to keep constant 
the computational cost of each iteration at a fixed memory 
footprint. The CG convergence is theoretically controlled 
by the spectral condition number of A , �(A) [12], i.e., the 
closer �(A) to 1, the faster the convergence rate.

Selecting Tm ≡ AKm(A, r0) gives rise to the GMRES 
method [75]. With this choice, the 2-norm of the residual, 
‖rm‖2 , is minimized in Km(A, r0) . In contrast to CG, an 
orthonormal basis for Km(A, r0) has to be explicitly built 
and stored, thus requiring an increasing memory load and 
computational cost per iteration. In practice, GMRES is 
based on a long-term recurrence, which can become not 
affordable beyond a certain number of iterations. As proved 
by the Faber-Manteuffel theorem [76], an optimal scheme 
based on a short-term recurrence does not exist for non-sym-
metric matrices. Therefore, any attempt to reduce the (full) 
GMRES memory footprint can jeopardize its optimality and 
slow down the convergence. However, in order to keep the 
growth of GMRES computational cost under control, less 
expensive versions have been devised, in which an upper 
threshold, l, to the number of basis vectors of Km is set. For 
instance, when such a threshold is reached, the generated 
vectors are discarded and a new sequence of Krylov spaces, 
Km(A, rl) , is built (Figure 2b). This popular technique is 
known as restarted GMRES and denoted as GMRES(l). 
With modern machines, values of l up to 500 are not unu-
sual. Theoretical results about GMRES convergence are 
available for the full version only and are more complicated 
than CG. In particular, the GMRES behavior depends not 
only on the eigenvalue distribution of A , like CG, but also 
on the condition number of the matrix of the eigenvectors.

Bi-CGStab [77] is another popular method for non-sym-
metric systems of equations. It is the most effective vari-
ant of the Bi-Conjugate gradient (Bi-CG) method [74, 78], 
which seeks the solution to system (10) by solving simul-
taneously also the dual system, i.e., ATx∗ = b∗ , for some 
right-hand side b∗ . The two systems are addressed by orthog-
onalizing the respective residual to the Krylov dual space, 
Km(A

T , r0) and Km(A, r∗
0
) , being r∗

0
 the initial residual of 

the dual system, b∗ −A
Tx∗

0
 . Bi-CGStab is a transpose-free 

Bi-CG implementation where the usually erratic conver-
gence of the latter is stabilized by a local steepest descent 
procedure.

In contrast to GMRES, Bi-CGStab is a short-term recur-
rence like CG, but no optimal property is satisfied by xm at 
each step. This is also reflected by the convergence profile, 
which is more erratic than GMRES, despite the local stabi-
lization (Figure 3).

4 � Preconditioning Techniques

4.1 � General Concepts

Generally speaking, a preconditioner M−1 is an operator that 
transforms a linear system into an equivalent one, whose 
properties are such that the solver convergence is acceler-
ated. The system can be either left-preconditioned:

or right-preconditioned:

(13)M
−1
Ax = M

−1b,

Fig. 3   Converge profiles of (full) GMRES and Bi-CGStab solvers 
with and without preconditioning. In this application, the simple Jac-
obi preconditioner (introduced in Sect. 4.2.1) is used. Notice the more 
erratic convergence of Bi-CGStab compared to the smooth profiles 
obtained with GMRES
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Both possibilities are commonly used, with right precon-
ditioning often preferred because it preserves the residual 
vector, r = b −AM

−1
Mx = b −Ax . This can be useful 

whenever using the residual norm as exit criterion. From 
a practical viewpoint, opting for left or right precondition-
ing usually does not affect significantly the convergence 
rate, unless M−1 is rather ill-conditioned  [12]. A third 
choice, called centered or split preconditioning, is possi-
ble if the preconditioner is available in the factorized form 
M

−1 = M
−1
2
M

−1
1

:

Notice that the preconditioned matrix is never explicitly 
formed, the only additional requirement being the applica-
tion of the preconditioner to a vector at each iteration, i.e., 
the computation of u = M

−1v for some vector v.
Though theoretical results are not always available, 

the convergence of a Krylov solver is generally fast if the 
eigenspectrum of the preconditioned matrix is clustered 
far from 0. This can be achieved if the application of M−1 
resembles as much as possible that of A−1 . Whatever the 
way the action of A−1 is approximated, a good precondi-
tioner should prove efficient, robust, and scalable. Efficiency 
is related to the capability of achieving a fast convergence 
at a low computation and application cost. Robustness con-
cerns the capacity of computing and applying successfully 
the preconditioner independently of the specific problem at 
hand. Scalability is a concept related to the use of parallel 
computers, involving that the number of iterations to con-
verge is insensitive to the problem size. At a deeper level, 
efficiency, robustness and scalability also rely heavily on 
the compatibility between the mathematical algorithm and 
the hardware architecture, whether based, for instance, on 
CPUs, GPUs, and the number of processing units. As a con-
sequence, for a given problem there is not a unique pre-
conditioning approach, but different options can be equally 
effective according to the actual resource availability. This 
explains the eager interest around preconditioning tech-
niques shown by the community of researchers, the abun-
dance of solutions available in the literature and the vastness 
of the possible designs.

Roughly speaking, preconditioning approaches can be 
traditionally divided into two categories, i.e., algebraic 
(or “given a matrix”) and physically based (or “given a 
problem”) preconditioners [79], but the separating line is 
often blurred. Purely algebraic preconditioners are meant 
for a broad use, as “black boxes”, when there is no (or lit-
tle) knowledge of the underlying physical problem, i.e., the 
set of PDEs, and its properties. The main advantage is the 
robustness, but efficiency may not be optimal, since they 

(14)AM
−1y = b, x = M

−1y.

(15)M
−1
1
AM

−1
2
y = M

−1
1
b, x = M

−1
2
y.

are not targeted to a specific application. On the other side, 
physically based preconditioners are specifically designed 
for the problem at hand, trying to exploit as much as possible 
the knowledge of the PDEs’ hallmarks and the discretization 
scheme. Therefore, they can exhibit a great efficiency, but 
robustness and generalization to other problems is often at 
risk.

The complexity of reservoir simulation problems, usually 
expressed with the block structured systems (10), requires 
the design of articulated, physically based preconditioning 
frameworks pivoting on local targeted algebraic precondi-
tioners for the blocks and Schur complement, which will 
be the topic of the next section. Then, the main precondi-
tioning strategies for reservoir simulation problems will be 
addressed.

4.2 � Preconditioners for local problems

In this section, we consider the single-block system of 
equations

where A ∈ ℝ
n×n is nonsingular. Notice the different notation 

used for single-block and block-structured matrices, A and 
A , respectively.

4.2.1 � Jacobi and Block Jacobi Preconditioners

As previously mentioned in Sect. 4.1, the action of a pre-
conditioner should resemble somehow that of the inverse, 
A−1 , of the system matrix, while preserving a workable 
setup and application cost. Then, a simple algebraic pre-
conditioning approach is to take the inverse of a (possibly 
significant) portion of A and discard the remaining. If the 
matrix is diagonally dominant, such a portion might consist 
of the diagonal only. This gives rise to the so-called Jacobi 
preconditioner, M−1

J
= diag(A)−1 , whose action is nothing 

but a diagonal scaling of A. For general problems, this pre-
conditioner turns out to be pretty ineffective. However, if 
matrix A is just badly-scaled, as it usually occurs when solv-
ing the discrete version of the coupled Equations (1) and (2) 
in strongly heterogeneous media, Jacobi preconditioner can 
be helpful for a preliminary coefficient balancing.

A simple strategy to improve the M−1
J

 performance relies 
on enlarging the nonzero pattern by taking blocks around 
the diagonal. This approach, known as Block Jacobi (BJ) 
preconditioner, is also supported by the observation that the 
most significant nonzero entries in matrices arising from 
the discretization of PDEs can be easily clustered around 
the diagonal by applying proper reordering algorithms [80]. 
If the block partition induced by BJ preconditioner, M−1

BJ
 , 

(16)Ax = b,



4349Linear Solvers for Reservoir Simulation Problems: An Overview and Recent Developments﻿	

1 3

succeeds in gathering the nonzero structure of A, then it 
may result effective [81, 82]. Figure 4 provides a graphical 
sketch of the structure of such a preconditioner. Notice that 
the blocks may also overlap each other.

The BJ setup consists of extracting the blocks around the 
diagonal and approximating their inverse. The application of 
M−1

BJ
 to a vector is carried out by blocks and weighting the 

contributes in the overlapped portions.
The BJ preconditioner is naturally suitable for parallel 

computing. A coarse-grained asynchronous parallel version 
of the application algorithm is, in fact, straightforward. For 
the inexact application of each block inverse several strate-
gies may apply. If the blocks are sufficiently small, one may 
think of computing them explicitly, then the application of the 
preconditioner is nothing but a sequence of effectively paral-
lelizable matrix-by-vector products (see, for instance, [83]). 
Alternatively, a sparsified version of the block inverse or a 
direct solver can be used. If the size of the blocks is large, 
then we can resort to an inner iterative solver, e.g., a Krylov 
subspace method, which would need, in turn, a set of dedicated 
local preconditioners for them.

The number of blocks, hence their size, is the main factor 
governing the preconditioner behavior: the larger the number, 
and the smaller the block size, the more BJ tends to the native 
Jacobi preconditioner.

4.2.2 � ILU Factorization

ILU stands for Incomplete LU and is thus based on the factori-
zation of a matrix into the product of a lower, L, and an upper, 
U, triangular factors, which is one of the classical approaches 
used by direct solvers [12, 84]. Since fill-in takes place in 
the computation of L and U, for preconditioning purposes a 
number of entries can be discarded, thus obtaining the inexact 
(incomplete) factors L̄ and Ū (Figure 5), such that:

This dropping strategy is performed to control the memory 
footprint and the application cost. In fact, the cost of apply-
ing M−1

ILU
 depends linearly on the number of nonzeros stored 

in L̄ and Ū.
Notice that the structure of MILU makes it suitable for split 

preconditioning as well. M−1
ILU

 is never formed explicitly by 
inverting and multiplying the two factors because additional 
fill-in takes place, hence its application to a vector is per-
formed by forward and backward substitutions [12].

Determining the non-zero pattern of the two incomplete 
factors is key for the ILU effectiveness. Several variants have 
been introduced in the literature according to the pattern 
selection strategy. Roughly speaking, they can be subdivided 
into static and dynamic methods. Static techniques select the 
entries in L̄ and Ū by defining a pattern P before the factori-
zation begins, while dynamic techniques rely on parameter-
controlled dropping strategies that assess and eventually 
discard the entries during the factorization. In such a way, 
P is built as the factorization progresses [85].

The basic static approach takes the nonzero pattern of A, 
i.e., P(A) , leading to the popular ILU(0) and IC(0) (Incom-
plete Cholesky for SPD matrices) variants [86, 87]. ILU(0) 
proves to be a rather efficient preconditioner for matrices 
obtained from the discretization of both elliptic and hyper-
bolic problems [88], like some blocks of matrices arising 
from reservoir simulation applications, though it is not scal-
able and possibly not robust. A classic static technique to 
strengthen ILU(0) relies on the level-of-fill concept [89, 90], 
which ranks the potential entries of the factors according to 
their likely significance.

Greater flexibility is provided by threshold-based 
dynamic methods, where the threshold controls either the 
size of the entries [91, 92], or the number of nonzeros [93], 
or both [94].

Most of the ILU implementations available in the litera-
ture are amenable to be used as black-box preconditioners 
for Krylov subspace methods, as they do not require any 
specific knowledge of the problem at hand. This strength 
of ILU factorizations contributes to explain their popular-
ity for a broad range of applications, including reservoir 
simulation. In the last three decades, however, the diffu-
sion of parallel computing, along with the demand for 
models of ever increasing size, brought to light two serious 
limitations of ILU factorizations. The lack of scalability 
and the intrinsic sequentiality of both their computation 
and application, in fact, prevent the full exploitation of 
modern computing architectures [95]. This issue has been 
only partially mitigated by specific implementations aimed 
at uncovering as much parallelism as possible from ILU. 
Research in this field started from the mid ’80s with a peak 
in the late ’90s, when several solutions were proposed 

(17)MILU = L̄Ū ≈ A.

1

2

3

Fig. 4   Example of BJ preconditioner with three diagonal blocks
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from graph theory [96] (specifically, graph partitioning 
techniques like multicoloring [97–101], nested factoriza-
tion [102–108], multilevel factorization [109, 110], and 
level-scheduling [111–116]), as well as domain decompo-
sition [8, 117–120] (Sect. 4.2.4) and reordering strategies 
(e.g., minimum degree and reverse Cuthill-McKee). Alter-
ing the matrix ordering, however, modifies the incomplete 
factor structure, possibly worsening the numerical stabil-
ity and thus degrading the overall preconditioning quality, 
despite the parallel implementation [119, 121, 122]. Alter-
natively, domain decomposition-based approaches lever-
age the splitting of the computational grid. ILU factoriza-
tion is performed independently for the internal unknowns 
of each subdomain, while the rows belonging to boundary 
unknowns need to be managed with a greater care.

Level-scheduling is another way to increase the paral-
lelism in the ILU application, though efficiency of such a 
method is often poor [119, 121]. Other options include the 
sparse approximation of L̄−1 and Ū−1 by means of approxi-
mate inverse techniques [123] and the possibility of using 
Jacobi and block Jacobi schemes to iteratively solve lower 
and upper triangular systems [124]. Numerical tests revealed 
that the effectiveness of this approach blooms in highly 

parallel frameworks, but it suffers when the amount of par-
allelism is relatively low.

A detailed analysis of the different methods is beyond the 
scope of the paper, however, we refer the interested reader to 
textbooks [12, 84] or review papers [88, 125] for a thorough 
discussion and comparison.

Incomplete LU factorizations for reservoir simulation. 
ILU is a widely used tool in reservoir simulation applica-
tions. Most of commercial and academic simulators include 
ILU in the available preconditioning strategies, either as a 
standalone algorithm or as part of wider strategies.

Nested Factorization (NF), in particular, is a physics-
based variant of ILU that was specifically designed to cope 
with reservoir simulation needs (see the works by Appleyard 
et al [102] and Appleyard [103]). The NF concept lies on 
the observation that the classical five-point or seven-point 
stencil pattern of the Jacobian, obtained from a TPFA-based 
discretization in 2-D or 3-D structured grids, respectively, 
gives rise to a nested tridiagonal structure. In its original 
formulation, following a natural ordering of the unknowns 
in a 3-D domain, the outermost diagonal contributions in the 
Jacobian express the connections between adjacent planes 
in the grid, whereas, moving towards the main diagonal, 
we find the inter-line (within each plane) and the inter-cell 

Fig. 5   Full factorization (b, c) and incomplete factorization with zero fill-in (d, e) of the sparse matrix in (a). In the subpanels, nnz denotes the 
number of nonzero entries. With respect to the original matrix, the exact factorization requires a larger memory space by a factor 9.11
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(within each line) interactions. The NF method leverages 
this recursive tridiagonal nonzero pattern, resulting in a 
three-level algorithm that tackles these interactions, one at a 
time, from the outermost to the innermost. Such an approach 
is used to both compute and apply the NF preconditioner 
and is clearly sequential. Around 15 years ago, NF enjoyed 
a revived interest from the community with some pieces of 
work dedicated to exposing parallelism from GPU-based 
implementations with the aid of multicoloring techniques 
(see, for instance, [106, 107]). Speed-ups between 10 and 20 
have been recorded with respect to the classical CPU serial 
implementation. Though interesting for structured grids, NF 
can lose attractiveness for unstructured grids or larger-stencil 
schemes, such as MPFA or MHFE.

NF is the flagship preconditioning tool in Eclipse 
100 [71], being used both as a global (for the whole Jacobian 
matrix) and local (for the pressure block) preconditioner. 
Other simulators, such as IMEX or STARS [70], tNaviga-
tor [69, 126], OPM [127, 128], and TOUGH2/3 [129, 130], 
embed serial or parallel (to a certain extent) versions of 
ILU factorizations. Especially in the past, the whole block-
structured matrix A in system (10) was addressed with a 
single factorization (see, for instance, [8, 36, 67, 104, 105, 
117, 131, 132]). Currently, hybrid techniques are preferred, 
where ILU decompositions are coupled with other pre-
conditioners like BJ (Sect. 4.2.1), domain decomposition 
(Sect. 4.2.4) and algebraic multigrid (Sect. 4.2.3). In particu-
lar, combining ILU factorizations and algebraic multigrid 
gives rise to a popular version of the Constrained Pressure 
Residual (CPR) preconditioner (Sect. 4.3.1). The rationale 
is to exploit the inner block structure of the Jacobian and the 
elliptic/hyperbolic character of the sub-problems to devise 
preconditioning techniques that are capable to efficiently 
address the full range of error components, thus allowing a 
fast convergence. As a side effect, coupling ILU factoriza-
tion with a more scalable method, improves the performance 
of the resulting approach. In fact, ILU shows a limited scal-
ability and its performance tends to degrade as the size of 
the problem increases (see, for instance, the experimental 
analysis in [133]) and the heterogeneity/anisotropy of the 
fluid/rock properties is exacerbated [9, 134], as a result 
also of the usage of unstructured grids [135]. Ultimately, 
while level-of-scheduling- or threshold-based variants can 
still show acceptable results for moderately complex appli-
cations [136], challenging real-world problems should be 
dealt with in a more effective way by exploiting the inherent 
block structure of the system matrix and consider incomplete 
LU factorizations as an element of a more comprehensive 
preconditioning strategy.

4.2.3 � Multigrid Methods

Multigrid (MG) methods, originally proposed in the semi-
nal work by Brandt [137] for the solution of elliptic PDEs 
in regular grids, have enjoyed a great interest from the 
reservoir simulation community for the past two decades. 
In particular, the class of Algebraic MG (AMG) has expe-
rienced an increasing popularity mostly due to its scal-
ability and flexibility of use.

MG methods leverage a radically different approach 
than ILU preconditioners. Let us consider the system in 
Equation (16), obtained from the discretization of an ellip-
tic problem and addressed with a stationary iteration (or 
fixed-point) scheme [12]. The prototypical structure of 
these solvers is [84]:

where several variants can be derived depending on the 
choice of the matrix C, such as the classical Jacobi or Gauss-
Seidel schemes. We assume that the error at the m-th iterate 
can be decomposed as:

where em,s and em,o are the constant (or smooth) and variable 
(or oscillatory) components, respectively (see also Figure 6). 
Recalling Equation (19) and that rm = Aem , Equation (18) 
becomes:

Since matrix A arises from the discretization of an ellip-
tic problem, the row sum is 0, except for the rows asso-
ciated with Dirichlet boundary conditions, thus implying 
that Aem,s ≈ 0 . Therefore, once the oscillatory components 
of the error have been removed, the correction term in 
Equation (20) becomes negligible and the iterative method 
stagnates, i.e., xm+1 ≈ xm . The effect of stationary iteration 
schemes on the error is shown in Figure 6. The oscillatory 
components are flattened in a few iterations and the pro-
file tends to a smooth condition, whereas the overall reduc-
tion of the error is not guaranteed a priori. For this reason, 
fixed-point schemes are referred to as smoothers in the MG 
literature.

MG methods pivot on the fact that mapping the residual 
on a coarser grid makes the smooth components of the 
associated error turn into oscillatory modes, which can 
be damped by applying again the smoother. These obser-
vations are supported by a theoretical background based 
on Fourier analysis [138]. If a hierarchical sequence of 
progressively coarser computational grids is available 
(Figure 7), these steps can be recursively repeated until 
the size of the system to be solved is small enough to 
be addressed by a sparse direct solver. The error on the 

(18)xm+1 = xm + Crm,

(19)em = em,s + em,o,

(20)xm+1 = xm + CA(em,s + em,o).
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coarsest grid is then prolonged back to the original mesh, 
with the smoother applied again until convergence. This 
technique is known as V-cycle and, in its simplest version, 
comprises only two levels (two-grid cycle).

The action of projecting the residual into a coarser grid is 
performed by restriction operators, RH

h
∶ ℝ

nh
→ ℝ

nH , where 
h and H denote two adjacent grids in the mesh hierarchy, the 
finer and the coarser, respectively, and nh and nH the related 
number of unknowns. Of course, prolongation operators, 
Ph
H
∶ ℝ

nH
→ ℝ

nh , are defined as well.
Summarizing, the two main ingredients of an MG method 

are: (i) the smoother, and (ii) a hierarchy of grids with the 
relevant restriction and prolongation operators. Notice that 
the smoother and the restriction operators play a comple-
mentary role in MG methods because the former removes 
the oscillatory modes of the error on a fine grid and the latter 
injects the remaining smooth components into a coarser grid 
in order to be further damped. In this regard, the appropri-
ate definition of the coarse space and, by extension, of the 

(a) (b)

(c)

Fig. 6   Effect of Gauss-Seidel smoothing on the error. The horizontal plane in the panels indicates the smooth component of the error, em,s , at the 
m-th iterate, whereas the remaining portion to the total is the oscillatory part, em,o (modified after Rodrigo et al [139])

Grid1

Grid 0- Fine

Grid 2 - Coarse

Fig. 7   Example of multigrid discretization of a square domain with 
three meshes
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restriction operator is crucial. Generally RH
h

 is chosen so that 
Ph
H

 provides a good interpolation of the error [138].
Though MG techniques were introduced as stand-alone 

solvers, their most appropriate use is as precondition-
ers for Krylov methods with a fixed number of pre- and 
post-smoother iterations. The V-cycle is the most frequent 
hierarchy, but other variants are available as well, such as 
the W-cycle [12]. Basically, MG methods comprise two 
phases: (i) the setup, where the hierarchy of matrices A(j) , 
with j = 1,… , � , associated with the � coarse grids, is built, 
along with the restriction and interpolation operators, and 
(ii) the application, carried out, for instance, by the V-cycle. 
The sequence A(j) can be built by either exploiting a real hier-
archy of grids, giving rise to Geometric MG, or introducing 
restrictions and prolongations in a purely algebraic way by 
the so-called Galerkin projection, thus defining AMG.

AMG methods gather indirectly information on the grid 
from the system matrix. Therefore, the grid topology does 
not need to be supplied and, in contrast with physics-based 
preconditioners, such as NF, AMG can handle complex 
domain geometries and anisotropic permeability fields. In 
fact, a non-zero entry aij underlies that the unknowns i and 
j are neighbors and its size is an indicator of the strength 
of the i-j connection (SoC). This information can be used 
to separate the fine and coarse unknowns, arranged in the 
sets F and C, and define a coarsening scheme. The SoC 
evaluation and the application of the coarsening strategy is 
performed at each level to determine the sequence of A(j) 
matrices. Two typical examples are the CF splitting and the 
Smoothed Aggregation (SA), giving rise to the classical CF 
AMG [140] and SA AMG [141] versions, but other options 
apply, such as the more recent Node-root method [142, 143]. 
Determining coarse spaces by the SoC analysis is not the 
only available strategy. Multicoloring assisted by heuris-
tic analyses, or independent set ordering techniques [96], 
have been used as well to classify the unknowns as coarse 
or fine, but they do not make use of the above information 
about strong and weak connections. A technique founded on 
independent set ordering that enjoyed some success is the 
Algebraic Recursive Multilevel Solver (ARMS) [144, 145].

An interesting AMG technique for reservoir simulators is 
the Multigrid Reduction (MGR), originally devised by Ries 
and Trottenberg [146] and Ries et al [147]. Let us consider 
a two-grid cycle for the sake of simplicity, but the method 
can be easily extended to a multi-grid setting as well. Dif-
ferently from standard MG methods, in MGR the C and F 
sets are disjoint and their union gives the set of the overall 
unknowns. The system matrix in Equation (16) is reordered 
following the F-C unknown classification and decomposed 
using a block LDU factorization [136, 148, 149]:

where S = ACC − ACFA
−1
FF
AFC is the Schur complement in 

the coarse space. This term plays a central role for block 
preconditioning, as we will see in Sect. 4.3.2. Denoting 
the exact restriction, prolongation and injection operators, 
respectively, as:

with DU = −ACFA
−1
FF

 and DL = −A−1
FF
AFC , it is easy to ver-

ify that S = RC
F
APF

C
 and AFF = GTAG . Note that, in Equa-

tion (22), the terms DL and DU serve as decoupling factors 
of matrix (21). It is difficult to obtain these operators exactly, 
since the explicit computation of A−1

FF
 is required. There-

fore, proper approximations R̃C
F
 and P̃F

C
 should be sought, 

for instance by replacing A−1
FF

 with the inverse of its diagonal 
(standard Jacobi preconditioner) or by solving inexactly the 
sequence of multiple RHS-systems originating DU and DL , 
i.e., AFFDL = −AFC and AT

FF
DT

U
= −AT

CF
 . Using the inexact 

version of the operators in Equation (22), the preconditioner 
M−1

MGR
 reads:

Here, we can recognize the two main ingredients of MG: 
(i) the coarse-level correction, S̃ = R̃C

F
AP̃F

C
 , and (ii) the 

smoother GA−1
FF
GT = G(GTAG)−1GT , applied only to the por-

tion of the linear system corresponding to the F-unknowns. 
A direct connection between Equation (23) and a two-grid 
approach can be easily established, with the coarse-level cor-
rection S̃ corresponding to A(j) in the coarse grid, whereas 
the smoother corresponds to C in (18). Of course, proper 
local preconditioners for S and AFF should be provided in 
Equation (23).

In summary, the main ingredients of AMG are: (i) a 
coarsening strategy, (ii) restriction and, (iii) prolongation 
(interpolation) operators, (iv) the smoother, and (v) the 
application technique [150]. Working on these components 
gives rise to a considerable number of possible variants. 
In this regard, AMG methods have attracted a great inter-
est from the scientific community during the last 20 years 
and are currently object of intense development, see, for 
instance, [150–157] for a selection of methods.

As to the issue of parallelization, most tasks in the 
AMG application are matrix-by-vector products and vec-
tor updates. Letting aside the direct solution of the coarsest 

(21)
A =

[

AFF AFC
ACF ACC

]

=
[

IFF 0
ACFA−1

FF ICC

] [

AFF 0
0 S

] [

IFF A−1
FFAFC

0 ICC

]

,

(22)RC
F =

[

DU ICC
]

, PF
C =

[

DL
ICC

]

, and G =
[

IFF
0

]

,

(23)A−1 ≈ M−1

MGR
= P̃F

C
S̃−1R̃C

F
+ GA−1

FF
GT

.
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system, a possibly troublesome task is the smoother appli-
cation. A classical Gauss-Seidel scheme, which requires 
the solution of a triangular system at each iteration, needs 
multicoloring and level scheduling approaches, while other 
smoothers, like BJ (Sect. 4.2.1) and, by extension, Domain 
decomposition (Sect. 4.2.4), can be much better parallelized. 
Although the AMG application can be carried out efficiently 
in parallel, its setup might be expensive as the sequence of 
A(j) matrices, with the relevant restriction and prolongation 
operators, is needed. This phase can sometimes jeopardize 
the method scalability, for example when a large number of 
computing units is used [158, 159].

AMG for reservoir simulation. Classical AMG methods 
have been developed to tackle systems of equations originat-
ing from elliptic PDEs, where the system matrix is expected 
to be SPD and, possibly, of M-type. This explains why AMG 
has found a natural and extensive application as a precon-
ditioner of the elliptic pressure block in system (10) in a 
broadly used class of multi-stage preconditioning techniques 
called CPR (see Sect.  4.3.1). Still nowadays it remains 
the main application of AMG in the context of reservoir 
simulation.

As an alternative methodology, one can think of apply-
ing AMG to the whole block-structured system (10) despite 
its mixed elliptic/hyperbolic character and non-symmetry. 
Some arguments can support this approach [160]: (i) whilst 
the problem is mainly driven by elliptic components (such as 
pressure in reservoir simulation), AMG should be applica-
ble; (ii) the approach can be extended also to systems incor-
porating other physics, such as geomechanics or thermal 
simulations (see, for instance, [161]); (iii) a monolithic pre-
conditioning framework is applied to the full system without 
the introduction of additional stages; (iv) more information 
about the simulated physical process can be gathered from 
the full matrix rather than from one of its portions to obtain 
more targeted AMG techniques; (v) AMG is highly scalable 
and the entire linear solver part can be largely parallelized.

Of course, using standard AMG techniques can deliver 
poor results and specialized tools are thus required. After 
some early attempts, e.g., [34], significant effort has been 
spent to achieve comparable or even better performance than 
CPR-like schemes (see, for instance, the works by Gries and 
Plum [160] and Gries [162, 163]). The focus was on black oil 
simulations, with extensions to compositional models, and 
the advancements have been included in the System-AMG 
(SAMG) library [140]. Critical for the SAMG efficiency is 
recognizing the coupling between the different unknown 
types and applying an effective coarsening strategy. An 
interesting approach goes under the name of “point-wise 
AMG” and consists in defining a hierarchy for all the physi-
cal unknowns, which can be built from the pressure part. 
This technique has the potential to address a strong coupling 
of the unknowns. On the other hand, the smoother plays a 

crucial role as it is required also to solve somehow for the 
saturation/concentration unknowns. In this regard, ILU(0) 
factorization can prove effective, being able to capture the 
intrinsic coupling between the unknowns, even though its 
inherent sequentiality can jeopardize the AMG scalability. 
As mentioned in Sect. 4.2.2, uncovering some form of par-
allelism on ILU has been, and still is, a topic for research 
(see, for instance, [122, 124, 164, 165]). In the context of 
smoothing for AMG, Gries [166] proposed a parallel ILU(0) 
version based on level scheduling, also known as wavefront 
elimination [12]. A significant advantage is the equivalence 
of the resulting incomplete factors to those obtained with the 
serial algorithm, with no detrimental effects on the factors 
quality as those brought by other reordering strategies [125]. 
For unstructured grid, this approach can be more effective 
than traditional geometric level scheduling and, moreover, 
the wavefront setup can be recycled whilst the matrix pat-
tern is preserved.

An MGR-based approach for the preconditioning of the 
full systems arising in fully implicit two-phase flow models 
and coupled multiphase-flow-poromechanics has been also 
considered in [148, 149].

The effectiveness of classical AMG algorithms, in 
terms of scalability and global convergence rate, can be 
also affected by strong heterogeneity and anisotropy of the 
rock/fluid properties in diffusion problems or upstreaming 
in transport models. Advanced AMG methods have been 
introduced to effectively tackle non-symmetric systems 
of equations and possible difficulties associated with the 
medium properties (see, for instance, [143, 167–170] for 
recent developments).

A complete and exhaustive review of these methods is far 
beyond the scope of this work. The interested reader is nev-
ertheless referred to [12, 171, 172], as well as [173, 174] for 
a selection of textbooks and review papers, respectively. We 
report also the article by Stüben et al [175], which addresses 
the transition of AMG methods from academy to industry 
with abundant historical details and a reference also to res-
ervoir simulation applications.

4.2.4 � Domain Decomposition

The introduction of parallel computing was a real break-
through for numerical modeling, including reservoir sim-
ulation, as an increasing amount of resources could be 
exploited to address larger and more complex problems. 
Domain decomposition (DD)  [176] is one of the most 
popular methods to take advantage of the parallel com-
putational paradigm. DD relies on the divide et impera 
concept, i.e., the physical domain Ω is split into a set of 
s, preferably equal-size, compact and possibly overlap-
ping, subdomains Ωi such that Ω =

⋃s

i=1
Ωi , where the 



4355Linear Solvers for Reservoir Simulation Problems: An Overview and Recent Developments﻿	

1 3

problem is addressed locally (see Figure 8). The similar-
ity of subdomain size is geared towards achieving load 
balance among processors, whereas the compactness aims 
at reducing the communication overhead. Node (or ele-
ment) unknowns can be classified as inner or boundary 
according to their location in a subdomain and renumbered 
accordingly, as shown in Figure 9a,c.

DD is important at different modeling stages, namely 
the setup, the discretization and the solving phase [176]. At 
the last level, DD can be conceived as either a solver or a 
preconditioner. There are a few different DD strategies for 
solving a system of equations, such as block Gauss elimina-
tion or Schur complement [12], which are used in particular 
for non-overlapping partitions, but those originating from 
the Schwarz alternating procedure [177] are perhaps the 
most popular. These techniques iteratively solve the series 
of local coupled systems independently of each other, using 
data from the neighbouring subdomains as boundary condi-
tions. The iterative process ends when the solution on the 
subdomains stabilizes. Depending on when the overall solu-
tion vector is updated, i.e., at the end of the sweep over 
the subdomains or after each local solution, two variants 
can be defined: the Additive (AS) or Multiplicative Schwarz 
(MS) alternating algorithms, respectively (see, for instance, 
[178–180]). Expensive inter-processor communications, 
unbalanced workloads [181], and especially the low con-
vergence rate [182] are usually important limitations to the 
use of DD methods as solvers. However, if the process is 
stopped well before convergence, these techniques can be 
exploited profitably as preconditioners.

Arranging the equations in system (16) according to 
the domain partition allows to extract a well-defined block 
structure from matrix A. The sequence of blocks Ai is clus-
tered along the diagonal and the nonzero off-diagonal blocks 
Aij denote the interaction between subdomains i and j (see 

Figure 9). Indeed, the blocks Ai collect unknowns that are 
neighbours in the physical domain and it is expected, there-
fore, that strong interactions occur between spatially adja-
cent unknowns with respect to distant ones. This allows to 
exploit the knowledge of the domain discretization to obtain 
more targeted preconditioners.

The AS preconditioner, first introduced for solving SPD 
elliptic systems, and later extended to nonsymmetric and 
non-elliptic problems, has found application in the frame of 
reservoir simulation either as a stand-alone tool or as part of 
more articulated preconditioning strategies, e.g., [10, 181, 
183–188]. For instance, AS coupled with ILU is available in 
Intersect [72, 189] for the preconditioning of the transport 
problem obtained by the SFI method.

A cheaper version of AS was proposed by Cai and 
Sarkis [190] and goes under the name of Restricted AS 
(RAS). The RAS variant exploits a double partition of the 
domain into overlapping and non-overlapping subdomains 
(like in Figure 10a) to reduce the communication overhead 
between processors. In several applications, e.g., the solu-
tion to convection-diffusion equations, indefinite complex 
Helmholtz equations, and compressible Euler’s equation on 
unstructured grids, the RAS preconditioner proved to per-
form better than AS [190], as confirmed also in the analyses 
in [191, 192].

The MS method requires a little more care since the solu-
tion vector is updated during the sweep over the processors 
and not just at the end. Hence, with an overlapping parti-
tion, different processors might simultaneously update the 
same entries. Multicolor techniques may help extracting 
some parallelism (see, for instance, the simple application 
in Figure 10).

The design of robust preconditioners is often subjected 
to mutual influences between different strategies. Multilevel 
DD is, for instance, an example of contamination between 
MG and DD, which is motivated with the aim at improv-
ing the scalability of single-level DD by including a coarse 
grid correction. Introducing a hierarchy of grids, in fact, 
makes multilevel DD a theoretically scalable method. Com-
putational experience, especially in the context of elasticity 
problems, shows that two levels can be enough when the 
number of cores is in the thousands, while three levels or 
more are needed to go beyond this threshold [193]. The basic 
algorithmic structure of multilevel DD resembles the clas-
sical AMG V-cycle, where the smoother is usually an AS 
preconditioner built upon the subdomain partition in each 
level. Recent applications of multilevel DD span from the 
solution of Navier-Stokes equations [194] to elasticity [193], 
and reservoir simulation problems [159, 187]. In the work 
authored by Li et al [187], some versions of the V-cycle 
scheme, obtained by neglecting the pre- or post-smoothing 
phase are investigated. Nevertheless, the best results are 
obtained by the full V-cycle. The application of the block 

Fig. 8   Partition of a reservoir model into subdomains
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inverse in AS/RAS preconditioner is performed via incom-
plete LU factorization with a different level-of-fill. Gra-
tien [159], instead, focused on the efficient implementation 
of multilevel DD on modern HPC platforms.

Another promising branch of DD-driven preconditioners, 
which has gained in popularity in recent years, goes under 
the name of Nonlinear DD (NDD) preconditioning. Here, 
the approach to the problem is different, since NDD oper-
ates upon the nonlinear system of equations itself, rather 
than on its linearization through a Newton scheme. Initially 
introduced in the pioneering work by Cai and Keyes [195] 
for CFD applications, NDD was later extended to reservoir 
simulation by Liu et al [196] and Skogestad et al [181]. Res-
ervoir simulation is indeed a challenging bench test, due to 

the non-linearity given by permeability models and mate-
rial heterogeneities. The first NDD version exploits the AS 
approach and is thus denoted as Additive Schwarz Precon-
ditioned Inexact Newton (ASPIN) [197]. A multiplicative 
version (MSPIN) has been developed as well [198], while 
a Restricted variant of ASPIN, built upon RAS precondi-
tioner [190], and thus labelled RASPIN, has been introduced 
in [199]. Preconditioning the nonlinear problem has several 
attractive features. For instance, considering a typical res-
ervoir simulation scenario like waterflooding, it is expected 
that the biggest source of non-linearity is mainly located 
around advancing fronts. Therefore, thanks to the subdomain 
partition, it is possible to build tailored tools based on the 
nonlinear degree of each one. The issue of scalability on 

Fig. 9   Two examples (a, c) of 
domain decomposition with the 
relevant 5-point stencil matrices 
(b, d), as obtained from a TPFA 
discretization. The square 
domain is subdivided in four 
subdomains. In panel (a) the 
boundary elements are shared 
by neighboring subdomains and 
are numbered last, whereas in 
panel (c) the boundary elements 
are labeled after the internal 
cells in each subdomain
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large parallel machines motivated also the introduction of 
multilevel version, like the two-level ASPIN in [195]. An 
exhaustive dissertation on NDD preconditioning is beyond 
the scope of this paper, which rests on the design of pre-
conditioners for linearized systems, however, the interested 
reader is addressed to the references herein and the recent 
works by Klemetsdal et al. [200, 201] for further reading. 
Moreover, for DD in general, the books [12, 182, 202], as 
well as the recent review article [203] are also advised.

4.2.5 � Multiscale Preconditioners

Originally developed as an alternative to upscaling tech-
niques, in recent years Multiscale (Ms) methods [204] have 
been successfully reinterpreted as preconditioning tech-
niques as well. Running reservoir simulations directly on 
the geocellular model, as obtained from high-resolution field 
characterization, poses a big computational issue in terms of 
efficiency because they often consist of hundreds of millions 
of cells with abrupt changes in the material rock properties. 
Upscaling techniques [205, 206] were introduced to reduce 
the level of detail of the discretization by building coarser 
grids with homogenized/averaged properties. With classi-
cal upscaling techniques, however, the features of the fine 
discretization are discarded, thus leading to a possibly sig-
nificant loss of accuracy. Ms methods have been introduced 
to overcome this specific limitation. Notice, however, that 
the separation between the two class of methods, i.e., upscal-
ing and Ms, can be somehow blurred. For instance, Nested 
gridding techniques [207, 208] allow to switch from coarse 
to fine scale grids during the solution phase. A coarse parti-
tion is used to solve the pressure equation, then local flow 

problems are considered on each coarse cell to prolong the 
upscaled solution back to the fine grid.

The theoretical target of such methods is an ellip-
tic problem, in analogy with MG techniques. At the 
early stages, research focused on the classical pressure 
equation governing the flow of a single phase in porous 
media [209]:

obtained by simplifying Equations (1) and (2). In the basic 
setup, two discretizations of a physical domain, referred to 
as fine and coarse, have to be supplied. The coarse grid is 
obtained by aggregating neighboring fine cells, in analogy 
with DD techniques, as shown in [210]. Then, basis func-
tions are numerically constructed to interpolate between the 
two grids by solving local incompressible flow problems 
on each coarse cell with simplified boundary conditions, 
in a similar way as for Nested gridding. This approach is 
known as harmonic lifting or localization assumption. The 
final aim is to capture the effect of the local variations in the 
permeability, while solving the global flow problem only on 
the coarse grid with averaged values. Once the coarse-scale 
solution is available, it can be mapped back to the native 
fine grid by means of the basis functions, thereby obtaining 
a mass-conservative approximation of the solution on the 
high-resolution grid, possibly after suitable postprocessing.

We can conceive the problem in a more rigorous alge-
braic formulation with the aid of restriction and prolon-
gation inter-grid operators [211, 212]. To this end, let us 
consider a two-grid superimposed partition of the model 
domain, where nF and nC are the number of elements in 
the fine, Ω

F , and coarse, Ω
C , grids, respectively. We can 

(24)∇ ⋅ (K∇p) = q,

Subdivision of the domain into 16
units

4

3

2

1

Classification of the subdomains using multicolor tech-
nique

(a) (b)

Fig. 10   Example of domain decomposition in a 2D square setting with the aid of multicoloring. The dashed lines in panel (a) indicate the bor-
ders of the overlaps, while the continuous lines refer to a nonoverlapping partition
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define the coarsening ratio Cr = nF∕nC , which is a user-
defined parameter governing the size of the coarse prob-
lem. The discretized system of equations associated with 
Equation (24), built upon the native fine grid, reads:

Like in MG techniques, the link between the two levels is 
algebraically described through restriction R ∶ ℝ

nF
→ ℝ

nC 
and prolongation P ∶ ℝ

nC
→ ℝ

nF  operators  (see 
also [211–213] for the algebraic derivation, as well as [214] 
for the properties that R and P shall fulfill). The prolonga-
tion operator maps the coarse-scale pressure unknowns into 
the fine ones:

where xC
p
 denotes the pressure solution on the coarse grid, 

and x̃F
p
 is the fine Ms approximation of xF

p
 . Multiplying both 

sides of Equation (25) by R and introducing Equation (26) 
gives the restricted system:

where AC
pp

= RAppP and bC
p
= Rbp . Equation (27) is then 

solved using either an iterative or direct solver, depending 
on its size, and the pressure solution mapped back into the 
fine-scale space by Equation (26). Ultimately, by combining 
Equations (26) and (27) and isolating x̃F

p
 , we obtain:

where M−1
Ms

= PAC,−1
pp

R is the Ms operator. For very large 
problems, the possibility of realizing a sequence of progres-
sively coarser grids (like in MG) and applying recursively 
the steps above has been also investigated (see, for instance, 
[215–217]). Multilevel methods can be formulated with 
dynamic variants [20, 218–220] as well, where the local 
grid refinement method is recast in an Ms framework. The FI 
system is solved by blending grids with adaptive resolutions 
so as to preserve a fine discretization only where the solution 
is expected to change most. Appropriate basis functions for 
each type of unknowns need to be incorporated to interpo-
late the solution between the grids. While the approaches 
advanced in [20, 218–220] seem to be promising, applica-
tions to non-Cartesian grids are still an unexplored ground 
as well as their use as preconditioning techniques.

The columns of the prolongation operator, P, are built by 
gathering the local basis functions computed on each coarse 
block, while different choices are available for R. Actually, 
it is the way in which P and R are formed and combined 
that distinguishes the various Ms techniques. A systematic 
review of this topic is out of the paper scope, hence we will 
limit ourselves to some glimpses by referring the reader to 

(25)AF
pp
xF
p
= bF

p
.

(26)xF
p
≈ x̃F

p
= PxC

p
,

(27)AC
pp
xC
p
= bC

p
,

(28)x̃F
p
=

(

PAC,−1
pp

R

)

bF
p
,

the works cited herein. Several methods are available in lit-
erature, such as the Multiscale Finite Element (MsFE) [209], 
Generalized Multiscale Finite Element (GMsFE) [221–223], 
numerical-subgrid upscaling [224–227], Multiscale Mixed 
Finite Element (MsMFE)  [228–231], Multiscale Finite 
Volume (MsFV) [25, 232–237] and Multilevel Multiscale 
Mimetic (M3) [215]. MsFE, MsMFE and MsFV are tra-
ditionally the three major variants. We mention, also, the 
Multiscale Restriction-Smoothed Basis (MsRSB) method, 
recently developed by Møyner and Lie [238] as the evolu-
tion of the MsFV through the incorporation of the SA tech-
nique [141], previously introduced in the frame of AMG 
preconditioners (Sect. 4.2.3).

MsFE was the first Ms method to be devised, with the 
limitation of the lack of mass conservation at the element 
level. This is crucial for accurate transport simulations, for 
instance in multiphase problems, since they rely on con-
servative velocity fields. The mass-conservative MsMFE 
and MsFV methods were thus developed to overcome such 
a drawback and soon gained a great interest within the reser-
voir simulation community. The interested reader is referred 
to the paper by Lie et al [239] for an informative discus-
sion of the evolution of the two methods. From the early 
application to single-phase incompressible subsurface flow 
problems on Cartesian grids [232], active research allowed 
to progressively extend the application of Ms methods to 
advanced models, incorporating the flow of compress-
ible phases with capillarity [234, 240], gravity [240, 241], 
components [27, 242], sophisticated well controls [243, 
244], fractured porous media [245–248] and unstructured 
grids [249, 250]. Still, for these more complex models, Ms 
methods are typically exploited in sequential solving tech-
niques to address the associated pressure equation.

It is quite natural to extend Ms methods as a precondi-
tioner for Krylov subspace solvers, which is nowadays an 
important research avenue. The work by Lunati et al [213] is 
one of the first attempts in this direction. To this end, Equa-
tion (28) can be reinterpreted as the application, x̃F

p
 , of the 

Ms preconditioner M−1
Ms

 to vector bF
p
 . As to the definition of 

the restriction operator R, two approaches are usually fol-
lowed, which correspond to apply the MsFE or the MsFV 
method. In the first case, R = PT  (Galerkin projection), 
whereas, in the second, the restriction operator is built in 
such a way that, upon application, the pressure equations of 
the fine cells belonging to a coarse block are summed. The 
first approach (MsFE) is usually preferred since it preserves 
the symmetry of the problem [183] and the convergence is 
faster [251], but it does not guarantee the mass conservation 
at the local level. However, this feature can be easily recov-
ered by performing a last iteration with the MsFV-based 
operator. In recent years, besides the direct application as 
pressure-block preconditioner in sequential methods, the Ms 
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operator has been also exploited for the elliptic block, App , in 
system (10) in FI schemes [252], as mentioned in Sect. 4.3.1.

The Ms preconditioner must be used as part of a multi-
stage strategy, comprising also a smoother. This approach 
is denoted iterative Ms [245, 253] and usually consists of 
two stages closely resembling an MG V-cycle. Hajibeygi 
et al [253] and Zhou and Tchelepi [183] observed, in fact, 
that M−1

Ms
 is rank deficient by nF − nC , therefore it cannot 

address all the error components and does not yield conver-
gence. Specifically, only the low-frequency (or long-range) 
modes are deflated, while high-frequency (or short-range) 
error components have to be treated by a complementing 
smoother, such as ILU, block ILU or AS. Similar conclu-
sions were also provided by Pasetto et al [254], who used a 
coarse model based on the Proper Orthogonal Decomposi-
tion (POD) of the fine model. Anyway, such a behavior is 
consistent with the global nature of Ms operators, which 
rely on approximations at the local level where a smoother 
usually proves effective. Similarly to AMG, the P opera-
tor should provide a good interpolation of the error from 
the coarse to the fine grid, while avoiding the introduction 
of oscillatory components in the solution. Several combi-
nations of Ms operator for the global stage and relaxation 
scheme for the local stage are possible. In this regard, Wang 
et al [251] found it efficient to blend the MsFE operator 
(replaced by the MsFV operator at the final step) with an 
ILU factorization at the fine scale. This setup was also tested 
by Manea et al [255] in a parallel computing environment 
and both studies show comparable results with respect to 
SAMG [140]. The two-stage iterative strategy outlined 
above sets the basis also for one of the pressure-problem 
solvers currently implemented in Intersect [72, 256, 257].

The accuracy of the Ms operators largely revolves around: 
(i) the ability of the basis functions to represent the fine-
scale features on the coarse grid, and (ii) the approximation 
introduced for their computation due to use of homogene-
ous boundary conditions for the local flow problems. As to 
the first issue, the coarsening factor Cr , the aspect ratio of 
the coarse cells, and the internal permeability leaps play 
a prominent role [253]. Generally, it can be beneficial to 
build coarse grids that adapt to the subsurface geological 
structure, hence following the medium property distribution, 
rather than using uniform partitions [249]. High contrasts in 
the permeability within coarse cells, in fact, can jeopardize 
the accuracy of the coarse-scale problem equations. To this 
end, Lie et al [258] proposed to design multiple coarse parti-
tions, each one targeting a specific property, with the aim at 
representing the fine-scale rock properties in all its aspects at 
different levels. These concepts have been extended in [214], 
where three types of basis functions, namely general, static 
and dynamic are introduced on a likewise number of coarse 
partitions. General basis functions are built upon regular and 
homogeneous coarse-scale grids. Static functions, instead, 

play an important role in grids with different degrees of 
refinement and irregular cells, thereby adapting to the shape 
of the reservoir formations or possible flow paths. Finally, 
dynamic functions aim at characterizing the coupling of 
pressure and saturation, which is usually confined to advanc-
ing fronts or regions experiencing abrupt pressure changes, 
by developing partitions that follow the solution variation 
within the domain. Such preconditioning technique appears 
to be effective, even though possibly expensive.

The second issue, i.e., the inaccuracies caused by weak 
localization assumptions, is responsible for drawbacks 
mostly experienced with the MsFV method under specific 
settings. Large aspect ratios in the cell size, resulting in 
highly anisotropic transmissivities, and significant perme-
ability leaps, as in channelized media, are responsible of 
severe monotonicity issues, unreal pressure fluctuations 
and circular velocity fields [239]. This is a well-known 
shortcoming and a number of strategies have been devised 
for its mitigation, for instance by using iterative tech-
niques, possibly with the introduction of additional cor-
rection functions (CFs) [253]. For preconditioning pur-
poses, the use of CFs can be thought as a preliminary stage 
in the iterative MsFV algorithm aimed at dumping the 
high-frequency components of the error. CFs alone give 
rise to a non-convergent local solver that usually needs to 
be complemented by another smoother. While CF helps 
accelerating the convergence, it also proved to be compu-
tationally expensive [251].

As to the efficiency of Ms methods, in multiphase prob-
lems the recomputation of the coarse-grid basis functions 
at every stage of the simulation can be expensive, though 
being embarrassingly parallel. For incompressible flow, a 
classical approach consists in updating the basis functions 
during the simulation whenever changes of the rock/fluid 
properties have been detected (e.g., near advancing fronts), 
for instance, by easily setting thresholds [233]. In more gen-
eral approaches, applicable also to compressible flow prob-
lems, basis functions are computed once at the outset of the 
simulation, and then used in each time step to compute a first 
guess which can be improved through iterations and smooth-
ers to get rid of any errors induced by global couplings and 
dynamic changes in the mobilities.

The application of MsFV to unstructured grids presents 
significant challenges in the computation of the basis func-
tions, since it requires the construction of a second dual-grid 
upon the coarse partition. The MsRSB method [238, 259] 
was designed to overcome such a limitation by introducing 
the more flexible concept of support region, associated with 
each coarse element, which replaces the dual-cell. The sec-
ond hallmark of the MsRSB approach regards the computa-
tion of the P operator through an iterative technique relying 
on a simple weighted Jacobi relaxation scheme. Such an 
iterative approach can be advantageous also for the update 
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of the P operator by exploiting the old version as seed for the 
recomputation [259]. The interested reader can refer to the 
book by Lie and Møyner [257] for a detailed description of 
the transition from MsFV to the MsRSB method.

Ms methods have been the object of an increasing inter-
est within the reservoir simulation community. In late years, 
much effort has also been spent on extending these techniques 
as preconditioners for block problems, such as poromechan-
ics [260, 261], coupled flow-poromechanics [262] and flow 
with heat transfer [263]. Using a similar strategy also for sys-
tem (10) would entail to compute basis functions for the non-
pressure block as well. Even though appealing, this strategy 
is challenging due to the hyperbolic nature and the strong 
inherent non-linearity of the problem, as highlighted in [264], 
and up to date a study on this topic is missing.

4.3 � Preconditioners for Reservoir Block Problems

The most effective way to address problems with a structure 
like the one in Equation (10) is to exploit its block form. 
After having reviewed some preconditioning techniques for 
local preconditioners, in this section we will consider meth-
ods for reservoir simulation block-structured problems.

4.3.1 � Multi‑Stage Preconditioners: CPR and CPR‑like 
Schemes

The class of multi-stage preconditioners is definitely one of the 
most popular for reservoir simulators, with several applications 
also to multi-physics problems, for instance coupled flow and 
poromechanics [262, 265, 266]. The rationale is often physics-
based and exploits the algebraic properties of single physics in 
order to build a set of preconditioners, which are applied in an 
additive or multiplicative sequence. During such an application, 
the sets of unknowns are repeatedly updated and progressively 
corrected. The standard preconditioner for commercial reservoir 
simulators (see, for instance, Eclipse 300 [71], Intersect [72], 
Nexus [267] and others [11]), as well as academic simulators 
(like OPM [127, 128], MRST [54, 59, 257], AD-GPRS [15, 
17, 268–271], IPARS [272–274] or DARTS [275]), is the two-
stage multiplicative Constrained Pressure Residual (CPR). 
Originally introduced in the early ’80s in the pioneering works 
by Wallis [276] and Wallis et al [277] as an improvement of 

the combinative method proposed in [66], CPR was specifically 
designed to address the linearized systems of equations originat-
ing from FI dead-oil models under isothermal conditions [278].

CPR takes inspiration from the IMPES solution strat-
egy [21, 279], where the pressure and saturation equations 
are decoupled and addressed separately. This is supported by 
the mixed character of the reservoir problem with respect to 
pressure-like and saturation-like unknowns. While pressures 
are associated with an elliptic problem and have a global 
effect, saturations refer to a hyperbolic problem and their 
influence on the flow is local. CPR addresses the relevant 
blocks by means of dedicated preconditioners, tailored upon 
their specific properties. The traditional CPR preconditioner, 
M

−1
CPR

 , has two stages, namely M−1
1

 and M−1
2

 , involving an 
approximation of the inverse of App and the whole matrix A , 
respectively. Since App has generally the structure of an ellip-
tic problem, an AMG V-cycle (Sect. 4.2.3) is an ideal candi-
date, as first observed in the seminal works [280] and [134]. 
In symbols, the restricted pressure approximate solver reads:

The second-stage preconditioner, instead, is usually an 
ILU(0) factorization of A:

Due to the inherent limitations of ILU factorization for effec-
tive parallel implementations, another choice for M−1

2
 is AS, 

or its less expensive variant RAS [10, 184]. The overall CPR 
preconditioner is expressed as:

and its application u = [up us]
T  to a vector v = [vp vs]

T 
can be broken down into four steps, as detailed in Algo-
rithm 1. Here, u1 = [u1

p
0]T is the first-stage approximation 

of u , �u = [�up �us]
T is the correction and r = [rp rs]

T is the 
residual. Notice that both usual ingredients of the CPR pre-
conditioner, i.e., AMG and ILU, do not require the knowl-
edge of the domain topology, therefore this preconditioning 
technique, in conjunction with a Krylov subspace method, 
can be used as a black-box solver. 

(29)M
−1
1

≈

[

A−1
pp

0

0 0

]

.

(30)M
−1
2

= U
−1
L
−1

≈ A
−1.

(31)M
−1
CPR

= M
−1
2

[

I −AM
−1
1

]

+M
−1
1
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Decoupling pressure from saturation. Applying M−1
1

 
to v is equivalent to solve approximately the first block of 
equations Appup + Apsus = vp by neglecting the coupling 
between pressure and saturation, i.e., “freezing” the satura-
tions. In order to limit the effect of this approximation, a 
common strategy is to preliminary decouple pressures from 
saturations by premultiplying both sides of system (10) by an 
appropriate operator F  . The decoupling process should also 
have a preconditioning effect on A and the leading blocks, 
but this is often difficult to achieve [34].

The F  operator can be conceived as a sort of left pre-
conditioner, whose application might be carried out before 
system (10) is addressed [17] and, like all preconditioners, 
its setup and application should be as inexpensive as pos-
sible. Alternatively, the decoupling task can be incorporated 
during the first-stage preconditioner application.

The ideal decoupling operator should read:

where D = −ApsA
−1
ss

 . Premultiplying both sides of Equa-
tion (10) with Fex gives:

where Ãpp = App − ApsA
−1
ss
Asp is the reverse, or “primal”, 

Schur complement of A . Of course, the exact application of 
Fex is generally not feasible in practice and it might result in 
excessive fill-in of Ãpp . Therefore, cheaper approximations 
have been introduced, such as the Alternate-Block-Factori-
zation (ABF) [281] or Quasi-IMPES (QI) and True-IMPES 
(TI) operators [272, 279], borrowed from IMPES method. A 
systematic review of these techniques can be found in [252] 
and [282]. In the following, only QI and TI will be briefly 
presented, since ABF might provide a non-symmetric Ãpp 
that can jeopardize the AMG application. The QI and TI 
decoupling operator is:

w h e r e  DQI = −diag(Aps)diag
−1(Ass)  a n d 

DTI = −colsum(Aps)colsum
−1(Ass) . The operator colsum(A) 

returns a diagonal approximation of A with entries equal 
to the sum of the components in each column of A. These 
techniques are a trade-off between the need of accuracy and 
efficiency. Notice, however, that they can be used only if 
Aps is square, i.e., there are as much pressure-like as satu-
ration-like unknowns. This restrains the relevance of these 
techniques to specific classes of models and discretization 

(32)Fex =

[

I D

0 I

]

,

(33)

̃Ax = ̃b ⇒

[

Ãpp 0

Asp Ass

] [

xp
xs

]

=

[

bp − ApsA
−1
ss
bs

bs

]

,

(34)FQI,TI =

[

I DQI,TI

0 I

]

,

schemes, like standard black-oil simulations discretized 
with the TPFA. If the above assumption does not hold, 
other choices are available, for instance by providing sparse 
approximations of F  through the solution to the multiple 
RHS-system AT

ss
DT = −AT

ps
 , as proposed in the context of 

MGR method by Bui et al [148, 149] and adapted to coupled 
flow-poromechanics applications [283] or MHFE-based flow 
models [284].

Ellipticity of the pressure subproblem. While decou-
pling pressure from saturation should improve the effec-
tiveness of the global CPR algorithm, it is also fundamen-
tal that the pressure subproblem can be properly tackled by 
AMG. If not, convergence of CPR-preconditioned Krylov 
subspace methods can be slow and lack of robustness is 
sometimes observed. There are two main causes for such 
a behavior [285]: (i) the diffusive flux preserves the ellip-
ticity of the pressure block, but local source terms, such 
as fractures and wells, can violate this condition. In some 
black oil models, due to phase appearance and disappear-
ance [148] or high number of active wells [285], the pres-
sure block can even become indefinite; (ii) the application 
of the pressure-saturation decoupling factor transforms the 
original pressure block App to Ãpp of Equation (33), thus 
potentially worsening, even in a significant way, its native 
algebraic properties. In summary, AMG may converge 
slowly or may not converge at all.

As to the first issue, Gries et al  [285] proposed the 
Dynamic Row Sum (DRS) technique to ameliorate the 
original properties of the pressure block. Applying the 
DRS method is somehow equivalent to performing an 
adaptive matrix scaling and can be considered as a pre-
liminary step in the process. The resulting pressure block 
is a compromise between the one obtained with the IMPES 
strategy and the necessity of protecting it from trouble-
some features for AMG. By tuning a couple of param-
eters, the balance can be shifted towards one of the two 
extremes.

Regarding the introduction of decoupling factors, we 
should remember from the previous section that such a 
decoupling is necessarily approximated since computing 
and applying A−1

ss
 exactly is too expensive. On top of that, 

preserving the AMG-friendly properties of the pressure sub-
problem, for instance diagonal dominance, might be difficult 
to control. QI and TI operators can be good inexpensive 
choices [252, 286], but other more sophisticated options 
are possible (see, for instance, [285]). Notice, however, 
that early results presented in [285], and later confirmed 
in [163, 287], show that it is generally better to prioritize 
the AMG solvability, rather than focusing on the algebraic 
decoupling between pressure and saturation, in order to have 
a fast convergence.
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Recent advancements Even though CPR is almost 40 
years old, the interest around this method is still high. In 
recent years, the main research directions have focused 
on: (i) designing CPR-like schemes with more than two-
stages [10, 184, 288, 289], (ii) coping with some critical 
aspects related to the effects of capillarity on the saturation 
block [266, 290], (iii) extending the CPR preconditioner to 
general purpose reservoir simulations [17, 286, 291–293], 
and (iv) evaluating the suitability of the Ms operator as an 
alternative to AMG for the pressure subproblem [214, 217, 
252, 255, 294].

In general, an n-stage preconditioner (with n ≥ 2 ) can be 
expressed as:

A family of CPR-like schemes has been developed in [184] 
and [10] and applied to black-oil models. Several variants 
have been designed by swapping the order of the updates in 
Algorithm 1 or extending the formulation to three and even 
four stages. Furthermore, the ILU decomposition M−1

2
 has 

been replaced with an RAS approximation, coupled with an 
additional factorization of the local blocks to improve the 
parallel degree and scalability of the algorithm. The results 
show that the most promising scheme has three stages, where 
the whole problem is tackled first and at the end, whereas 
the pressure problem is solved only once at the second stage.

The effects of capillarity on the performance of CPR have 
been investigated in [290]. According to the model used, 
the saturation block Ass may exhibit a convection-diffusion 
or a hyperbolic nature. Two- and three-stage CPR variants 
were considered, whose performance is compared against an 
AMG applied to the whole Jacobian and a block constraint 
preconditioner (Sect. 4.3.2). The experimental tests showed 
that the two-stage CPR is not as efficient as the three-stage 
variant, which performs very well except when the capil-
lary model leads to an advection-dominated flow. On the 
other hand, the block constraint preconditioner proved to be 
competitive with respect to CPR-like methods thanks to its 
robustness and good scalability. The work by Bui et al [290] 
has been extended in [266], where poromechanics has been 
included in the original two-phase flow model. When capil-
lary effects are important and the saturation block exhib-
its a diffusion dominated nature, the experimental analysis 
showed that it might be convenient to use an AMG precon-
ditioner rather than a simple Jacobi scaling as obtained from 
QI decoupling.

As mentioned before, the traditional CPR precon-
ditioner was designed to cope with dead-oil models, 
however it has been frequently employed for composi-
tional and thermal reservoir simulations as well. In such 
cases, although new blocks are added to the linearized 

(35)M
−1
n−stage

=

n
∑

i=2

M
−1
i

i−1
∏

j=1

[

I −AM
−1
j

]

+M
−1
1
.

system (10), the standard approach is to include the addi-
tional variables (phase composition and temperature) as 
saturation-like variables, thus obtaining again a 2 × 2 sys-
tem structure. This choice, however, especially in pres-
ence of thermal effects, can worsen the CPR efficiency, 
requiring more expensive ILU(l) factorizations [293]. The 
reason is that the additional variables, such as tempera-
ture, might not have a local saturation-like effect. This is 
particularly true when severe thermal diffusion occurs, for 
instance whenever the fluid flow is slow and the energy 
equations exhibit a strong elliptic nature [17], which justi-
fies the promotion of temperature as a pressure-like vari-
able. Such an issue was first addressed by Li et al [291, 
292], where a novel version of the CPR preconditioner, 
namely the Enhanced CPR (ECPR), was proposed. With 
this approach, the set of first-stage unknowns is selected 
according to the outcome of a preliminary analysis that 
evaluates the coupling strength between variables. In alter-
native to CPR, Roy et al [293] designed and tested a block 
preconditioner, which proved more efficient in diffusion-
dominated settings. However, for advection-based simu-
lations the classical CPR remains the method of choice. 
In [286], the Constrained Pressure-Temperature Residual 
(CPTR) preconditioner, blending the traditional CPR 
with block preconditioning, is introduced with the aim at 
exploiting the strengths of both approaches. The first-stage 
set of unknowns comprises both pressure and temperature 
and the application of the relevant preconditioner exploits 
the 2 × 2 inherent block structure of the resulting (1,1) 
block, instead of computing a single preconditioner, as 
it will be much clearer in Sect. 4.3.2. In [17], the focus 
of the problem is expanded from black-oil to multiphase-
thermal-compositional-reactive flow in porous media and 
a novel three-stage preconditioner, namely the CPTR3, 
which exploits the 3 × 3 structure of the system matrix, 
was designed.

In the preliminary work [252], the Authors proposed 
a CPR-Ms algorithm, where the Ms operator, M−1

Ms
 in 

Equation 28, is cast in a V-cycle fashion and used as an 
approximate pressure solver, M−1

1
 , replacing AMG. The 

experimentation on multiphase multi-component flow 
problems showed some good results for the CPR-Ms 
preconditioner, while not being always as efficient as the 
classical CPR-AMG. In a preliminary study, Klemetsdal 
et al [214] analyzed the performance of a MsRSB-based 
pressure preconditioner with multiple basis functions built 
upon both regular and irregular coarse partitions, designed 
following the shape of the formations and the fluid fronts. 
The tests proved that this approach is advantageous with 
respect to algorithms with a single set of basis functions, 
but a thorough comparison with AMG-based algorithms 
is missing. By distinction, such an analysis is the driver 
of the work by Nilsen et al [217], but it is limited to the 
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solution of the pressure block alone. The performance of 
a MsRSB approximate pressure solver, using two or more 
grid levels, is evaluated against aggregation and smoothed-
aggregation AMG. Hybrid schemes, where Ms and AMG 
operators are used at different levels, have been considered 
as well. The results showed that, while Ms-based algo-
rithms often use less iterations to converge, they are more 
time-consuming than standard aggregation AMG. Hybrid 
schemes, however, proved to be competing with respect to 
pure AMG-based algorithms. Therefore, further research 
is needed to develop a robust and efficient alternative to 
CPR-AMG preconditioners.

4.3.2 � Block Preconditioners

Even though CPR is the academic standard for reservoir 
simulators with a large use also in commercial software, 
there is an increasing number of applications where its 
efficiency and robustness can be questionable. These can 
include discretizations producing a non-symmetric or 
indefinite pressure-like block App , or simulations intro-
ducing additional features, such as mechanics, capillarity, 
temperature, or phase change. To cope with these issues, a 
growing interest has gathered around block preconditioners, 
which can be regarded as either an alternative to CPR (see, 
for instance, [290, 293]) or a mean to improve it (e.g., [17, 
286]).

Block preconditioners have been originally introduced 
since the early ’00s to address the solution of saddle-point 
matrices [295] that frequently arise in problems like the 
solution of Navier-Stokes equations [296–301], constrained 
optimization [302–304], coupled poromechanics [262, 265, 
283, 305–310], electromagnetism [311–314], and contact 
mechanics [315–317], to mention a few applications and 
some recent related works.

Let us consider the prototype problem (10). The block-
LDU decomposition of A reads:

where S = Ass − AspA
−1
pp
Aps is the Schur complement. Fol-

lowing Equation (36), the inverse of A is:

and the vector u = A
−1v therefore reads:

(36)
A = LDU ⇒

[

App Aps

Asp Ass

]

=

[

I 0

AspA
−1
pp

I

] [

App 0

0 S

] [

I A−1
pp
Aps

0 I

]

,

(37)A
−1 =

[

I − A−1
pp
Aps

0 I

] [

A−1
pp

0

0 S−1

] [

I 0

−AspA
−1
pp

I

]

According to Equation (38), the computation of u requires 
the availability of A−1

pp
 and S−1 , i.e., the solution of two 

inner systems. If such a solution is carried out inexactly, 
Equation (38) can be regarded as the application of a block 
preconditioner of A . This strategy was originally denoted 
as constraint preconditioning [88], because this technique 
was often used in connection with constrained optimization 
problems.

Depending on how A−1
pp

 and S−1 are approximated, differ-
ent variants of constraint preconditioners can be identified. 
A first approach, introduced by Keller et al [318] for indefi-
nite systems, implies to replace A−1

pp
 with a sparse approxi-

mation M−1
pp

 , compute explicitly an approximation of S as 
S = Ass − AspM

−1
pp
Aps , and solve exactly the second system 

in Equation (38) having S as matrix. The structure of the 
resulting block preconditioner, denoted as Exact Constraint 
Preconditioner (ECP), reads:

If App , hence M−1
pp

 , is SPD, this approach has optimal prop-
erties for the eigenspectrum of the preconditioned matrix, 
allowing for the use of CG even for indefinite systems [319]. 
However, for the sake of efficiency, ECP has to satisfy at 
least three constraints: (i) M−1

pp
 should be available explicitly, 

(ii) S has to retain a workable sparsity, and (iii) the solution 
to the system with S should be as inexpensive as possible.

A possible remedy to the last issue can arise from the 
introduction of a sparse approximation MS of S , which 
should be easier to invert. Recalling Equation (37), the Full 
Inexact Constraint Preconditioner (FICP) is obtained:

This introduces a further approximation, thus causing the 
loss of the ECP theoretical properties. Notwithstanding, 
the performance of the FICP preconditioner is usually good 
in practice and this behavior is theoretically justified, for 
instance in [320–322]. A less expensive FICP variant can be 
obtained by neglecting one of the two triangular blocks, thus 
obtaining a lower or upper Triangular Inexact Constraint 
Preconditioner (TICP), such as:

(38)

[

up
us

]

=

[

App Aps

Asp Ass

]−1 [
vp
vs

]

=

[

A−1
pp
(vp − Apsus)

S−1(vs − AspA
−1
pp
vp)

]

.

(39)M
−1
ECP

=

[

Mpp Aps

Asp Ass

]−1

.

(40)

M
−1
FICP

=

[

I −M−1
pp
Asp

0 I

] [

M−1
pp

0

0 M−1
S

] [

I 0

−ApsM
−1
pp

I

]

=

[

Mpp Aps

Asp MS + AspM
−1
pp
Aps

]−1

.
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when the upper block is discarded. An even more inex-
pensive approximation is obtained by retaining only the 
central block diagonal factor in Equation (40). TICP has 
been successfully applied to coupled flow-poromechanics 
problems in [306], while a suite of ICP/TICP was designed 
by Chidyagwai et al [323] to tackle mixed Darcy-Stokes 
flow simulations in porous media. The results show that 
ICP outperforms TICPs variants in terms of number of 
iterations and that, for 2D applications, a good scalability 
can be achieved depending on the choice for M−1

pp
 and MS . 

Bergamaschi et al [324] provide an interesting comparison 
between the performance of ECP, ICP and an ILUT pre-
conditioner applied to the whole matrix, for coupled flow-
poromechanics problems. The results show that ECP’s per-
formance in terms of solution time is overcome by both ICP 
and ILUT, due to the inherent high application cost, with 
ICP standing out clearly.

The availability of a high-quality sparse approximation of 
A−1
pp

 is often in contrast with the need for an explicit matrix 
M−1

pp
 guaranteeing the sparse computation of S . For this rea-

son, another variant was introduced blending two different 
approximations of A−1

pp
 . This is denoted as Mixed Constraint 

Preconditioner (MCP) [325]:

where Ass = S + AspM
−1
pp,2

Aps . Here, Mpp,1 and M−1
pp,2

 represent 
different approximations of A−1

pp
 , where usually the former is 

implicit and the latter explicit. An MCP extension is the 
class of Relaxed Mixed Constraint Preconditioner 
(RMCP) [326], that introduces a relaxation parameter � on 
S with the aim at better clustering the eigenspectrum of the 
preconditioned matrix.

Block preconditioning appears to be a very flexible 
approach, where the algebraic framework (39)-(42) easily 
allows for the introduction of proper off-the-shelf local precon-
ditioners according to the specific properties of the problem 
at hand. Therefore, the field is open to any kind of solution 
combining ILU, Jacobi, DD, AMG, and many others, includ-
ing also physics-based approximations specifically related to 
the actual application. The approximation of the Schur com-
plement is often the most challenging task, mainly because of 
the term H = AspA

−1
pp
Aps . If Ass prevails, neglecting H is con-

venient. Otherwise, a natural inexpensive approximation is to 
use just the diagonal of App , i.e., H ≃ H = Aspdiag(App)

−1Aps . 
In the previously cited work by Roy et al [293], these two 

(41)

M
L,−1

TICP
=

[

M−1
pp

0

0 M−1
S

] [

I 0

−ApsM
−1
pp

I

]

=

[

M−1
pp

0

−M−1
S
ApsM

−1
pp

M−1
S

]

,

(42)M
−1
MCP

=

[

Mpp,1 Aps

Asp Ass

]−1

,

options have been tested and proved to be poor approxima-
tions for a reservoir problem. On the other hand, for the block 
preconditioner designed in [290], the latter approximation of 
H has been judged efficient. The contribution H can also be 
approximated as a whole, for example by physics-based intui-
tions such as the “fixed-stress” approach in coupled porome-
chanical applications [306, 307], or by using restriction and 
prolongation operators and performing local computations on 
restricted matrices in a fully-parallel fashion (see, for instance, 
[327]). Otherwise, Ferronato et al [317] proposed to use the 
decoupling factors in Equation (37), namely, G = −ApsA

−1
pp

 
and F = −A−1

pp
Asp , to recast the troublesome H contribution 

as GAppF . Since the exact computation of F and G factors is 
not viable, sparse approximations are computed by employ-
ing restriction, R, and prolongation, P, operators, which allow 
for the extraction and efficient solution of restricted systems. 
These operators control both the efficiency and accuracy of the 
approximation. Improved strategies to build R and P operators 
have been developed in [283] and [284]. Alternatively, Roy 
et al [286, 293] opted to build an approximation of the Schur 
complement before discretizing the linear problem upon the 
analytical expression of the single blocks to obtain a mesh-
independent preconditioner.

5 � CPR and Block Preconditioners: 
A Common Background

In Sects. 4.3.1 and 4.3.2, we presented multi-stage and block 
preconditioners separately, as two different approaches for the 
preconditioning of reservoir-simulation-driven block-struc-
tured problems. In fact, these techniques have been developed 
independently by research groups operating in different fields 
of numerical modeling, often with limited mutual interactions. 
CPR was born in the specific frame of reservoir simulation, 
whereas block preconditioning originated from the numeri-
cal analysis of saddle-point matrices and was later special-
ized in different applications arising, for instance, in coupled 
poromechanics, constrained optimization and Navier-Stokes 
equations, just to cite a few. Because of the different scien-
tific contexts they originated from, CPR has a physics-based 
foundation, while block preconditioners rely on an algebraic 
approach. Despite these differences, it is possible to identify 
a common background for the two techniques and show that 
block preconditioning and the classical two-stage CPR can be 
somewhat regarded as two sides of the same coin.

We first recall the result of the application of A−1 to a vector 
v in Equation (38):

(43)
[

up
us

]

=

[

A−1
pp
vp − A−1

pp
ApsS

−1(vs − AspA
−1
pp
vp)

S−1(vs − AspA
−1
pp
vp)

]

.
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Let us now focus on the CPR application following Algo-
rithm 1, where we use the exact inverse of the pressure block 
A−1
pp

 in the first stage and the exact LU factorization of A in 
the second stage. We have:

and the corresponding residual:

The second stage uses the two-level block-LU decomposi-
tion of A [328], which reads:

where it is easy to observe that the following conditions 
hold:

We need to solve the system:

and use the solution to correct the guess of Equation (44):

Recalling Equation (50), it is immediately observed that (52) 
coincides with (43).

(44)u1 = M
−1
1
v ⇒

[

u1
p

u1
s

]

=

[

A−1
pp
vp

0

]

,

(45)

r =v −Au1 ⇒

[

rp
rs

]

=

[

vp
vs

]

−

[

App Aps

Asp Ass

] [

A−1
pp
vp

0

]

=

[

0

vs − AspA
−1
pp
vp

]

.

(46)A = LU =

[

Lpp 0

Lsp Lss

][

Upp Ups

0 Uss

]

,

(47)LppUpp =App,

(48)Ups =L−1
pp
Aps,

(49)Lsp =AspU
−1

pp
,

(50)LssUss =Ass − LspUps = S.

(51)

LU �u = r ⇒

[

Lpp 0

Lsp Lss

] [

Upp Ups

0 Uss

] [

�up
�us

]

=

[

rp
rs

]

,

(52)

u = u1 + �u ⇒

�

up
us

�

=

�

A−1
pp
vp

0

�

+

⎡

⎢

⎢

⎣

−A−1
pp
ApsU

−1
ss
L−1
ss

�

vs − AspA
−1
pp
vp

�

U−1
ss
L−1
ss

�

vs − AspA
−1
pp
vp

�

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

A−1
pp
vp − A−1

pp
ApsU

−1
ss
L−1
ss

�

vs − AspA
−1
pp
vp

�

U−1
ss
L−1
ss

�

vs − AspA
−1
pp
vp

�

⎤

⎥

⎥

⎦

.

Such a result should be no surprise, because the exact 
CPR application must yield the action of A−1 . However, 
regarding CPR as an inexact application of Equation (43) 
helps restore a unique framework with block precondition-
ers. As observed in Sect. 4.3.2, the action of block precon-
ditioning consists of replacing A−1

pp
 and S−1 in Equation (43) 

with proper approximations, or inner local preconditioners, 
M−1

pp
 and M−1

S
 , respectively, giving rise to either an exact, 

or inexact, or mixed approach according to the relationship 
existing between M−1

pp
 and M−1

S
 . Hence, the outcome of the 

application of any block preconditioner reads:

Equation (52) tells us that the classical CPR can be regarded 
as a block preconditioner, where M−1

pp
 is an AMG-like 

approximation of App and M−1
S

 is gathered from the final 
portion of the ILU decomposition of the full matrix A . As 
a result, using this smart physics-based intuition, the Schur 
complement does not need to be computed explicitly, nei-
ther in an inexact way. Specifically, CPR can be viewed as 
a mixed constraint preconditioner because it relies on two 
different implicit approximations of A−1

pp
 , i.e., the already 

mentioned AMG-like M−1
pp

 and an incomplete factorization, 
which is indirectly used to assemble the approximated Schur 
complement, MS . Notice also that the algebraic role of the 
Schur complement in the preconditioning of block problems 
has been acknowledged only twenty years after the CPR 
introduction, with the seminal work by Murphy et al [329].

The algorithm for the CPR application is different from 
the one used for a standard block constraint approach. This 
yields a different propagation of the errors associated with 
the inexact approximations of A−1

pp
 and S−1 . Let us intro-

duce in Equations (44)-(52) the AMG-like operator M−1
pp

 
approximating the pressure-like block App and the incom-
plete global factorization:

from which we have the local Schur complement precondi-
tioner M−1

S
= Ũ−1

ss
L̃−1
ss

 . Then, after some algebra, we obtain 
the outcome of the CPR application as:

(53)
ublock
p

= M−1
pp
vp

−M−1
pp
ApsM

−1
S

(

vs − AspM
−1
pp
vp

)

,

(54)ublock
s

= M−1
S

(

vs − AspM
−1
pp
vp

)

.

(55)A ≃ �L�U =

[

L̃pp 0

AspŨ
−1
pp

L̃ss

][

Ũpp L̃−1
pp
Aps

0 Ũss

]

,

(56)
uCPR
p

= M−1
pp
vp

− Ã−1
pp
ApsM

−1
S

(

vs − AspM
−1
pp
vp

)

+ ep,
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where Ã−1
pp

= Ũ−1
pp
L̃−1
pp

 . Inspection of Equations (56)-(57) in 
comparison with (53)-(54) reveals that the CPR algorithm 
introduces two additional contributions, ep and es , which 
read:

with Ip the identity in the space of pressure-like variables 
and Ep the error matrix:

which gives a measure of the quality of the AMG-like 
approximation of the pressure block. In other words, CPR 
differs from a mixed constraint approach only by the two 
terms (58)-(59), whose size depends on ‖vp‖ and ‖Ep‖ . In 
general, these two vectors can act in an unpredictable way, 
either adding new error sources or compensating errors 
introduced by the selected approximations. Therefore, it is 
not possible to state a priori which approach is preferable, 
the result being very problem-dependent.

6 � Closing Remarks and Future Directions

The steady expansion in the model size, the introduction of 
additional physics in classical flow simulators, such as poro- 
and contact-mechanics, along with the development of more 
accurate and articulated discretization schemes, contribute 
to challenge the performance of existing linear solvers for 
reservoir modeling purposes. In particular, the uninterrupted 
development of such tools is key for FI simulators, where 
large-size and ill-conditioned linearized Jacobian systems 
of equations have to be repeatedly solved during a simula-
tion. This task represents by far the most time and resource 
consuming kernel of the entire simulator. Krylov subspace 
methods, such as GMRES and Bi-CGStab, are well-estab-
lished effective iterative solvers for reservoir problems, 
provided that appropriate preconditioners are introduced to 
speed-up convergence. Robustness, computational efficiency 
and scalability in high-performance computing environ-
ments are the targets to be accomplished for an effective 
inclusion in modern simulators.

The number and complexity of the different possible 
physical and mathematical variants for reservoirs problems, 
including multiphase and multi-component processes in pos-
sibly nonisothermal conditions, has led to the introduction 
of a significant amount of solution algorithms, which try to 

(57)uCPR
s

= M−1
S

(

vs − AspM
−1
pp
vp

)

+ es,

(58)ep =
(

Ip + Ã−1
pp
ApsM

−1
S
Asp

)

Ã−1
pp
Epvp,

(59)es = −M−1
S
AspÃ

−1
pp
Epvp,

(60)Ep = Ip − AppM
−1
pp
,

account for as many different situations as possible. For this 
reason, research in this field is currently very active. The 
main objective of this work was reviewing the state-of-the-
art of the most popular solving techniques used in reservoir 
simulators. The block-structure of the Jacobian matrices 
and the different properties of the blocks arising from the 
governing equations dictate the use of specific articulated 
strategies. The most successful approaches developed so 
far are based on either a CPR scheme (Sect. 4.3.1) or a 
constraint preconditioning method (Sect. 4.3.2), which, on 
their turn, rely on dedicated local inner preconditioners for 
the pressure-like block and the Schur complement. Popular 
preconditioners for the inner problems include incomplete 
LU factorizations, domain decomposition and multigrid/
multiscale methods (see Sect. 4.2).

In Sect. 5, we observed that block preconditioning and 
the classical two-stage CPR algorithm share a common 
algebraic background, so that CPR can be regarded as a 
special variant of the mixed constraint approach, charac-
terized by the use of two implicit approximations of the 
inverse of the pressure-like block and an implicit factoriza-
tion of the Schur complement. Other connections between 
different methods can also be observed. For instance, the 
structure of the CPR algorithm is equivalent to a two-
grid V-cycle without pre-smoothing, where the restricted 
system coincides with the pressure sub-problem. For this 
reason, the application of the global ILU preconditioner 
at the second stage is also referred to in the literature as 
smoothing step, with a similar effect on the error as in 
AMG methods [285]. An analogous algorithmic struc-
ture is also shared with the two-stage Ms method, where 
the Ms coarse scale solver is coupled with a relaxation 
stage. Moreover, the classical two-stage CPR-AMG algo-
rithm can be recovered from the MGR approach of Equa-
tion (23) as well, where the F-relaxation is replaced by a 
global smoothing through ILU, AMG is used as a coarse-
grid solver, and DL = DU = 0CC [148]. Alternatively, the 
F-C variable partition in the MGR method can be natu-
rally extended to system (10), where the fine and coarse 
unknowns correspond to the pressure- and saturation-like 
unknowns. Following this approach, it is straightforward 
to further notice the connection between MGR and con-
straint preconditioning [149], as both rely on the same 
block factorization of the system matrix.

Finally, Table  1 provides a selection of the main 
research directions that are currently active in the field 
of preconditioning of reservoir simulation problems. In 
this regard, CPR still plays a major role, with promising 
research paths that consider the introduction of new physi-
cal variables and the integration with block precondition-
ing techniques. A reciprocal strategy is also interesting, 
with CPR considered as a local preconditioner for the flow 
problem within a broader (block) preconditioning strategy 
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(see, for instance, [265, 266]). The design of efficient pre-
conditioners for such multi-physics problems is a promi-
nent subject for research in the next future.
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