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Abstract
In the recent decade, supplementary cementing ingredients have become an essential part of various strength ranges of 
concrete and cement-mortar mix design. Examples are natural materials, by-products, industrial wastes, and materials that 
require less energy and time to generate. Fly ash is one of the most widely utilized additional cementing ingredients. Fly 
ash is a by-product substance produced by coal combustion. It's being used in cement mortar and concrete as a pozzolanic 
substance. It has demonstrated significant influence in improving liquid and solid properties of cement mortar, such as 
compressive strength. Multi Expression Programming (MEP) is employed in this study to estimate the compressive strength 
(CS) of cement mortar modified with fly ash. The outcomes of this model were compared and evaluated with several other 
models such as the Nonlinear Regression model (NLR), Artificial Neural Network (ANN), and M5P-tree models that have 
been used in the construction fields. The input parameters included water/cement ratio (w/c), curing time (t days), and fly 
ash content (FA %), while the target property was compressive strength up to 360 days of curing. Four hundred fifty (450) 
data are collected from previous literature on modifying cement mortar with fly ash for that purpose. The water/cement ratio 
ranged from 0.24 to 1.2, and the fly ash was used to replace cement up to 55% (%wt. of dry cement). Based on the Coefficient 
of Determination  (R2), Root Mean Squared Error (RMSE), Scatter Index (SI), Objective (OBJ), Mean Absolute Error (MAE), 
t-test value, the uncertainty of 95%, Performance Index (ρ), and boxplot for actual and predicted compressive strength. The 
MEP model performed better than other developed models according to evaluation tools. The compressive strength was also 
correlated with flexural and splitting tensile strengths using different nonlinear models.

1 Introduction

Management of industrial waste materials is a global prob-
lem; fly ash (FA) is a waste -product of power plants result-
ing from coal combustion. Supplementary cementitious 
materials (SCM) are those materials that are used in concrete 
plants to replace Portland cement in cement-based mortar 
and cement-based concrete. The hydration of cement with 
water forming calcium silicate hydroxide gel (C–S–H) and 
calcium silicate (C–H), SCM like fly ash reacted with C–H 
and resulted in the formation of further C–S–H and solv-
ing the durability problems related to C–H which is vulner-
able to chemical attack [1]. Fly ash modified cementitious 

material generate less heat during the hydration process; 
therefore, it is suitable for mass concrete [2–6], and their 
strength is greatly influenced by the physical characteristics 
and chemical composition of the fly ash; those properties 
depend on the coal type and the equipment used in the power 
plant and the reactivity of the fly ash [6, 7]. The pozzo-
lanic reactivity of fly ash has been investigated in various 
research. Pozzolanic reactivity of fly ash can be measured 
through chemical analysis to determine the quantity of sil-
ica or measuring the heat developed at the hydration time. 
However, since the silicate forms a gel at a pH greater than 
10, the amount of silica used in the gel formation must be 
considered [8, 9]. After 28 days of curing, the consump-
tion of C–H through a pozzolanic reaction of fly ash can be 
measured by X-Ray diffraction (XRD) or thermal analysis 
[10]. Natural hydraulic lime occurs from the calcination and 
subsequent slaking of marly limestones (limestones with 
clay impurities, which after calcination become reactive 
silicates and aluminates). It thus sets through both hydra-
tion and carbonation processes, leading to the formation of 
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hydraulic compounds and the formation of calcite, respec-
tively. Due to the relatively low calcination temperatures 
required, it is considered as an eco-friendly material in 
relation to modern binders, such as cement, as also pointed 
out by [11]; furthermore, during hardening, part of the  CO2 
emitted through the limestone calcination is consumed dur-
ing the carbonation process, thus further lowering the total 
environmental impact associated to the greenhouse effect 
gases [11]. Cho et al. [12] evaluated the effect of fly ash 
chemical composition on the compressive strength of fly 
ash modified cement mortar using sixteen different types 
of fly ashes for replacing cement in cement mortar. They 
concluded that the pozzolanic reactively of fly ash is mainly 
affected by the percentage of  SiO2,  Al2O3, and  Fe2O3, and 
the fly ash effect on compressive strength at 90 days of cur-
ing is greater than compressive strength at 28 days of cur-
ing. Chindaprasirt et al. [13] studied the effect of fly ash 
fineness on the mechanical properties, sulfate resistance, 
and drying shrinkage of cement mortar. The study results 
showed that fly ash with higher fineness improves strength, 
drying shrinkage, and sulfate attack. Chindaprasirt et al. [14] 
evaluated workability and chloride ion resistance of cement 
mortar modified with fly ash. Replacement of cement with 
fly ash improved resistance to Chloride ion penetration and 
better workability for the cement mortar.

Modeling the properties of materials can be performed in 
various ways, including computational modeling, statistical 
techniques, and newly created tools like Regression analysis, 
M5P-tree, and artificial neural networks (ANN) [15–19].

Mohammed et al. [20] used ANN, M5P tree, and nonlin-
ear regression to predict the compressive strength of cement-
based mortar modified with fly ash. They have concluded 
that the ANN model can be used efficiently with a high cor-
relation coefficient (R) and minimum RMSE. ANN model 
was also used by Apostolopoulou et al. [11] to predict the 
compressive strength of natural hydraulic lime; the results 
revealed that ANN could accurately forecast the CS of natu-
ral hydraulic lime mortars, implying that they can be used as 
a decision-making tool when developing natural hydraulic 
lime mortars. Also, Armaghani and Asteris [21] investigated 
the application of ANN and adaptive neuro-fuzzy inference 
system (ANFIS) models to predict the compressive strength 
of cement mortar with or without metakaolin concluded 
that ANFIS performed better than ANN. At the same time, 
overfitting was observed for some of the data. Despite the 
extensive use of mortar materials in constructions over the 
last decades, there is not yet a reliable and robust method 
available in the literature to estimate its strength based on its 
mix parameters. This limitation is due to the highly nonlin-
ear relation between the mortar’s compressive strength and 
the mixed components. This paper investigates the applica-
tion of artificial intelligence techniques to predict the com-
pressive strength of cement-based mortar materials with or 

without metakaolin. Specifically, surrogate models (such as 
artificial neural network, ANN and adaptive neuro-fuzzy 
inference system, ANFIS models) have been developed to 
predict the compressive strength of mortars trained using 
experimental data available in the literature. The compari-
son of the derived results with the experimental findings 
demonstrates the ability of both ANN and ANFIS models 
to approximate the compressive strength of mortars reliably 
and robustly. Although ANFIS obtained higher performance 
prediction to estimate the compressive strength of mortars 
compared to the ANN model, it was found through the veri-
fication process of some other additional data, the ANFIS 
model has overfitted the data. Therefore, the developed ANN 
model has been introduced as the best predictive technique 
for solving the problem of the compressive strength of 
mortars. Furthermore, an ambitious attempt to reveal the 
nature of mortar materials has been made [22, 23]. soft 
computing techniques in estimating concrete's compressive 
strength (CS) utilizing two non-destructive tests, namely 
ultrasonic pulse velocity and rebound hammer test. Specifi-
cally, six conventional soft computing models were used: 
back-propagation neural network (BPNN), relevance vector 
machine, minimax probability machine regression, genetic 
programming, Gaussian process regression, and multivariate 
adaptive regression spline. To construct and validate these 
models, 629 datasets were collected from the literature. 
Experimental results show that the BPNN attained the most 
accurate prediction of concrete CS based on both ultrasonic 
pulse velocity and rebound number values. The results of 
the employed MARS and BPNN models are significantly 
better than those obtained in earlier studies. Thus, these two 
models can assist engineers in the design phase of civil engi-
neering projects to estimate the concrete CS with a greater 
accuracy level [23]. An experimental database consisting 
of 1030 records has been compiled from the machine learn-
ing repository of the University of California, Irvine. The 
database was used to train and validate four conventional 
machine learning (CML) models, namely Artificial Neural 
Network (ANN), Linear and Non-Linear Multivariate Adap-
tive Regression Splines (MARS-L and MARS-C), Gauss-
ian Process Regression (GPR), and Minimax Probability 
Machine Regression (MPMR). Subsequently, the predicted 
outputs of CML models were combined and trained using 
ANN to construct the Hybrid Ensemble Model (HENSM). 
It is observed that the proposed HENSM produces higher 
predictive accuracy compared to the CML models used in 
the present study. The predictive performance of all models 
for CS prediction was compared using the testing dataset. 
The HENSM model attained the highest predictive accuracy 
in both phases. Based on the experimental results, the newly 
constructed HENSM model is very potential to be a new 
alternative in handling the overfitting issues of CML models 
and hence, can be used to predict the concrete CS, including 
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the design of less polluting and more sustainable concrete 
constructions [24]. Metakaolin is used as an additive in 
cement mortars, substituting the cement fraction to a cer-
tain extent, to enhance the sustainability of cement mortars, 
both in terms of the environmental impact of raw materials 
production and in terms of the environmental impact of raw 
materials production improving cement-based mortars dura-
bility under environmental actions. However, as metakaolin 
affects the mechanical performance of cement-based mor-
tars, it is important to know the compressive strength that 
these blended mortars achieve at 28-days in terms of struc-
tural design. Toward this direction, metaheuristic models 
such as ANN and Genetic Programming (GP) models have 
been developed and trained through the use of a database, 
compiled by available, in the literature, experimental works 
related to cement and blended cement-metakaolin mor-
tars. In the model development phase, the most important 
parameters affecting the strength of concrete-based mor-
tars were investigated and selected. In addition, the effect 
of the selected transfer functions and the initial values of 
weights and biases on the performance of ANN models were 
also investigated. Based on this analysis, it was shown that 
ANNs with selected transfer functions (such as the Radial-
Basis transfer function, the Soft-Max transfer function, and 
the Normalized Radial Basis transfer function) were able to 
reliably simulate the 28-days compressive strength of the 
cement-based mortars. In addition, it was shown that param-
eters such as the cement grade and the maximum diameter 
of aggregates are very important in determining the com-
pressive strength of the cement-based mortars; this is an 
important finding, because these parameters are usually not 
taken into account in the research studies concerned in the 
prediction of compressive strength through computational 
models [25].

In this study, the MEP model was used to predict the 
compressive strength of the fly ash modified cement-mortar 
using 450 data collected from previous research related to 
modified cement-based mortar, and outcomes were com-
pared with different approaches, including ANN, nonlinear 
regression, M5P-tree, and nonlinear model. The various sta-
tistical evaluations were applied to assess the accuracy of 
the models. The correlation between the compressive with 
flexural and splitting strengths of fly ash-modified cement-
based mortar using different nonlinear models.

2  Objectives

This study is aimed to investigate the application of the MEP 
model to forecast the compressive strength of cement-based 
mortar with or without fly ash up to 360 days curing; the 
followings are the main objectives:

 (i) Statistically analyze the collected data to evaluate the 
effect of the mix proportion of cement-based mortar 
modified with fly ash on the compressive strength.

 (ii) Developing a reliable model to predict the compres-
sive strength of cement mortar modified with fly ash 
and obtaining the sensitivity of the models using dif-
ferent statistical approaches.

 (iii) Correlating compressive strength of the cement mor-
tar with flexural and splitting tensile strengths of the 
cement mortar modified with fly ash.

3  Methodology

Figure 1 presents the steps that have been followed dur-
ing this study. The following are steps of the current study 
methodology:

 (i) Collecting a considerable number of the datasets (450 
datasets) from different published studies in reputa-
ble journals.

 (ii) Considering w/c, curing time, and fly ash content as 
independent variables for predictors and compressive 
strength of the cement-based mortar as a target.

 (iii) Dividing the collected data into three datasets, 70% 
for training 30% for testing and validation.

 (iv) Statistical analysis, visualizing data and determining 
the correlation between independent and dependent 
variables.

 (v) Modeling the compressive strength using MEP, NLR, 
ANN, and M5P-tree models.

 (vi) Evaluating developed models based on  R2, RMSE, 
SI, MAE, OBJ, t-test, 95% uncertainty, and perfor-
mance index for actual and predicted compressive 
strength.

 (vii) Performing sensitivity analysis to detect the most 
dominant parameter on the compressive strength of 
cement-based mortar modified with fly ash.

3.1  Data Collection

A comprehensive 450 data on compressive strength and flex-
ural strength data on cement-based mortar modified with 
fly ash were collected from different literature [20, 24–38]. 
The dataset was divided into three groups (training, testing, 
and validating) randomly using the Rand function in Micro-
soft Excel. The largest group included 70% of the dataset 
(300 data), and each of the other two groups had 15% of the 
dataset (75 data). The training data is used to develop the 
model while validating and testing data is provided to test 
the developed model against unseen data. The overfitting of 
the developed model can be minimized [39]. The summary 
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of statistical analysis on the input and output parameters 
with detail of the collected data is shown in Table 1.

3.2  Statistical Analysis

(i) Water to cement ratio (w/c)
According to the statistical evaluation on the collected 

data, w/c was ranged between 0.24 to 1.2, with mean, Stand-
ard Deviation (SD), Variance (Var), Skewness (Skew), and 
Kurtosis (Kur) of 0.44, 0.18, 0.03, 1.34, 3.32, respectively. 

The relation between w/c and compressive strength and the 
histogram for w/c is shown in Fig. 2a.

(ii) Curing time (t), (days)
The collected dataset contained experimental results from 

previous studies; the curing time ranged from 1 to 360 days, 
with a median of 7 days, SD, Var, Skew, and Kur of 51 days, 
2672.98 4.19, 21.64, respectively. The histogram for curing 
time and variation of compressive strength with curing time 
are presented in Fig. 2b.

(iii) Fly ash content, FA (%)

Fig. 1  Methodology flowchart 
of the current study



4191Surrogate Models to Predict the Long‑Term Compressive Strength of Cement‑Based Mortar Modified…

1 3

Based on the collected data from the literature, the maxi-
mum percentage of cement replacement with fly ash was 
55%. With a mean, SD, Var, Skew, and Kur of 6.77%, 11.87, 
140.97, 1.76, 2.13, respectively. The variation of compres-
sive strength with the percentage of the replacement of fly 
ash content and histogram for fly ash content is displayed 
in Fig. 2c.

(iv) Compressive strength (CS)
From 450 datasets, the compressive strength of cement-

based mortar modified with fly ash up to 360 days was 
ranged from 3.9 to 84 MPa, with a median of 30.3 MPa, 
SD, Var, Skew, and Kur of 14.02 MPa, 196.59, 0.57, and 
0.18, respectively. The histogram of compressive strength 
of cement-based mortar modified with fly ash and Weibull 
Distribution Function is shown in Fig. 3a.

(v) Flexural strength (FS)
Based on 56 data of the tested sample collected from 

literature, flexural strength for cement-based mortar up to 
360 days was ranged from 0.5 to 8.5 MPa, with a Median 
of 6.8, SD, Var, Skew, and Kur of 1.88 MPa, 3.526,–1.01, 
and–0.394, respectively. The histogram for flexural strength 
and smallest extreme value distribution function is shown 
in Fig. 3b.

(vi) Splitting tensile strength (STS)
According to the 26 data collected from previous 

research about fly ash modified cement-based mortar up to 

360 days, the splitting tensile strength was varied from 1.2 
to 4 MPa, with a median of 2.77 MPa. SD, Var, Skew, Kur 
of 0.837 MPa, 0.7, − 0.228, -1.1212, respectively. The histo-
gram for splitting tensile strength with the smallest extreme 
value distribution function is displayed in Fig. 3c.

3.3  Modeling

From the correlation between independent variables and 
dependent variable direct relationship between cement-
based- mortar compositions and compressive strength were 
not observed; as can be seen from the correlation matrix 
(Fig. 4), the correlation coefficient (R) of CS with w/c, cur-
ing time, and fly ash content are − 0.386, 0.541, − 0.279, 
respectively. Accordingly, the relations are poor between 
dependent and independent variables, which means that the 
compressive strength of the cement-mortar is a multivari-
able function. Therefore, MEP is used to develop a model 
to predict the compressive strength of cement-based mortar 
modified with fly ash based on the cement-mortar composi-
tion such as w/c, curing time, and fly ash content.

3.3.1  Multi‑Expression‑Programing (MEP Model)

Genetic Algorithm (GA) was first introduced by Holland [40], 
which was motivated through evolution theory, similar to that 

Table 1  Summary of statistical analysis of model input parameters

References Water to cement 
ratio (w/c)

Curing time, t (Days) Fly ash content, 
FA (%)

Compressive 
strength,CS (MPa)

Flexural strength, 
FS (MPa)

Splitting 
tensile 
strength,
STS (MPa)

[24] 0.30–1.2 1, 3, 7, 28, 90, and 360 0–50 16–55 _ _
[25] 0.5 7, 28, and 90 0–25 10–32 _ 1.5–4
[26] 0.48 7, 14, 28, 56, and 90 0–55 3.9–30 _ 1.2–3
[27] 0.5− 0.58 28 0–18 7–12 _ _
[28] 0.46 1, 3, 7, and 28 0–40 7–60 2–8 _
[29] 0.3 28, and 90 0–55 70–81 5–14 1.5–3.8
[20] 0.5–0.62 7, 28, 90 0–20 29–56 _ _
[30] 0.4–0.49 3, 7, 28, 90 30 and 55 16–37 _ _
[31] 0.44 3, 7, 28, 50 0–30 23–54 _ _
[32] 0.5 7, 28 0–50 26–40 3–7 _
[33] 0.5 2, 7, 28 30 19–50 _ _
[34] 0.5 1, 28, 90 0–35 12–72 3–9 _
[35] 0.32–0.38 28 10 45–84 _ _
[36] 0.56 7, 28, 90 0–20 23–43 4–7 _
[37] 0.24–0.8 1, 3, 7, 14, 90 0–35 12–60 3–8 _
[38] 0.5 7, 14, 28 0–7 19–31 _ _
Min 0.24 1 0 3.9 2 0.4
Max 1.2 360 55 84 14 4
Mean 0.44 28 6.77 32.94 6.13 2.65
SD 0.18 51 11.87 14.02 1.878 0.836
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Fig. 2  Marginal plot for a 
compressive strength (CS) with 
water to cement ratio, b CS with 
curing time, and c CS with fly 
ash content
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Fig. 3  Histogram for a com-
pressive strength, b flexural 
strength, and c splitting tensile 
strength for fly ash modi-
fied cement mortar from 1 to 
360 days of curing
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of Genetic Programming (GP) proposed by Cramer [40–42]. 
Several linear variations of GP have already been proposed 
to deal with some difficulties (such as bloat) caused by tree 
representations of GP. A few examples are Cartesian Genetic 
Programming, Grammatical Evolution (GE), Linear GP, and 
Gene Expression Programming [43]. MEP individuals are 
strings of genes encoding complex computer programs; when 
MEPs package expressions for conceptual regression issues, 
they comparably represent them to how processors convert C 
or Pascal expressions into machine code [44]. Multiple solu-
tions are stored in a separate chromosome in MEP individuals. 
The most acceptable option is generally chosen. This is known 
as strong implicit parallelism, and it is a distinctive character-
istic of MEP [45, 46]. This feature does not make MEP more 
complex when compared with GE and GEP. The MEP model 
incorporates different fitting factors to generate a generalized 
relationship. Simple math operators were employed to generate 
simple expressions in this investigation, and a trial-and-error 
procedure was used to determine the fitting parameters [47], 
as presented in Table 2.

3.3.2  Nonlinear Regression Model (NLR)

The following formula can be considered a general form for 
developing a nonlinear regression model [39, 48] to predict 
the compressive strength from the cement-mortar components, 
including the FA content (Eq. 1).

CS, w/c, t, and FA are compressive strength, water to cement 
ratio, curing time, fly ash content, and β1 to β7 are model 
parameters.

3.3.3  ANN Model

ANN is the computing system designed to simulate the 
way how the human brain processes and analyses. Also, 
this model is a machine learning system used for various 
numerical predictions/problems in Construction Engineer-
ing. ANN includes the input layer, the hidden layer (one or 
more layers), and the output layer. The hidden layer is related 
by weight, transfer function, and bias to the other layers. A 
multi-layer feed-forward network was programmed with a 
mixture of proportions, w/b, curing time, and FA content 
like inputs, and compressive strength as output. There is no 
standard method for designing or selecting a network archi-
tecture. Therefore, the maximum number of hidden layers 
and neurons was calculated by the trial and error test based 
on the lowest average square error criterion. The second step 
of the optimal network design process was to choose the 
optimum number of epochs during the training that gave 
the minimum MAE and RMSE and high R-value. The same 
preliminarily designed networks with hyperbolic tangent 
transfer functions were used to see the effect of several 
epochs on reducing the MAE and RMSE. The MAE varia-
tions with the number of epochs are presented for the pre-
liminarily designed networks. After designing the optimum 
architecture, the available data set (total of 450 data) was 
divided into two parts; the first part was 2/3 of the overall 
data set (300) for training the network, the second part was 
1/3 of the total data set (150) for testing and validating the 
network [17]. Several transfer functions and ANN structures 
with a varied number of hidden layers and neurons were 

(1)CS = �
1

(
w

c

)�2

(t)�3 + �
4

(
w

c

)�5

(t)�6 (FA)�7

Fig. 4  Correlation matrix for independent variables and dependent 
variable

Table 2  Optimal parameters for MEP model

Parameters Setting

Subpopulations number 50
Subpopulation size 200
Code length 50
Probability of crossover 0.9
Mathematical operator  + , −, 

*, /
Probability of alteration 0.01
Competition size 4
Functions probability 0.5
Variables probability 0.5
Generations 1000
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tested to design the optimal network structure to predict the 
cement mortar compressive strength. Among the networks, 
one hidden layer with seven neurons and a hyperbolic tan-
gent transfer function were chosen due to having the mini-
mum mean absolute error (MAE) (Fig. 9). In this part of the 
research, the ANN model was used to estimate the compres-
sive strength of FA-containing cement mortar as a cement 
replacement, w/b, curing time, and FA contents.

The Artificial Neural Network (ANN) is a computing 
system that resembles the human brain and its informa-
tion analysis. In addition, this model is a machine learning 
system employed in construction engineering for various 
numerical forecasts and difficulties [49]. ANN consists of 
three layers input, hidden, and output layer; these layers are 
connected through biases and weights. The behavior of an 
ANN network is influenced by the connections of neurons 
pattern, which also determines the class of the network. It is 
possible to train a network to enhance network performance. 
In more technical terms, the topology of the network and 
connection weights change repeatedly such that the error 
at each output layer node is minimized [21]. In this study, a 
multi-layer feed-forward network was designed with mortar 
composition (w/c, t, FA) as input and CS as output, and a 
sigmoid activation function is used in the output layer.

where j is the number of input variables,  xj is the input num-
ber j, and bias is the threshold for sigmoid activation func-
tion. The typical process of the result of ANN is illustrated 
in Fig. 5.

3.3.4  M5P‑Tree Model

Quinlan [50] first devised the M5 algorithm, which was 
developed into the M5P-tree algorithm [51]. One of the 
most significant advantages of model trees is their ability to 
efficiently solve problems, dealing with many data sets with 

(2)Output = f

(
n∑

j=1

wjxj + bias

)

a substantial number of attributes and dimensions. They are 
also noted for being powerful while dealing with missing 
data. The M5P-tree approach establishes a linear regression 
at the terminal node by classifying or partitioning diverse 
data areas into numerous separate spaces. It fits on each sub-
location in a multivariate linear regression model. The error 
is estimated based on the default variance value inserted 
into the node. The general formula for the M5P-tree model 
is shown in Eq. 3.

CS, w/c, t, and FA are compressive strength, water to cement 
ratio, curing time, fly ash content, and a, b, c, and d are 
model parameters (Table 3).

3.3.5  Correlation of Compressive Strength with Flexural 
and Splitting Tensile Strengths

(i) Vipulanandan Correlation Model
A Vipulanandan correlation model was used to develop 

the relationship between CS and FS of cement mortar mod-
ified with fly ash [16, 52–57]. The model is displayed in 
Eq. 4.

FS, STS, and CS are flexural strength, splitting tensile 
strength, and compressive strength.

a & b are model parameters. The performance of the Eq. 4 
was compared with the following models (Eqs. 5, 6, and 7).

(ii) Exponential Association 2 model
The Exponential Association 2 model is also used to cor-

relate the flexural strength with the compressive strength of 
cement-based mortar; the model is shown in Eq. 5 [58, 59].

FS, CS are flexural and compressive strengths, α & β are 
model parameters.

(3)CS = a + b
(
w

c

)
+ c(t) + d(FA)

(4)FS or STS =
CS

a + b(CS)

(5)FS =∝
(
1 − e−�(CS)

)

Fig. 5  Typical procedure for output of ANN network in a single node

Table 3  Model parameters for M5P-tree model

LM
CS = a + b

(
w

c

)
+ c(t) + d(FA)

Model Parameters

a B c d

1 37.420 − 53.972 1.942 0.196
2 36.267 − 38.455 0.601 0.001
3 29.691 − 18.188 0.521 − 0.102
4 58.951 − 51.344 0.096 0.241
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(iii) DR-Hill-Zero background model
Additionally, the DR-Hill-Zero background model is used 

to predict flexural and splitting tensile strengths from com-
pressive strength, which is displayed in Eq. 6 [60].

FS, STS, and CS are flexural strength, splitting tensile 
strength, and compressive strength. θ, η, and κ are model 
parameters.

(iv) Power Model
The power model formula is presented in Eq. 7 [61].

FS, STS, and CS are flexural strength, splitting tensile 
strength, and compressive strength. φ and ω and are model 
parameters.

4  Performance criteria for model evaluation

The developed models are evaluated based on different 
assessment tools to choose the best model to predict the CS 
of the mortar; the following are efficiency measurements 
for the models:

(6)FS or STS =
�(CS)�

�� + (CS)�

(7)FS or STS = �(CS)�

(8)R2 = 1 −

∑n

1
(yp − ye)2

∑n

1

�
ye − ye

�2

(9)R =
√
R2

(10)RMSE =

√
SSE

n

(11)MAE =
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1
�yp − ye�
n

(12)MBE =
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1
(yp − ye)

n

(13)SI =
RMSE

ye

(14)OBJ =

(
ntr

nto
∗
RMSEtr +MAEtr

R2
tr + 1

)
+

(
nte

nto
∗
RMSEte +MAEte

R2
te + 1

)
+

(
nval

nto
∗
RMSEval +MAEval

R2
val + 1

)

(15)t−test =

√
(n − 1)MBE2

RMSE2 −MBE2

where  R2, RMSE, MAE, MBE, SI, OBJ, t-test,  U95, and 
ρ are Coefficient of Determination, Root Mean Squared 
Error, Mean Absolute Error, an Average of Errors, Scatter 
Index, Objective, t-test, 95% Confidence Uncertainty, and 
Performance Index, respectively. yp, ye, and ye are predicted 
compressive strength, measured compressive strength, and 
an average of measured compressive strength, respectively. 
n, tr, te, val. are several data in the training, testing, and 
validating dataset.

For all of the assessment parameters, the ideal value is 
zero, while the best value for  R2 is 1. Corresponding to 
SI, the performance of the model is excellent, good, fair, 
and poor if the SI < 0.1, 0.1 < SI < 0.2, 0.2 < SI < 0.3, and 
SI > 0.3, respectively [62].

5  Analysis of outputs

5.1  Relation between predicted and measured 
compressive strength

5.1.1  MEP model

Comparison of measured with the predicted value of CS using 
the MEP model is presented in Fig. 6. The model had a good 
performance with  R2 of 0.87, 0.87, and 0.897 for training, 
testing, and validating, respectively. Figure 6a contained -20 
and + 25% error lines in the training phase and -10 and 15% 
for testing and validating (Fig. 6 b &c).

(16)U
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= 1.96 ∗

√
SD2 + RMSE2

(17)� =
SI

1 + R

(18a)

CS = A + B + C + 25 −
D − B − C − 25

D +
2

3

− E −
B + C

F

(18b)A =

2

(
w

c

)
(FA)

25
− 15

(
w

c

)2

(18c)
B =

2

15(t − 15

(
w

c

)2

)

(18d)C =
2(FA)

15(
w

c
)



4197Surrogate Models to Predict the Long‑Term Compressive Strength of Cement‑Based Mortar Modified…

1 3

Fig. 6  Variation of CS Predicted 
with CS Measured using MEP 
model a training data, b testing 
data, and c validating data
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Fig. 7  Variation of CS Predicted 
with CS Measured using NLR 
model a training data, b testing 
data, and c validating data
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Input layer Hidden layer 
(10 neurons) Output layer

w/c

Curing time 
(days)

FA 
(%)

Compressive strength 
(MPa)

(c)

Fig. 8  Optimal ANN network structures a one hidden layer and 6 hidden neurons, b one hidden layer and 7 hidden neurons, and c one hidden 
layer and 10 hidden neurons
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No. of Data = 300,  R2 = 0.858, RMSE = 4.943 MPa.

5.1.2  NLR Model

The variation of predicted compressive strength with meas-
ured compressive strength is displayed in Fig. 7. From the 
modeling result, it is clear w/c and curing time are affect 
the CS more than fly ash content. In comparison, the effect 
of w/c is more significant on the compression strength of 
cement-mortar. The model is developed, and the parameters 
are determined using the least square method and solver 
technique [63]. The NLR model is presented in Eq. 18.

No. of Data = 300,  R2 = 0.85, RMSE = 5.34 MPa.

5.1.3  ANN Model

Figure 8 shows the optimal ANN network structures, the 
best network structure (Fig. 8) selected containing one hid-
den layer and six hidden neurons, with momentum, learning 
rate, learning time of 0.1, 0.2, and 2000, respectively. Those 
mentioned parameters for the network were determined by 
trial and error based on RMSE and MAE, as illustrated 

(18e)D =
225(

w

c
)
2

2(t − 15(
w

c
)
2

(18f)E =
4(FA)2

375

(18g)F = 225(
w

c
)
3

(19)CS = 0.62 ×
(t)0.273

(
w

c

)0.872
× (FA)0.208 + 7.681 ×

(t)0.235

(
w

c

)0.759

in Fig. 9. Figure 10 shows variation in predicted CS with 
measured CS using the training dataset and error line -20 
to + 20%, indicating the measurements and predictions are 
in this limit with  R2, RMSE of 0.859, and 5.179 MPa.

5.1.4  M5P‑Tree Model

Figure 11 shows the division of the input space by the algo-
rithm of the M5P-tree model into four linear regression func-
tions named LM 1 and LM 4. The relationship of predicted 
and measured CS of the M5P-tree model showed in Fig. 12, 
with  R2 and RMSE of 0.824 and 5.771 MPa. There are -20 
to 25% error lines for the training data set and -15 to 20% 
for testing, and -15 to 25% for validating datasets. Figure 11 
shows the pruned M5P-tree, which classified the training 
dataset into four parts based on the criteria shown in the 
figure; each part of the divided dataset resulted in a single 
regression model as mentioned in Eq. 3, the model param-
eters for the M5P-tree model are summarized in Table 3.

5.2  Relationship Between Compressive, Flexural, 
and Tensile Strengths

Based on the collected data, three different models were 
developed to predict flexural and splitting tensile strengths 
from measured compressive strength using the Vipulanan-
dan correlation model, Exponential association-2, DR-Hill-
Zero background, and Power model, as illustrated in Eqs. 20 
to 25. Figure 13a shows the variation of FS with CS for data 
collected from literature and predicted FS using developed 
models. The residual error for predicted FS from CS ranged 
between 1  to  − 1 MPa is shown in Fig. 13b. Variation of 
splitting tensile strength with CS is shown in Fig. 13c, and 
the residual errors for predicted STS from CS using ranged 
between 0.15 to − 0.35 MPa (Fig. 13d).

(v) Vipulanandan correlation model

No. of data = 56,  R2 = 0.955, RMSE = 0.396 MPa

No. of data = 27,  R2 = 0.981, RMSE = 0.115 MPa.
(vi) Exponential association 2

No. of data = 56,  R2 = 0.958, RMSE = 0.386 MPa.
(viii) DR-Hill-Zero Background

(20)FS =
CS

3.06 + 0.073(CS)

(21)STS =
CS

5.144 + 0.108(CS)

(22)FS = 9.446(1 − e−0.032(CS))

Fig. 9  Optimal ANN network selection based on RMSE and MAE
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Fig. 10  Variation of CS Pre-
dicted with CS Measured using 
ANN model a training data, b 
testing data, and c validating 
data
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No. of Data = 56,  R2 = 0.958, RMSE = 0.382 MPa

No. of Data = 27,  R2 = 0.982, RMSE = 0.11 MPa.
(viii) Power Model

(23)FS =
10.789(CS)1.293

26.574
1.293 + (CS)1.293

(24)STS =
71.87(CS)0.741

1598.864
0.741 + (CS)0.741

No. of Data = 27,  R2 = 0.982, RMSE = 0.11 MPa.
Based on the  R2 and RMSE, the DR-Hill-Zero back-

ground model is better than other models for predicting flex-
ural strength from compressive strength; on the other hand, 
the best model for correlation of splitting tensile strength 
with compressive strength is DR-Hill-Zero background and 
Power Models.

5.3  Model Evaluations

The proposed models are compared according to the rela-
tionship between predicted and measured CS for testing 
data set; the MEP model had less variation; the plotted data 
are near the Y = X line, which indicates a minor error in 
predicted values, as shown in Fig. 14a. Furthermore, the 
maximum and minimum residual errors for the MEP model 
were -19 and 18 MPa. Residual error of NLR, ANN, and 
M5P-tree model was -12 to 14 MPa, -14 to 14 MPa, and -21 
to 19 MPa, respectively. The residual error indicates better 
performance of the NLR model than other developed mod-
els, as shown in Fig. 14b. The residual errors for the ANN, 
M5P-tree, and MEP are provided in Fig. 14c and d.

The SI value of the MEP model, NLR, ANN, and M5P-
tree model for the training dataset was 0.148, 0.16, 0.155, 
and 0.173. When comparing SI value for validating datasets, 
the SI value for the MEP model is less than NLR, ANN, 
and M5P-tree model by 8, 6, and 16.5%, respectively. For 
the testing dataset, the SI value of the MEP model is equal 
to 0.159 and less than ANN, and M5P-tree model by 10 and 
5%, and more significant than the NLR model by 5%, as 
shown in Fig. 15a.

(25)STS = 0.316(CS)0.714

Fig. 11  Pruned M5P-tree model



4203Surrogate Models to Predict the Long‑Term Compressive Strength of Cement‑Based Mortar Modified…

1 3

Fig. 12  Variation of CS Pre-
dicted with CS Measured using 
M5P-tree model a training data, 
b testing data, and c validating 
data
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Fig. 13  Comparing models for flexural strength, splitting tensile strength, and compressive strength correlation using a variation of FS with CS, 
b residual error to predict FS, c variation of STS with CS, and d residual error to predict STS
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Fig. 14  Comparison of developed model based on a variation between measured and predicted CS values for testing data and b residual error for 
the MEP and NLR models c residual error for the MEP and ANN models (d) residual error for the MEP and M5P-tree models
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The comparison of developed models based on MAE is 
presented in Fig. 15b. The MAE for MEP models is less 
than the MAE of other developed models for training and 
validating datasets; however, the MAE of MEP model value 
for testing is less than ANN, and M5P- tree model by 8 and 
4%, and greater than the NLR model by 6%.

The OBJ values for the proposed models are also evalu-
ated; the OBJ for the MEP model is less than NLR, ANN, 
and M5P-tree models by 7, 6, and 14, as displayed in 
Fig. 16a.

The t-test and  U95 values comparison for the developed 
models is illustrated in Fig. 16b. as can be seen from the 
figure, the uncertainty of the predicted compressive strength 
for 95% confidence level of MEP model is less than ANN 
and M5P-tree models by 2 and 6%, and greater than NLR 
model by 4%. However, the t-test value of the MEP model 
is less than other developed models. The t-test value results 

in a probability of accepting or rejecting the null hypothesis. 
The larger t-test value indicates a significant difference in the 
measured and predicted CS of the cement mortar.

Also, the performance index for the MEP model was less 
than other developed models for training and validating data. 
At the same time, it is greater than the NLR model in testing 
the data set by 4%, as presented in Fig. 17.

The box plot for actual and predicted CS is drawn as 
shown in Fig. 18 (a, b & c). The boxplot for the MEP model 
had the same pattern for the minimum and maximum CS 
values, Mean and median. According to the box plot MEP 
model is better than other developed models.

Summary of model evaluation for  R2, RMSE, and MAE 
of the developed models is presented in Table 4.

Fig. 15  Comparing developed 
models based on a SI and b 
MAE
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5.4  Sensitivity Evaluation

The most influential parameter on the compressive strength 
of cement-based mortar modified with fly ash is determined 
using the MEP model. Every time a single input parameter 
is removed from the training dataset, regression is run again 
in the process. MAE for the model is recorded, the trial with 
maximum MAE (MPa) and RMSE (MPa) is chosen, and 
the trials ranked according to the recorded MAE the more 
sensitive variable in predicting the compressive strength of 
cement mortar modified with fly ash is the removed param-
eter from the trial with the highest MAE. Based on the sen-
sitivity analysis, the most influential parameter is the curing 
time of the tested samples, as summarized in Table 5.

6  Conclusions

Accurate models can be developed using different soft com-
puting techniques; in this study, four different approaches 
were used to establish a reliable model for the prediction of 
compressive strength of cement mortar modified with fly 
ash; the followings are the main conclusion:

1. Based on the collected data from literature maximum 
percentage of fly ash is 55%, w/c was ranged from 

Fig. 16  Comparing developed 
models based on a OBJ and b 
T-stat and U95
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0.24 to 1.2. The addition of fly ash to cement mortar 
increased the compressive strength for the same mixture 
and w/c.

2. SI for the MEP model is less than NLR, ANN, and M5P-
tree models in training and validating data set; on the 
other hand, the SI for MEP is more than the NLR model 
by 5%. The objective value for the MEP model is less 
than other developed models. 95% Uncertainty  (U95) 
value for MEP is smaller than ANN and M5P-tree mod-
els. Nevertheless, its  U95 value is greater than the  U95 of 
the NLR model by 4%. t-test value for the MEP model 
is less than other developed models.

3. The performance index of the MEP model for training 
and the validating dataset is less than other developed 
models.

4. Based on the box plot for actual and predicted compres-
sive strength, the MEP model predictions had the same 

arrangement as real compressive strength compared to 
other developed models in maximum, minimum, mean, 
and median.

5. According to the statistical evaluation tools, the MEP 
model is better than NLR, ANN, and M5P-tree models 
for compressive strength prediction. It has less scatter in 
predicted compressive strength compared with measured 
compressive strength.

6. Depending on the sensitivity evaluation result, the cur-
ing time of the sample is the most influential parameter 
on the compressive strength of cement mortar modified 
with fly ash.

7. Reliable nonlinear models were used to predict the split-
ting tensile strength and the flexure strength of cement 
mortar modified with FA with a minimal prediction 
error.

Fig. 17  Comparing developed 
models using a performance 
index
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Fig. 18  Comparing developed 
models using boxplot for actual 
and predicted compressive 
strength values a training data, 
b testing data, and c validating 
data
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