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Abstract
Predictive maintenance is one of the major tasks in today’s modern industries. All rotating machines consisting of rotating 
elements such as gears, bearings etc are considered as the backbone of any plant and condition based maintenance of these 
elements is at the top priority to keep them available all the time. Due to failure of these elements, whole system can lead to 
complete shutdown. A predictive monitoring program generally consists of four technical processes, i.e., data acquisition, 
pre-processing (denoising process), feature processing, and artificial intelligence. Over recent years, a significant amount 
of research work has been undertaken in each of the four processes. There has been a significant amount of literature avail-
able however, lack of a systematic review which encapsulate all four technical processes comprehensively. To fill this gap, 
this paper provides a review on predictive monitoring of incipient stage faults following its whole program, i.e., from data 
acquisition to artificial intelligence implementation. Firstly, various commonly used data acquisition methods are introduced 
and discussed. Then, advanced signal processing methods for the de-noising of signals are discussed. Afterwards, feature 
processing methods are summarized by explaining its major tasks and existing approaches. Finally, artificial intelligence 
based fault prediction approaches are discussed and summarized.
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1  Introduction

The majority of industrial machines used in modern indus-
tries are either rotating machines or have rotating elements 
such as gears, bearings, shafts etc [1–7]. As these machines 
need to work in harsh and tough environmental conditions, 
there are very high chances of generation of faults. The rotat-
ing elements are generally subjected to a variety of faults 
such as gear chipped tooth, surface pitting, root crack of 
gear, bearing inner-race defect, outer-race defect, ball defect, 
cage defect, bent shaft, misalignment, unbalance etc. [8]. 
Failure of any of the sub components of these machines may 
leads to a complete shutdown of the whole system/plant. 
Hence it is imperative to diagnose the faults at its incipient 
stage to avoid any further catastrophic accidents and also to 
track the changes and evolution of fault severity over time 
[9–13].

Gearbox plays the most essential role in modern machin-
ery and is considered to be the heart of plant. As gearbox 
performs its tasks under varying load and speed condi-
tions, the probability of incipient failure is very high. There 
are many reasons for gearbox failure and some of them 
to mention are insufficient lubrication, sudden and exces-
sive application of load, misalignment, poor fitting etc. 
An appropriate maintenance strategy can be implemented 
to minimize any unplanned downtime [14, 15]. Condition 
monitoring and fault diagnosis, a predictive maintenance 
strategy, plays a significant role in predicting and prevent-
ing any catastrophic accidents. In routine industrial prac-
tice,  International Organization for Standardization (ISO) 
standards related to vibration, lubrication and acoustics are 
followed to distinguish between a healthy and faulty state of 
any machinery. However, ISO standards fails to address the 
component-wise health status of any machinery. To over-
come these problems, industrial people create pre-defined 
statistical limits of a particular machine/sub-components 

based on their past experience. However, these limits can’t 
be generalized and hence its usage is limited.

With the technological advancement of computation 
power and availability of new sensors, researchers looked for 
advance signal processing techniques for the health moni-
toring of industrial assets. Fault diagnosis is automatically 
detected and health condition of machines are easily moni-
tored with the help of Artificial Intelligence (AI) [16–18]. 
The most common followed framework for the detection of 
incipient faults in rotating machines is shown in Fig. 1. The 
process starts with the data acquisition followed by signal 
pre-processing/denoising. Then statistical feature processing 
is carried out and at last an AI technique is utilized to predict 
the health status of machine/component under consideration.

Machine predictive maintenance has attracted more 
and more attention from academic researchers and indus-
trial sector in recent years. Figure 2 shows the increasing 

Fig. 1   Framework for detection 
of Incipient faults in rotating 
machine

Fig. 2   Bar chart representing the number of publications in past 30 
years used in this review paper for incipient fault diagnosis in rotating 
elements
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trend in variation of number of publications for incipient 
fault diagnosis in rotating machinery in past 30 years from 
1991–2021. The number of publication in last decade from 
2011–2021 has been increased more than 75% which shows 
that more and more research is being done to diagnose faults 
in incipient stage in order to prevent any catastrophic failure 
and financial losses.

It is imperative to mention that there are some excel-
lent review papers among these publications. Among them 
some focused on the prognostics of rotating machinery and 
gave a brief review on the remaining useful life prediction 
approaches [19–21]. Some of them focused on remain-
ing useful life prediction application in industrial settings 
[22, 23]. The aforementioned papers have given interesting 
reviews related to machinery prognostics. However, they 
have some limitations such as most of the review articles 
[19–23] were published six years ago. Also, these articles 
just focused on the last block of machine health prediction, 
i.e., remaining useful life prediction using various AI meth-
ods. The other three blocks of predictive health monitoring, 
i.e., data acquisition, signal pre-processing and feature pro-
cessing, however, were ignored by the existing literature. In 
conclusion, it lacks a systematic literature review covering 
the whole scenario of the machine predictive health monitor-
ing about its advancements in recent years. This paper fills 
these gaps and gives a systematic overview covering all four 
blocks of machine predictive health monitoring approach in 
order. Compared with the existing review papers, the major 
contributions of this paper are as follows.

–	 This paper segments the whole program of machine 
predictive health monitoring into four blocks, i.e., data 
acquisition, signal pre-processing, feature processing, AI 
and reviews them systematically in order.

–	 This paper provide a guidemap for researchers and indus-
trial personals in the field of fault diagnosis and prog-
nosis to help them in selecting an appropriate method 
to identify incipient fault severity according to their 
research requirements.

–	 This paper covers the signal pre-processing and feature 
processing segments, which are significant for machine 
fault diagnosis but always ignored by the existing litera-
ture review.

The remaining of this paper is organized as follows: Sect. 2 
gives brief idea for data acquisition. Section 3 reviews the 
pre-processing of vibration signal using various signal pro-
cessing methods. Section 4 provides knowledge about fea-
ture extraction, selection and dimensionality reduction. Sec-
tion 5 describes the AI based techniques. The conclusions 
are drawn in Sect. 6.

2 � Data Acquisition

Data acquisition is a process in which data is captured and 
stored by different sensors that are mounted on the machine. 
It gives basic condition monitoring information as it is the 
first step of machine prognostics. The most commonly used 
sensors includes accelerometers, acoustic emmission sen-
sors, infrared thermometers, current sensors etc. Among 
all, vibration sensors are mainly used in faults diagnosis of 
bearings [17, 24–26] and gears [27–30]. Faults at incipient 
stage in bearings [31–40] and gears [41–52] can be detected 
by acoustic emission sensors when machines are working at 
low speed and enviornmental noise is having low frequency. 
Khamisan et al. [53] used Infrared Thermography (IRT) for 
detection of incipient faults in bearings. Duan et al. [54] 
presented IRT to detect faults in rotating machinery such 
as shaft misalignment, rotor radial rubbing, base loose-
ness, coupling unbalance and misalignment faults. Faults 
in bearings [28, 55–62] such as outer race damage, inner 
race damage, roller element damage, multi-fault damage, 
and worn damage can be detected by using IRT . Artigo 
et al. [63] used current signature and vibration signal to 
diagnose faults in wind turbines. Naha et al. [64] proposed 
a low-complexity fault detection algorithm based on the 

Fig. 3   Sensor technology and its proven applications

Fig. 4   Summary of general symptoms of faults and sensor technolo-
gies which can detect those symptoms
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sub-Nyquist sampling of the analytic current signal. The 
algorithm has been tested successfully for the detection of 
variety of localized bearing faults under different loads and 
supply frequency conditions. Antonino et al. [65] used cur-
rent signal for the detection of different types of mechanical 
faults such as misalignment caused by loosened bolts and 
soft foot, as well as coupling unbalance. Park et al. [66] 
used Motor Current Signature Analysis (MCSA) for detec-
tion of faults in induction motors. Artigao et al. [63] used 
current signature to detect faults in Doubly-fed induction 
generators. Aouabdi et al. and other [64, 67] used MCSA 
with Principal Component Analysis (PCA) to detect local-
ized gear tooth defects, such as pitting in gearboxes. Figure 3 
summarize the various sensor technologies and its applica-
ble application for general mechanical component in a typi-
cal plant. Figure 4 summarize each technology’s capability 
to detect the symptom related to the fault.

2.1 � Epilog

Data is mainly captured in the form of vibration, acoustic, 
temperature and current signal. Among all, vibration anal-
ysis plays an important role in fault diagnosis of rotating 
elements due to its sensitivity towards fault progression. 
Vibration transducers are generally mounted on the machine 
bearing locations to detect changes in vibration amplitude. 
However, some specific applications such as hot and cor-
rosive environment does not allow to place a physical trans-
ducer on the surface of the machine. Hence, an acoustic 
transducers can be used for such applications. Contact-less 
thermal sensor is another way of capturing the data from the 
machine to correlate the health status. For motor condition 
monitoring, current probes are used to capture and analyze 
the motor current for possible faults. Many researchers has 
used multiple sensor types to detect the fault presence as 
different sensing technologies compliment each other to 
accurately confirm the fault. Hence, a variety of transducers 
are available to the user depending on conditions to capture 
the raw data. A summary of each sensor technology and its 
application to detect faults in various machinery has been 
done for readers ease.

3 � Pre‑processing (Signal De‑noising)

Various mechanical components, particularly gearbox, 
designed to operate at variable speeds and sometimes at 
a very low speed making it difficult to analyze using raw 
transducer signals alone. These low energy low frequency 
signals are masked under strong environmental noises 
and later is difficult to discover any faulty signal hidden 
in them. In order to detect the presence of incipient faults 
in these mechanical components, various signal denoising 
techniques have been discovered, tested and used in past 
and their efficacy have been documented in the literature. 
Signal pre-processing methods are classified based on their 
specific utility for diagnosis of faults such as time-domain, 
frequency-domain and time-frequency domain methods and 
are discussed in detail in subsequent sub-sections.

3.1 � Time Domain Methods

Time domain signal processing is generally used for fault 
diagnosis of components where severity of fault produces a 
periodic shocks/peaks in time domain signal. However, its 
utility comes under questions when there is variable speed 
application. McFadden [68] studied a technique in which 
time domain averages can be calculated in case of planetary 
gearbox. Wu et al. [69, 70] studied statistical indicators such 
as root mean square and standard deviation so that faulty 
and healthy condition can be distinguished in planetary 
gearbox in helicopter. Bartelmus and Zimroz [71] studied 
the impact when the load conditions were continuously 
varying on vibration signals of planetary gearbox. Yip [72] 
investigated Time Synchronous Averaging (TSA) method 
for pre-processing of vibration data and after that healthy 
indicators were extracted from this pre-processed data to 
detect planetary gearbox used in oil sand operations. Keller 
and Grabill [73] used parameters such as FM0 and FM4 that 
were modified in planetary gearbox for detection of faults.

TSA is commonly used when attempting to diagnose gear 
faults. TSA average away all of the vibration sources that are 
not synchronous with the tachometer pulse, which is taken 

Fig. 5   Tachometer arrangement 
to collect TSA signal
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from the shaft of the gear of interest as shown in Figs. 5 and 
6. This means that other sources of vibration, from bearings, 
the motor, resonances, and so on, are removed, leaving a 
clean time waveform. The TSA is time consuming test (a 
large number of averages is required), and it is time consum-
ing to set up in the first place. However the results are worth 
all the effort.

3.2 � Frequency Domain Methods

In time domain signal processing methods it is difficult 
to realize the exact fault location of sub-components of a 
machine as the information is limited in time domain only. 
Whereas, different components of a machine exhibits dif-
ferent frequencies when they run. Hence, frequency domain 
methods comes in to picture to resolve the issues of time 
domain methods and are used by many researchers for pin-
point fault diagnosis and condition monitoring of mechani-
cal components. To detect faults in incipient stage, Mark 
et al. [74] investigated a frequency domain method which 
removes the effects of transducers and structural path caused 
amplitude changes. Sparis and Vachtsevanos [75] investi-
gated index vectors using Fast Fourier Transform (FFT) to 
differentiate between faulty and healthy planetary gearboxes. 
Hines et al. [76] investigated a frequency domain feature 

known as energy ratio for diagnosis of planetary gearbox and 
this feature is based on TSA technique for pre-processing 
of data.

3.3 � Time Frequency Domain Method

There is a limitation with frequency domain signal pro-
cessing methods that while converting time domain signal 
to frequency domain, it average out the frequency ampli-
tude with respect to time. Hence, for a system which is 
changing its dynamics with time is hard to analyze with 
frequency domain. Thus to overcome this issue time-
frequency domain signal processing methods comes into 
play as these can represent a signal both in time and fre-
quency domain. There are many time-frequency domains 
methods such as Wigner-Ville distribution and Wavelets 
for diagnosis of planetary gearboxes. Zimroz et al. [77, 78] 
analysed instantaneous speed and vibration for the gear-
box working under non-stationary condition. Meltzer and 
Ivanov [79, 79] used time-frequency method for analysis 
of faults in planetary gearboxes in automobiles. Liu et al. 
[80] used Local Mean Decomposition (LMD) for diag-
nosis of crack fault in wind turbines. Saxena et al. [81] 
used Morlet wavelets for extracting features to distinguish 
between faulty and healthy planetary gearbox. Samuel 

Fig. 6   TSA signal extraction methodology
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and Pines [82] used multiple sensor methodology to sepa-
rate vibration signal and later this signal is analysed with 
Continuous Wavelet Transform (CWT) to diagnose gear 
fault.

Jiang et al. [83] presented a method for denoising which 
is based on adaptive Morlet wavelets and singular value 
decomposition which extract impulse features in planetary 
gearbox. Zhang et al. [84–87] used a blind deconvolution 
denoising method to diagnose crack in a planetary gearbox. 
Bonnardot et al. [88] denoised the signal by an unsupervised 
order tracking algorithm to detect faults in bearings in plan-
etary gearbox of helicopter. Lei et al. [89] used de-noised 
method named adaptive stochastic resonance to detect a 
chipped tooth and a missing tooth faults in gears. There are 
many adaptive mode decomposition methods have been 
developed, such as Empirical Mode Decomposition (EMD) , 
Ensemble Empirical Mode Decomposition (EEMD)   , 
and LMD ,  Empirical Wavelet Transform (EWT) [90], 
a n d  Variational Mode Decomposition (VMD)  [ 9 1 ] . 
In EMD vibration signal is decomposed into series of 
Intrinsic Mode Functions (IMFs) [92]. These IMFs can be 
analysed to determine the health status of rotating machines. 
Dybala et al. [93] diagnosed faults at incipient stage by using 
EMD . The signal was decomposed into IMFs and then spec-
tral analysis was used to get IMFs in case of faulty bearing. 
Li et al. [12] used adaptive multiscale morphological analy-
sis after using EMD to decompose signal into IMFs in case 
of early faults in bearings. Zhao et al. [94] used EMD and 
approximate entropy for detection of incipient faults in bear-
ings. Lv et al. [95] modified EMD to analyse the vibration 
signal for detection of faults at early stage. Parey et al. [96] 
used EMD and variable cosine window for gearbox fault 
diagnosis. There are many disadvantages in EMD method 
such as boundary effects [97], mode mixing [98] and over- 
and undershoot problems [99]. Hu et al. [100] pre-processed 
the vibration signal by EMD and then energy ratio was cal-
culated to diagnose faults in electric fan. Drawbacks of EMD 
can be overcome by EMD which is proposed with the help 
of white noises [101]. Chen et al [102] proposed EEMD for 
turbine gearbox fault diagnosis. Wang et al. [103] selected 
IMFs by tunable Q-factor Wavelet Transform (WT) to diag-
nose incipient fault diagnosis in bearings. Vokelj et al. [104] 
proposed Independent Component Analysis to select IMFs 
to diagnose early faults in bearings. Guo et al. [105] used 
an enhanced EEMD , to diagnose early faults in bearings. 
Shifat et al. [106] used denoising technique by EEMD which 
decomposed vibration signals into IMFs and the IMFs were 
selected was analyzed in time-frequency domain by CWT . 
Liang et al. [107] used CWT to diagnose faults in gearbox. In 
2005 Smith proposed another widely used adaptive decom-
position method named LMD [108]. LMD is self-adaptive 
decomposition method which decomposes a complicated 
vibration signal into a series of Product Functions (PFs) . 

LMD has one main advantage in comparison to EMD and 
EEMD that the Instantaneous Frequency (IF) of each PFs can 
be calculated directly by LMD without using the Hilbert 
transform. Liu et al. [80] proposed LMD which can decom-
pose vibration signal and frequency modulated signal can be 
calculated by IF to diagnose gearbox fault in wind turbines. 
Li et al. [109] used LMD method which decomposed the 
vibration signal by differential rational spline-based method 
to diagnose incipient faults in gears and bearings. Li et al. 
[110] used LMD for pre-processing of vibration signals to 
detect gear faults at incipient stage. In 2013 Gilles [111] 
proposed a novel adaptive decomposition method known 
as EWT . The drawbacks of wavelet and EMD can be over-
come by EWT . Chen et al. [112]identified weak faults and 
compound diagnosis of faults by using EWT in which sig-
nals were decomposed into mono-components under an 
orthogonal basis to extract inherent modulation information. 
Boualem et al. [113] used EWT method with Hilbert trans-
form to detect incipient faults of tooth crack fault signals. Lu 
et al. [114] used kurtogram for denoising the signal and for 
the location of fault frequency. Then, this denoised signal 
was filtered using EWT . Dragomiretskiy et al. [91] proposed 
VMD , which decompose vibration signal into an ensemble 
of band-limited IMFs . Ma et al. [115] proposed adaptive 
scale spectrum segmentation to determine IMFs obtained 
from vibration signal by VMD . Finally, the Teager energy 
operator of the effective IMFs components was applied to 
realize the incipient fault identification.

Li et al. [116] proposed VMD and improved autoregres-
sive-minimum entropy deconvolution in rotating machinery 
having multiple faults. Yang et al. [117] optimized VMD 
to decompose the vibration signal and to diagnose incipi-
ent faults in milling operations by online chatter identifi-
cation method. Guo et al. [118] used parameter optimiza-
tion algorithm by selecting weak features by using VMD . 
Cao et  al. [119] proposed algorithm which combined 
VMD , Permutation Entropy (PE) and wavelet thresh-
old ( VMD-PE-wavelet threshold) for denoising signals. 
This combination of VMD and PE solved the problem of 
mode-aliasing and also identified noisy components eas-
ily with the help of wavelet threshold denoising. Kumar 
et al. [120] detected faults in bearings by using combina-
tion of VMD , genetic algorithm and kernel based mutual 
information. Li et al. [121] proposed denoising algorithm 
based on VMD and average periodic energy in case of 
power quality signals. Hu et al. [122] used processing of 
signals by VMD to diagnose faults in rotating machinery. 
Dibaj et al. [123] proposed hybrid method of VMD and 
Convolutional Neural Networks (CNN) for diagnosis of 
faults in gears and bearings. Fan et al. [124] used wavelet-
based approach for statistical signal detection to monitor 
and diagnose the bearing fault at an incipient stage. Cui 
et al. [125] proposed WT and time-frequency analysis for 
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incipient fault in bearings. Cui et al. [126] proposed WT 
for denoising signal and grey correlation method was used 
for identification of fault. Wang et al. [127] detected fault 
by adaptive wavelet stripping algorithm to detect incipient 
fault in bearing. Combet et al. [128] detected local damage 
in gears by WT by using the instantaneous wavelet bicoher-
ence as fault features. Chen et al. [129] selected sensitive 
frequency bands of multiwavelet packet coefficients by using 
energy ratio to detect faults in rotating machines. He et al. 
[130] extracted fault detection at incipient stage by maxi-
mal-overlap adaptive multiwavelet method. Fan et al. [131] 
denoised the signal by Discrete Wavelet Transform (DWT) 
and the signal is decomposed into different levels and then 
statistical parameters were used to detect gear faults. Kumar 

et al. [132] used HAAR wavelet to extract wavelet coeffi-
cients to diagnose faults in rotating machines. Yang et al. 
[133] denoised the signal by combining EMD and Wavelet 
Packet Decomposition to detect weak features and faults in 
bearings. Morsy et al. [134] detected the incipient faults in 
bearing by applying the Morlet wavelet filter for preproc-
essing. Yiakopoulos [135] combined Morlet wavelets and 
morphological analysis for feature extraction to detect faults 
in bearings. Sharma et al. [136] used Flexible Analytical 
WT and DWT to denoise the signals for detecting faults 
in roller bearings in rotary machines. Younus et al. [137] 
used 2D-DWT for detection of faults such as mass unbal-
ance, misalignment and bearing faults in rotating machinery. 
Dong et al. [138] proposed hybrid method by combination 

Table 1   Summary of various denoising techniques in incipient fault diagnosis in rotating elements

References Technique Components

Dybala et al. [93] EMD Bearings (Inner race, Outer race and Ball defect)
Li et al. [12] Bandwidth EMD + adaptive multiscale morphological 

analysis
Roller Bearings

Zhao et al. [94] EMD+Approximate Entropy Bearings (Spalling and Pitting)
Parey et al. [96] EMD + variable cosine window Multiple faults in Gears
Hu et al. [100] EMD+ Energy-ratio Faults in electric fan bearings
Chen et al [102] EEMD Gearbox (bearing faults such as inner race, outer race, ball 

defect and gears with different levels of cracks)
Wang et al. [103] EEMD + tunable Q-factor WT Roller Bearings (rolling element, inner race and outer race)
Žvokelj et al. [104] Independent component analysis multivariate monitoring 

+ EEMD
Slewing Bearings

Guo et al. [105] EEMD + similarity criterion Bearings (outer race and inner race)
Liang et al. [107] CWT​ Gearbox
Liu et al. [80] LMD Gears ( tooth crack)
Li et al. [109] Differential rational spline-based LMD Gears and Bearings
Li et al. [110] LMD Gears ( different level of faults)
Boualem et al. [113] EWT + Hilbert Transform Gears (tooth crack)
Li et al. [116] Improved autoregressive-Minimum entropy deconvolution 

+ VMD
Rotating machines ( bearing outer race faults and gear faults)

Yang et al. [117] Optimized VMD + simulated annealing Gears (chatter detection in milling processes)
Kumar et al. [120] VMD + Genetic algorithm (GA) + Kernel based mutual 

information (KEMI)
Bearings ((inner race and outer race )

Hu et al. [122] VMD Rotating machines with both inner-ring and gear faults
Dibaj et al. [123] VMD + CNN Rotating machines (gears and bearings) with one fault minor 

and other severe
Fan et al. [124] WT Roller Bearings (compound faults)
Cui et al. [125] WT Bearings (inner race, outer race, rolling ball)
Wang et al. [127] Adaptive wavelet stripping algorithm Bearings (inner race and outer race)
Combet et al. [128] Instantaneous wavelet bicoherence Gears (tooth damage)
Chen et al. [129] Multiwavelet packet coefficients + energy ratio Bearings (inner race and outer race)
Fan et al. [131] DWT Gears (spot surface damage)
Kumar et al. [132] HAAR wavelet Rotating machines (broken ball bearing)
Yang et al. [133] EMD and Wavelet Packet Decomposition Generator front and rear bearings (inner ring, outer ring, 

rolling element and cage)
Afia et al. [145] MODWPT Gears (root crack, chipped tooth, missing tooth and surface 

wear)
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of spectral graph WT s and detrended fluctuation analysis 
for denoising of non-stationary vibration signals. Jiang et al. 
[139] proposed denoising method named nonconvex wavelet 
thresholding total variation to diagnose faults in planetary 
gearbox. Minhas et al. [140] denoised vibration signal by 
complementary EEMD method in which signal is decom-
posed into IMFs and significant IMFs was achieved by Hurst 
exponent threshold analysis to detect faults in bearings. 
Cheng et al. [141] proposed an adaptive weighted symplec-
tic geometry decomposition method to denoise the signals to 
detect incipient faults in gears. Adaptive weighted symplec-
tic geometry decomposition method defines cycle kurtosis 
and periodic impact intensity to measure amount of fault 
information of the component for excellent performance in 
denoising. Li et al. [142] used denoised algorithm which was 
based on spectral characteristics and multipoint optimal min-
imum local mean entropy deconvolution adjusted to extract 
the characteristics frequency of bearings having strong noise 
interference. Mukherjee et al. [143] used hybrid method of 
TSA and J48 algorithm to detect faults in gearbox. TSA 
was used for denoising vibration signals and J48 was used 
for features selection and classification. Mansi et al. [144] 
proposed the use of Maximum Overlap Discrete Wavelet 
Transform to pre-process the vibration signal from gearbox. 
This technique allows to segregate noise from actual fault 
signal. Various AI techniques were then applied for accu-
rately identify the fault stage in gearbox. Afia et al. [145] 
used Maximal Overlap Discrete Wavelet Packet Transform (MODWPT) 
for pre-processing of vibration signal in gears. These signals 
were decomposed into nodes and then auto correlation was 
computed to calculate kurtosis at each level of decomposi-
tion. Table 1 sum up the methods available in the literature 
used for fault diagnosis of various mechanical components 
at incipient state.

3.4 � Epilog

Pre-processing of signals can be analyzed in time-domain, 
frequency-domain and time-frequency domain based on the 
component under investigation, speed and loading condi-
tions. Time domain signals are generally used to analyze 
the faults in gearbox. Whenever there are variable speed 
and loading conditions and presence of faults in other 
components such as bearings are to be analyzed then time 
domain signals are not sufficient to detect faults. In such case 
frequency domain signals are used for fault detection. In 
industries the machines which are driven by variable speeds 
drives, their speed various as per need and hence time-fre-
quency domain methods are comes into play to visualize the 
FFT values with respect to time variation.

4 � Feature Processing

The main aim of feature processing is to extract and reveal 
the most relevant information which shows some direct rela-
tion in terms of value with the increasing fault severity in 
order to determine the health condition of machines. Vari-
ous steps involved in feature processing are feature extrac-
tion, feature selection and dimensionality reduction. Differ-
ent features are generally extracted from vibration signal 
to construct multi-dimensional feature sets. Then algorithm 
for dimension reduction is used to generate feature that are 
more suitable with less dimension. The detail of each step 
is described in the subsequent sub-sections.

4.1 � Feature Extraction

In feature extraction various features are extracted which 
contains information to determine the health condition of 
machines. The features can be time-domain, frequency 
domain and time-frequency domain. There are two catego-
ries of time domain features, one having dimensions and 
other dimensionless. Dimensional features includes mean, 
standard deviation, root amplitude, root mean square, 
peak value, etc. and these features are affected when the 
load and speed of machine changes. The dimensionless 
features includes shape indicator, skewness, kurtosis, 
crest indicator, clearance indicator, impulse indicator, etc. 
and these features do not depend on operating conditions 
of machines [146, 147]. The features which are extracted 
from frequency spectrum are frequency domain features. 
These features includes mean frequency, frequency center, 
root mean square frequency, standard deviation frequency 
etc. [146, 147]. The information that is not present in 
time domain features are contained in frequency domain 
features. The time-frequency domain features, such as 
energy entropy [146, 147], are usually extracted by WT , 
Wavelet Packet Transform (WPT) or EMD . Under non 
stationary conditions, these features are unable to reflect 
health condition of machines. Here, the statistical features 
[148], such as mean, variance, root mean square, skewness, 
or kurtosis, are commonly operated in the time domain 
feature extraction process. In the frequency domain, FFT 
[149], discrete Fourier transform, power spectrum analysis, 
autoregressive model [150], eigenvector, envelope analysis, 
and Welch’s method are the frequently applied approaches 
for the feature extraction. The most popular methods which 
include Short-Time Fourier Transform (STFT) [151], EMD , 
and wavelet packet decomposition [152]-fall under the time 
frequency domain analysis, which also includes methods 
such as Hilbert- Huang transform, Hilbert transform [153], 
and WT [137]. For non-linear and non-stationary signal pro-
cessing EMD and Hilbert- Huang transform shows better 
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performance. Li et al. [154] proposed method for feature 
extraction based on improved Multipoint Optimal Mini-
mum Entropy Deconvolution Adjusted and Teager-Kaiser 
energy operator for diagnosis of bearings faults. Minhas 
et al. [140] extracted faulty features by weighted multiscale 
entropy methods to detect faults in bearings. Ekici et al. 
[155] proposed method WPT to extract faulty features and 
the energy and entropy of wavelet packet coefficients are cal-
culated for each faulty waveform in transmission lines. Liang 
et al. [156] proposed new method called maximum average 
kurtosis deconvolution to extract fault signature in rotating 
machines. Also, average kurtosis was used which calcu-
lated the kurtosis of each impulse and average was taken in 
order to evaluate fault information in the signal. Gao et al. 
[157] proposed a hybrid method of L-kurtosis and enhanced 
clustering-based segmentation to extract fault features from 
background noise for detecting faults in case of hydraulic 
machines. Wei et al. [158] proposed hybrid method for the 
extraction of features called refined composite hierarchial 
fuzzy entropy in combination with random forest to diag-
nose incipient faults in planetary gearbox. Jing et al. [159] 
used peak-to-average ratio to extract features for diagnosis 
of faults in gears.

4.2 � Feature Selection

Health status of machines can be known by selecting sensi-
tive features by feature selection methods such as filters, 
wrappers and embedded methods from the extracted fea-
tures. In Filter-based methods, pre-processing of collected 
features can be done by Filters [160]. Some filters used by 
various researchers are Relief [161] and Relief-F [162] to 
determine the health condition of machines. Information 
gain and gain ratio [163], are methods for feature selection. 
The features having higher gain ratio and higher information 
gain were selected to diagnose of faults. Minimum Redun-
dancy Maximum Relevance [164] was used to select fea-
tures. Distance evaluation [165, 166] was used for feature 
selection by distance metric. In Wrapper-based methods, 
the feature set which was selected was assessed by the per-
formance of classifiers. Las vegas wrapper [167] was used 
for feature selection in which the Las Vegas algorithm is 
employed to search for the feature subset. Zhao et al. [168] 
searched the optimal feature subset by Polyserial and Pear-
son correlation coefficients as evaluation metrics to diagnose 
gearbox faults. Liu et al. [169] used feature selection method 
as cosine similarity in the Gaussian radial basis kernel space 
as a criterion and with the sequential backward algorithm 
to detect fault in gearbox. Cheng et al. [170, 171] proposed 
two-sample Z-test which is used for feature selection for 
estimation of crack level to detect gearbox faults. Wand and 
Shao [172] proposed an improved hybrid feature selection 
technique and the features which were not relevant were 

removed by using the distance evaluation technique and 
Pearson’s correlation analysis as the evaluation metrics. Li 
et al. [34] used hybrid approach of multi-scale morphologi-
cal filter and Laplacian score so that interruption which was 
not related to fault was removed and refined the fault features 
extracted using the modified hierarchical PE . Dybala [173] 
used selected better feature subset by a novel noise-assisted 
feature subset evaluation method and used nbv-based clas-
sifier for final classification. Barkowiak and Zimroz [174] 
used shrinkage operator (Lasso) to select features for gear-
box fault diagnosis. Therefore, in case of multi-dimensional 
features feature selection and feature extraction both are 
used for dimension reduction for gearbox fault diagnosis. 
But there are many advantages and disadvantages of these 
methods. In feature selected methods, the selected features 
contain less information and the features which are not 
selected are not considered while in case of feature extrac-
tion all the feature information are concentrated in selected 
features. So feature extraction-based algorithm is used where 
one wants to keep most information from selected features. 
On the other hand, feature selection method is used if one 
wants the employed low dimension feature set with physi-
cal meanings. Liu et al. [175] combined the advantages of 
both feature selection and feature extraction by proposing 
a hybrid method. The kernel feature selection method and 
kernel Fisher discriminant analysis were used sequentially 
for removing irrelevant features and establishing more com-
pact features vector with Gaussian radial basis function as 
the kernel function.

4.3 � Dimensionality Reduction

In dimensionality reduction features having less dimen-
sions are generated using statistical dimensional-
ity reduction strategies which are of two types, lin-
ear and non-linear. Linear method includes PCA and 
Linear Discriminant Analysis (LDA) for dimensionality 
reduction. Zimroz et al. [176] used PCA and canonical dis-
criminant analysis for dimensionality reduction of features to 
detect gearbox faults. Besides linear methods there are non 
linear methods for dimensionality reduction named kernel 
function-based and eigen value-based methods. Cheng et al. 
[177] proposed kernel PCA for dimensionality reduction of 
features which is kernel-based to diagnose gear faults. Tang 
et al. [178] proposed algorithm called orthogonal neighbor-
hood preserving embedding for dimensionality reduction of 
features for diagnosis of faults in wind turbines. Chen et al. 
[179] proposed Laplacian eigenmaps algorithm to identify 
faults in gears. Many researchers have developed specially 
designed features for dimensionality reduction of features. 
Some of them are Lei et al. [180, 181] used four statistical 
features, root mean square of the filtered signal, normal-
ized summation of positive amplitudes of the difference 
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spectrum, Accumulative amplitudes of carrier orders and 
Energy ratio based on difference spectra, Hu et al. [182] 
used correlation dimension, Liang et al. [183] used energy 
for diagnosis of gear faults. Shifat et al. [106] used PCA for 
dimensionality reduction to diagnose faults at incipient stage 
in Brushless DC motor.

4.4 � Epilog

Feature processing consists of feature extraction, feature 
selection and dimensionality reduction. Feature extraction 
is a crucial stage in the fault detection process and can be 
done in time domain, frequency domain or time-frequency 
domain. Then the sensitive features are selected by vari-
ous methods. There may be many features which provide 
the same information or some may provide no meaningful 
information so dimensionality reduction method is used after 
feature selection. It reduces the dimensions of the datasets 
thereby preserving the maximum statistical information. 
These selected features are input to AI algorithms which 
are described in the next section.

5 � AI Based Techniques for Incipient Fault 
Diagnosis

To predict faults based on AI in final phase, various machine 
learning models are employed. The most widely used 
machine learning classifiers for fault diagnosis are the 
Support Vector Machine (SVM)  m o d e l  [ 1 8 4 ] ,  t h e 
Artificial Neural Network (ANN)  m o d e l  [ 1 8 5 ] , 
k-Nearest Neighbors (k-NN) [186] etc. Many researchers 
introduced the AdaBoost [187] algorithm. Khazaee et al. 
[188] classified different health condition of planetary gear-
box such as healthy, the ring gear with a worn tooth, and a 
planet gear with a worn tooth by SVM . Khawaja et al. [189] 
detected a growing crack in planetary gearbox by Least 
Squares SVM . Liu et al. [190] identified various damage in 
planetary gearbox by combining SVM and LDA . Qu et al. 
[191] used various feature selection methods that are based 
on SVM to classify faults. Samuel and Pines [191] used a 
classifier named as self-organizing neural network that auto-
matically detect faults in planetary gear of helicopter. Li 
et al. [192] used k-NN algorithms on fault features that were 
extracted from vibration and acoustic emission signals in 
order to diagnose faults in planetary gearboxes. SVM is a 
supervised machine learning method for fault diagnosis. 
Platt et al. [38] and Hsu et al. [193] compared the perfor-
mance of one-against-all with one-against-one for diagnos-
ing better accuracies. To overcome the weakness of one-
against-all and one-against-one, the direct acyclic graph 
[194–196] and the binary tree [34, 38, 150, 178, 193, 
197–203] were used. The modified SVM was applied to 

machine fault diagnosis, such as the least square SVM [9, 
204–208], the proximal SVM [209–211], the one-class SVM 
[212], the hyper-sphere-structured SVM [213], the wavelet 
SVM [214–217], the ensemble SVM [218, 219], the fuzzy 
SVM [220, 221], the multi-kernel SVM [222, 223], and the 
relevance vector machine [224–226], which achieved better 
diagnosis performance than the conventional SVM-based 
approaches. To select the parameters of SVM various opti-
mization algorithms were used such as the sequential mini-
mal optimization [31, 227–230], the genetic algorithm 
[231–234], the Particle Swarm Optimization (PSO) 
[235–238], and the ant colony optimization [239]. SVM 
offers some disadvantages. First, small number of data can 
be handled by using SVM . However, there is difficulty in 
fitting the massive data. Second, the performance of SVM-
based diagnosis models is sensitive to the kernel parameters 
as kernel parameters are not appropriate and reliable results 
can not be diagnosed. Thirdly only binary classification 
tasks can be solved by SVM algorithm. k-NN is one of the 
supervised machine learning classification methods in which 
k-NN are determined by calculating Euclidean distance 
between testing and training samples [240]. In this method, 
k samples can be searched by distance metric. Georgoulas 
et al. Georgoulas et al. [241] used k-NN to locate faults in 
bearings and after transforming raw signal into discrete com-
ponent which was represented by a histogram. Gao et al. 
[242] extracted features by combining S transform and mor-
phological pattern spectrum to diagnose faults in bearings. 
Rajeshwari et al. [243] extracted features by using EEMD 
and dimensionality reduction was done by combining hybrid 
binary bat algorithm and machine learning algorithm to 
select the predominant features and then the incipient faults 
were detected by using k-NN . Geramifard et al. [244] pre-
processed the vibration signal by hidden Markov model and 
the parameters of this Markov model were used as input of 
k-NN to detect faults in motors. Many researchers used k-NN 
to diagnose incipient faults in various machine elements 
such as rolling element bearings [245–252], gears 
[253–256], and motors [257]. k-NN faced some problems 
such as neighborhood boundary was not distinguishable and 
there was difficulty to select the optimal neighborhood 
parameter. Lei et al. [258] used weighted k-NN method to 
detect faults in bearings. In this method the features that 
were extracted were weighted to train the model to detect the 
heath condition of machines. Zhao et al. [259] used Euclid-
ean weighted k-NN model in which extracted features were 
weighted by using Euclidean distance for bearing fault diag-
nosis. Li et al. [260] proposed the optimized evidence-theo-
retic k-NN classifier to detect faults in bearings and to 
improve accuracy. Dong et al. [261, 262] used the k-NN 
classifier which was optimized by the PSO algorithm which 
improved accuracy for diagnosis than the method used with-
out optimization. Pandya et al. [263] modified the k-NN 
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algorithm that was based on asymmetric proximity function 
which improved diagnosis accuracy in case of bearings. The 
diagnosis that are based on k-NN are easily implemented. 
But the cost for computation is more which handles large 
volume dataset. Shifat et al. [106] used k-NN for diagnosing 
faults at incipient stage in brushless direct current motor. Hu 
et al. [100] proposed algorithm for diagnosis of faults in 
electric fan in which Least square SVM as primary classifier 
and k-NN as secondary classifier. Lu et al. [264] proposed 
enhanced k-NN for fault diagnosis in gears. In this proposed 
method nearest neighbors were selected automatically and 
features were extracted by unsupervised methods. Cao et al. 
[265] proposed deep learning novel method named Y-net for 
diagnosis of faults in planetary gearbox. Zhao et al. [266] 
proposed unsupervised algorithm named L12 sparse filtering 
to extract fault features in bearings. Li et al. [267] used unsu-
pervised convolutional autoencoders model with silhouette 
coefficient to detect faults in rotating machines such as inner 
race in bearings and spalling, tooth faults in case of gears. 
Li et al. [268] used k-means clustering approach to diagnose 
faults in rotating machinery. Chen et al. [269] used unsuper-
vised networks to detect faults in bearings and gears. These 
networks improve the knowledge transfer from the labeled 
vibration signals (source domain) to the unlabeled vibration 
signals (target domain). Ali et al. [270] used unsu-
pervised network named adaptive resonance theory 
2 to diagnose faults in bearings such as inner race, 
outer race and ball defect. Pacheco et al. [271] pro-
posed unsupervised algorithm attr ibute cluster ing 
algorithm using Rough Set theory that combines the 
advantages of k-means and k-NN algorithms to detect 
faults in bearings and can give better accuracy with 
unlabeled data. Tao et  al. [272] proposed algorithm 
ST-Categorical Generative Adversarial Networks (CatGAN) 
which is combination of STFT as well as CatGAN for the 
fault diagnosis of rolling bearings. Raw 1-D vibration sig-
nals were transformed to 2-D by STFT and then this signal 
was served as input to CatGAN . this algorithm results in 
strong ability to extract features with better robustness under 
different motor load. Zhang et al. [273] compared various 
neural network-based approaches for fault diagnosis in bear-
ings, including basic neural network, deep neural network, 
stacked autoencoders, CNN and deep CNN . Wu et al. [274] 
proposed novel semi-supervised method to detect faults in 
bearings such as inner race, outer race and ball defects. 
Wang et al. [275] proposed novel ensemble extreme learning 
machine network which is combination of two sub-networks, 
namely, the first extreme learning machine for clustering, 
and the second for multi-label classification for detection of 
compounds faults in rotating machinery. Sinistin et al. [276] 
proposed hybrid model based on CNN and multilayer layer 
perceptron that used different data types as input (both 
numerical and images) for diagnosis of rolling bearing 

faults. Zhang et al. [277] proposed a novel 2D deep CNN 
model which is trained on the augmented training set to 
learn more discriminative feature set for the fault diagnosis 
in rotating mechines. Imamura et al. [278] proposed recur-
rent neural network to identify imbalance faults in rotating 
machinery by using vibration and current signals. Li et al. 
[279] a novel model by combining binarized deep neural 
networks with improved random forests for diagnosis of 
faults in rotating machinery. Ince et al. [280] proposed one 
dimensional self organised Operational Neural Network (ONN) ( 
self-ONN) for detecting the severity of bearing faults at an 
early stage. Brusa et al. [281] used novel machine learning 
model which is is characterized by the introduction of the 
eigen-spectrograms and randomized linear algebra in bear-
ing fault diagnosis. Zhu et al. [282] proposed improved 
LeNet-5 model and the model is optimized automatically by 
PSO hyperparameter. This PSO improved CNN model is 
constructed which further results in increase in accuracy and 
it also takes less time in testing & training. Liu et al. [283] 
proposed unsupervised algorithm named categorical adver-
sarial autoencoder for diagnosis of faults in bearings. cate-
gorical adversarial autoencoder method is validated to be 
feasible for the unsupervised clustering on rolling bearings. 
Costa et al. [284] diagnosed the faults in bearings by using 
two unsupervised machine learning techniques called shap-
ley additive explanations and local depth-based feature 
importance for the isolation forest. Zhao et al. [285] pro-
posed two new algorithms, adaptive sparse contrative auto-
encoder algorithm andoptimized unsupervised extreme 
learning machine classifier for diagnosis of faults in roller 
bearings. Qu et al. [286] proposed an unsupervised feature 
extraction method called disentangled tone mining was pro-
posed to learn fault level directly from the frequency spectra 
of the data. Disentangled tone mining method can disentan-
gle uncorrelated noise and recover the discriminant features. 
Cheng et al. [287] proposed unsupervised machine learning 
algorithm based on Gaussian mixture model for detection of 
incipient faults in industrial robots. Martin et al. [288] pro-
posed unsupervised machine learning algorithms such as 
sparse coding and dictionary learning to detect faults in 
rotating machine elements like rolling element bearings and 
gears. Li et al. [289] presented a new roller bearing fault 
diagnosis algorithm based on a sparsity and neighbor-hood 
preserving deep extreme learning machine. Kong et al. [290] 
proposed a novel method, attention recurrent auto-encoder 
hybrid model classification algorithm, for early fault diag-
nosis and severity detection of rotating machinery. He et al. 
[291] proposed AI unsupervised method based on a deep 
belief network for diagnosis of faults of a gear transmission 
chain and the accuracy of this method for fault classification 
are more than back propagation neural network and SVM in 
case of bearings and gears. Table 2 lists various AI methods 
used for fault diagnosis of mechanical components.
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5.1 � Epilog

In the last decade, there has been a growing need for AI to 
solve the problems of engineering. Earlier, these problems 
were considered hard to be solved analytically or by using 
mathematical modeling and needed human intelligence. 
Machine learning is an application of AI that provides sys-
tems with the ability to automatically learn and improve 
from experience without being explicitly programmed. 
Machine learning approaches are traditionally classified 
as supervised (deals with labeled data) and unsupervised 
(deals with unlabeled data). Availability of actual machine 

conditions from field data is somewhat in scarcity due to 
which supervised machine learning technique under-per-
forms. To overcome this scarcity of labeled data, researchers 
investigated unsupervised machine learning techniques in 
the field of condition monitoring. Fault cannot be predicted 
in actual field conditions while doing data acquisition and 
also supervised learning has limited scope because of the 
scarcity of labeled data. Computation earlier was not good 
but with the advancement of technology use of computers 
increases. Now a days signal processing computation is done 
on sensors called edge computing. So AI is emerging field 
for fault detection in various rotating machinery.

Table 2   AI based techniques for incipient fault diagnosis in rotating elements

References Technique Component

Khazaee et al. [188] SVM Gearbox (ring gear with worn tooth face and 
planetary gear with worn tooth face)

Khawaja et al. [189] Least Square Support Vector Machine (LSSVM)Gearbox (crack on planetary gearplate)
Liu et al. [190] SVM and LDA Gearbox (gear pitting)
Qu et al. [191] SVM Gearbox (gear pitting damage)
Li et al. [192] k-NN Split Torque Gearbox (STG) faults (gears and 

bearings)
Zhang et al. [218] , Zheng et al. [219] Ensemble SVM Bearings (inner race, outer race and ball 

defects)
Ebrahimi et al. [220] , Hang et al. [221] Fuzzy SVM Gearbox (ball-bearing eccentricity defect [220] 

and shaft imbalance and mis-alignment fault 
in Wind turbine [221])

Li et al. [222] , Chen et al. [223] Multi-kernel SVM Gas turbine faults (blade fault and nozzle guide 
vane (NGV) fault [222],Roller bearing fault 
[223])

Liu et al. [224], Jack et al. [225, 226] Relevance vector machine Roller bearing (inner race, outer race, rolling 
element and cage)

Georgoulas et al. [241] k-NN Roller bearing (ball fault, inner race and outer 
race)

Rajeshwari et al. [243] k-NN Gear faults (frosting, pitting and crack)
Geramifard et al. [244] k-NN Bearing faults, unbalanced rotor in Rotary 

electric motors (REM)
He et al. [245], Jiang et al. [246, 247], Safi-

zadeh et al. [248], Van et al. [249], An et al. 
[250], Ma et al. [251], Yao et al. [252]

k-NN Roller Bearings (outer race, inner race and ball 
defect)

Gharavian et al. [253], Li et al. [254], Park 
et al. [255], Vanraj et al. [256]

k-NN Gears (chipped tooth and worn gear [253], gear 
fault (cracked tooth and apalled gear) and 
bearing (cracked outer race and broken roller) 
[254], spall and crack faults in gears [255], 
Chipped tooth in gears [256])

Lei et al. [258], Zhao et al. [259] Weighted k-NN Roller Bearings (inner race, outer race and ball 
defects)

Li et al. [260] Optimized evidence-theoretic k-NN Deep groove ball bearings (tiny outer race 
crack, tiny inner race crack or tiny ball crack)

Dong et al. [261, 262] k-NN + PSO algorithm Bearings
Pandya et al. [263] Asymmetric proximity function based k-NN Bearings (inner race, outer race and ball defect)
Shifat et al. [106] k-NN BLDC Motor
Hu et al. [100] LSSVM + k-NN Electric fan
Lu et al. [264] Enhanced k-NN Gears
Cao et al. [265] Y-net Gearbox
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6 � Conclusion

This paper has reviewed the state of the art of machinery 
prognostics following the four processes of the predictive 
maintenance program, namely data acquisition, pre-process-
ing (denoising process), feature processing, and AI . In the 
data acquisition section, various data acquisition sensors 
are discussed in detail out of which vibration based data 
acquisition method was found to be prominent. However, 
acoustic emission is found to be one of the most advanced 
contact-less method in recent publications in combination 
with vibration transducers. Signal pre-processing (denois-
ing process) section summarizes various advance signal 
processing techniques in time domain, frequency domain 
and time-frequency domain. The use of these techniques 
are based on the component under study, speed and loading 
conditions. The feature processing section is considered to 
be one of the most important part of predictive maintenance 
program. This section is divided in-to three parts viz. fea-
ture extraction in which various feature are extracted from 
signals, feature selection in which most relevant feature sets 
are selected based on statistical analysis and at last dimen-
sionality reduction which helps AI stage work efficiently. In 
the end, AI based techniques are discussed to detect incipi-
ent level faults in rotating machines. A review on all the 
literature is impossible and omission of some papers would 
be inevitable. Figure 7 shows section and sub-section wise 
paper distribution for detection of incipient faults in rotating 
machinery.

Although plenty of development have been attained in the 
field of condition monitoring and health assessment, there 
are still several aspects which need to be further investigated. 

Also, the last aspect of this paper is to list the challenges 
and opportunities in this field, which is expected to point 
out the development directions and give some suggestions 
for researchers.

6.1 � Challenges in Data Acquisition

–	 How to deal with multiple sensors information

In industry 4.0 settings where multiple sensor sources are 
present from multiple machines, a new problem of chunk of 
data arises. Under these circumstances, researchers/indus-
trial personals have to carefully investigate the meaningful 
information related to fault. AI , no doubt, can handle this 
scenario. However, researchers have to keep in mind the 
universal statement ‘Garbage In Garbage Out’. Sensor data 
fusion approach to investigate the health status of machine 
may be useful tool to handle such situations.

–	 How to deal with limited data availability

Limited data troubles more than the chunk of data. There 
are situations where limited data is available from a machine 
such as newly commissioned machine. In such situation it is 
difficult to conclude about the health status of any machine 
by looking at limited data points. Transfer learning approach 
may be helpful in such situation where there is some past 
mathematical model already made based on similar machine.

6.2 � Challenges in Signal Processing

–	 How to deal with catastrophic failure analysis

Fig. 7   Literature distribution for various steps in detection of incipient faults in rotating machinery
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One of the most painful situation in any plant is sudden fail-
ure of any component without giving any prior symptoms. 
However, vibration based condition monitoring approach 
has proven its ability to diagnose faults before a significant 
amount of time. Various recent advanced signal processing 
techniques such as Teager Kaiser Energy Operator (TKEO) 
condition the signal and improves the fault detection capa-
bility of a system. Various other advanced signal processing 
mythologies have been investigated in the literature, how-
ever, their implementation on real world situation is still in 
initial stage.

–	 How to deal with the burden of computational time of 
signal processing

With the advancement of complex signal processing meth-
ods, difficulty of increased computational time arises. Due 
to this implementation of such signal processing methods 
got restricted in real-time fault diagnosis applications. But 
thanks to edge computing, which resolves this problem by 
providing additional processor on the chipboard of sensor 
itself to compute maximum calculation at the source sensor 
only. Various new script writing languages such as Python 
also resolves these issues by integrating computational 
power to the sensors.

6.3 � Challenges in Feature Processing

–	 How to establish relation between feature threshold and 
fault severity

The relationship between fault severity such as increasing 
crack or surface wear with statistical feature value is gen-
erally difficult to establish. Each machine is unique in its 
vibration property and data availability for fault progression 
is quite redundant. This may be handled with the help of 
dynamic-modeling analysis of a mechanical system.

–	 How to find new features which can enhance fault diag-
nosis at a very initial stage of fault.

Tracking the fault severity based on statistical parameter 
amplitude is the key to success for any condition moni-
toring program. Early the fault detection, longer the time 
interval to take necessary action and hence better will be 
the condition monitoring program outcome. However, sta-
tistical features need not follows a monotonic trend as fault 
severity increases because the value of statistical parameter 
depends on many other factors such as speed, load, lubrica-
tion, damping etc. Hence, there is a requirement to find new 
statistical feature sets which shows monotonic trend with 
fault progression. This can be achieved by using advanced 
signal processing methods which effectively filter out the 

noise from the actual fault signal. For example Complete 
Ensemble Empirical Mode Decomposition with Adaptive 
Noise (CEEMDAN) shows very good results in extracting 
faulty vibration signals from a noisy environment [292].

6.4 � Challenges in Artificial Intelligence

–	 How to predict multiple faults in a single component

There has a plenty of research work undertaken on the inves-
tigation of single fault present at a time on a component. But 
in practical scenario there may be multiple faults present in 
a single component. AI performs better when it comes to 
predict the results from a seen data set. However, it fails to 
perform in a situation on which the AI model is not trained. 
Hence, a robust AI model can be trained based on reinforce-
ment learning where the model may be updated as soon as it 
encounters a new know condition.

–	 How to predict system health as a whole based on com-
ponent level health monitoring data

Most of the time data from a system is captured from its 
components such as bearing, gearbox, shaft etc. It means 
that any fault prediction based on the data will be most sig-
nificant for the component itself. It is challenge to predict 
the health of a whole machine based on the fault predic-
tions from various sub-components of that system. Stacking 
Ensemble Machine Learning is one of the way to tackle this 
issue where information from multiple machine learning 
models can be combined and used to predict the health of a 
complete system.
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