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Abstract
Composite laminates have found wide-ranging applications in various areas of structural, marine and aerospace industries. 
Their design and optimization is a challenging task due to involvement of a large number of design variables. Because of high 
accuracy of the laminate modeling theories and presence of numerous design variables, laminate design and optimization 
is primarily carried out in silico. Integratin the high accuracy of these laminate modeling theories using numerical solvers, 
like finite element method, boundary element method etc. with the iterative improvement capability of different optimization 
algorithms is a well-established approach and can be broadly referred to as high-fidelity optimization. However, in recent 
times with the advent of machine learning and statistical approaches, metamodel-based optimization has gained significant 
prominence, primarily due to its less computational time and effort. In this review paper, the essence of nearly 300 research 
articles (about 26% and 50% of them are from last 5 and 10 years respectively.) on high-fidelity and metamodel-based opti-
mization of composite laminates is comprehensively assessed and presented. Special emphasis is provided on the discussion 
of various metamodels. The methodology and key outputs of each research article are concisely presented in this paper, 
which would make it an asset for the future researchers and design engineers.

Abbreviations
ABC  Artificial bee colony
ACO  Ant colony optimization
aeDE  Adaptive elitist differential evolution
ALO  Ant lion optimization
ANN  Artificial neural network
BBD  Box Behnken design
CBO  Colliding bodies optimization
CBT  Classical beam theory
CCD  Central composite design
CLPT  Classical laminated plate theory
CS  Cuckoo search
DA  Dragonfly algorithm
DE  Differential evolution

DL  Deep learning
DMO  Discrete material optimization
DMS  Direct multi search
DNN  Deep neural network
DQM  Differential quadrature method
DT  Decision tree
EDMS  Evolutionary direct multi search
ESL  Equivalent single-layer laminate
FEM  Finite element method
FSDT  First-order shear deformation theory
GA  Genetic algorithm
GBM  Gradient-based method
GBNM  Globalized bounded Nelder-Mead algorithm
GDA  Gradient descent algorithm
GHDMR  General high dimensional model 

representation
GLODS  Global and local optimization using direct 

search
GP  Genetic programming
GPR  Gaussian process regression
GRG   Generalized reduced gradient
GS  Golden search
GWO  Grey wolf optimizer
HS  Harmony search
HSDT  Higher-order shear deformation theory
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ICA  Imperialist competitive algorithm
IP  Integer programming
LHS  Latin hypercube sampling
LOA  Layerwise optimization approach
LR  Linear regression
MARS  Multivariate adaptive regression splines
MCS  Monte Carlo simulation
MEGO  Multi-objective efficient global optimization
MFD  Modified feasible direction
MFO  Moth flame optimization
MLS  Moving least square
MOGA  Multi-objective genetic algorithm
MOPSO  Multi-objective particle swarm optimization
MP  Mathematical programming
MVO  Multi-verse optimizer
NLPQL  Non-linear programming by quadratic 

Lagrangian
NSGA-II  Nondominated sorting genetic algorithm II
PCE  Polynomial chaos expansion
PC-Kriging  Polynomial chaos-kriging
PNN  Polynomial neural network
PR  Polynomial regression
PSO  Particle swarm optimization
RBF  Radial basis function
RFR  Random forest regression
R-R  Rayleigh Ritz method
RS  Random sampling
RS-HDMR  Random sampling-high dimensional model 

representation
SA  Simulated annealing
S-FEM  Smoothed finite element method
SLP  Sequential linear programming
SPS  Sequential permutation search
SQP  Sequential quadratic programming
SSA  Salp swarm algorithm
SVR  Support vector regression
TLBO  Teaching–learning-based optimization
TSDT  Third-order shear deformation theory
WOA  Whale optimization algorithm

1 Introduction

Composite laminates are usually fabricated by overlaying 
several layers of composite materials. Each of these layers 
is commonly referred to as lamina. Many such laminae are 
held together by a resin and combined, thereby constitut-
ing a laminate. The overall sequence of orientations of each 
lamina in the laminate is called as the lamination scheme or 
stacking sequence [1, 2]. For a constant thickness, altering 
the stacking sequence of a laminate can significantly influ-
ence the in-plane stiffness and bending stiffness of the lami-
nate due to the directional properties of each lamina. Each 

ply angle of the laminate has also a direct (but non-linear) 
effect on the in-plane stiffness and bending stiffness.

Optimization is a mathematical approach for making 
the ‘best’ possible use of available resources to achieve the 
desired target/goal [3]. Generally, the task of an optimization 
method is to maximize or minimize a desired target property, 
expressed in the form of an objective function. Additionally, 
locating a specific point or zone of the target property may 
also be a goal of optimization. A typical optimization prob-
lem can be stated as below:

 where xi is the ith design variable (i = 1,2,…,k), k is the 
maximum number of design variables, and xi

min and xi
max 

are the lower and upper bounds of the ith design variable 
respectively.

An optimization algorithm is a technique that is employed 
iteratively while comparing the previously derived solutions 
with the current one until an optimal or a satisfactory solu-
tion is achieved. With the advancement of high-speed com-
puting facilities, optimization has become an intricate part of 
computer-aided design. There are mainly two distinct types 
of optimization algorithms:

(a) Deterministic algorithms: They employ specific rules 
for moving from one solution to the other. Given a par-
ticular input, they would produce the same output solu-
tion even when these algorithms are executed multiple 
times. In fact, these algorithms would pass through the 
same sequence of states.

(b) Stochastic algorithms: These algorithms rely on proba-
bilistic translation rules. They are gaining much popu-
larity due to certain critical properties that the deter-
ministic algorithms do not have. They can efficiently 
deal with inherent system noise and can take care of 
the models or systems that are highly nonlinear, high 
dimensional, or otherwise inappropriate for classical 
deterministic algorithms [4].

All the optimization algorithms can further be classified 
as single-objective or multi-objective techniques based on 
the number of objective functions to be dealt with. If the 
goal of the algorithm is to optimize only a single objec-
tive function at a time, it is referred to as single-objective 
optimization technique. On the other hand, if it has to 
optimize multiple objective functions simultaneously, it is 
called as multi-objective optimization technique. However, 
it is almost impossible to find out the global optima for all 
types of design-related optimization problems by applying 
the same optimization procedure since the objective function 
in a design optimization problem and the associated design 

(1)
Minimize/maximizef (x)

subject to the constraint xmin
i

≤ xi ≤ xmax
i
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variables largely vary from one problem to the other. One 
optimization algorithm suitable for a particular problem may 
completely fail or may even be counterproductive to another 
separate problem. The basic formulation of any typical opti-
mization process is shown in Fig. 1.

1.1  Single‑Objective Optimization

The basic aim of a single-objective optimization technique 
is to discover the ‘best’ solution, which corresponds to the 
minimum or maximum value of a single objective function. 
They are the simplest optimization techniques, and have 
found huge popularity among the decision makers due to 
their simplicity and apprehensiveness. Although, they can 
provide sufficient new insights about the nature of a prob-
lem, but usually, they have limited significance. Most of the 
design optimization problems need simultaneous considera-
tion of a number of objectives which may conflict with each 
other. Thus, using single-objective optimization techniques, 
it is almost impossible to find out an optimal combination 
of the design variables that can effectively optimize all the 
considered objectives.

1.2  Multi‑Objective Optimization

Numerous practical combinatorial optimization problems 
require simultaneous fulfillment of several objectives, like 
minimization of risk, deviation from the target level, cost; 
maximization of reliability, efficiency etc. Multi-objective 
optimization is generally considered as an advanced design 
technique in structural optimization [5], because most of the 
practical problems require information from multiple domains 
and thus are much complex in nature. Additional complexity 
arises due to involvement of multiple objectives which often 
contradict with each other. One of the main reasons behind 

wide applicability of multi-objective optimization techniques 
is their intrinsic characteristic to allow the concerned decision 
maker to actively take part in the design selection process even 
after formulation of the corresponding mathematical model. 
Since each structural optimization problem consists of mul-
tiple independent design variables significantly affecting the 
final solution, selection of the design variables, objectives and 
constraints are supposed to play pivotal roles. Sometimes, a 
multi-objective optimization problem may be replaced by an 
optimization problem having only one dominating objective 
function with the use of appropriate equality and inequal-
ity constraints. However, selection of limits of various con-
straints may be another challenging task in real-world design 
problems. When numerous contending objectives appear in a 
realistic application, the decision maker often faces a problem 
where he/she must find out the most suitable compromise solu-
tion among the conflicting objectives.

A multi-objective optimization problem can be converted 
into an equivalent single-objective optimization problem by 
aggregating multiple objective functions into a single one [6]. 
Reduction of a multi-objective optimization problem into a 
single-objective optimization problem is commonly known 
as scalarization. A classical scalarization technique is the 
weighted sum method where an auxiliary single objective 
function is formulated as follows:

where wi is the weight assigned to ith objective function and 
m is the number of objective functions.

Simplicity of the weighted sum scalarization method 
is indeed one of its major advantages [7]. However, in this 
method, values of the optimal solutions depend on the choice 
of the weight assigned to each of the objective functions. In 
absence of any prior knowledge with respect to the weights, 
it is desirable to have a set of equally feasible solutions. Each 
solution in the set should provide the best possible compro-
mise among the objectives. This set of non-dominated solu-
tions is referred to as Pareto optimal solutions or Pareto front. 
The Pareto optimality implies that no other solution can exist 
in the feasible range that is at least as good as some other 
member of the Pareto set, in terms of all the objectives, and 
strictly better in terms of at least one [8]. Thus, in the Pareto 
front, solution of one objective function can only be improved 
by worsening at least one of the other objective functions.

f (x) =

m∑

i=1

wifi(x), wi > 0,

m∑

i=1

wi = 1

Fig. 1  A flowchart of the optimal design procedure
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2  State‑of‑the‑Art in High‑Fidelity Design 
Optimization of Composite Laminates

Excellent mechanical properties of the composite laminates 
are mainly responsible for their widespread popularity in 
structural applications. However, to exploit the fullest poten-
tial of composite structures, optimal selection of shape, size, 
fiber angles, material etc. is essential which makes it a com-
plex design optimization problem. This complexity arises 
not only due to involvement of various design variables, but 
also due to multimodal output response and large design 
space with unfeasible or expensive derivatives.

This section mainly categorizes and compares various 
optimization methods employed in optimal lay-up selection 
of composite laminates. The goal of the comprehensive lit-
erature review presented in this section is to offer a ready ref-
erence for choosing the suitable optimization techniques for 
a given problem. However, due to paucity of space, details of 
the adopted optimization algorithms are not explained here. 
Only their applications in composite laminate optimization 
are focused on.

In the literature, several categorizations for optimization 
of composite laminates have been suggested. For example, 
Fang and Springer [9] identified four groups of optimization 
approaches, e.g. (a) analytical procedures, (b) enumeration 
methods, (c) heuristic schemes and (d) non-linear program-
ming. From a more structure-specific context, Abrate [10] 
categorized laminate optimization applications based on the 
objective function that could be either one or a combination 
of in-plane properties, flexural rigidity, buckling load, natu-
ral frequency and thermal effects. Venkataraman and Haftka 
[11] recommended categorization of the design methods as 
(a) single laminate design and (b) stiffened plate design, 
whereas, Setoodeh et al. [12] suggested classifying the lit-
erature on optimization of composite laminates as constant 
stiffness design and variable stiffness design. In context of 
this paper, some prominent literature are briefly reviewed 
and the adopted optimization techniques are grouped into 
three broad classes, i.e. gradient-based methods, specialized 
algorithms and direct search methods.

2.1  Gradient‑Based Methods

Gradient-based methods are based on the gradients of the 
objective and constraints, whose functions can be approxi-
mated when the corresponding mathematical closed form 
expressions are not available. However, they are computa-
tionally expensive. Generally, these methods are unable to 
locate the global optima, but have quicker convergence rate 
as compared to direct and heuristic methods.

The most common approach to search out a stationary 
point of an objective function is to set its first gradient to 
zero. This approach was adopted by Sandhu [13] to pre-
dict the optimal layer angle of a composite lamina. Its main 
advantage is the fastness to locate all the stationary points of 
the objective function just in one run. However, it depends 
on the expression of objective function as a closed form 
equation. Moreover, it performs only for single-variable, 
unconstrained optimization problems, which imposes a seri-
ous bottleneck to its practical applications.

Another popular gradient-based method is the steepest 
descent technique that performs, at each step, a line-search 
in the opposite direction of the gradient of the objective 
function. For composite structure stacking sequence design 
problem, it may be used as a standalone technique [14] or 
as an aid for other optimization techniques [15]. Initially, 
steepest descent technique has quick convergence, however, 
as it approaches closer towards the global optima, it becomes 
sluggish. It is known to be got trapped in the local optima 
and its inability to deal with discrete variables is its serious 
drawback.

Hirano [16] employed Powell’s conjugate gradient (CG) 
method for maximizing buckling load in laminated plate 
structures under axial compression, which could work only 
on unimodal functions, requiring no gradient information.

Newton (or Newton–Raphson) methods require second-
order gradient information and are seldom used for optimiza-
tion of laminated composite design problems. Quasi-Newton 
(QN) methods, on the other hand, are frequently applied as 
they allow determining the Hessian without using second-
order derivatives. Davidon, Fletcher and Powell (DFP) [17] 
applied QN techniques for predicting the optimal lay-up 
of laminated composites. The DFP-QN method, originally 
proposed by Fletcher and Powell [18], was adopted by Wad-
doups et al. [19] and Kicher and Chao [20] for design of the 
optimal composite cylindrical shells. A quadratic interpola-
tion of the objective function, including strength and buck-
ling failure, was considered in the one-dimensional minimi-
zation problem. Kim and Lee [21] also applied DFP method 
for optimization of a curved actuator with piezoelectric fib-
ers. The QN methods generally have higher convergence 
rate than CG method, although their performance is problem 
dependent and may change from one case to another.

Method of feasible directions (MFD) attempts to find 
out a move to a better point without violating any of the 
constraints. Since a composite lay-up design problem usu-
ally includes several inequality constraints, MFD has been 
a good candidate for solving this problem [22]. However, 
like other gradient-based methods, it is not always able to 
search out the global optima. It has been adapted to be used 
in combination with finite element analyses [23].
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2.2  Specialized Algorithms

These methods are explicitly developed for optimizing com-
posite laminates while exploiting a number of their proper-
ties to simplify the optimization process. Often developed 
for a particular application, they generally simplify the prob-
lem by restricting the design space with respect to allowable 
lay-up, loading condition and/or objective function. Since 
they are tailored to a specific design problem, they occasion-
ally lose robustness when applied to a general optimization 
problem. However, when designed for a particular problem, 
they can be much faster than other optimization techniques.

Using lamination parameters [24], which are integrated 
trigonometric functions based on thickness of a laminate 
instead of lay-up variables, has the advantage of reducing 
the number of parameters required to express a laminate’s 
properties to a maximum of 12, regardless of the number of 
layers [25, 26].

Besides the promising advantage of using lamination 
parameters, the challenge in dealing with those parameters 
is that they are not independent and cannot be arbitrarily pre-
scribed. Several authors, such as Fukunaga and Vanderplaats 
[27], and Grenestedt and Gudmundson [28] suggested the 
necessary conditions for different combinations of lamina-
tion parameters, but the complete set of sufficient condi-
tions for all the 12 parameters is still unknown [29]. Miki 
[30] proposed a method to visualize the admissible range of 
lamination and their corresponding lay-up parameters. Just 
like the in-plane lamination diagram, the flexural lamination 
diagrams were also developed [31]. Fukunaga and Chou [32] 
adopted a similar graphical technique for laminated cylin-
drical pressure vessels. Lipton [33] developed an analytical 
method to find out the configuration of a three-ply laminate 
under in-plane loading conditions. Autio [34], Kameyama 
and Fukunaga [35], and Herencia et al. [36] employed GA 
to solve the inverse problem.

A layer-wise optimization technique optimizes the over-
all performance of a composite laminate by sequentially 
considering one or some of the layers within a laminate. 
This method performs with one layer or a subset of layers 
in the laminate, first requiring selection of the best initial 
laminate and then addition of the layer that best improves 
the laminate performance, which is usually achieved by an 
enumeration search [37]. Lansing et al. [15] determined the 
initial laminate by assuming the layers with ply angles of 0°, 
90° and ± 45° carrying all the longitudinal, transverse and 
shear stresses respectively. Starting with a one-layer lami-
nate, Massard [38] determined the best fiber orientation for 
single-ply laminate. Todoroki et al. [39] proposed two other 
approaches to find out the initial laminate. Narita [40], and 
Narita and Hodgkinson [41] endeavored to solve this prob-
lem while starting with a laminate having hypothetical lay-
ers with no rigidity. From the outermost layer, all the layers 

were sequentially replaced by an orthotropic layer and the 
optimal fiber orientation angle was determined by enumera-
tion. The first solution derived was subsequently applied as 
an initial approximation for the next cycle. Farshi and Rabiei 
[42] proposed a method for minimum thickness design con-
sisting of two steps. The first step aimed at introducing new 
layers to the laminate, while the second one examined the 
probability of replacing higher quality layers with weaker 
materials. Ghiasi et al. [43] applied layer separation tech-
nique to keep the locations of different layers unchanged 
when a layer had been added.

2.3  Direct Search Methods

While the analytical methods are known for their fast con-
vergence rate, direct search methods have the advantage 
of requiring no gradient information of the objective func-
tion and constraints. This feature has a significant benefit 
because in composite laminate design, derivative calcula-
tions or their approximations are often costly or impossible 
to obtain. Direct search methods systematically lead to the 
optimal solution only by using function values from the pre-
ceding steps. As a result, several of these techniques have 
become popular for optimization of composite lay-up design, 
as described in the following paragraphs. Stochastic search 
algorithms, a sub-class of direct search methods “[…] are 
better alternatives to traditional search techniques […] they 
have been used successfully in optimization problems having 
complex design spaces. However, their computational costs 
are very high in comparison to deterministic algorithms” 
[44].

One of the first attempts in optimal design of composite 
laminates is the application of enumeration search, consist-
ing of trying all the possible combinations of design vari-
ables and simply selecting the best combination. Although 
cumbersome, this technique was adopted to find out the 
lightest composite laminate during the 1970s [45]. Nelder 
and Mead (NM) method was employed by Tsau et al. [46] 
for optimal stacking sequence design of a laminated com-
posite loaded with tensile forces, while evaluation of stresses 
was performed by an FEM. It has been reported by Tsau 
and Liu [47] that the NM method is faster and more accu-
rate than a QN method for lay-up selection problems with 
smaller number of layers (i.e. less than 4). Foye [48] was the 
first researcher who employed a random search to determine 
the optimal ply orientation angles of a laminated composite 
plate. Graesser et al. [49] also adopted a random search, 
called improving hit and run (IHR), to find out a laminate 
with minimum number of plies that could safely sustain a 
given loading condition.

The SA technique, which mimics the annealing process in 
metallurgy, globalizes the greedy search process by permit-
ting unfavorable solutions to be accepted with a probability 
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related to a parameter called ‘temperature’. The temperature 
is initially assigned a higher value, which corresponds to 
more probability of accepting a bad solution and is gradually 
reduced based on a user-defined cooling schedule. Retain-
ing the best solution is recommended in order to preserve 
the good solution [50]. It is the most popular method just 
after GA for stacking sequence optimization of composite 
laminates [51, 52]. Generation of a sequence of points that 
converges to a non-optimal solution is one of the major prob-
lems in SA. To overcome this shortcoming, several modi-
fications of SA have been proposed, such as increasing the 
probability of sampling points far from the current point by 
Romeijn et al. [53] or employing a set of points at a time 
instead of only one point by Erdal and Sonmez [50]. To 
increase the convergence rate, Genovese et al. [54] proposed 
a two-level SA, including a ‘global annealing’ where all the 
design variables were perturbed simultaneously and a ‘local 
annealing’ where only one design variable was perturbed 
at a time. In order to prevent re-sampling of solutions, Rao 
and Arvind [55] embedded a Tabu search in SA, obtaining a 
method called Tabu embedded simulated annealing (TSA). 
Although SA is a good choice for the general case of optimal 
lay-up selection; however, it cannot be programmed to take 
advantage of the particular properties of a given problem.

GA is more flexible in this respect, although it is often 
computationally more time consuming [51]. In terms of 
[56], “GAs are excellent all-purpose optimization algorithms 
because they can accommodate both discrete and continu-
ous valued design variables and search through nonlinear 
or noisy search spaces by using payoff (objective function) 
information only”. Callahan and Weeks [57], Nagendra 
et al. [58], Le Riche and Haftka [59], and Ball et al. [60] are 
among the first few researchers who adopted GA for stack-
ing sequence optimization of composite laminates. It was 
employed for different objective functions, such as strength 
[59], buckling loads [56], dimensional stability [61], strain 
energy absorption [62], weight (either as a constraint or as 
an objective function to be minimized) [63], bending/twist-
ing coupling [56], stiffness [62], fundamental frequencies 
[63], deflection [64] or finding out the target lamination 
parameters [65]. It was also applied for design of a variety of 
composite structures ranging from simple rectangular plates 
to complex geometries, such as sandwich plates [66], stiff-
ened plates [58], bolted composite lap joints [67], laminated 
cylindrical panels [64] etc. GA can often be combined with 
finite element packages to analyze stress and strain charac-
teristics of composite structures [64].

One of the main drawbacks of GA is its high compu-
tational intensity and premature convergence, which may 
happen if the initial population is not appropriately selected. 
Sargent et al. [51] compared GA with some other greedy 
algorithms (i.e. random search, greedy search and SA) and 
noticed that GA could provide better solutions than greedy 

searches, which in some instances, were unable to determine 
an optimal solution.

The PSO technique was applied by Suresh et al. [68] for 
optimal design of a composite box-beam of a helicopter 
rotor blade. Kathiravanand Ganguli [69] compared PSO 
with a gradient-based method for maximization of failure 
strength of a thin-walled composite box-beam, considering 
ply orientation angles as the design variables. Lopez et al. 
[70] illustrated the application of PSO for weight minimiza-
tion of composite plates.

GA [71], ACO [72], PSO [73] and ABC [74] are the 
some of the most commonly used stochastic search algo-
rithms in composite laminate optimization. However, there 
are only a few comparative studies on the performance of 
different stochastic search algorithms in composite lami-
nate frequency parameter optimization. Apalak et al. [74] 
proposed the application of ABC algorithm to maximize 
the fundamental frequency of composite plates consider-
ing fiber angles as the design variables. It was observed 
that despite ABC algorithm having a simpler structure than 
GA, it was as effective as GA. Ameri et al. [71] adopted a 
hybrid NM algorithm and a GA technique to find out the 
optimal fiber angles to maximize fundamental frequency. It 
was concluded that the hybrid NM algorithm was faster and 
more accurate than GA. However, it is hard to state whether 
the superior performance of the NM algorithm was genu-
inely due to algorithmic superiority or because the authors 
chose to incorporate the design variables as continuous in 
NM algorithm, whereas, in GA, their discrete values were 
considered. Similarly, Koide et al. [72] presented the appli-
cation of an ACO algorithm to maximize the fundamental 
frequency in cylindrical shells and compared the optimal 
solutions with GA-based solutions derived from the litera-
ture. It was noted that the optimal solutions obtained using 
ACO were almost comparable with those of GA technique. 
Tabakov and Moyo [75] compared the relative performance 
of GA, PSO and Big Bang-Big Crunch (BB-BC) algorithm 
while considering a burst pressure maximization problem 
in a composite cylinder. Hemmatian et al. [76] applied ICA 
techniques along with GA and ACO to simultaneously opti-
mize weight and cost of a rectangular composite plate. It 
was reported that ICA would outperform both GA and ACO 
with respect to the magnitude of the objective function and 
constraint accuracy.

2.4  Discussions

Tables 1 and 2 provide a comprehensive list of research 
works on single-objective optimization of composite lami-
nates, while some important works on multi-objective opti-
mization of composite laminates are presented in Table 3. 
It can be observed from these tables that FEM has been 
the most preferred solver because of its ability to simulate 
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laminates of various shapes and sizes. Additionally, vari-
ous types of load conditions, discontinuities and boundary 
conditions can also be easily simulated in FEM to mimic 
real-world applications. It provides enormous flexibility in 
choosing from a wide array of elements. The degrees of free-
dom and order of elements can also be effortlessly adjusted.

The FSDT has been noticed to the most popular plate 
theory among the researchers during high-fidelity optimi-
zation of composite laminates. It is much more accurate as 
compared to CLPT and far less complicated than HSDT. 
However, it requires a good guess for the shear correction 
factor, which would be essential to account for the strain 
energy of shear deformation. Nevertheless, with a suitable 
value of shear correction factor, FSDT can estimate plate 
solutions that are comparable to HSDT, especially for thin 
and moderately thick plates. Majority of the works in the 
literature (and real-world applications) are either on thin 
plates or moderately thick ones, which have made FSDT 
so much popular.

Ply angles are the most preferred design variables in 
high-fidelity design and optimization of laminates. In 
most of the real-world applications, other parameters, 
like length, width, thickness, curvature of the laminate etc. 
cannot be easily altered as changing their values may gen-
erally require significant modifications in the plate design 
as well as associated components. Further, material vari-
ation may not always be feasible due to specialized nature 
of composite applications. For example, the composite 
material suitable for a structural load-bearing laminate 
may be unsuitable for an acoustics absorbent application 
or a rotor-blade application. From solution viewpoint, 
optimization of ply angles is an NP-hard problem. Further, 
the large design space of ply angles (± 90˚) poses sig-
nificant challenges during the optimization phase. These 
reasons have encouraged the past researchers to attempt 
developing efficient strategies and algorithms to solve 
lay-up orientation optimization problems. For example, 
most researchers now treat lay-up orientation as a discrete 
optimization problem where ply angles with specific incre-
ments (say 5°, 15° or 45°) are only searched out during 
the optimization phase. This is not only computationally 
efficient but also resonates well with the traditional lami-
nate manufacturing technologies that are unable to deal 
with arbitrary angles (say 19.21°). Lamination parameters 
are a convenient alternative to bypass discrete stacking 
sequence optimization. Moreover, lamination parameter 
optimization is a convex problem whose search space is a 
12th-dimesnion hypercube with ± 1 bounds [26].

Weight reduction, buckling load maximization and fre-
quency maximization have been the most common objective 
functions in high-fidelity optimization of laminates. It can 
also be noticed that majority of the researches have been 
conducted on rectangular composite plates. GA technique Ta
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has been the most popular metaheuristic applied to high-
fidelity optimization of laminates. However, gradient-based 
approaches have also been quite popular among the research-
ers. Researches on multi-objective high-fidelity optimization 
of laminates are much scarce which may be due to tremen-
dous computational costs involved in such studies. Multi-
objective GA has been the most popular optimizer employed 
for Pareto optimization of laminates.

3  State‑of‑the‑Art in Metamodel‑Based 
Design Optimization of Composite 
Laminates

High-fidelity design optimization is an important, accurate and 
powerful approach for determining the optimal parameters of a 
design problem. However, the finite element-based optimiza-
tion strategy is quite time consuming and thus, computation-
ally expensive. Based on the observations of Venkataraman 
and Haftka [11], optimization-related computational costs 
would depend on three indices, i.e. model complexity, analy-
sis complexity and optimization complexity (see Fig. 2). For 
example, while evaluating a typical FEM run, say an 8-layer 
symmetric laminate using a 4 × 4 mesh, a 9-node isoparametric 
element-based Fortran program would require about 1/10th 
second for one function evaluation. However, an optimiza-
tion trial of 50,000 function evaluations of the same FEM 
coupled with GA would roughly take 98 min, meaning that 
about 85–90% time would be consumed in objective function 
evaluations by the FEM core. The computation time would 
become a serious problem while considering the probabilis-
tic nature of metaheuristic algorithms, each such optimiza-
tion trial must be repeated multiple times to develop sufficient 

confidence in the predicted solutions. It has been noticed that 
despite continual advances in computing power, complexity of 
the analysis codes, such as finite element analysis (FEA) and 
computational fluid dynamics (CFD) seems to keep pace with 
the computing advancements [181]. In the past two decades, 
approximation methods and approximation-based optimiza-
tion have attracted intensive attention of the researchers. These 
approaches approximate computation intensive functions with 
simple analytical models. This simple model is often called 
a metamodel and the process of developing a metamodel is 
known as metamodeling. Based on a developed metamodel, 
different optimization techniques can then be applied to search 
out the optimal solution, which is therefore referred to as met-
amodel-based design optimization (MBDO). The advantages 
of using a metamodel are manifold [182].

(a) Efficiency of optimization is greatly improved with 
metamodels.

(b) Because the approximation is based on sample points, 
which can be obtained independently, parallel computa-
tion (of sample points) is supported.

(c) It can deal with both continuous and discrete variables.
(d) The approximation process can help study the sensi-

tivity of design variables, thus providing engineers 
insights into the problem.

Considering all these advantages, it is thus advisable to 
deploy MBDO instead of high-fidelity design optimization 
when a little sacrifice in accuracy does not impose a serious 
problem. In fact, MBDO is now being widely recommended 
and employed for different applications in composite laminate 
structures (see Fig. 3) and research on this topic has gained 
significant interest recently.

3.1  Metamodeling

A metamodel is a mathematical description developed based 
on a dataset of input and the corresponding output from a 
detailed simulation model, i.e. a model of a model (see Fig. 4). 
Once the model is developed, the approximate response 
(output) at any sample location can be evaluated and used 
in MBDO. The general form of a metamodel is provided as 
below:

where y(x) is the true response obtained from the developed 
model,ŷ(x) is the approximate response from the metamodel 
and ε is the approximation error. Typically, the following 
steps are involved in metamodeling (see Fig. 5):

(a) Choosing an appropriate sampling method for genera-
tion of data.

(2)y(x) = ŷ(x) + 𝜀

Fig. 2  Schematic showing types of complexity encountered in com-
posite structure soptimization [11]
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(b) Choosing a model to represent the data.
(c) Fitting the model to the observed data and its valida-

tion.

3.1.1  Sampling Strategy (Design of Experiments)

The process of identifying the desired sample points in 
a design space is often called the design of experiments 

Fig. 3  Metamodeling and its 
role in support of engineering 
design optimization [182]

Fig. 4  Metamodel of a compu-
tational analysis for optimiza-
tion applications produces 
approximations of the objective 
functions and constraints [183]

Fig. 5  Concept of building a metamodel of a response for two design variables; a design of experiments, b function evaluations and c meta-
model [184]
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(DOE). It can also be referred to as sampling plan [185]. 
Any metamodel generation process starts with a DOE, i.e. 
way to carefully plan experiments/simulations in advance 
so that the derived results are meaningful as well as valid. 
Ideally, any experimental design plan should describe how 
participants are allocated to experimental groups. A com-
mon method is a completely randomized design, where par-
ticipants are assigned to groups at random. A second method 
is randomized block design, where participants are divided 
into homogeneous blocks before being randomly assigned 
to groups. The experimental design should minimize or 
eliminate confounding variables, which may offer alternative 
explanations for the experimental results. It should allow the 
decision maker to draw inferences about the existent rela-
tionship between independent and dependent variables. DOE 
reduces the variability to make it easier to find out differ-
ences in treatment outcomes. The most important principles 
in experimental design are mentioned as below:

(a) Randomization: The random process implies that every 
possible allotment of treatments has the same prob-
ability, i.e. the order in which samples are drawn must 
not have any effect on the outcome of the metamodel. 
The purpose of randomization is to remove bias and 
other sources of uncontrollable extraneous variation. 
Another advantage of randomization (accompanied 
by replication) is that it forms the basis of any valid 
statistical test. Thus, with the help of randomization, 
there is a chance for every individual in the sample to 
become a participant in the study. This contributes to 
distinguishing a ‘true and rigorous experiment’ from 
an observational study and quasi-experiment [186].

(b) Replication: The second principle of an experimental 
design is replication, which is a repetition of the basic 
experiment. While repeating an experiment multiple 
times, a more accurate estimate of the experimental 
error can be obtained. However, in context of in sil-
ico simulations, it has no consequence on the overall 
outcome, since FEM simulation-based data would 
have no variation even when repeated multiple times. 
Experimental error does not occur in high-fidelity FEM 
simulations because when the same experiment is run 
multiple times, same outputs are obtained.

(3) Local control: It has been observed that all the extra-
neous sources of variation cannot be removed by ran-
domization and replication. This necessitates a refine-
ment of the experimental technique. In other words, 
a design needs to be chosen in such a manner that all 
the extraneous sources of variation are brought under 
control. The main purpose of local control is to increase 
efficiency of an experimental design by decreasing the 
experimental error. Simply stated, controlling sources 
of variation in the experimental results is local con-

trol. Again, in context of in silico simulations, it has no 
effect.

The DOE starts by choosing a training dataset. It refers 
to a set of observations used by the computer algorithms 
to train themselves to predict the process behavior. The 
computer algorithms learn from this dataset, and thus 
find relationships, develop understanding, make deci-
sions and evaluate their confidence from the training 
data. Generally, better is the training data, better is the 
performance of a metamodel. In fact, quality and quantity 
of the training data have as much to do with the suc-
cess of a metamodel as the algorithms themselves. In 
Kalita et al. [187], it has been shown how the quality of 
data would become an important factor in achieving a 
robust metamodel. A comprehensive list of various sam-
pling strategies is reported in Fig. 6. Widely used ‘clas-
sic’ experimental designs include factorial or fractional 
factorial design [188], central composite design (CCD) 
[189], Box-Behnken [189], D-optimal design [190] and 
Plackett–Burman design [189].

3.1.2  Metamodeling Strategy

The act of developing an approximate model to fit a set of 
training data is the core of any metamodeling strategy. Met-
amodeling evolves from the classical DOE theory, where 
polynomial functions are used as response surfaces or meta-
models. Besides the commonly used polynomial functions, 
Sacks et al. [191] proposed the use of a stochastic model, 
called kriging [192], to treat the deterministic response as a 
realization of a random function with respect to the actual 
system response. Neural networks have also been applied 
for generating response surfaces for system approximation 
[193]. Other types of models include RBFs [194], MARS 
[195], least interpolating polynomials [196] and inductive 
learning [197]. A combination of polynomial functions and 
ANNs has also been archived in [198]. Giunta and Watson 
[199] compared the performance of kriging model and PR 
model for a test problem, but no conclusion could be drawn 
with respect to the superiority of one model over the other. 
A comprehensive list of various metamodeling strategies 
is presented in Fig. 7. Additionally, Fig. 8 depicts the suit-
ability of each traditional sampling method in various meta-
modeling strategies.

3.1.3  Metamodel Validation

Validation of the accuracy of a metamodel with respect to 
the actual model or experiment is a prime task in completing 
the entire process of metamodeling. The objective of any 
metamodel is to represent the true model most accurately. 
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Any metamodel should exhaustively and precisely capture 
all the information in the training dataset. In general, the 
performance of a metamodel representing the true model 
is validated based on the residuals. The difference between 

the metamodel value (yi) and true model value (ŷi) is termed 
as residual.

(3)𝜀i = yi − ŷi

Fig. 6  Various sampling tech-
niques

Fig. 7  Various metamodeling 
techniques
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where i represents the sample point among a total of n sam-
ple points. The algebraic sum of squares of residuals for 
the entire set of sample points is called SSR (squared sum 
of residuals).

Similarly, the total sum of squares (SST) is calculated 
using the following equation:

where y represents the mean value of the sample points. The 
sum of squares for the model (SSM) can now be calculated 
as follows:

SSM = SST–SSR.
From the above equations, it is clear that the sum of 

squares of residuals is the fitting error. Thus, it is always 
desirable that it should be close to zero. Its zero value indi-
cates that the metamodel perfectly fits the training data. 

(4)SSR =

n∑

i=1

(yi − ŷi)
2

(5)SST =

n∑

i=1

(yi − y)2

But, it should be always kept in mind that a perfectly fit 
model does not guarantee that it would perform with the 
same accuracy on unknown design samples.

(a) Goodness-of-fit metrics

 Goodness-of-fit or how well the metamodel fits the train-
ing data is a common approach among the researchers to 
validate the accuracy of metamodels. The coefficient of 
determination (R2) is a statistic that provides some informa-
tion about the goodness-of-fit of a model. Its value can be 
estimated using the following equation:

As shown in Kalita et al. [187], the inherent assumption 
of R2 is that all the model terms are made up of independent 
parameters and have an influence on the dependent param-
eter, which is not necessarily true. The R2

adj corrects this 
presumption to a certain extent by penalizing the model 
when insignificant terms are added to the model.

where k is the number of variables. The R2
pred goes a step 

further by constructing the model using all the data except 
the one that it predicts:

where ŷi∕i is the observed ŷi value calculated by the model 
when the ith sample point is left out from the training set. 
This corresponds to the leave-one-out cross validation.

(b) External validation metrics

 All the three model accuracy metrics, i.e. R2, R2
adj and R2

pred 
are based on use or reuse of the training data. In Kalita et al. 
[187], the drawbacks of using R2s, and the importance of 
using independent testing data to have informed decisions 
regarding selection of the metamodels and their predictive 
power are discussed.

Thus, additional external validation metrics, like Q2
F1 

[201], Q2
F2 [202] and Q2

F3 [203] may also be used. The 
three metrics can be expressed as follows:

(6)R2 = 1 −
SSR

SST

(7)R2

adj
= 1 −

n − 1

n − k − 1
(1 − R2)

(8)R2

pred
= 1 −

∑n

i=1
(yi − ŷi∕i)

2

∑n

i=1
(yi − yi)

2

(9)Q2

F1
= 1 −

∑ntest
i=1

(ŷi − yi)
2

∑ntest
i=1

(yi − ytrain)
2

Fig. 8  Surrogate modeling methods and corresponding sampling 
techniques [200]
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Equations (9) and (10) differ only in the treatment of the 
mean term. In Eq. (9), Q2

F1 employs the mean value of the 
training data, whereas, mean value of the testing data is used 
in the calculation of Q2

F2. This implies that Q2
F2 contains 

no information regarding the training set since only testing 
dataset is used. On the other hand, Q2

F3 attempts to remove 
any bias introduced in the estimations due to sample size, by 
dividing the total squared residual sum by the number of test 
samples and dividing the total squared sum of training data 
by the number of training samples. Consonni et al. [203] 
recently highlighted certain drawbacks of Q2

F1 and Q2
F2 in 

describing the predictive power of metamodels.

(c) Error metrics

 The R2-based metrics only provide an estimate of how much 
variation in a particular dataset is explained by the model. 
They render no information regarding the precision of the 
models. Precision, which determines, e.g. whether a model 
predicts frequencies with a standard error of 1 Hz or 10 Hz, 
is of great practical relevance in appraising quality of a 
metamodel. Root-mean-squared error (RMSE) is the stand-
ard deviation of residuals from the model [204]. It can be 
calculated from the test data using the following expression:

To calculate RMSE for training dataset, the errors in 
Eq. (12) are calculated for the training data and their squared 
sum is divided by ntrain. The RMSE can be a useful metric in 
identifying an appropriate metamodel, as a superior meta-
model is always required to obtain an RMSE of 1 Hz for a 
lay-up metamodel encompassing (± 90°) range as opposed to 
one having a very small domain, say (± 10°). Since the resid-
uals are squared in Eq. (12), a large residual for a particular 
sample point would have a greater influence on RMSE as 
compared to a sample point having a small residual in the 
same dataset. Thus, the calculation process for RMSE would 
provide more weight to the few samples with higher predic-
tion error. This explicates why the researchers often tend to 
leave out 5% outliers in an effort to make better interpreta-
tions regarding the model. Due to this imbalanced nature of 
information provided by RMSE, a number of researchers 
have insisted on using mean absolute error (MAE) [205]. 

(10)Q2

F2
= 1 −

∑ntest
i=1

(ŷi − yi)
2

∑ntest
i=1

(yi − ytest)
2

(11)Q2

F3
= 1 −

∑ntest
i=1

(ŷi − yi)
2∕ntest

∑ntrain
i=1

(yi − ytrain)
2∕ntrain

(12)RMSEtest =

�∑ntest
i=1

(yi − ŷi)
2

ntest

The MAE provides an absolute measure of prediction error 
in metamodels. It can be calculated for test data using the 
following equation:

A series of structural engineering test problems is solved 
in Kalita et al. [187] to identify the appropriate criteria for 
accepting or rejecting a metamodel. Additional insight into 
the predictive power of all these metrics is also included in 
Kalita et al. [187]. However, as stated by Chai and Draxler 
[206] “Every statistical measure condenses a large number 
of data into a single value […], any single metric provides 
only one projection of the model errors and, therefore, only 
emphasizes a certain aspect of the error characteristics. 
A combination of metrics […] is often required to assess 
model performance”.

3.2  Metamodel‑Based Design Optimization

Any optimization algorithm can be coupled with meta-
models to form the basic MBDO framework. Once a meta-
model is identified, selection of the optimization algo-
rithm becomes trivial because even less efficient algorithm 
becomes easily affordable. However, superior optimization 
algorithms would still outperform the inefficient ones.

Wang and Shan [182] classified the MBDO strategies 
into three types (see Fig. 9). The first strategy is the tradi-
tional sequential approach, i.e. fitting a global metamodel 
and then using it as a surrogate of the expensive function. 
This approach employs a relatively large number of sample 
points at the outset. It may or may not include a systematic 
model validation stage. In this approach, cross-validation is 
usually applied for the validation purpose. Its application 
is found in [189]. The second approach involves validation 
and/or optimization in the loop in deciding the re-sampling 
and re-modeling strategies. In [207], samples were gener-
ated iteratively to update the approximation to maintain the 
model accuracy. Osio and Amon [208] developed a multi-
stage kriging strategy to sequentially update and improve the 
accuracy of surrogate approximations as additional sample 
points were obtained. Trust regions were also employed in 
developing several other methods to deal with the approxi-
mation models in optimization [209]. Schonlau et al. [210] 
described a sequential algorithm to balance local and global 
searches using approximations during constrained optimiza-
tion. Sasena et al. [211] applied kriging models for discon-
nected feasible regions. Modeling knowledge was also incor-
porated in the identification of attractive design space [212].

Wang and Simpson [213] developed a series of adap-
tive sampling and metamodeling methods for optimization, 
where both optimization and validation were employed in 

(13)MAEtest =

∑ntest
i=1

�
�yi − ŷi

�
�

ntest
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forming the new sample set. The third approach is quite 
recent and it directly generates new sample points towards 
the optimal with the guidance of a metamodel [214]. Dif-
ferent from the first two approaches, the metamodel is not 
used in this approach as a surrogate in a typical optimiza-
tion process. The optimization is realized by adaptive sam-
pling alone and no formal optimization process is required. 
The metamodel is used as a guide for adaptive sampling 
and therefore, the demand for model accuracy is reduced. 
Its application needs to be explored for high-dimensional 
problems. If a metamodel is used instead of a true model, 
the optimization problem, stated in Eq. (1), would become:

subject to the constraint xmin

i
≤ xi ≤ xmax

i
 

where the tilde symbol denotes the metamodel for the cor-
responding function in Eq. (1). Often a local optimizer is 
applied to Eq. (14) to derive the optimal solution. A few 
methods have also been developed for metamodel-based 
global optimization.

One successful development can be found in [210], where 
the authors applied the Bayesian method to estimate a krig-
ing model, and subsequently identified points in the space 
to update the model and perform the optimization. The 
proposed method, however, has to pre-assume a continu-
ous objective function and a correlation structure among 
the sample points. A Voronoi diagram-based metamodeling 
method was also proposed where the approximation was 
gradually refined to smaller Voronoi regions and the global 
optimal could be obtained [215]. Since Voronoi diagram 
arises from computational geometry, the extension of this 
idea to problems with more than three variables may not be 
efficient. Global optimization based on multipoint approxi-
mation and intervals was performed in [216]. Metamodeling 
was also employed to improve the efficiency of GAs [217, 
218]. Wang et al. [219, 220] developed an adaptive response 
surface method (ARSM) for global optimization. A so-called 

(14)Minimize∕maximizef̃ (x)

Mode-Pursuing Sampling (MPS) method was developed 
in [214], where no existing optimization algorithm was 
applied. The optimization was realized through an iterative 
discriminative sampling process. The MPS method demon-
strated high efficiency for optimization with expensive func-
tions on a number of benchmark tests and low-dimensional 
design problems.

Recent approaches to solve multi-objective optimization 
problems with black-box functions need to approximate each 
single objective function or directly approximate the Pareto 
optimal frontier [221, 222, [223, 224]. Wilson et al. [222] 
adopted the surrogate approximation in lieu of the compu-
tationally expensive analyses to explore the multi-objective 
design space and identify the Pareto optimal points, or the 
Pareto set from the surrogate. Li et al. [223] applied a hyper-
ellipse surrogate to approximate the Pareto optimal frontier 
for bi-criteria convex optimization problems. If the approxi-
mation is not sufficiently accurate, the Pareto optimal fron-
tier obtained using the surrogate approximation would not 
be a good approximation of the actual frontier. Recent work 
by Yang et al. [224] proposed the first framework dealing 
with the approximation models in multi-objective optimi-
zation (MOO). In that framework, a GA-based method was 
employed with a sequentially updated approximation model. 
It differed from [222] by updating the approximation model 
in the optimization process. The fidelity of the identified 
frontier solutions, however, would still depend on the accu-
racy of the approximation model. The work in [224] also 
suffered from the problems of GA-based MOO algorithm, 
i.e. the algorithm had difficulty in finding out the frontier 
points near the extreme points (the minimum obtained by 
considering only one objective function). Shan and Wang 
[225] recently developed a sampling-based MOO method 
where metamodels were employed only as a guide. New 
sample points were generated towards or directly on the 
Pareto frontier.

In all the MBDO methods which are often presented as a 
viable alternative to high-fidelity optimization, developing 

Fig. 9  Metamodel-based design optimization strategies: a sequential approach, b adaptive MBDO and c direct sampling approach [182]
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the accurate and reliable metamodels forms the basic goal. 
This is because by using a metamodel, the computation 
cost becomes inconsequential and thus even a less efficient 
metaheuristic search algorithm becomes affordable. The 
estimation power of the metamodel determines the effec-
tiveness of the optimization task, because if the design space 
is not accurately modeled, the metaheuristic may locate a 
false global optimal.

3.3  Discussions

Considering the above facts, the literature on composite 
laminate metamodeling other than the optimization applica-
tions, like stochastic application, reliability analysis, damage 
identification etc. is also reviewed to better understand the 
metamodeling process. However, unlike in conventional lit-
erature review, this literature review is reported in tabulated 
form (see Tables 4 and 5).

Since the last few years, metamodels have gained 
immense popularity in structural analysis of laminates. 
Low computational requirement and abundance of machine 
learning algorithms to choose from have been the prime 
motivators for the researchers. As observed from Table 4, 
significant number of metamodel-based studies has been 
carried out on uncertainty quantification (UQ). The micro-
mechanical properties (like elastic modulus, shear modulus, 
Poisson’s ratio etc.) and ply angles of the laminates have 
been generally considered as the sources of stochasticity by 
the researchers. Most of the works have considered Latin 
hypercube method for sampling the training data. Almost 
all the works have relied on FEM and FSDT to simulate 
the necessary data for training the metamodels. However, it 
should be pointed out that the metamodels for UQ studies 
are generally local in nature, i.e. they are trained for only a 
small section of the possible design space of the parameters. 
Thus, in most of the cases, remarkable accuracy (error < 1%) 
of the metamodels has been achieved. A handful of works 
on damage detection, predictive modelling and reliability 
analysis has also been available in the literature.

Table  5 summarizes the works on metamodel-based 
optimization of laminates. In most of the cases, response 
surface methodology (RSM) (polynomial regression) has 
been employed by the past researchers. Traditional DOEs, 
like CCD, BBD and D-optimal designs have been used in 
those works. The accuracy of such metamodels, especially 
those considering ply angles as the design variables, is 
bound to be low, primarily due to small training dataset and 
insufficient sampling capacity of the traditional DOEs to 
accurately map the complex landscape. However, it should 
be noted that most of those studies have reported excellent 
accuracy on training data. Further, in most of those RSM-
based metamodeling studies, no independent testing data has 
been provided that makes it difficult to accurately gauge the 

overall accuracy of those metamodels. Some recent studies 
have adopted neural networks for metamodel-based lami-
nate optimization. GA has been the most popular optimizer 
for single-objective optimization studies. A few studies on 
Pareto optimization have also been available, mostly dealing 
with multi-objective GA technique

3.4  Limitations

Selection of an appropriate metamodeling algorithm is a key 
step in any MBDO process. Many comparative studies have 
been made over the years to guide the selection of meta-
model types, e.g. Dey et al. [200], Jin et al. [287], Clarke 
et al. [288], Kim et al. [289], Li et al. [290] and Shi et al. 
[291]. Despite this, it is not possible to draw any decisive 
conclusion regarding the all-purpose superiority of any of 
the metamodel types. In fact, efficiency and generalization 
of metamodels for each application is constrained due to the 
inherent assumptions and algorithms used [292].

However, as noticed from the literature survey, in struc-
tural engineering applications, LR, PR (RSM) and ANN are 
commonly employed in MBDO studies. The LR is simple 
to perform and a number of ready-to-use software platforms 
are available to implement it, thereby making it extremely 
popular. However, it is not useful for modelling of non-linear 
data [293]. Similarly, PR, despite its simplicity and wide-
spread applicability, is often restricted in the literature to 
second-order [292]. It is seldom preferred for higher-order 
polynomials as the adequacy of the model is solely deter-
mined by systematic bias in deterministic situations [293]. 
ANNs are particularly suitable for deterministic applications 
and can be quickly deployed once trained. However, ANNs 
have relatively higher training time than LR and PR, and 
suffer from improper training if suitable hyperparameters 
are not selected [294]. In case of all the metamodels, a trade-
off between the accuracy desired from the metamodel and 
time available to develop it needs to be decided. Thus, there 
is clearly no universally superior metamodel. In fact, each 
metamodel has its own advantages and disadvantages which 
coupled with the size, complexity and level of non-linearity 
of the problem (or phenomena to be modelled) can pose 
a serious decision making question to the user regarding 
which algorithm to choose.

Since the metamodels are dependent on high-fidelity data 
from physical experiments or simulation models, selection of 
suitable sampling points is a critical task [295]. If the train-
ing data used in metamodeling is skewed or does not ade-
quately represent the true nature of the system or phenomena 
to be modelled, it would lead to bias and hence, inaccurate 
predictions. In general, for metamodeling, space filling sam-
pling methods, like Latin hypercube sampling, Hammersley 
sampling etc. are found to be better than classical design of 
experiments, like factorial design, Box Behnken, CCD etc. 
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[296, 297]. Moreover, the economic cost associated with 
physical experiments or computational expensiveness of 
high-fidelity data also needs to be addressed [298].

Another challenge of metamodels lies in its approxi-
mate nature which would introduce an added element of 
uncertainty to the analysis [293]. This problem is more in 
complex use cases, like structural engineering where the 
design space to be modelled is often too vast and complex. 
Any optimization search process when conducted on an ill-
fitted metamodel would lead to erroneous optimal parameter 
prediction.

The lack of generalizability of metamodels is a serious 
hindrance to its real world applicability. Most metamodels 
have excellent interpolation but lack extrapolation capabil-
ity [298]. In addition, there are often several parameters 
that must be tuned when a metamodel is developed. This 
signifies that the results can differ considerably depending 
on how well those parameters are tuned, and consequently, 
the results would also depend on the approach deployed to 
develop the metamodel. The lack of interpretability in many 
machine learning-based metamodels is also a serious hin-
drance in MBDO [299].

4  Conclusions

Optimizing composite structures to exploit their maximum 
potential is a realistic application with promising returns. 
In this paper, the majority of publications on optimization 
of composite laminated structures are reviewed and com-
piled. Based on the application of optimization techniques, 
the reviewed research papers are primarily classified into 
high-fidelity optimization and metamodel-based optimiza-
tion. While high-fidelity optimization is characterized by 
excellent accuracy of the numerical solutions and is gener-
ally time consuming; the metamodel-based optimization can 
be quickly deployed and is cost-efficient, but it sacrifices 
some amount of numerical accuracy. Overall, from the com-
prehensive review of the literature, it can be concluded that:

(a) FEM is by far the most popular numerical solver for 
modeling of composite structures. It is primarily due 
to its ability to model various complex geometries and 
boundary conditions. The liberty to choose from a 
plethora of elements with adjustable degrees of free-
dom according to the requirements also makes FEM 
extremely versatile.

(b) FSDT is the most widely employed shear deformation 
theory in optimization of laminate structures. This is 
because it is less complex and has comparable accuracy 
with HSDT for thin and moderately thick plates.

(c) Ply angle or stacking sequence is the most favored 
design variable for custom designing of laminates. Ta
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Table 5  Literature on application of metamodels in optimization of laminates

Source Design variables Optimizer Objective func-
tion

Metamodel 
scheme

Sampling
scheme

Data source Type of structure

Application – Single-objective optimization
Ganguli [253] Flap bending, lag 

bending, torsion 
stiffness

MP Reduce vibration RSM CCD FEM Helicopter rotor 
blade (cantilever 
beam)

Todoroki and 
Sasai [254]

Ply angles GA Max. buckling 
load

RSM D-optimal – Composite plate

Todoroki et al. 
[255]

Ply angles GA Max. buckling 
load

RSM D-optimal FEM Composite 
plate—hat-type 
stiffeners

Todoroki and 
Ishikawa [256]

Stacking sequence GA Max. buckling 
load

RSM D-optimal – Composite shell-
cylinder

Apalak et al. 
[257]

Ply angles GA Max. fundamen-
tal frequency

ANN RS FEM Composite plate

Heinonen and 
Pajunen [258]

Thickness of top 
skin,

thickness of webs 
and stiffeners, 
width of stiff-
ener flanges

NLPQL Min. weight RSM, Kriging CCD FEM Stiffened plate

Cardozo et al. 
[259]

Ply angles GA Max. stiff-
ness, Max. 
fundamental 
frequency

ANN RS FEM Composite shell, 
Composite plate

Apalak et al. 
[260]

Ply angles GA Max. fundamen-
tal frequency

ANN RS FEM Composite plate

Ju et al. [261] 4 geometry 
parameters of 
truss

GA Min. weight RSM CCD FEM Truss

Jafari et al. [262] Ply angles – Max. fundamen-
tal frequency

RSM – R-R Composite plate-
skew

Todoroki et al. 
[263]

Ply angles GA Max. buckling 
load

RSM D-optimal FEM Composite plate- 
blade-stiffened

Nicholas et al. 
[264]

Ply angles GA Max. buckling 
strength

ANN RS FEM Composite plate-
with elliptical 
cutout

Nik et al. [265] Ply angles GA Max. buckling 
strength

PR, RBF, Krig-
ing, SVR

LHS FEM Composite plate- 
variable stiffness

Jafari et al. [266] Ply angles GA Max. fundamen-
tal frequency

ANN RS R-R Composite plate

Mukhopadhyay 
et al. [267]

Deck length, 
depth, width, 
thickness of 
bottom and top 
plate, thickness 
and number of 
webs

Nedler-Mead 
simplex algo-
rithm

Min. weight RSM D-optimal FEM Composite plate 
-bridge deck

Luersen et al. 
[268]

Ply angles SQP Max. fundamen-
tal frequency, 
Min. displace-
ment

Kriging Sobol FEM Composite shell-
cylinder

Wang et al. [147] Control points 
of blade shape 
Bezier function, 
ply thickness

GA Min. mass RBF LHS FEM Composite wind 
turbine blade

Dey et al. [269] Width, thickness GA Min. weight RSM D-optimal FEM Composite shell
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Table 5  (continued)

Source Design variables Optimizer Objective func-
tion

Metamodel 
scheme

Sampling
scheme

Data source Type of structure

Lam-Phat et al. 
[270]

Ply angles GA, DE Max. strain 
energy

ANN RS FEM Composite plate-
stiffener

Miller and 
Ziemiański 
[271]

Ply angles GA Max. frequency 
separation

DNN RS FEM Composite cylin-
drical shells

Miller and 
Ziemiański 
[272]

Ply angles ALO, DA, GWO, 
MFO, MVO, 
PSO, WOA

Max. fundamen-
tal frequency, 
Max. frequency 
separation

DNN RS FEM Composite cylin-
drical shells

Keshtegar et al. 
[273]

Ply angles PSO Max. buckling 
load

Kriging RS FEM Rectangular com-
posite plates

Peng et al. [274] Ply angles GA Max. frequency 
parameters

ANN RS FEM Rectangular com-
posite plates

Application—Multi-objective optimization (weighted sum approach)
Cardozo et al. 

[259]
Ply angles, 

number of ply 
angles, material

GA Min. weight, Min. 
cost

ANN RS FEM Composite plate

Sliseris and 
Rocens [275]

– GA Min. structural 
compliance 
function, Min. 
stress fields

ANN – FEM Composite plate

Druta and 
Almeida [276]

Lamination 
parameters

– Min. transverse 
displacements, 
Min. rotations

Linear and quad-
ratic metamod-
els based on 
Taylor’s series

– FEM Composite plate

Bhagat and 
Pitchaimani 
[277]

Ply angles PSO Max. fundamen-
tal frequency, 
max. buckling 
load

ANN – FEM Composite cylin-
drical shells

Application—Multi-objective optimization (Pareto optimization)
Marin et al. [278] Three geometric 

variables
MOGA Min. weight, Min. 

local strain, 
Min. tension

ANN – FEM Composite plate

Nik et al. [279] Fiber orientation 
parameter

NSGA-II Max. stiffness, 
Max. buckling 
load

PR LHS Ritz Composite plate—
curvilinear fibers

Bacarrezaet al. 
[280]

Ply angles NSGA-II Max. internal 
energy, Max. 
reaction force

ANN RS FEM Composite plate-
stiffener

Passos and 
Luersen [281]

Fiber orientation 
parameter

MEGO Max. buckling 
load, Max. stiff-
ness

Kriging LHS FEM Composite plate

Kalita et al. [282] Macroscale mate-
rial

properties, i.e.  E1, 
 E2,  G12,  G23, ν12

MOGA Max. fundamen-
tal frequency, 
Max. frequency 
separation

RSM D-optimal CCD Composite plate

Kalita et al. [283] Ply angles MOGA, MOPSO Max. fundamen-
tal frequency, 
Max. frequency 
separation

RSM D-optimal FEM Composite plate

Kalita et al. [284] Ply angles MOGA, MOPSO Max. fundamen-
tal frequency, 
Max. frequency 
separation

GP D-optimal FEM Composite plate
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This is perhaps because, for a given application, the 
other parameters, like geometry, thickness, material etc. 
are hard-to-change variables, i.e. changing their values 
may need extensive design changes in the structure and 
associated components. Moreover, lay-up orientation 
optimization is an NP-hard problem and the range of 
ply angles is ± 90˚, which makes the search space quite 
huge. Thus, most likely, any design methodology that 
succeeds to optimize lay-up orientations should con-
veniently succeed on material-as-design variable and 
geometry-as-design variable problems.

(d) For high-fidelity design optimization, most of the pio-
neering works were carried out using gradient-based 
or mathematical direct search methods. However, sub-
sequent researches have mostly used metaheuristics 
(90% of them being GA) to find out superior results 
and in cases, have shown the lacuna of gradient-based 
approaches in tackling local optima.

(e) Metamodels for laminate modeling have become 
extremely popular since the last decade with major-
ity of the works being concentrated in UQ and optimi-
zation. The computational cost of UQ-based studies 
involving multiple geometric, material and ply angle 
parameters is astronomical and thus, metamodels are 
the most promising option. However, majority of UQ-
based studies have employed very small design param-
eter ranges, thereby making the metamodels local but 
with extremely high accuracy.

This review paper may have the following future scopes:

(a) In allied fields, several recent metaheuristics, like 
GWO, WOA etc. have been appeared to be more effi-
cient as compared to older generation metaheuristics. 
High-fidelity optimization studies involving those 
metaheuristics may yield better results leading to com-
putational cost saving.

(b) Despite their significant practical applications, stud-
ies involving laminated structures with holes, dis-

continuities or cut-outs are non-existent. This may be 
due to astronomical cost of high-fidelity optimization 
or inability to build high-accuracy global metamod-
els when such discontinuities are considered. Works 
towards using machine learning techniques to develop 
global metamodels for such cases may lead to promis-
ing results.

(c) Optimization of laminated structures under uncertain-
ties has gained limited attention. Probabilistic and non-
probabilistic optimization studies on laminated plates 
and shells are the need of the hour.

(d) Further research is also required on designing better 
sampling strategies which can more accurately repre-
sent the complexity of design landscape in stacking 
sequence optimization problems.

(e) Detailed research on the impact of assumptions during 
metamodeling, effectiveness of hybrid metamodels and 
ensemble metamodels is also lacking in the literature. 
Owing to the curse of dimensionality, most machine 
learning-based metamodels are complex for high-
dimensional problems and still treated as black-box 
type approaches. By integrating the designer’s domain 
knowledge and leveraging the knowledge derived from 
the mechanics of the problem, the black-box MBDO 
problems can perhaps be transformed to grey-box or 
white-box problems.

In essence, while high-fidelity design optimization meth-
odology has overwhelming accuracy, the metamodel-based 
design optimization methodology has trifling computational 
time. As such, it is difficult to recommend one approach over 
the other. The final decision lies with the design engineer, 
who after carefully considering the application and its pos-
sible ramifications, should answer, what is more important—
accuracy or computational time?

Table 5  (continued)

Source Design variables Optimizer Objective func-
tion

Metamodel 
scheme

Sampling
scheme

Data source Type of structure

Miller and 
Ziemiański 
[285]

Ply angles MOGA Max. fundamen-
tal frequency, 
Max. buckling 
force

DNN RS FEM Composite cylin-
drical shells

Santos et al. [286] Number and 
geometry of 
stiffeners, layup 
of stiffeners and 
skin

– Min. mass and 
feasibility 
(buckling con-
straint)

SVR LHS FEM Composite wing 
panels
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