
ORIGINAL PAPER

Small Strains in Soil Constitutive Modeling

Javier Castellón1,2 • Alberto Ledesma1,3

Received: 30 January 2021 / Accepted: 4 December 2021 / Published online: 7 June 2022
� The Author(s) 2022. This article is published with open access at Springerlink.com

Abstract
This paper reviews the state of the art of soil behavior in the range of small strains and its constitutive modeling, which is

an important issue when predicting displacements under serviceability conditions. The factors that control nonlinear,

hysteretic and dependent on recent history soil behavior are described. Likewise, concepts of soil constitutive modeling are

explored in detail and two criteria are explained and used to classify the analyzed models: (1) a first criterion based on the

concept of tensorial zones; and (2) a second criterion based on the elements that defines the hysteretic soil behavior,

including reversal criteria, memory rules and the effects of reversals on soil degradation and on soil stiffness recovery. The

fundamentals of the formulation of the analyzed models are provided, as well as their scope of application, advantages and

disadvantages.

1 Introduction: The Kinematic Nature of Soil
Stiffness

The stiffness of a body, understood as its resistance to

deformation under applied forces, depends on its shape, its

boundary conditions and the stiffness of its constitutive

materials [1].

From the experiments carried out by Hardin and Drne-

vich [2], Simpson et al. [3], Jardine [4] and Smith et al. [5],

Jardine [6] developed the idea previously stated by Skinner

[7] and supported by a large number of researchers [8–13],

to explain soil stiffness behavior depending on the range of

stress and strain to which it is subjected, within the

framework of the theories of Kinematic Yield Surfaces

(KYS) and plasticity. Jardine [6] differentiated four zones

around any point in stress space, which move and change

their shape according to the stress paths followed. In each

of these zones, Jardine identified a characteristic behavior

of the soil, which was related to the nature of the strains

that take place in them (Fig. 1).

Zone

I

Externally limited by Y1 (Fig. 1a), soil behavior in

this area is linear reversible [6, 14–21]. Some

researchers indicate that a purely linear elastic

behavior does not occur in any strain range,

although it is a sufficient approximation from a

practical point of view [1]. Likewise, Hueckel and

Nova [22] affirm that irreversible deformations

occur in all primary loading processes. Zone I of

Jardine can be very small [23–25], especially in

uncemented and normally consolidated soils

[26, 27].

Zone

II

Internally limited by Y1 and externally by Y2

(Fig. 1a), soil behavior in this zone is nonlinear

reversible, hysteretic and dependent on recent

history [3, 4, 6, 15, 16, 20, 22, 28–34].

Zone

III

Internally limited by Y2 and externally by Y3

(Fig. 1a), soil behavior in this zone shows a first

degree of irreversibility (plastic deformations),

which depends on the OCR [6, 35]. As can be seen

in Fig. 1b, if OCR[ 1, plastic strains in this zone

tend to increase linearly with the strain, while if

OCR ¼ 1, they tend to do it in a nonlinear way.

Zone

IV

Internally limited by Y3 (Fig. 1a), soil behavior in

this zone shows a high degree of irreversibility

[6, 35]. The plastic strains in this zone always

increase in a nonlinear way with the strain

(Fig. 1b).

The definition of these zones is useful to understand and

to classify the soil response in the context of mechanical
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constitutive equations, and they will be used in this paper

for this purpose.

2 The Range of Small Strains in Engineering
Practice

The application of Soil Mechanics to the new problems faced

by civil engineers at the beginning of the twentieth century

was focused on the prevention of collapse, but this concep-

tion changed in the 70 s due, among other reasons, to: (1) a

good knowledge of most soil failure mechanisms; (2) the

need to build new structures in dense urban areas and to

protect nearby existing structures; (3) the need to build

especially sensitive structures, such as nuclear plants; and (4)

the advances in numerical analysis tools and in computing

power [1]. During the 70 s, it was observed how the soil

stiffness obtained in conventional laboratory tests did not

coincide with the stiffness obtained in dynamic field tests [8].

The dynamic field tests stiffness was usually an order of

magnitude higher than the one of laboratory tests [36]. Later,

researchers [15, 37, 38] realized that these differences were

due to stiffness measurement at different strain levels, which

allowed unifying the theories that tried to explain, until that

moment, the value of the soil shear modulus. These facts

suggested that conventional laboratory tests were not ade-

quate to assess natural soil stiffness. In addition to that, it was

shown that the low stiffness measured in conventional lab-

oratory tests also came, among others, from deficiencies in

the strain measurement techniques and from the disturbance

of the samples during their extraction process [9]. During the

subsequent years, measurements of soil displacements in

various London works, new instrumentation techniques in

laboratory tests and advances in numerical analysis methods,

helped to improve the understanding of soil behavior in the

range of small strains, in which stiffness plays a fundamental

role [15, 36]. These findings promoted the development of

new instrumentation techniques for field and laboratory

tests, which Clayton [1], Elhakim [39] and Cudny [40]

classify as follows:

• Dynamic field tests: Cross-hole [41], Down-hole

[42–44], Spectral Analysis of Surface Wave SASW

[45, 46], Continuous Surface Wave System CSWS [47],

Suspension logger [48], Seismic cone CPTU [49] and

Seismic dilatometer SDMT [50].

• Laboratory tests: Resonant column [2], Hollow cylinder

[18, 51], triaxial devices with internal strain measure-

ments [9, 20] or bender elements and compression and

shear seismic wave measuring devices [52, 53] in

oedometers [18, 54–57], in direct simple shear appara-

tus [55], in triaxial apparatus [55, 58, 59], in resonant

column apparatus [60–62], in double simple shear

apparatus [63] and in unconfined samples immediately

after their extraction [64, 65].

There are numerous advanced constitutive models cap-

able of simulating soil behavior in the whole range of

strains (Zones I, II, III and IV of Jardine [6]), which is

essential for a complete analysis of geotechnical problems,

although the use of many of these models is reduced to an

academic ambit and according to Tamagnini and Viggiani

[66] this is due to: (1) its complex formalism; (2) the use of

a large number of parameters which are difficult to obtain

experimentally; (3) the use of a large number of state

variables which are difficult to initialize; and (4) the dif-

ficulties associated with the formulation of precise, effi-

cient and robust algorithms for the numerical

implementation of equations (although there have been

significant advances in recent years regarding this point).

However, some of these advanced models have managed to

extend to the professional practice, for example, the Har-

dening Soil Small model (HS-S) [67].

Fig. 1 a Zones 1–4 (I-IV) in the stress space. b Axial plastic strains ep
� �

normalized by the maximum axial total strain (emax) vs. total shear strain

(es;max). From [6]
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Figures 2, 3 and 4 show the need to consider soil

behavior in the range of small strains in different

geotechnical problems. It can be observed that models

incorporating small strain stiffness improve the prediction

of soil displacements with respect to the conventional

elastoplastic models.

Fig. 2 Surface settlements during the construction of the St James’s

Park tunnel in London. a Numerical simulations with a linear elastic

model with perfect plasticity and two nonlinear isotropic models, L4

and J4, from [68]. b Numerical simulations with a linear elastic model

with perfect plasticity and two nonlinear models, Brick and SRD-

Brick, from [69]

Fig. 3 Soil displacements during an excavation between diaphragm walls in the Taipei Enterprise Center (TNEC), from [70]. a Numerical

simulations with the MCC model. b Numerical simulations with the USC model

Fig. 4 Load–displacement

curve under an experimental

spread footing of 3 9 3 m on

sand, conducted by the Texas

A&M University National

Geotechnical Experimentation

Site (NGES), extracted from

[67]. a Numerical simulation

with the HS model (OCR[ 1).

b Numerical simulation with the

HS-S[MC] (OCR[ 1)
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3 Soil Behavior in the Range of Small Strains

3.1 The Range of Small Strains

Jardine [6] identifies soil behavior in the range of small

strains with Zones I and II. Zone I usually corresponds to

strains less than 10�6 in sands and 10�5 in clays, while

Zone II does so with strains within the interval 10�6 to

10�3 [40]. On the other hand, the range of intermediate and

large strains is identified with Zones III and IV defined by

Jardine. These zones usually correspond to strains greater

than 10�3.

3.2 Considerations About Stiffness

3.2.1 Bulk Modulus

Regarding the drained bulk modulus, it is not usual to

distinguish between values at small, intermediate or large

strains, unlike what happens with the shear stiffness mod-

ulus. Duncan et al. [71] proposed the expression (1) to

calculate the apparent bulk secant modulus (Fig. 5).

K 0ap
s ¼ Kbpa

r03
pa

� �m

ð1Þ

The use of the confinement r03 as a variable in the

expressions of the stiffness moduli is a common practice in

many hypoelastic and quasi-hypoelastic models. This is

because soil parameters of many models are usually

adjusted to theoretical curves based on the results obtained

in the deviatoric phase of triaxial tests, in which the con-

finement remains constant, which simplifies the fitting.

However, the use of the r03 as a variable in these expres-

sions makes it difficult to generalize these models to

multiaxial loading states. The expression (2) for K 0ap
s is

considered more appropriate.

K 0ap
s ¼ K 0ap;ref

s

p0

p0ref

 !m

ð2Þ

Duncan et al. [71] proposed an expression analogous to

(2) for the drained tangent elastic longitudinal modulus

E0
t;ur p0ð Þ, from which it is possible to calculate the drained

tangent elastic bulk modulus K 0
t;ur ¼ E0

t;ur= 3 1 � 2m0ur
� �� �

.

Likewise, Roscoe and Schofield [73] and Roscoe and

Burland [74] proposed the following expression for the

elastic tangent bulk modulus in their critical state models

(Fig. 6).

K 0
t ¼

1 þ eð Þ
j

p0 ð3Þ

Lade and Abelev [76] analyze the hysteretic volumetric

soil behavior through the study of the variation of volu-

metric stiffness during isotropic loading and unloading in

sands due to the introduction of small loading cycles

(Fig. 7). In the primary loading branch, they observed that

the cycles led to a significant increase in volumetric stiff-

ness, which did not happen during the cycles in the

unloading branch, in which any differences in the value of

such stiffness were hardly observed.

3.2.2 Shear Stiffness Modulus

Unlike the bulk modulus, shear stiffness modulus in soils is

more difficult to specify and there are many studies about

the parameters controlling it. The parameters considered

most relevant are: shear strain (c), mean stress (p0), void

ratio (e), plasticity index (PI), overconsolidation ratio

(OCR, R0), diagenesis, recent history, loading rate and

anisotropy.

Fig. 5 Dependence of the apparent secant bulk modulus (B � K 0ap
s )

on r03=pa in high plasticity clays from Barind, according to the

expression (1), from [72]

Fig. 6 Tests in silty clays, from [75]. Isotropic compression,

t� 1 ¼ 1 þ e0ð Þev:

3226 J. Castellón, A. Ledesma

123



• Shear strain (c): There are many evidences indicating

that shear stiffness modulus G degrades with shear

strain. To generalize the concept of shear strain to a

multiaxial state of stress and strain, it is usual to work

with the octahedral shear strain. Figure 8 shows the

results of diverse experimental tests involving the

degradation of the apparent shear modulus with the

total shear strain in clays and sands.

• Mean stress (p0): Shear modulus depends on confine-

ment. Authors such as Ohde [79], Hardin [80], Janbu

[81], Hardin and Richart Jr. [82] or Hardin and

Drnevich [2], based on experimental observations,

proposed relations as G0 / p0ð Þm between the value of

maximum shear modulus G0 and mean stress (Fig. 9).

The introduction of the Hertzian contact theory in

spherical particles for the calculation of G0 results in

m ¼ 0:33 [86, 87]. Experiments in sands provide values

of m ¼ 0:40 � 0:60 [88–90], while in clayey soils,

values of m ¼ 0:50 � 1:00 are usually taken, being

close to 0:50 for low plasticity clays and to 1:00 for

high plasticity clays.

• Void ratio (e): Hardin and Richart [82] observed the

dependence of the maximum shear modulus G0 on the

void ratio from experiments with Ottawa sands, and

proposed expressions like G0 / B̂� e
� �2

= 1 þ eð Þ.
Authors such as Biarez and Hicher [91] or Lo Presti

and Jamiolkowski [92] proposed expressions as

G0 / e�x, and Bui [93] proposed expressions as G0 /
1= 1 þ eð Þ3

(Fig. 10).

• Plasticity Index (PI): It is experimentally observed that

higher values of the plasticity index in a soil result in a

shift of the degradation curve of the apparent shear

modulus towards higher shear strain values (Fig. 11).

Vucetic and Dobry [94] proposed patterns for this

dependence.

• Overconsolidation ratio (OCR, R0): Hardin and Black

[86] proposed correlations like G0 / OCRð Þk̂, based on

experimental observations between the maximum shear

modulus G0 and the overconsolidation ratio OCR. On

the other hand, Houlsby and Wroth [95], based on the

works of Hardin and Black [86] and Atkinson and Little

[96], proposed correlations as G0 / R0ð Þk̂ between the

maximum shear modulus G0 and the overconsolidation

ratio Ro (Fig. 12).

• Diagenesis: The diagenesis is the physicochemical

process by which a sediment is transformed into a

sedimentary rock. This process gradually alters the

stiffness of the soil. Some of the main processes that

alter soil stiffness are cementation [98] and aging

[99–104], understood as the alteration of mechanical

properties of the soil resulting from secondary com-

pression under a constant external loading. Trhlı́ková

et al. [105] proposed a relation between the maximum

shear stiffness modulus G0 and the structure as

Fig. 7 Stiffening of the bulk modulus in sands of Nevada during small

loading and unloading cycles in the primary loading branch and

during the unloading branch [76], extracted from [67]

Fig. 8 a Degradation of the apparent shear modulus in clay tests with

different plasticity index, from [77]. b Degradation of the apparent

shear modulus in sand tests, from [78]
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G0 / s�=s�f

� �l
. On the other hand, Anderson and

Stokoe [106] proposed a relation between G0 and the

aging like G0 tð Þ / G0 tp
� �

1 þ NG;1log t=tp
� �� �

.

• Recent history: Atkinson et al. [30] defined the concept

of recent history as that corresponding to recent stress

or strain path in relation with the previous one, from

which it is differentiated by a change in its direction

(reversal) or by an extended period of rest. Soil

behavior after a reversal and before a subsequent

monotonous strain suggests a gradual adaptation of its

internal state until it exclusively depends on r0 and e

[107]. In such state, that it is inside the SOM region

[108], proportional strain paths lead to proportional

stress paths. It is for the latter that the influence of the

internal state of the soil over its behavior can only be

revealed during small strains after reversals [107]. The

studies of soil recent history require the use of tests with

different stress or strain paths. Sayao [109] show these

tests as indicated below:

Fig. 9 a Influence of p0 on the value of G0 [83], extracted from [84]. b Influence of p0 in the degradation of G, from [85]

Fig. 10 Results of experiments with resonant column on well graded sands and reconstituted clays, from [93]
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• Tests without rotation of the principal stresses

( _ar ¼ 0Þ.

– Axisymmetric triaxial tests (control over

r01 � r02 ¼ r03 in triaxial compression (Lode

angle is equal to 08) and over r01 ¼ r02 � r03 in

triaxial extension (Lode angle is equal to 308).
– Biaxial tests with plane strain (e2 ¼ 0 and

control over r01 and r03).

– True triaxial tests (control over r01, r02 and r03).

– Triaxial hollow cylinder (control over r01, r02 and

r03).

• Tests with rotation of the principal stresses ( _ar 6¼ 0Þ

– Axisymmetric triaxial tests with torsion (control

over r01 � r02 ¼ r03 or r01 ¼ r02 � r03 and

sin2 arð Þ ¼ r02 � r03
� �

= r01 � r03
� �

).

– Simple shear tests (ex ¼ ey ¼ 0, sxy ¼ 0 and

control over r01;r
0
2 and r03).

– Tests with directional shear cell (e2 ¼ 0 and

control over r01;r
0
3, and ar).

– Hollow cylinder with torsion (control over

r01; r
0
2; r

0
3 and ar).

Volumetric strain reflects the effect of isotropic loadings

that tend to increase the value of the contact forces between

particles, while deviatoric strain, usually generated by a

deviatoric loading, modifies the direction of such forces

and affects the stiffness of the soil. Some notable works in

which soil recent history has been studied in relation to

deviatoric loadings and deviatoric strains are those carried

out in triaxial tests by Richardson [29], in hollow cylinder

tests by Sayao [109], in biaxial tests by Topolnicki et al.

[110] and in true triaxial tests by Sture et al. [111], Fig. 13.

Nevertheless, there are few tests in which, in addition,

suitable measurement methods have been implemented for

the range of small strains, among which stand out the tri-

axial tests with local strain measurement [29] (despite the

limitations they present in terms of the possible stress and

strain paths), as well as the hollow cylinder tests

[112, 113].

The work of Atkinson et al. [30] shows the results of a

set of triaxial tests on reconstituted overconsolidated

samples (OCR ¼ 2) with London clay (Fig. 14). All of

them were initially brought to the same stress state (O in

Fig. 14a) using different stress paths (PO and QO in

Fig. 14a). After a rest period of 3 h, they were subjected to

a deviatoric phase of Dq ¼ 90kPa with Dp0 ¼ 0 (OA in

Fig. 14a). As it can be seen in Fig. 14b, the stiffness of the

soil during the OA path depends on the angle of such path

with respect to the previous paths (PQ and QO). The wider

the angle between paths, the higher is the value of the shear

stiffness G0 at the beginning of the new path.

Clayton and Heymann [20] conducted tests on natural

samples of London clay, applying the stress paths depicted

in Fig. 15a. After completing the AB phase, they allowed

the samples to rest for a period of 6–12 days before starting

the triaxial extension (BE) and compression (BC) phases,

thus allowing the soil yielding, which did not happen in the

tests of Atkinson et al. [30], in which only a rest period of

3 h was left. Thus, Clayton and Heymann observed how

plastic strains significantly reduced the effect of soil recent

history on the G0 value (Richardson [29] had observed a

similar behavior in his experiments). Nevertheless, despite

this attenuation of the path rotation effect on the G0 value,

Fig. 15b shows how, even allowing soil yielding, the stress

history still has some effect on the shape of the degradation

curve.

Fig. 11 Degradation curve of the apparent shear modulus for different

PI values, from [77]

Fig. 12 G0 ¼ G0 R0ð Þ in reconstituted samples of kaolinite clay, from

[97]
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Gasparre [75] studied the effects of plastic deformations

on the value of soil stiffness (through the control of resting

times of the sample before applying new loads), as well as

the effects of the loading magnitude prior to the rotation of

stress paths, extending the research of Atkinson et al. [30]

and Clayton and Heymann [20]. Gasparre et al. [34] con-

ducted a set of tests on natural samples of London clay

(Fig. 16), in which the following was observed:

1. When the stress state in recent history remains within

the contour Y2 (Zone I or II according to Jardine),

– If plastic deformations are allowed, the effect of

stress path rotation on the shear stiffness of the soil

is reduced, Fig. 16a (as observed by Clayton and

Heymann [20]).

Fig. 13 a Triaxial test: stress paths in q=p0 � es space with different

angles tan hq=p0
� �

¼ Dq=Dp0 in reconstituted London clay, with

OCR ¼ 2 and p0 ¼ 200 kPa, from [29]. b Hollow cylinder test: stress

and strain paths in R ¼ r01=r
0
2 � cmax space, where a ¼ ar is the

rotation angle of the principal stress, in Ottawa sand with p0 ¼
300 kPa and DR ¼ 36%, from [109]. c Biaxial test: stress and strain

paths in the respective deviatoric planes in reconstituted Karlsruhe

clay, from [110]. d True triaxial test: strain path in the deviatoric

plane and deviatoric stress
ffiffiffiffiffiffiffiffiffi
sijsij

p
– deviatoric strain

ffiffiffiffiffiffiffiffiffi
_eij _eij

p
space in a

Leighton Buzzard sand with DR ¼ 72%, from [111]
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– If plastic strains are not allowed, the same behavior

observed by Atkinson et al. [30] is obtained, that is,

a clear dependence of the G0 value on the stress

path rotation, Fig. 16b.

2. When the stress state in recent history tends to

overcome and displace the contour Y2 (Zone III or

IV according to Jardine [6]),

– There is a clear dependence both on G0 and on the

shape of the degradation curve with the stress path

Fig. 14 Undrained triaxial tests on reconstituted London clay, from [30]. a Paths followed in the tests. b Effect of stress recent history on soil

stiffness

Fig. 15 Undrained triaxial tests on London clay with a rest period of 6–12 days after AB and before BC and BE, from [20]. a Stress paths

followed. b Undrained longitudinal modulus Eu in trajectories BC and BE
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rotation, regardless of whether plastic strains are

allowed or not before starting the stress path after

the rotation conducted, Fig. 16c.

• Strain rate and inertia effects: There are numerous

experimental tests on plastic soils that show the

dependence of their stiffness on the strain rate [36],

an effect attributed to their viscosity and plasticity. In

sands, generally, this effect is very small or non-existent

[114]. On the other hand, this effect is negligible in the

range of small strains c\0:001% [115], and increases

its relevance for larger strains 0:01%\c\0:1% [116],

as it can be seen in Fig. 17. Yong and Japp [117]

defined the strain rate shear modulus parameter

(Fig. 18) as aG ¼ DG=D log _cð Þð Þ.

• Anisotropy: Multiple correlations have been proposed

to calculate the soil maximum shear modulus value,

several of which can be found in the work of Obrzud

and Truty [119]. Below there are some expressions for

the calculation of G0 ijð Þ in a plane i according to

direction j, based on the relations discussed above,

which also introduce the effect of soil anisotropy:

Hardin and Black [89]:

G0 ijð Þ ¼ Âf eð Þ OCRð Þk̂ p0ref

� ��mij

p0ð Þmij ð4Þ

Hardin and Blandford [14]:

G0 ijð Þ ¼ Sijf eð Þ OCRð Þk̂ p0ref

� � 1�ni�njð Þ
r0i
� �ni r0j

� �nj
ð5Þ

Rampello et al. [120]:

G0 ijð Þ ¼ Sijf eð Þ OCRð Þk̂p0bn=2 ð6Þ

Pennington [121]:

G0 ijð Þ ¼ Sijf eð Þ OCRð Þk̂ p0ð Þnij p0ref

� � 1�nijð Þ
b
nij=2

ij ð7Þ

Pennington [121]:

G0 ijð Þ ¼ Sijf eð Þ OCRð Þk̂ p0ref

� � 1�ni�nj�nkð Þ
r0i
� �ni r0j

� �nj
r0k
� �nk

ð8Þ

3.3 Considerations about the Hysteretic
Behavior

A fundamental aspect of soil behavior in Zone II of Jardine

[6], along with the nonlinearity and dependence on recent

history, is the hysteresis (Fig. 19).

Fig. 16 Degradation curves in undrained triaxial tests in London clay

(Geq;tan � Gap
t ¼ _q=3 _eq), from [34]. a Within Y2 (Zones I or II),

allowing plastic strains. b Within Y2 (Zones I or II) without allowing

plastic strains. c Overcoming and displacing Y2 (Zones III or IV),

allowing or not plastic strains

Fig. 17 The effect of strain rate on stiffness during the deviatoric

phase of an undrained triaxial test on an intact sample of London clay,

from [116]
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Soils are formed by particles and, therefore, will expe-

rience energy dissipation during loading cycles, which will

result in a hysteretic behavior [124]. Nevertheless, the

micromechanical mechanism through which the soil dis-

sipates energy during such cycles is not clear and Cudny

[40] points out to two possible explanations: (1) the dis-

sipated energy is the result of a process of local yield and

friction in the contacts between particles, which are sub-

jected to normal and shear forces, in which case, the energy

absorbed by the soil would be a function of the deformation

amplitude [125]; and (2) the dissipated energy is the result

of a viscous behavior due to the presence of fluid in the soil

pores [126].

As Hueckel and Nova [22] indicate in their fundamental

work on hysteretic behavior in soils, hysteretic cycles are

characterized by having different apparent stiffness after

rotations in stress or strain paths. In addition to that, if a

perfect hysteretic behavior is considered, the deformations

would only be recoverable if the cycles starting from the

same reversal point were closed. Nevertheless, according

to Hueckel and Nova, there are no perfect hysteretic cycles,

generally observing: (1) certain permanent strain after the

closing of the cycles, which depends on the number of

these; (2) viscous effects or cyclic hardening/softening; and

(3) dependence of the stiffness in unloadings/reloadings on

the magnitude of the accumulated plastic strain (elasto-

plastic coupling).

Fig. 18 Strain rate shear modulus parameter [118], extracted from [67]. a Dependence on strain rate and strain amplitude. b Dependence on the

PI value

Fig. 19 a Loading cycles in triaxial tests in a loose Lubiatowo sand, from [122]. b Loading cycles in undrained triaxial tests in a Speswhite

kaolinite clay with p0 ¼ 300 kPa, from [123]
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As Gudehus [107] points out, when reproducing the

hysteretic soil behavior, the state of a representative soil

element is not sufficiently characterized by the void ratio e

and the effective stress tensor r0. In these cases, it is nec-

essary to define hidden state variables vhist that cannot be

observed macroscopically and represent the spatial fluctu-

ation of the chains of internal forces between soil particles

(called force-roughness effect). It is also possible to attri-

bute to these variables the nonlinearity and the soil

behavior dependence on its recent history. As previously

commented, soil behavior after a reversal and before a

subsequent monotonous strain path suggests a gradual

adaptation of its internal state (characterized by the men-

tioned hidden state variables) until it depends exclusively

on the stress tensor and the void ratio, state in which pro-

portional strain paths lead to proportional stress paths. It is

for this last reason that the influence of the internal state of

the soil on its behavior can only be revealed during small

strains after reversals. Furthermore, the state variables vhist,

within the set of state variables v, are, in general, of two

types: a (back stress) normally in elastoplastic or vis-

coelastoplastic models (these models tend to underestimate

the hysteretic effects of the soil) and d (internal strain)

normally in hypoplastic or viscohypoplastic models (these

models tend to overestimate the hysteretic effects of the

soil) [107]. Although a and d can be formally treated as

strains and stresses respectively, they cannot be interpreted

physically as such [107], which is due to the fact that the

internal variables a and d are obtained, respectively, from

r0 and e (a is obtained from stress through the establish-

ment of an elastic center a ¼ r0 when a reversal takes

place, and _d is proportional to _e and is calculated from it).

4 Constitutive Modeling

As proposed by Popper [127], theoretical models can

capture part of reality if they are logically consistent and

the hypotheses they use are not refuted by observations.

Nowadays, there are several theoretical frameworks that try

to explain distinct aspects of soil behavior. Within these

theoretical frameworks, several constitutive soil models

that consider the mechanical behavior of the soil in the

range of small strains have been developed over the last

decades.

The mechanical soil behavior must be explained by the

interaction of the distinct phases that constitute the soil

along with the internal and external actions on it. Despite

the discontinuous nature of soil, most of the models used in

the professional practice consider soil as a continuous

medium. Although there has been important progress in

models that considers soil as a discontinuous medium

[128–131], the scope of this paper has been limited to

continuous ones.

According to Tobita [132], any type of soil microme-

chanical behavior (slide, rotation, deformation or breakage

of the particles or aggregates) leads to a nonlinear incre-

mental type of macromechanical behavior, therefore, any

constitutive model that considers soil as a continuous

medium should be able to reproduce this behavior.

Mechanical constitutive modeling of soils can be framed

in Continuum Mechanics problems, which involve a set of

well-known general conservation and balance equations

and a particular constitutive equation, which for simple

materials [133], is expressed in (9).

r0 tð Þ ¼ F F sð Þ½ � �1\s� t ð9Þ

The consideration of a functional F , and not a function,

is due to the irreversible soil behavior that should be

reproduced. In this type of behavior, knowing the state of

deformation e tð Þ at a given instant t does not allow to know

the stress state at that instant and vice versa [134]. Fur-

thermore, not any functional F will represent a valid

constitutive relation [133].

As Owen and Williams [135] show, in the case of non-

viscous type materials, which are the kind of materials

analyzed in this paper, it is common to resort to incre-

mental type formulations in which the functional F is

reduced to a tensorial function of the type

_r0 ¼ G e; r0; v; _eð Þ. Considering that the tensorial function G

is homogeneous grade one in the term of _e, allows

expressing the constitutive equation as

_r0 ¼ E0
t e; r

0; v; gð Þ : _e.
The dependence of the tensor E

0

t on g ¼ _e= _ek k leads to

the tensorial zone concept defined by Darve [136, 137] and

Darve and Labanieh [138], which will be very useful to

classify the analyzed models. A tensorial zone Z is defined

as the part of strain increments space in which the tensorial

function G is linear with _e. This will imply that in a certain

tensorial zone Z, the tangent stiffness tensor will be inde-

pendent from g, and the relation between _r0 and _e will be

incrementally linear, that is, _r0 ¼ E0Z
t e; r0; vð Þ : _e, where

E0
t e; r

0; v; gð Þ ¼ E0Z
t e; r0; vð Þ,8g 2 Z. Different tensorial

zones conform different adjacent hypercones with the

vertex in common, and the condition of continuity does not

allow the election of any tangent stiffness tensors in two

adjacent tensorial zones.

4.1 Some Previous Considerations About
Constitutive Modeling in the Range of Small
Strain

To approximate soil behavior in Zone II, it is necessary to

use nonlinear hysteretic models that consider the effect of
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recent history on stiffness. A common way to simulate this

nonlinearity is by using nonlinear elastic stiffness moduli.

Such moduli depend exclusively on the elastic strain ee or,

equivalently, on the effective stress r0. However, the

experimental measurement of soil stiffness is normally

conducted in tests in which soil is subjected to primary

loading processes. During such processes, it is usual to

obtain stiffness values lower than those measured during

unloading or reloading processes. According to Hueckel

and Nova [22], this is due to the fact that irreversible

strains occur in every process of primary loading. Based on

this, it is possible to define the concept of apparent stiffness

moduli of the soil, which are calculated using the total

strain and not the elastic ones.

The apparent stiffness moduli usually depend on the

total strain e, the effective stress r0 and the state variables

vhist.

K 0ap
s ¼ K 0ap

s e; r0; vhist
� �

Gap
s ¼ Gap

s e; r0; vhist
� �

ð10Þ

K 0ap
t ¼ K 0ap

t e; r0; vhist
� �

Gap
t ¼ Gap

t e; r0; vhist
� �

ð11Þ

From a numerical point of view, using the apparent

stiffness moduli instead of the elastic ones within an

elastoplastic model significantly simplifies the calculation

algorithms (Fig. 20), although it can lead to theoretical

inconsistencies.

Tensorial zones [136–138] can be bijectively related to

the apparent stiffness of the soil and, therefore, to the

aforementioned apparent stiffness moduli. In this way, for

each tensor zone Zi a value of K 0ap
i and Gap

i will be

obtained. Table 1 summarizes these correspondences.

In any model that uses elastic theory, it should be con-

sidered what is pointed out by Zytynski et al. [139] regarding

to the choice of elastic moduli. They showed that considering

constant values of drained Poisson’s ratio in a model implies

that this model will not be conservative and the generation of

energy in closed loading cycles will take place. In fact,

several incrementally multilinear models that consider soil

behavior in the range of small strains, such as those of

Papadimitriou et al. [140], Wongsaroj [141], SSOM and HS-

S [67] or HS-SS of Plaxis, use as elastic parameters the shear

modulus G and a constant value of the drained Poisson’s

ratio. Based on these parameters, such models internally

calculate the value of drained bulk modulus K 0 using

expression (12). Other incremental multilinear models that

consider soil behavior in the range of small strains, such as

those of Whittle [142], Al-Tabbaa and Wood [10], Yu [143],

Gryczmanski et al. [144] or Gryczmanski and Uliniarz [145],

use the drained bulk modulus K 0 and a constant value of the

drained Poisson’s ratio as elastic parameters. Based on these

parameters, such models internally calculate the value of the

shear modulus G through expression (12).

K 0 ¼
2G 1 þ m0const
� �

3 1 � 2m0const
� � / G G ¼

3K 0 1 � 2m0const
� �

2 1 þ m0const
� � / K 0

ð12Þ

From the previous expressions it follows that the fact of

adopting a constant value of drained Poisson’s ratio implies

the proportionalityK 0 / G, which generally does not respond

to experimental observations in the range of small strains

(Fig. 21). The expression of Poisson’s ratio as a function ofK 0

and G is given by (13), as well as the elastic thermodynamic

limitations and the condition m0 [ 0 that must be satisfied in all

soils, based on experimental observations. On the other hand,

in the expression (14), _m is deduced from expression (13).

Fig. 20 Algorithms for

obtaining the value of stress in

elastoplastic models
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0\m0 ¼ 3K 0 � 2G

2 3K 0 þ Gð Þ\0:50 ð13Þ

_m0 ¼ 9

2

G _K 0 � K 0 _G

3K 0 þ Gð Þ2
ð14Þ

Experimentally, it is observed how, in the range of small

strains, the drained bulk modulus K 0 does tend to stiffen

with the volumetric deformation, while the shear modulus

G tends to degrade with the octahedral shear strain.

Table 1 Tensor zones and values of K 0ap
i and Gap

i for incrementally linear, multilinear and nonlinear models

Type of model Number of tensor zones associated to G Amount of values of K 0ap
i and Gap

i

Incrementally linear models #Zi ¼ 1 i ¼ 1

Incrementally multilinear models 1\#Zi\1 1\i\1
Incrementally nonlinear models #Zi ! 1 i ! 1

Fig. 21 (a) Variation of m0 with coct in cohesive soils, from [146]. (b) Variation of m0 with coct in sandy soils, from [146]. (c) Variation of m0 with

eoct in different sandy soils, from [147]
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Considering on the one hand G ¼ G coctð Þ with
_G _coct\0 (degradation of G with coct), and on the other

hand K 0 eoctð Þ, with _K 0 _eoct [ 0 (stiffening of K 0 with eoct),

leads to values _m0 [ 0 if _G\0 and _K 0 [ 0, and values _m0\0

if _G[ 0 and _K 0\0. For _m0 ¼ 0 (m0 ¼ m0const), according to

the expression (14), _K 0=K 0 ¼ _G=G must be complied, that

is K 0 ¼ K 0
0=G0

� �
G / G, which is equivalent to expression

(12).

4.2 Classification of Models Using the Elements
that Define the Hysteretic Behaviour

To reproduce the hysteretic soil behavior in a constitutive

model it is necessary to define hidden state variables vhist

[107], within the set of state variables v.

In addition to that, it is necessary to distinguish and

define the following concepts in each model, which are

directly related to the state variables vhist and define a

specific classification criterion for constitutive models: (1)

reversal criteria; (2) memory rules; (3) effect of reversals

on the variables that control degradation; and (4) effect of

reversals on maximum soil stiffness.

4.2.1 Reversal Criteria

The models that consider the hysteretic behavior of the soil

use reversal criteria to identify points where changes of

direction occur in the stress or strain paths, whose effect

induces changes in soil stiffness. These criteria can be

divided as follows:

Extrinsic Reversal Criteria One or more loading and

unloading criteria are defined and added to the model

equations. These criteria are usually formulated based on

stress [143, 144], strain [67, 140, 142, 148, 149] or energy/

power [150].

Intrinsic Reversal Criteria

The loading or unloading criteria arise naturally from

the own equations of the constitutive model

[3, 10–12, 22, 31, 123, 151–156].

4.2.2 Memory Rules

Memory rules are those that allow models to store infor-

mation of a certain number of active reversal points,

understanding as an active reversal point that which

appears in t0 and can influence the soil behavior for t[ t0.

Depending on the number of active reversal points from

which information is stored, all or part of the recent history

of the soil will be considered. Furthermore, the models that

store only part of this information may reproduce a certain

finite number of symmetric loading cycles without trans-

gressing the 1st Principle of Thermodynamics. It is

possible to distinguish three types of models based on the

number of reversal points from which information is

stored.

Information storage from a single active reversal point

These models store information of the last active

reversal point and, therefore, only consider the history

between such reversal point and the current state, offering

important limitations to reproduce hysteretic behavior but

requiring little computational memory to store such infor-

mation. Some models that belong to this group are the

following: Simpson et al. [3]; Whittle [142]; Al-Tabbaa

and Wood [10]; Bolton et al. [148]; Yu [143]; Puzrin and

Burland [152]; Gryczmanski et al. [144]; Pestana and

Whittle [149]; Papadimitriou et al. [140].

Information storage of several active reversal points

These models store information of a certain number of

active reversal points, so they can better reproduce the

hysteretic behavior with respect to the previous ones and,

therefore, they will have a greater computational memory

requirement. Likewise, these models use different typolo-

gies of state variables to store information, such as, for

example, the situation of yield surfaces in multisurface or

bubble models, or state variables in diverse elastoplastic

and hypoplastic models. The effect of reversals on these

variables depends on the rotation angle of reversal that

takes place, and it may be the case that an important

reversal erases the effect of previous active reversal points,

although these are recent. Some models that belong to this

group are the following: Prévost [11, 12]; Simpson [31];

Stallebrass and Taylor [123]; Niemunis and Herle [151];

Benz [67]; Cudny and Truty [155].

Information storage of all active reversal points

These models can store information of all the active

reversal points, improving their capability to reproduce the

hysteretic soil behavior, although they will generally

require a high computational cost. Nevertheless, for prac-

tical purposes, this type of models ends up limiting the

number of reversal points from which they store informa-

tion. The maximum number of reversal points considered

will depend on the number of expected loading cycles.

Some models that belong to this group are the following:

Hueckel and Nova [22]; Niemunis et al. [153]; Schädlich

and Schweiger [154]; Castellón and Ledesma [156] and

those that fulfill the Generalized Masing Rules [157, 158].

4.2.3 Effect of the Reversals on the Variables that Control
Stiffness Degradation

The nonlinear models consider shear stiffness degradation

with deformation. The mechanisms that control this

degradation are identified here with the variables !i � 0,
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which can be considered as part of the variables vhist. These

models can be grouped in two categories:

The variables !i that controls the degradation are al-

ways fully reinitialized after a reversal

These models consider that the variables !i adopt a

value of 0 after a reversal (Fig. 22) (!i ¼ !R�
i [ 0 before

the reversal R and !i ¼ !Rþ
i ¼ 0 after the reversal R). This

implies that in these models the maximum value of stiff-

ness is reached after a reversal, which does not allow

simulating the experimental soil behavior described in the

work of Atkinson et al. [30] (Fig. 14), Clayton and Hey-

mann [20] (Fig. 15), Gasparre [75] or Gasparre et al. [34]

(Fig. 16). Some models that belong to this group are the

following: Hueckel and Nova [22]; Simpson et al. [3];

Whittle [142]; Al-Tabbaa and Wood [10]; Bolton et al.

[148]; Yu [143]; Stallebrass and Taylor [123]; Grycz-

manski et al. [144]; Puzrin and Burland [152]; Pestana and

Whittle [149]; Papadimitriou et al. [140]; Niemunis et al.

[153] and those that fulfill the Generalized Masing Rules

[157, 158].

The variables !i that controls the degradation are fully

or partially reinitialized after a reversal depending on the

reversal rotation angle

These models consider that the variables !i reduce their

value after a degradation process (Fig. 22) (!i ¼ !R�
i [ 0

before the reversal R and !i ¼ !Rþ
i \!R�

i after the

reversal R). Depending on the values !Rþ
i different stiff-

ness values are obtained after a reversal. This type of

models allows partially simulating the experimental soil

behavior described by Atkinson et al. [30] (Fig. 14),

Clayton and Heymann [20] (Fig. 15), Gasparre [75] or

Gasparre et al. [34] (Fig. 16) Some models that belong to

this group are the following: Prévost [11, 12]; Simpson

[31]; Niemunis and Herle [151]; Benz [67]; Schädlich and

Schweiger [154]; Cudny and Truty [155]; Castellón and

Ledesma [156].

4.2.4 Effect of the Reversals on Maximum Soil Stiffness

Experimentally, it is observed how the magnitude of shear

stiffness recovery depends on the stress/strain reversal

rotation angle, as shown in Fig. 23. Considering this aspect

of soil behavior, it is possible to classify the models fol-

lowing two different criteria: (1) depending on whether the

soil stiffness recovery is continuous or discontinuous with

the rotation of stress/strain recent path; and (2) depending

on whether such recovery is always total after a reversal or

can be partial or total after it. Introducing the second cri-

terion within the first, the models can be classified as

follows:

Discontinuous recovery of stiffness with the rotation

angle of stress/strain recent path

This group integrates those models in which the recov-

ery of soil stiffness occurs discontinuously (staggered)

according to the rotation angle of the stress/strain recent

path. This is because the variables !i, that control the

degradation process of shear stiffness, experience finite

jumps in their value for certain values of such rotation

(Fig. 23a). These models will be, therefore, incrementally

multilinear. In turn, the models that consider a total

recovery after a reversal or a recovery that can be partial or

total are distinguished in this group (Fig. 23b). Some

models with a total recovery after a reversal are the fol-

lowing: Hueckel and Nova [22]; Simpson et al. [3]; Whittle

[142]; Al-Tabbaa and Wood [10]; Bolton et al. [148]; Yu

[143]; Stallebrass and Taylor [123]; Puzrin and Burland

[152]; Gryczmanski et al. [144]; Pestana and Whittle [149];

Papadimitriou et al. [140]; Niemunis et al. [153] and those

that fulfill the Generalized Masing Rules [157, 158]. Some

models with a partial discontinuous recovery according to

the rotation angle of the stress/strain after a reversal are the

following: Prévost [11, 12]; Simpson [31]; Benz [67];

Cudny and Truty [155].

Continuous recovery of stiffness with the rotation angle

of stress/strain recent path

This group integrates those models in which the recov-

ery of soil stiffness occurs continuously according to the

rotation angle of the stress/strain recent path. This is

because the variables !i that control the degradation pro-

cess of the shear stiffness vary continuously with the values

of such rotation (Fig. 23a). These models will therefore be

Fig. 22 Effect of reversals on the variables that control degradation,

drawn on the graphic of the shear modulus degradation of a London

clay, extracted from the work of Atkinson et al. [30]
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incrementally nonlinear, and the recovery of stiffness is

continuous with the rotation of the strain path. Some

models that can be considered to have a partial continuous

recovery according to the rotation angle of the stress/strain

after a reversal are the following: Niemunis and Herle

[151]; Schädlich and Schweiger [154]; Castellón and

Ledesma [156].

4.3 Classification of the Models Using
the Tensorial Zone Criterion

The tensorial zone criterion has been used to classify the

models that consider soil behavior in the range of small

strains (Zones I and II of Jardine [6]), as follows:

(A) Incrementally linear models associated to one ten-

sorial zone (Fig. 24a)

(A:1) Elastic models

(A:1:1) Linear elastic models

– Anisotropic

– Isotropic

(A:1:2) Nonlinear elastic models

– Algebraic formulation (Cauchy

elastic models and pseudoelastic

models)

– Integral formulation (hyperelas-

tic models)

– Differential formulation (hypoe-

lastic models stricto sensu)

(B) Incrementally multilinear models associated to sev-

eral tensorial zones (Fig. 24b)

(B:1) Hysteretic models

(B:1:1) Paraelastic models

(B:1:2) Quasi-hypoelastic models

– Generalized Masing rules

(B:2) Advanced models

(B:2:1) Classic elastoplastic models

(B:2:2) Multisurface models

(B:2:3) Brick models

(B:2:4) Bounding plasticity models

(B:2:5) Bubble models

(B:2:6) Multilaminated models

Fig. 23 Effect of reversals on maximum stiffness according to the two

defined criteria, drawn on the London clay degradation graph

extracted from the work of Atkinson et al. [30]. a Continuous or

discontinuous recovery according to the rotation angle of the recent

path of stress/strain. b Total or partial/total recovery of stiffness
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(C) Incrementally nonlinear models associated to infinite

tensorial zones (Fig. 24c)

(C:1) Hypoplastic models

(C:2) Hypoplastic hybrid models

The set of incrementally linear models include the

elastic models, although both linear elastic models and

nonlinear elastic models can also be formulated non-in-

crementally, that is, according to r0 ¼ F eeð Þ.
Finally, it should be noted that the fact of not having the

numerical codes of most of analyzed models complicates

and limits their study, idea shared by Gudehus [107].

(A) Incrementally linear models

The number of tensorial zones #Z considered in the

incrementally linear models is reduced to one. These

models can reproduce soil nonlinear behavior in Zone II,

but not its hysteretic and dependent on recent history

behavior.

(A.1) Elastic models

Elasticity constitutes one of the fundamental pillars of

mechanics of deformable solids.

Two fundamental characteristics of these type of models

are: (1) the proportionality between effective stress r0 and

elastic strains ee; and (2) the possibility of determining the

stress state r0 x; tð Þ at any point of the continuous medium

and at any instant, only from the state of elastic strains

ee x; tð Þ in such point and instant, without the need to know

the previous history.

Soil behavior in Zone I can be approximated by a linear

elastic model. In addition to that, it is common to find

inherent and induced anisotropy in most soils, although it is

often complex to separate the influence of each of them on

the test results. Several discrepancies in numerical simu-

lations regarding experimental results come precisely from

the fact that the effects of anisotropy are not considered.

Piriyakul [159] demonstrates the need to consider inherent

and induced anisotropy in the range of small strains, and

Poulos [160], Simpson [6], Simpson et al. [161], Adden-

brooke et al. [68], Zwanenburg [162], Kung et al. [163] and

Whittle [36] point out the importance of considering soil

anisotropy when elastic models are used. Nevertheless, the

difficulty to obtain the parameters associated with aniso-

tropic linear elastic models leads, on multiple occasions, to

the use of isotropic linear elastic models.

The elastic stiffness moduli in the range of strains

characteristic of Zone I correspond to the dynamic elastic

stiffness type that are G ¼ G0 and K 0 ¼ K 0
0 when consid-

ering isotropy. These can be calculated from the soil den-

sity qsoil and the speed at which the shear waves S (vs) and

compression waves P (vp) are transmitted through its

skeleton, according to the following expressions:

G0 ¼ qsoilv
2
s ð15Þ

K 0
0 ¼ qsoil v2

p �
4

3
v2
s

� �
ð16Þ

(A.1.1) Linear elastic model

Linear elastic models use a linear tensorial function F �ð Þ
for the total constitutive equation.

r0 ¼ FðeeÞ ¼ E0 : ee ð17Þ

Since the elastic stiffness tensor E0 is constant ( _E0 ¼ 0Þ,
the incremental constitutive equation can be expressed as

follows:

_r0 ¼ _F eeð Þ ¼ E0 : _ee ð18Þ

Considering the symmetry of r0 and ee, and some elastic

thermodynamic considerations, the components of E0 can

be reduced from 81 to 21.

Fig. 24 Schematic representation of the tensorial zones for distinct types of models. a Incrementally linear models. b Incrementally multilinear

models. c Incrementally nonlinear models
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Anisotropic linear elastic model

The most general expression of E0 for a general aniso-

tropic linear elastic material has 21 independent compo-

nents. In anisotropic materials, it is common to use E0
ij, m

0
ij o

Gij as elastic parameters. In case the material properties

present three planes of symmetry, the material is said to be

orthotropic, and the independent components are reduced

from 21 to 9. And if the properties of the material have an axis

of symmetry, it is said that it has transversal isotropy and the

independent components are reduced from 21 to 5. Ortho-

tropic elastic models are rarely used. In contrast, elastic or

hypoplastic models that consider soil transversal anisotropy

have been used in professional practice to reproduce soil

behavior in the range of small strains [14, 154, 159, 164].

Isotropic linear elastic model

In case the material properties present three symmetry

axes, the material is said to be isotropic and the indepen-

dent components are reduced from 21 to 2. The constitutive

equation of an isotropic linear elastic model can be

expressed as follows:

r0 ¼ E0 : ee ¼ K 0 � 2

3
G

� �
1	 1þ 2GI

� �
: ee

¼ 3K 0eeoct1þ 2Gee ð19Þ

On the other hand, considering s ¼ r0 � r0oct1 with

r0oct ¼ p0 ¼ 1=3r0ii and the invariants soct ¼
ffiffiffiffiffiffiffiffi
1=3

p
sk k and

ceoct ¼
ffiffiffiffiffiffiffiffi
4=3

p
eek k, it is possible to uncouple the volumetric

and deviatoric behavior of the soil in the expression (19),

obtaining the expressions r0oct ¼ 3K 0eeoct and soct ¼ Gceoct.
Linear elastic models:

• Are linear models.

• Do not distinguish between stiffness in loading and

unloading/reloading and, therefore, cannot reproduce

the hysteretic behavior of the soil.

• Do not consider the effect of recent history on soil

stiffness.

• Constitute the theoretical base of nonlinear elastic

models and other advanced models.

• Constitute very simple formulations from a conceptual

and mathematical point of view.

• The parameters of the models are, in general, easy to

obtain from simple tests.

• In closed stress/strain cycles, they conserve the values

of stress and strain,
H

ee
E0 : _ee ¼ 0 and

H

r0
E0ð Þ�1

: _r0 ¼ 0.

• Do not generate energy in closed stress or strain cycles,H

ee
r0 : _ee ¼ 0.

(A.1.2) Nonlinear elastic models

The classification proposed by William [165], based on

the structure of the tensorial function F �ð Þ that relates stress

to elastic strain, is used to define the nonlinear elastic

models.

The hypoelastic models stricto sensu are not elastic

models per se. As previously commented, one of the fun-

damental properties of the elastic models is the possibility

to determine r0 x; tð Þ only knowing ee x; tð Þ, without the

need of knowing the previous history. On the contrary, in

hypoelastic models, the stress state at a given point and

instant does depend on such previous history. Despite this,

the hypoelastic models have been traditionally considered

within the framework of elastic materials, therefore, such

classification has been respected in this work.

Algebraic formulation (Cauchy elastic models and

pseudoelastic models)

Cauchy elastic models

Cauchy elastic models use a nonlinear tensorial function

F �ð Þ for the constitutive equation of the material.

r0 ¼ F eeð Þ ¼ /1 eeð Þ1þ /2 eeð Þee þ /3 eeð Þ eeð Þ2 ð20Þ

A priori, and given the arbitrariness in the functions /i,

this type of models can generate energy during the appli-

cation of cyclic loading, thus transgressing the thermody-

namic principles.

The linearized constitutive incremental equation is

expressed as follows:

_r0 ¼ _F eeð Þ

¼
X3

i¼1

o/i e
eð Þ

oee
: _ee

� �
eeð Þi�1þ/2 eeð Þ _ee þ 2/3 eeð Þee � _ee

ð21Þ

Pseudoelastic models
Pseudoelastic models are a particular case of Cauchy

elastic models. In this case, the nonlinearity in F �ð Þ is

incorporated through the secant elastic stiffness tensor. As

with linear elastic models, if an isotropic material is con-

sidered, the secant elastic stiffness tensor E0
s depends on

two parameters, being able to be expressed according to the

drained secant elastic bulk modulus K 0
s and to the secant

elastic shear modulus Gs, which leads to the known K � G

nonlinear models formulation.

r0 ¼ F eeð Þ ¼ E0
s : e

e ¼ K 0
s �

2

3
Gs

� �
1	 1þ 2GsI

� �
: ee

¼ 3K 0
se

e
oct1þ 2Gse

e

ð22Þ

In the same way it was deduced for the constitutive

equation of an isotropic linear elastic material, it is also

possible in this case to uncouple the volumetric and devi-

atoric behavior from expression (22), provided that Gs ¼
Gs ceoct
� �

and K 0
s ¼ K 0

s eeoct
� �

, leaving the expressions r0oct ¼
3K 0

s eeoct
� �

eeoct and soct ¼ Gs ceoct
� �

ceoct. In case of considering
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transversal anisotropy, it is necessary to introduce the

secant coupling modulus Js into the previous formulation,

resulting r0oct ¼ 3K 0
se

e
oct þ Jsceoct and soct ¼ Jseeoct þ Gsceoct.

The linearized constitutive incremental equation of the

pseudoelastic models is the following:

_r0 ¼ E0
s : _e

e þ _E0
s : e

e ¼ E0
s : _e

e

þ oE0
s

oK 0
s

oK 0
s

oeeoct
_eeoct þ

oE0
s

oGs

oGs

oceoct
_ceoct

� �
: ee

ð23Þ

The above expression can be rewritten as _r0 ¼ E0
t : _e

e,

where E0
t can be written as follows:

E0
t ¼ E0

s þ K 0
t � K 0

s

� �
1	 1þ 8

3

Gt � Gsð Þ
ceoct
� �2

ee 	 ee ð24Þ

In the previous expression K 0
t and Gt are the tangent

moduli which, considering Gs ¼ Gs ceoct
� �

and

K 0
s ¼ K 0

s eeoct
� �

, can be expressed as:

K 0
t ¼

1

3

dr0oct
deeoct

¼ K 0
s þ eeoct

dK 0
s

deeoct
ð25Þ

Gt ¼
dsoct
dceoct

¼ Gs þ ceoct
dGs

dceoct
ð26Þ

Based on the above and considering that

ee : _ee ¼ 3=4ceoct _c
e
oct, the constitutive incremental Eq. (23)

becomes expression (27), which is possible to express

uncoupled as _r0oct ¼ 3K 0
t eeoct
� �

_eeoct and _soct ¼ Gt ceoct
� �

_ceoct.

_r0 ¼ 3K 0
t _e
e
oct1þ 2Gs _e

e þ 2
Gt � Gsð Þ
ceoct

_ceocte
e ð27Þ

Cauchy elastic models and pseudoelastic models:

• Are nonlinear models.

• Do not distinguish between stiffness in loading and

unloading/reloading and, therefore, cannot reproduce

the hysteretic behavior of the soil.

• Do not consider the effect of recent history on soil

stiffness.

• Constitute simple formulations from a conceptual and

mathematical point of view.

• The parameters of the models are, in general, easy to

obtain from simple tests.

• In stress/strain closed cycles, they conserve stress and

strain,
H

ee
E0
t : _e

e ¼ 0 and
H

r0
E0
t

� ��1
: _r0 ¼ 0.

• Depending on the selection of soil parameters, they can

generate energy in stress/strain closed cycles, thus

transgressing the thermodynamic principles,H

ee
r0 : _ee 6¼ 0. If a Cauchy elastic model or a K � G

pseudoelastic model comply with G ¼ G ceoct
� �

or G ¼
G� soctð Þ and K 0 ¼ K 0 eeoct

� �
or K 0 ¼ K 0� r0oct

� �
it will be

conservative, since, under these conditions, the elastic

energy Wel is independent from the followed path,

complying with Wel ¼ 0 in a closed cycle, where

Wel ¼
I

ceoct

3=2Gs ceoct
� �

ceoct
� �

_ceoct þ
I

eeoct

9K 0
s eeoct
� �

eeoct
� �

_eeoct:

Integral formulation (hyperelastic models)

The hyperelastic models define an energy potential from

which the expression of F �ð Þ is derived. This potential is

called elastic strain energy W ¼ W eeð Þ. In the case of iso-

tropic materials, W eeð Þ depends on the invariants of r0 and

ee.

r0 ¼ F eeð Þ ¼ oW eeð Þ
oee

ð28Þ

From expression (28), it is verified that this type of

models complies with the 1st Principle of Thermodynam-

ics, thus not allowing energy to be generated in stress/strain

closed cycles (expression 29).
I

r0 : _ee ¼
I

oW eeð Þ
oee

: _ee ¼
I

_W eeð Þ ¼ 0 ð29Þ

Hereunder, the most general expression of F �ð Þ for

isotropic materials is derived. For that purpose, the strain

tensor invariant moments Îe
e

i ¼ 1=ið Þtr eeð Þi
� �

are defined.

Using the chain rule and the notation

Wi eeð Þ ¼ oW eeð Þ=oÎeei , the expression (30) is obtained:

r0 ¼ W1 eeð Þ1þW2 eeð Þee þW3 eeð Þ eeð Þ2 ð30Þ

As it can be seen, expression (30) has the same form as

expression (20). Nevertheless, the coefficients Wi eeð Þ,
unlike /i e

eð Þ, satisfy the theorem of Schwartz, which

implies the integrability conditions

o2W eeð Þ=oÎeei oÎe
e

j ¼ o2W eeð Þ=Îeej oÎe
e

i , from which it follows

that the tangent elastic stiffness and compliance tensors

have greater symmetry in hyperelastic models and it can be

shown that this is a necessary condition to satisfy the 1st

Principle of Thermodynamics. These conditions do not

have to be complied in the Cauchy elastic models or in

pseudoelastic models.

The constitutive incremental equation in the hyperelas-

tic models is expressed as follows:

_r0 ¼ E0
t : _e

e ¼ o2W eeð Þ
oee 	 oee

: _ee ð31Þ

Several authors developed hyperelastic models that

consider the relation G ¼ G p0ð Þ [166–171]. Such models,

in the case of isotropic materials, adopt the following

uncoupled form _r0oct ¼ 3K 0
t _e
e
oct þ Jt _ceoct and

_soct ¼ Gt _ceoct þ Jt _eeoct.
Hyperelastic models:
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• Are nonlinear models.

• Do not distinguish between stiffness in loading and

unloading/reloading and, therefore, cannot reproduce

the hysteretic behavior of the soil.

• Do not consider the effect of recent history on soil

stiffness.

• Introduce a great number of parameters, which are often

difficult to obtain from simple tests.

• In stress/strain closed cycles, they conserve stress and

strain,
H

ee
E0
t : _e

e ¼ 0 and
H

r0
E0
t

� ��1
: _r0 ¼ 0.

• Satisfy the theoretical requirements of continuity,

stability, uniqueness and the 1st Principle of Thermo-

dynamics,
H

ee
r0 : _ee ¼ 0.

The hyperelasticity framework has allowed the subse-

quent development of hyperelastic-plastic models. This is

the case of the model of Likitlersuang and Houlsby [172],

from which it is possible to deduce multisurface models

with kinematic hardening, or the model of Zhang et al.

[173], that is able to consider, among others, soil cemen-

tation, stress-induced anisotropy, cyclic shear behaviour or

shear modulus degradation under small strain conditions

due to the fact that energy dissipations and irreversible

strains are allowed within all strain ranges.

Differential formulation (hypoelastic models stricto

sensu)

Incrementally linear hypoelastic models stricto sensu

consider the existence of tensorial functions that relate the

stress increments with total strains, total stresses and strain

increments. Such models do not directly define the tenso-

rial function F �ð Þ, but this results from integrating the

incremental constitutive Eq. (32), leading to expression

(33).

_r0 ¼ E0
t r

0ð Þ : _ee ð32Þ

r0 ¼ rE0
t r

0ð Þ : _eedt ð33Þ

where E0
t r

0ð Þ, in its most general form, depends on 12

functions C�
i , which in turn depend on the three invariants

of r0, as

E0
t r

0ð Þ ¼ C�
11	 1þ C�

2r
0 	 1þ C�

3r
02 	 1þ C�

41	 r0

þ C�
5r

0 	 r0 þ C�
6r

02 	 r0 þ C�
71	 r02 þ C�

8r
0 	 r02

þ C�
9r

02 	 r02 þ C�
10 1	1þ 1	1ð Þ

þ C�
11 r0	1þ 1	r0ð Þ þ C�

12 r02	1þ 1	r02
� �

Unlike what happens with the algebraic formulation and

the integral formulation exposed in the previous sections,

the recent history in the constitutive law of the material is

considered in the hypoelastic formulation. This is why

hypoelastic models stricto sensu are not elastic models per

se.

Incrementally linear hypoelastic models stricto sensu:

• Are nonlinear models.

• Do not distinguish between stiffness in loading and

unloading/reloading and, therefore, cannot reproduce

the hysteretic behavior of the soil.

• The extension of these models led to the appearance of

quasi-hypoelastic models, framed within the incremen-

tally multilinear models (see Sect. B.1.2). Quasi-

hypoelastic models do allow the hysteretic behavior

of the soil to be reproduced, since they introduce

different stiffness depending on whether the processes

are of loading or unloading type, and define the reversal

criteria, the memory rules and the effect that reversals

have on the variables which control the degradation of

stiffness and on the maximum soil stiffness.

• Consider the effect of recent history on soil stiffness.

• Constitute simple formulations from a conceptual and

mathematical point of view.

• The parameters of the models are, in general, easy to

obtain from simple tests.

• In stress/strain closed cycles, they do not conserve the

values of stress and strain,
H

ee
E0
t : _e

e 6¼ 0 and

H

r0
E0
t

� ��1
: _r0 6¼ 0.

• Depending on the selection of soil parameters, they can

generate energy in stress/strain closed cycles, thus

transgressing the thermodynamic principles,H

ee
r0 : _ee 6¼ 0.

• Simulations with these types of models should be

limited to the stress and strain paths corresponding to

the tests with which their parameters were obtained.

(B) Incrementally multilinear models

The number of tensorial zones #Z considered in the

incrementally multilinear models is a finite number greater

than one. These models can reproduce nonlinear, hysteretic

and dependent on recent history soil behavior, character-

istic of Zone II.

(B.1) Hysteretic models

Hysteretic models emerged with the aim of simulating

hysteretic soil behavior in the range of small strains orig-

inally in dynamic problems. Assuming that the hysteretic

behavior of the soil was perfect, deformations would be

recoverable only if the stress/strain cycles that started from

the same reversal point were closed. This behavior differs

from the reversible behavior of elastic models and from the

irreversible behavior of elastoplastic models, as can be seen

in Fig. 25.
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Nevertheless, reality does not show a perfect hysteretic

soil behavior. Indeed, Hueckel and Nova [22] point to the

elements described in Sect. 3.3 that separate the real soil

behavior from such idealization (Fig. 26).

(B.1.1) Paraelastic models

A particular type of hysteresis is the so-called parae-

lastic hysteresis or paraelasticity, a theory that was devel-

oped by Hueckel and Nova [22], being one of the

fundamentals in this field.

The term paraelastic refers precisely to the fact that

strains reversibility is conditioned to the closure of the

cycles (Fig. 27). The paraelastic models consider that soil

stiffness degrades as a function of variables that depend on

the paraelastic strains epe ¼ ee þ emp, sum of the elastic

strains ee and the microplastic strains emp, the latter rever-

sible only under the condition of the corresponding stress/

strain cycle closure. The cycles of this kind of models can

overlap one another using simple memory rules with two

information levels, 1st for the constitutive equation and 2nd

for recent history.

Table 2 analyzes the stiffness formulation, the treatment

of hysteretic behavior and general aspects of some parae-

lastic hysteretic models.

The clear, robust and intuitive way in which the parae-

lastic theory defines the hysteretic behavior of the soil, in

addition to its versatility to be combined with other theo-

retical frameworks, endows it with a high potential. So far,

interesting models have been developed using concepts

Fig. 25 Schematic

representation of soil behavior

in different types of models.

a Nonlinear elastic.

b Hysteretic. c Elastoplastic

Fig. 26 a Loading cycle

according to the model of

Hueckel and Nova. b Real

loading cycle with jump in the

strain between a and d when

reaching the same level of

stress. From [22]

Fig. 27 Idealization of the hysteretic behavior of paraelastic models, from [22]. a One simple cycle. b One minor cycle overlapped to a major

cycle. c Closure of minor overlapped cycles
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from paraelastic theory combined with elastoplastic,

bounding plasticity, multilaminate or hypoplastic models

[140, 153, 154, 156, 174–177].

(B.1.2) Quasi-hypoelastic hysteretic models

Among the incrementally multilinear models stand out

the ones here called quasi-hypoelastic hysteretic models,

which have been normally used to simulate soil behavior in

the range of small strains. A widespread methodology to

build quasi-hypoelastic hysteretic models is to incorporate

the elements that allow reproducing the hysteretic behavior

of the soil into quasi-hypoelastic models, for example,

through the Generalized Masing Rules [157, 158]. Quasi-

hypoelastic models simulate soil behavior during mono-

tonous loadings and resemble hypoelastic models, although

instead of elastic stiffness moduli they use apparent stiff-

ness moduli which act on total strains (and no just on

the elastic ones). Following the classification by Sellers

[124], quasi-hypoelastic models can be classified into two

types depending on how their parameters are defined:

• Variable parameter models [178–180] are those that

propose a relation between stress and strain based on

nonlinear functions (hyperbolic, elliptical, logarithmic,

spline, etc.). Variable parameter models can generally

be reformulated as variable moduli models.

• Variable moduli models [181–184] are those that

propose nonlinear functions to describe apparent vol-

umetric and shear stiffness moduli in a constitutive

equation with an algebraic structure equal to that of an

elastic model.

The general constitutive equation of the variable moduli

models usually adopts the following expression:

r0 ¼ 3K 0ap
s p0; eoct; v

hist
� �

eoct1þ 2Gap
s p0; coct; v

hist
� �

e ð34Þ

_r0 ¼ 3K 0ap
t p0; eoct; v

hist
� �

_eoct1þ 2Gap
t p0; coct; v

hist
� �

_e ð35Þ

The following decomposition of secant stiffness modu-

lus is usually considered based on experimental observa-

tions [66]:

K 0ap
s r0oct; eoct; v

hist
� �

¼ K 0ap
s;0 p0ð ÞfK0ap

s
eoct; v

hist
� �

and

Gap
s r0oct; coct; v

hist
� �

¼ Gap
s;0 p0ð ÞfGap

s
coct; v

hist
� �

:

The popularity of quasi-hypoelastic hysteretic models

come from its relative simplicity and easy incorporation

into finite element numerical codes for solving practical

engineering problems [66], as can be seen in the work of

Jardine and Potts [185] and St. John et al. [186]. Some

disadvantages in relation to the quasi-hypoelastic hysteretic

models are pointed out [66, 182, 187]:

• Lack of continuity during neutral loading processes.

• Functions fK0ap
s

eoct; vhist
� �

and fGap
s

coct; v
hist

� �
are cali-

brated from tests with specific stress or strain paths that

can be very different from paths followed by the soil in

practical applications.

Table 2 Paraelastic hysteretic models

Model Small strain stiffness Hysteretic behavior Comments

Hueckel

and Nova

[22]

DLepe ¼ C vhist;L
� �

:DL r0

C vhist;L
� �

¼ C0 � 1þ vhist;LX
� �

vhist;L ¼ DLepe
� �T

:DL epe
� �1=2

1. Reversal criterion:intrinsic,
DLr0 : C vhist;L

� �
: C vhist;L
� �

: _r0 � 0

2. Memory rules: can store

information of all reversal points

using two levels of memory

3. Effect of reversals on degradation
variables: total reinitialization

after reversals

4. Effect of reversals on soil
stiffness: discontinuous stiffness

recovery

The model proposes the fundamental theoretical

framework of paraelasticity

Niemunis

et al.

[153, 174]

H0 f ; v; dAR1

� �
¼ 1 � f dvAR1

� �
E0
max

dAR1 ¼ �
AR1e:AR1e
AR1e:NR1

1. Reversal criterion: intrinsic,

dnþ1
AR1\dnAR1

2. Memory rules: can store

information of all reversal points

using two levels of memory

3. Effect of reversals on degradation
variables: total reinitialization

after reversals

4. Effect of reversals on soil
stiffness: discontinuous stiffness

recovery

Based on the model of Hueckel and Nova [22]. The

model of Niemunis et al. modifies the norm dAR1

with which the distance to the last reversal point is

measured, considering the diameter of the loading

circle instead of its radius to avoid discontinuities
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• The constitutive equation implies that stress and strain

increases are coaxial, which does not always corre-

spond to experimental observations [188]. Neverthe-

less, it should be considered that in the tests used to

calibrate these models this coaxiality will generally be

complied.

• To reproduce the hysteretic behavior of the soil,

loading/unloading criteria that can lead to numerical

instabilities are introduced.

• The dependence of Gap
s;0 p0ð Þ implies that the shear

modulus depends on the volumetric strain G ¼
G coct; eoct; v

hist
� �

which, in case of not considering the

coupling modulus Jt, may not be thermodynamically

consistent.

Generalized Masing rules

A common and widespread way to build hysteretic

models from models that simulate the nonlinear behavior

of soil during monotonous loading is through the applica-

tion of the original and extended Masing Rules [157, 158],

jointly denominated as Generalized Masing Rules, to

which the corresponding loading/unloading criteria must

be added. Such rules are formulated in a one-dimensional

stress or strain context, although the extension to multiaxial

states can be made with an appropriate change in the

variables. For the one-dimensional case, the Generalized

Masing Rules consider that the state variables vhist are

identified with the total strain e. However, despite these

variables vhist can be formally treated as strains, they

cannot be physically interpreted as such (see Sect. 3.3).

The original Masing rules Nr. 1 and Nr. 2 [157] for sym-

metric loading, along with the extended Masing rules Nr. 3

and Nr. 4 [158] are the following:

1. Rule Nr. 1: For the primary loading, the constitutive

law adopts the expression r0 ¼ F eð Þ. In general, this

relation considers the total strain e. This is because in

the tests used to calibrate the nonlinear function F �ð Þ,
the reversible and irreversible strain components are

not separated.

2. Rule Nr. 2: In loading or unloading, after a reversal

point R, the constitutive law considers a two-scale

factor, as compared to the constitutive law for primary

loading, taking as reference the local origin given by

the reversal point r0R; eRð Þ, as

r0 � r0R ¼ 2F e� eRð Þ=2ð Þ. In general, this relation

also considers the total strain e, although in elastoplas-

tic models, this will coincide with the elastic strain, as

this law is activated within elastic domain. Rule Nr. 2

can also be applied through different strategies

[158, 189].

3. Rule Nr. 3: If the unloading or reloading curves

intersect the initial loading curve, they resume such

curve.

4. Rule Nr. 4: If the unloading or reloading curves

intersect a previous unloading or reloading curve, they

resume such curve.

Some quasi-hypoelastic hysteretic models

Some models that are classified as quasi-hypoelastic

hysteretic models are described and analyzed hereafter.

They all are variable parameter models, except for the

SSOM model [67] and the HQH model [156, 175], which

are variable moduli models. Nevertheless, practically all of

them can be reformulated as variable moduli models,

which allows obtaining the equivalent apparent stiffness

moduli in each case. In this type of models, the state

variables that control the value of the stiffness moduli are

identified with those proposed by Gudehus [107] to

describe the hysteretic behavior of the soil.

In all the models studied in this section, excluding the

SSOM and HQH models, it is necessary to define ad hoc

components that allow reproducing hysteretic soil behavior

for example, through the Generalized Masing Rules.

Tables 3 and 4 analyze the small strain stiffness for-

mulation and general aspects of some quasi-hypoelastic

hysteretic models.

The SSOM [67] and HQH [156] models have great

potential to be used in professional practice, given their

ability to integrate multiple aspects of the soil in the range

of small strains, in addition to their capacity to be com-

bined with plastic models which let extend its applicability

to the range of medium and large strains.

Both models: (1) are based on the apparent secant shear

modulus Gap
s degradation curve provided by the Dos Santos

and Correia model [231], which is limited by a minimum

value of the tangent shear modulus Gur; (2) consider the

recent history of deviatoric strains; (3) use history tensors

that act as Simpson block models [31]; (4) consider similar

thermodynamic-type corrections; and (5) can be combined

with multiple plastic models leading to advanced elasto-

plastic models.

When both models are used by themselves, they use the

Hashiguchi [189] criterion to differentiate primary load

from unloadings/reloadings, but when they are combined

with an elastoplastic model, they consider, on the one hand,

a factor n ¼ 2 in the expression of the apparent secant

shear modulus Gap
s and, on the other hand, a factor hi that

modifies the hardening laws to avoid overlapping the

mechanisms of these models and the plastic models with

which they are combined, that try to explain the reduction

of soil stiffness during the primary loading.

The SSOM model describes the elastic part of the well-

known HS-SS model, implemented in Plaxis and based on
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Table 3 Quasi-hypoelastic models (1/2)

Model Small Strain Stiffness Comments

Ramberg and

Osgood [190]
Gap

s ¼ G0

1þa s
sf

			
			
r̂�1

Based on Ramberg and Osgood [190] model according to Idriss et al. [191] and

Hara [192]. Numerical examples can be found in Ishihara [193]

Kondner and

Zelasco [194]
E0ap
s ¼ 1

~aþ ~be1

Hyperbolic model initially developed by Kondner [195]. Parameter setting can

be found in Duncan and Wrong [196]

Hansen [197] E0ap
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

e1 a0�b0e1ð Þ

q
Parabolic model conceived to reproduce soil behavior under spread footings

subjected to static loadings

Duncan and

Chang [178]
E0ap
s ¼ 1

1=E0
iþ

Rf
qf
e1

Hyperbolic model based on previous models [194, 195]. It introduces the factor

Rf . Duncan et al. [71] proposed an expression for K 0ap
s and E0

t;ur . Kulhawy et al.

[198] proposed an expression for m0t: The model has been successfully applied

in various boundary value problems [71, 199, 200]

Desai [179] Spline functions Spline functions [201] are used to set experimental data with nonlinear curves

that represent constitutive relations. Some applications can be found in Desai

[179] and Yniesta et al. [202]. Despite the precision in curve fitting, the

computational cost is high

Hardin and

Drnevich [2]
Gap

s ¼ G0

1þch

ch ¼ c
cr

1 þ a00e�b00 ccr

� �
Hyperbolic model based on tests with resonant column

Pyke [158] Gap
s ¼ G0

1þ c�cR
ncr

		 		 Hyperbolic model

Jardine et al.

[203]
Eap
s;u ¼ cu Aþ B cos a log10

e1

C

� �� �c� �� �
Model for undrained isotropic materials. It provides satisfactory results in

simulations of triaxial compression tests in slightly overconsolidated low

plasticity clays under undrained conditions

Prévost and

Keane [204]
Gap

s ¼ G0
s1

s1þG0c
� Q

� �

Q ¼ s2
1
=G2

0

s1=G0þcmaxð Þ2
1

cm0max

cm
0

m0þ1

Hyperbolic model to reproduce soil behavior subjected to static and dynamic

loadings under small and large strains

Jardine et al. [8]
3 Gap

s

p0 ¼ C1 þ C2 cos a log10
esffiffi
3

p
C3

� �� �c� �

K 0ap
s

p0 ¼ C4 þ C5 cos d log10
evj j
C6

� �� �g� �

Generalization to the multiaxial case of the model of Jardine et al. [203]

Tatsuoka and

Shibuya [115]
Y ¼ X

1
C1 Xð Þþ

X
C2 Xð Þ

Ci Xð Þ ¼ Ai þ Bi cos p #0
i

X

� �di
þ1

� ��1
 !

Hyperbolic model for small, medium and large deformations. It is applicable to

sands under compression, constant confinement and plane strain conditions.

Applications can be found in Chiaro et al. [205], Tatsuoka and Shibuya [206],

Siddiquee [207] and Siddique et al. [208, 209]

Matasovic and

Vucetic [210]
Gap

s ¼ G0

1þb00cŝ
h

ch ¼ c
cr

Based on Kondner and Zelasko model [194] and in the work of Matasovic [211].

Comparison with the hyperbolic model is done in the work of Stewart et al.

[212]

Ishibashi and

Zhang [213]
Gap

s ¼ G0K c;PIð Þr00 r0v;K0

� � ~m c;PIð Þ Model for plastic soils based on the research of Hardin and Drnevich [2], Iwasaki

et al. [125], Tatsuoka et al. [214], Kokusho [215], Kokusho et al. [216],

Ishibashi [217] and Dobry and Vucetic [218]

Fahey and Carter

[219]
Gap

s ¼ G0 1 � f s
smax

� �g� �
Model for sands

Mayne [220]
Gap

s ¼ G0 1 � s
smax

� �m This model is equivalent to that of Fahey and Carter [219] for m ¼ f ¼ g ¼ 1.0

Shibuya

et al. [221] E0ap
t ¼ E0

max 1 � _q
_qmax

� �m0� �n0 Hybrid model of those of Fahey and Carter [219] and Mayne [220]

Bolton and

Whittle [222]
Gap

s ¼ a0cb
0
�1 Based on previous works such as those of Gunn [223] or Bolton et al. [224]. The

model provides a good approximation in the simulation of pressuremeter tests

[222]

Lee and Salgado

[225]
Gap

s ¼ G0 1 � f̂
ffiffi
J

p
�
ffiffiffi
J0

p
ffiffiffiffiffiffi
Jmax

p
�
ffiffiffi
J0

p
� �ĝ� �

p0

p0
0

� �ng Subsequently developed by Lee and Salgado [226, 227], it is a generalization to

the multiaxial case of the model of Fahey and Carter [219]. Some applications

can be found in the work of Lee et al. [228]
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the HS-S model [67] (see Sect. B.2.1). However, despite its

great advantages, the SSOM model presents some limita-

tions that the HQH model solves, with the following con-

siderations: (1) the use of an intrinsic reversal criterion

(and not an extrinsic one like in the SSOM model); (2) the

ability to recover the stiffness continuously with the rota-

tion angle of strain recent paths, through the use of a his-

tory tensor inspired by the intergranular strain tensor of the

Niemunis and Herle model [151] (and not discontinuously

like the SSOM model); (3) the consideration of infinite

degradation curves of the shear modulus, which provides

the model with versatility and great adaptability to exper-

imental results (and not just a single degradation curve like

the SSOM model); (4) the consideration of a variable

Poisson’s ratio m0 � m0min that does not limit the values of the

bulk modulus (and not of a constant Poisson’s ratio m0 ¼
m0const like the SSOM model, that forces the proportionality

Table 3 (continued)

Model Small Strain Stiffness Comments

Lehane and Cosgrove

[147]
E0ap
s ¼ E0

max

1þ e�eth
er�eth

� �n̂ if e� eth

E0ap
s ¼ E0

max if e\eth

Hyperbolic model for the calculation of settlements in spread footings on sands

Atkinson [32]

E0ap
t ¼ E0

max

1�
ef
eð Þr0

1�
ef
eth

� �r0

0

@

1

A if e� eth

E0ap
t ¼ E0

max if e\eth

Atkinson model is applicable to drained or to undrained loading, with

appropriate values for the parameters. For typical values of stiffness and degree

of non-linearity for soil the value r0 is generally in the range 0:1 to 0:5 [32]

Darendeli [229] Gap
s ¼ G0

1þcâ
0
h

ch ¼ c=ĉr

Based on the model of Hardin and Drnevich [2]. The model is applied to both

cohesive soils and granular soils [229, 230]

Dos Santos and

Correia [231]
Gap

s ¼ G0

1þach

ch ¼ c=c0:7

Based on the model of Hardin and Drnevich [2]. The value of the parameter a
has been selected through a least square adjustment

Table 4 Quasi-hypoelastic models (2/2)

Model Small Strain Stiffness Hysteretic Behavior Comments

SSOM [67] cHIST ¼
ffiffiffi
3

p
_e � H � 1ð Þk k= _ek k

if cHIST � cc

Gap
s ¼ Gref

0

r0
3
þc0 cotu0

p0
ref
þc0 cotu0

� �m
1 þ a cHIST

nc0;7

� �� ��1

K 0ap
t ¼ 2Gap

s 1þm0urð Þ
3 1�2m0urð Þ

if cHIST [ cc

Gt;ur ¼ Gref
t;ur

r0
3
þc0 cotu0

p0
ref
þc0 cotu0

� �m

K 0
t ¼

2Gt;ur 1þm0urð Þ
3 1�2m0urð Þ

1. Reversal criterion: extrinsic, kSi Hii � 1Þð Þ\0

2. Memory rules: stores information of a limited number of reversal points

(which allows complying the generalized Masing Rules Nr. 1, Nr. 2, Nr. 3

and, partially, Nr. 4)

3. Effect of reversals on degradation variables: total or partial reinitialization

after reversals

4. Effect of reversals on soil stiffness: discontinuous stiffness recovery

See Sect.

B.1.2

HQH

[156, 175]
if cDRoct � caur

cHoct ¼
ffiffiffiffiffiffiffiffi
4=3

p
hk k

Gap
s ¼ Gap;a;H;ref

s;0
p0

p0
ref ;2

� �m2

1 þ a
cHoct
nc0:7

� �� ��1

K 0
s ¼ K 0ref

s
p0

p0
ref ;1

� �m1

if cDRoct [ caur

Gt;ur ¼ Gref
t;ur

p0

p0
ref ;2

� �m2

K 0
t ¼ K 0

s 1 þ eeoct
p0

3m1K
0
s
�eeoct

 !

1. Reversal criterion: intrinsic, considers reversals that affects stiffness when

ĥ : b_e� cos â�ð Þ, and reversals that as well affects memory variables when

êDR : b_e� cos â�ð Þ
2. Memory rules: stores information of an unlimited number of reversal points

(which allows complying the generalized Masing Rules Nr. 1, Nr. 2, Nr. 3

and, partially, Nr. 4)

3. Effect of reversals on degradation variables: total or partial reinitialization

after reversals

4. Effect of reversals on soil stiffness: continuous stiffness recovery

See Sect.

B.1.2
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K / G); (5) the consideration of multiple state variables

that define different short and long-term memory levels in a

similar way to how the Hueckel and Nova model [22] does,

which endows the HQH model with robustness to repro-

duce the hysteretic behavior of the soil; (6) the consider-

ation of the strain-induced anisotropy; or (7) a higher level

of compliance with the Generalized Masing Rules, espe-

cially with Rule No. 4, thanks to the greater amount of

information that the HQH model stores at the reversal

points. In summary, the HQH model unifies different

concepts with great potential from several proven models.

Both models (SSOM and HQH) require the same or

equivalent few and simple parameters, except for an

additional parameter required by the HQH model, which is

the maximum shear modulus after a reversal of the devi-

atoric strains of 908 (Gap;90;H;ref
s;0 ). This parameter must be

obtained from biaxial, true triaxial or hollow cylinder with

torsion tests with internal strain measures, or it can be

estimated from Gap;180;H;ref
s;0 throughout the relation

Gap;90;H;ref
s;0 ¼ KGap;180;H;ref

s;0 , taking K values of 0:40 � 0:58

for sands and of 0:50 for clays [156] (K 
 mT=mR, where

mT and mR are the parameters that control stiffness in the

Niemunis and Herle model [151]).

(B.2) Advanced models

The advanced models are those incrementally multilin-

ear models that are capable of reproducing soil behavior in

the entire strain range (Zones I, II, III and IV of Jardine

[6]).

(B.2.1) Classic elastoplastic models

Classic elastoplastic models that consider soil behavior

in the range of small strains add, to the elastic regime of the

classic elastoplastic formulation, the nonlinear, hysteretic

and dependent on history behavior of the soil through the

incorporation of new state variables vel;hist to the constitu-

tive equation within yield surfaces _r0 ¼ G e; r0; vel;hist; _e
� �

.

This is normally attained by adopting the structure of a

quasi-hypoelastic hysteretic model to describe the elastic

formulation of the elastoplastic model. In this case, to

calculate the stress, the apparent stiffness moduli are

operated with the elastic strains and not with the total ones.

According to Jardine [6] and Jardine et al. [8], this

semiempirical methodology allows attaining very precise

predictions thanks to the wide range of strains considered,

although its use entails a loss of generality and a lack of

consistency of the theoretical framework on which it is

based. Among others, these assumptions lead to the fol-

lowing: (1) it is not correct to apply the elastic relations to

the apparent stiffness moduli; and (2) the mechanisms of

the quasi-hypoelastic hysteretic models and the elasto-

plastic models that try to explain the reduction of soil

stiffness during the primary loading processes, in

comparison with the stiffness in unloading or reloading

processes, are being overlapped. The basic equations used

in classic elastoplastic models, generalized to the case of

k ¼ 1. . .q yield surfaces are widely known.

The number of tensorial zones #Z that present these

models will depend on the number of yield surfaces and

their intersections. In general, it will be complied that

#Z ¼ 2 in models with a single yield surface and #Z[ 2

in models with multiple yield surfaces.

Table 5 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of some

elastoplastic models that consider soil behavior in the range

of small strains.

The widespread use of the elastoplastic formulation and

its balance between complexity and usability, gives the

models that are based on it the greatest potential to be used

in the practical applications, among all those analyzed in

this paper, of which stand out the HS-SS model (based on

the HS-S model [67]), and the EPHYSS model [156]. The

incorporation of formulations that can reproduce soil

behavior in the range of small strains within models used in

professional practice (as it was achieved with the HS-SS

model in Plaxis), would allow professional engineers to

familiarize themselves with the characteristics and com-

plexity of non-linear, hysteretic and dependent on recent

history soil behavior in the range of small strains. Once this

first goal has been achieved, introducing more complex

models into commercial software could be less traumatic.

The HS-SS model is one of the few models widely used

in professional practice that considers soil behavior in the

range of small strains and it uses known and relatively easy

to obtain/estimate parameters. The HS-SS model is based

on the HS-S model which adds, to the elastic formulation

of the SSOM, the plastic formulation of the HS model

[233] with two modifications: (1) it replaces the dilatancy

criterion of Rowe [238] with that of Li and Dafalias [239]

to describe the contractive behavior of the soil; and (2)

modifies the hardening laws and introduces the factor

hi ¼ Gmð Þ1þE0
t;ur=E

0
i . The HS-S model significantly improves

the approach to soil behavior provided by the HS model,

although it has certain limitations [67]. Some applications

can be found in [240–242].

The HS-SS model presents some small differences with

respect to the HS-S model on which it is based. These

differences appear in the expressions both models use to

calculate the dilatancy angle and in the expression of the

Cap-surface hardening law, where the increase of the state

variable depends on the confinement in the HS-S model

and on the state variable itself in the HS-SS model.

Despite its great advantages, some aspects of the HS-SS

model could be improved, and some inconsistencies whose

effects can have a considerable influence on the numerical
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simulations of boundary value problems, as these are

cumulative, should be corrected [156, 175, 243–245]. This

is achieved with the EPHYSS model.

The EPHYSS model adds to the elastic formulation of

the HQH model, the plastic formulation of the HSMOD

model [156], which is the same as that used in the HS-S

model and, like this one, also uses known and relatively

easy to obtain/estimate parameters. EPHYSS model

improves the approach to the soil behavior in the range of

small strains with respect to the HS-SS model (see Sect.

B.1.2) and corrects the numerical inconsistencies detected

in it. Simulations with EPHYSS model of different element

tests and several boundary value problems can be found in

Castellón [175].

Although unsaturated soil models are not analyzed in

this paper, it should be pointed out that recently some

advanced elastoplastic models for unsaturated soils capable

of reproducing soil behavior in the range of small strains

have been proposed, such as, for example, the model of Ng

et al. [246].

(B.2.2) Multisurface models

The multisurface models with kinematic hardening were

initially developed by Iwan [247] and Mróz [13], based on

previous works, as those of Duwez [248] and Besseling

Table 5 Elastoplastic models that consider soil behavior in the range of small strains

Model Small Strain Stiffness Hysteretic Behavior Comments

SDMCC

[148, 232]
G0 ¼ AGp

0 �n1OCR �m1

Gap
t eq
� �

¼ BGp
0 �n2OCR �m2 e �b2

q

K0 ¼ CKp
0 �n3OCR �m3

Kap
t evð Þ ¼ DKp

0 �n4OCR �m4 e �b4
v

The plastic part is described

with the MCC model

1. Reversal criterion: extrinsic De nð Þ : De nþ1ð Þ\0

2. Memory rules: stores information of the last

reversal point and applies the original Masing Rules

[157]

3. Effect of reversals on degradation variables: total

reinitialization after reversals

4. Effect of reversals on soil stiffness: discontinuous

stiffness recovery

In the elastic zone, it is assumed

Gap
t ¼ G0 for eq\10�5, and

Gap
t ¼ Gap

t eq
� �

for

10�5\eq\10�2. The

elastoplastic formulation of the

MCC is assumed when eq [ 10�2.

Some applications of the SDMCC

model can be found in Osman and

Bolton [232]

HS-S [67] Same elastic formulation as

SSOM. The plastic part is

described with HS model

[233]

Idem SSOM See Sect. B.2.1

HS-SS

implemented

in Plaxis

Same elastic formulation as the

HS-S model. Same plastic

formulation as the HS-S

model with two small

differences (see comments)

Idem SSOM See Sect. B.2.1

FC ? MCC

[145]

It uses the same elastic

formulation as the model of

Fahey and Carter [219]

within the yield surface of the

MCC model

Not defined The FC ? MCC model

incorporates elastic nonlinearity to

the elastic formulation of the

MCC model through the model of

Fahey and Carter [219]. Uliniarz

[234] improves the FC ? MCC

model with the RU ? MCC

model, and some applications and

comparasions with HS-SS can be

found in Uliniarz [235]

SC1SS [236]
Gap

s ¼ G0 1 � eq�10�5

â�þb̂� eq�10�5ð Þ

� �
Not defined Based on the S-CLAY1 [237] in

which introduces small strain

stiffness and its degradation, an

inclined yield surface on p0 � q
space and the effect of Lode angle

on the yield surface shape on

deviatoric plane

EPHYSS

[156, 175]

Same elastic formulation as the

HQH model

The plastic part is described

with HSMOD model which

reproduces the plastic

formulation of HS-SS model

(see comments)

Idem HQH model See Sect. B.2.1
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[249]. Subsequently, Prévost [11, 12] extended these

models and applied them to Soil Mechanics. These models

consider various nested yield surfaces (f m00ð Þ ¼ 0; m00 � 2),

generally in the stress space (Fig. 28a). Each of these

surfaces is activated at the moment when the stress state

reaches its boundary, leading to a finite decrement in the

global plastic hardening modulus, which, at the same time,

generates greater plastic strains (Fig. 28b).

Multisurface models can reproduce a discontinuous

variation of elastoplastic stiffness. When j nested yield

surfaces are activated, and depending on the followed

stress path, they are displaced keeping them tangent at the

contact points. The number, form, size and situation of the

nested surfaces constitute the state variables vhist. The

approximation to the soil behavior that these models pro-

vide depends on the number of nested yield surfaces con-

sidered, since a greater number of surfaces implies a softer

variation in stiffness. However, if this number is high,

using these models can be computationally expensive.

Based on this limitation, bounding surface plasticity

models and bubble models were created.

The multisurface models have two tensorial zones #Z

[66].

Table 6 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of some

multisurface models.

Puzrin and Burland [152], after studying and evaluating

the models of Kondner [195], Hardin and Drnevich [2],

Griffiths and Prévost [253], Tatsuoka and Shibuya [115]

and Jardine et al. [203], and based on the works of Puzrin

and Burland [254], developed a model based on the theo-

retical framework of Jardine [6], distinguishing, in the

stress space, three zones where the soil has different

behaviors around any local origin constituted by a point of

the stress path. Addenbrooke et al. [68] proposed the

generalization of the model of Puzrin and Burland to the

multiaxial case and Puzrin et al. [255] extended the original

model, introducing the plastic behavior in a thermody-

namically consistent formulation. However, Puzrin and

Burland [152] model requires unusual parameters in the

professional practice, which may be a handicap for its use.

On the other hand, this model has certain limitations to

reproduce the hysteretic behavior of the soil, since: (1) it

only stores information of the last reversion point; (2) after

a reversion the state variables that control degradation can

only be fully reinitialized; and (3) stiffness recovery is

discontinuous with the rotation of the recent path.

The approach proposed by Seyedan and Solowski [252]

seems more promising for future practical applications, due

to its ability to introduce soil behavior in the range of small

strains in classical models. Seyedan and Solowski devel-

oped a methodology to introduce shear stiffness nonlin-

earity to classic elastoplastic models that have a constant

elastic shear modulus. A new Small Strain Yield Surface is

defined to reproduce the small strain shear stiffness non-

linearity following the expression from Dos Santos and

Correia [231]. This methodology increases the total num-

ber of parameters of the original model by only two, and

does not affect its original plastic formulation. Seyedan and

Solowski apply this methodology to the MCC and MC

models. State variable aq replaces epq in the calculation of

the hardening law to include errors caused by Ge
MCC. Once

G reduces its value to Ge
MCC, it is maintained within an

elastic behavior until stress state reaches MCC Yield Sur-

face or a reversal occurs. The movement of the Small

Strain Yield Surface does not produce any volumetric

plastic strain and, therefore, does not affect the MCC Yield

Surface, but the deviatoric plastic strain of the MCC Yield

Surface does affect the Small Strain Yield Surface. In

Seyedan and Solowski [256] it is showed how Fss is well

Fig. 28 a Schematic representation of a multisurface model. b Experimental curve q� e1 (left) and curve q� e1 resulting from multisurface

model (right). From [250]
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Table 6 Multisurface models

Model Small Strain Stiffness Hysteretic Behavior Comments

Prévost

[11, 12]
Linear elastic model within f m00ð Þ ¼ 0,

m00 ¼ 1. . .p

For undrained conditions:

H m00ð Þ ¼ H m00ð Þ R 2=3 _ep : _epð Þ1=2
� �

For drained conditions:

_ep ¼ 1

H m00ð Þ Q0 m00ð Þ : _sþ Q00 m00ð Þ _p0
� �

P0 m00ð Þ þ P00 m00ð Þ1
� �

1. Reversal criterion: intrinsic, when

stress trajectory is directed towards

the interior of the nested surfaces

and no take-off of them takes place

2. Memory rules: stores information

of several reversal points based on

the number of surfaces that have

been taken-off from the previous

tangent contact point. This

information defines surfaces

position until surfaces are displaced

again

3. Effect of reversals on degradation
variables: total or partial

reinitialization after reversals,

depending on the number of

surfaces that remain in contact

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery. If

a large number of surfaces is

considered, for practical purposes,

it can be considered an almost

continuous recovery

Anisotropic models based on the

models of Mróz [13], one for

undrained conditions and another

for drained conditions. Some

applications of the model for

undrained conditions can be found

in the work of Prévost et al. [251]

Simpson

et al. [3]

Small Strains:

Linear elastic behavior within KYS (which is

assumed to be circular)

Intermediate strains:

Elastoplastic behavior with anisotropic elasticity

over the KYS and during its displacement.

Strains are not controlled by the plastic flow rule

Large strains:

Elastoplastic behavior

Strains are controlled by the plastic flow rule

1. Reversal criterion: intrinsic, when

strain trajectory is directed towards

the interior of the KYS

2. Memory rules: stores information

of the last reversal point. This

information defines the position of

the KYS until it is displaced again

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

The KYS is defined in strain space.

Some applications can be found in

the work of Simpson et al. [3]

Puzrin and

Burland

[152]

Within LER (linear elasticity):

FLER ¼ 1 þ n02 J=p0ð Þ2� aLER=p
0ð Þ2

K 0
LER ¼ K 0ref

LER p0=p0ref

� �b̂

GLER ¼ Gref
LER p0=p0ref

� �ĉ

Within SSR and outside LER (nonlinear
elasticity):

FSSR ¼ 1 þ n02 J=p0ð Þ2� aSSR=p
0ð Þ2

K 0 ¼ K 0
LER 1 � âA1ð Þ

G ¼ GLER 1 � âA2ð Þ

1. Reversal criterion: intrinsic, _p0\0

or _J\0

2. Memory rules: stores information

of the last reversal point. This

information defines the position of

the LER and the SSR until the SSR

is displaced again, which

simultaneously causes LER

displacement

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

See Sect. B.2.2

Seyedan

and

Solowski

[252]

Within Small Strain Yield Surface:

Fss ¼ 3G0

1=f aqð Þð Þþa=eqr
� q

Gap
s ¼ G0 1 þ a

eq
eqr

� �� ��1

epq � eErrorq ¼ aq ¼ q
3

1
G � 1

Ge
MCC

� �

Within MCC Yield Surface:

Soil behaviour is described by the MCC model

This model does not reproduce soil

hysteretic behavior.

See Sect. B.2.2
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defined within an hyperplastic framework. Despite the

remarkable potential of this methodology, the resulting

models are not capable of reproducing soil hysteretic

behavior, for which it would be necessary to define new

state variables. Future research lines should focus on this

aspect.

(B.2.3) Brick models

Most of the elastoplastic models for soils are formulated

in the stress space, although some have been formulated in

the strain space [31, 67, 257, 258]. Yoder and Iwan [259]

and Iwan and Chelvakumar [260] highlight some of the

advantages of the models that are formulated in the strain

space. Many of them have not prospered, but the brick

model of Simpson [31] has led to a theoretical framework

that has subsequently been successfully applied to various

models. Among them are the model of Clarke [69], the

model of Ellison [261] or the HS-Brick Model [155].

To explain how the brick models work, Simpson [31]

uses an analogy in which he considers that soil behavior in

the range of small strains resembles a man pulling a set of

bricks attached to him by inextensible strings. The move-

ment of the man represents the imposed strains path and the

movement of the bricks represents the plastic strains. When

any of the strings is not tensioned, the part of the plastic

strain corresponding to such string is not generated. But

when such string is tensioned, as the man is at a distance

equal to that of the length of the string and in its direction

of stretching, the respective plastic strains are activated,

with the consequent decrease in the elastoplastic stiffness

of the soil (Fig. 29). The number and situation of the bricks

constitute the state variables vhist.

To explain the advantages of working in the strain

space, Ellison et al. [262] state that, despite the connection

between stress and strain, the changes in soil behavior are

determined by micromechanical changes in its fabric,

which is reflected at the macroscopic level as an accumu-

lation of strains. Furthermore, they affirm that anisotropy

due to the orientation of soil particles changes when large

strains occur, even if the stress is the same at the beginning

and at the end of these strains. Finally, they remember the

well-known statement of Burland (1967) cited by Simpson

[31]: ‘‘stress is a philosophical concept—deformation is the

physical reality’’. Ellison et al. conclude that the models

formulated in the strain space are more suitable to explain

the mechanisms that govern soil behavior. This approach

allows explaining, in a relatively simple way, the obser-

vations made by Atkinson et al. [30], Clayton and Hey-

mann [20], Gasparre [75] and Gasparre et al. [34]. From a

practical point of view, the models formulated in the strain

space can be easily implemented in numerical models

without the need to isolate, in each calculation step, the

strain as an independent variable [260], just as the models

formulated in the stress space should do. In addition, as

Yoder and Iwan [259] demonstrate, the models formulated

in the strain space do not have the problem of surface

intersection, nor some of the instability problems that the

models formulated in the stress space do.

Brick models consider as many tensorial zones as pos-

sible combinations of active and non-active bricks exist. If

n bricks are considered, the maximum number of tensorial

zones can be calculated as the sum of the possible com-

binations with repetition of 1. . .n00 bricks, plus the case in

which no brick is active, that is,

#Z ¼
Pn00

k¼0

n00!= k! n00 � kð Þ!ð Þ.

Table 7 analyzes stiffness formulation, hysteretic

behavior treatment and general aspects of some brick

models.

The original model of Simpson [31] is formulated in the

strain space, considering a plane strain state. A finite

number of bricks is required to define the degradation

curve. This model introduces the effect of soil overcon-

solidation through the parameter bmod. A higher proportion

of volumetric and shear elastic strains is assumed for

higher mean stress. It reproduces well the undrained tra-

jectories, and worse the drained ones, unless the effect of

dilatancy is introduced. It does not reproduce the critical

state, therefore it should be used in stiff clays or its for-

mulation should be extended.

The Simpson model [31] formulation that reproduce the

behavior of the soil in the range of small strains can be

used with relative ease in classic or advanced models (for

example, in the HS-Brick Model [155], which improves the

HS-SS model). The ability of Simpson model to be com-

bined with other models provides it with great potential.

Moreover, the Simpson model establishes a theoretical

framework that allows to easily understand part of the

formulation of other models, as happens with the history

tensors of the advanced elastoplastic models HS-SS and

EPHYSS (see Sect. B.2.1).

(B.2.4) Bounding surface plasticity models

Bounding surface plasticity models were initially

developed by Dafalias [263], Krieg [264], Dafalias and

Popov [265] and Dafalias and Herrmann [266] with the aim

of attaining a continuous evolution of the elastoplastic

stiffness, which is extended to the interior of the yield

surface in the range of small strains in these models, and of

reducing, therefore, the computational cost of the multi-

surface models. Bounding surface plasticity models gen-

erally use two surfaces: an exterior surface, named

bounding surface, and an interior surface, called current

loading surface (Fig. 30). Between both surfaces, unlike

the multisurface models, which consider m00 surfaces that

give place to a discrete variation in stiffness, bounding
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surface plasticity models consider continuous functions to

represent the plastic hardening modulus, obtaining con-

tinuous variations of stiffness (which is equivalent to

consider m00 ! 1 in multisurface models). The form, sit-

uation and orientation of both surfaces, along with other

information stored at the last reversal point, constitute the

state variables vhist.

The formulation of these models is based on that of the

classic elastoplastic models, although unlike the latter, the

bounding surface plasticity models consider plastic strains

also during loading processes within the bounding surface

(OCR[ 1Þ. Such plastic strains are made to depend on the

distance between the current stress state, located on the

current loading surface, and the denominated image point,

located on the bounding surface plasticity, according to the

mapping rules.

The number of tensorial zones #Z of these models is

reduced to two when there is only one bounding surface

and more than two in case there is a greater number of

bounding surfaces [66] (similar to the case of classic

elastoplastic models with yield surfaces).

Table 8 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of some

bounding surface plasticity models.

Although these models can reproduce different aspects

of the soil in a wide range of strains, including also

small strains, they require parameters difficult to obtain

experimentally and with which geotechnical engineers

are not familiar. During the coming years it is very

possible that these models will remain limited to an

academic use.

(B.2.5) Bubble models

Bubble models were developed to solve some of the

limitations posed by the bounding surface plasticity mod-

els. The latter allow reproducing the nonlinear plastic

isotropic hardening or softening behavior of the soil during

loading processes and assume that part of the deformations

corresponding to these loading processes are plastic, even

in the range of small strains. Conversely, they consider that

soil behavior is elastic during unloading processes, which

restricts the degree of coupling between volumetric and

deviatoric behavior [84] and limits their ability to repro-

duce the hysteretic soil behavior in the range of small

strains. Bubble models are based on the concepts of

bounding surface plasticity models and multisurface mod-

els and include one or more surfaces, called bubbles

(Fig. 31), with kinematic hardening, in addition to the

isotropic hardening within the bounding plasticity surface.

The number, shape, size and situation of the bubbles con-

stitute the state variables vhist. Likewise, bubble models

must include, apart from the mapping rules that control the

plastic hardening modulus as the bubbles move, translation

rules that control the movement of such bubbles.

The number of tensorial zones #Z of these models, as in

multisurface models, is two.

Table 9 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of some

bubble models. Other bubble models have introduced the

effect of soil destructuration [294, 295], soil anisotropy

[296] and some improvements to the Three Surface Kine-

matic Hardening model (3-SKH) [297].

Fig. 29 Brick model of Simpson, from [31]. a Scheme of the analogy of man pulling bricks attached to him by inextensible strings.

b Degradation curve of the model
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The ability of bubble models to reproduce the hysteretic

behavior of the soil is potentially greater than that of

bounding surface models. However, bubble models use has

been very limited in practical applications, and present a

great sensitivity to the exponent that appears in the

expressions of the plastic modulus, which has a significant

effect on the stress–strain curves [298].

(B.2.6) Multilaminated models

The concept of multilaminated model was initially for-

mulated by Batdorf and Budiansky [299]. Zienkiewicz and

Pande [300] extended the concept to the analysis of joints

in rocks. Subsequently, Pande and Sharma [301] and

Sadrnejad and Pande [302] extended these models to Soil

Mechanics. Multilaminated models are based on the con-

cept that the three-dimensional stress or strain state at a

point of the continuous medium (global state) can be

obtained as the sum of the two-dimensional stress or strain

state on different i planes with different orientations that

pass through such point (local state). For that purpose, a set

of fundamental equations are established in each plane:

_r0i ¼ Tið ÞT � _r; _eei ¼ Ci � _r0i; _ei ¼ _eei þ _epi _epi ¼ _kiogi=or0i. The

number of planes considered in multilaminated models is

reduced to a finite number and, through the formulation

adopted in the model, they are able to represent all orien-

tations in space, grouped by sectors. Bazant and Oh [303]

and Ehret et al. [304] demonstrate that using 33 planes in

the calculation of _� offers acceptable results and an

acceptable computational cost. Global strain increments,

which correspond to an increment in global stress, are

calculated from the integration of local strains into the

planes. For the deduction of the expression that relates

these magnitudes, the principle of virtual works is used

dWmacro ¼ 4=3ð ÞV _r0 : _e ¼
Z

oV

dWmicrodS
0 ¼

Z

oV

_r0i : _eidS

Table 7 Brick models

Model Small Strain Stiffness Hysteretic Behavior Comments

Simpson

[31]

Maximum elastic stiffness when all

bricks are deactivated

Reduction of stiffness due to the

appearance of plastic strains

associated with active bricks

( _ep ¼
P

_epbrick�i)

1. Reversal criterion: intrinsic, when strain

trajectory deactivates some of the active

bricks

2. Memory rules: stores information of

several reversal points based on the

number and position of the bricks

3. Effect of reversals on degradation
variables: total or partial reinitialization

after reversals depending on the position

of the bricks

4. Effect of reversals on soil stiffness:

discontinuous stiffness recovery. If a large

number of bricks are considered, for

practical purposes, it can be considered an

almost continuous recovery

See Sect. B.2.3

HS-

Brick

[155]

HS-SS formulation (as implemented in

ZSoil FE Code) combined with a

Brick model to describe shear

stiffness degradation:

Gref
t ¼ Gref

0 1 �
Pactivebricks

i¼1

Dwb
G

� �

Dwb
G ¼ Gref

0
�Gref

t;ur

Gref
0
Nb

The b–th brick is active when cb ¼ sb

Idem Simpson Brick model [31] The HS-Brick model corrects the

overshooting of the original HS-SS model.

HS-Brick model replaces the procedure

based on the history tensor H of the HS-

SS model. The new proposal is based on a

Brick model that represents Nb nested

circular yield surfaces in a six-

dimensional strain space to reproduce the

shear stiffness degradation curve

Fig. 30 Schematic representation of surfaces of a bounding surface

plasticity model, from [84]
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Table 8 Bounding surface plasticity models

Model Small strain stiffness Hysteretic behavior Comments

MIT-E3 [142] K 0
t ¼

vp0

j0 1þCn� lnX
0�xXsð Þn

��1
� �

Gt ¼
3K0

t 1�2m0constð Þ
2 1þm0constð Þ

X
0 ¼ p0=prev if p0 � p0rev

p0rev=p
0 if p0\p0rev




Xs ¼ g0 � g0rev
�� ��

1. Reversal criterion: extrinsic, _v0\0

[267]

2. Memory rules: stores information

of the last reversal point (ev;rev,
Erev), which also determine the size

of the first yield surface

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

Based on the MIT-E1 model [268], and

subsequently developed by Whittle

[269] and Whittle and Kavvadas [270].

Ganendra [267] and Whittle [271]

analyze discrepancies in the previous

formulations of the model and propose

some alternative formulations. Several

applications can be found in the work

of Whittle [36, 269] and Whittle et al.

[272]

CASM-c

[143, 273]
K 0
t ¼

vp0

j

Gt ¼
3K0

t 1�2m0constð Þ
2 1þm0constð Þ

Plastic modulus during primary loading:

H ¼ 3v
k�jð Þ ln r

3þ2M
3p0jþ2qj

� 3�M
3p0jþqj

� �
þ h

p0
1�c�ð Þm

�

c�

Plastic modulus during unloading:

H ¼ HU
1

1�c�ð Þ

Plastic modulus during reloading:

H ¼ 3v
k�jð Þ ln r

3þ2M
3p0jþ2qj

� 3�M
3p0jþqj

� �
þ HR

1�c�ð Þ
c� 1 þ epq

� �k�

1. Reversal criterion: extrinsic,

elastic unloading

2. Memory rules: stores information

of the last reversal point, which

also determines the size of the first

yield surface

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

Based on critical state models [73, 74]

and on sand models that include the

concept of state parameter [274, 275].

The CASM-c model simulates

nonlinear soil behavior and

differentiates loading and unloading

stiffness so it can reproduce soil

hysteretic behavior. Some applicacions

can be found in Khong [276]

NAHOS [144] K 0
t ¼

vp0

j

Gt ¼
3K0

t 1�2m0constð Þ
2 1þm0constð Þ

Plastic modulus:

KP ¼ KP þ v
k�jC

� r̂0

r̂0
0
�r̂0

� �l�
f̂ 0

1. Reversal criterion: extrinsic,

Dr0 nð Þ : r0 n�1ð Þ � r
0 n�1ð Þ
S

� �
\0

2. Memory rules: stores information

of the last reversal point (elastic

center r0S), which also determines

the size of the first yield surface

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

NAHOS model is based on Cam Clay

model and allows reproducing the

nonlinear and hysteretic behavior of

cohesive soils. The model was

subsequently developed in the works of

Gryczmanski et al. [277], Jastrzebska

[278, 279] and Sternik [280]. Purely

elastic soil behavior is reduced to a

single point in the stress space, which

agree with the observations of Hueckel

and Nova [22]. Gryczmanski et al.

[144] comment on the need to

introduce a nonlinear elastic law to

improve the predictions of the cyclic

behavior of the soil. Some applications

can be found in the work of Jastrzebska

and Sternik [281]

MIT-S1 [149] K 0
0

pa
¼ Cb

1þe
e

� �
p0

pa

� �1=3

1 þ 1
3

1þm0
0

1�2m0
0

� �
g : g

� �1=6

K 0
t

pa
¼ 1þeð Þ

eqr
p0

pa

qr ¼ D 1 � n0 ~r
� �

þ 1þxsn
0
sð Þ

Cb 1þ1
3

1þm0
0

1�2m0
0

� �
g:g

� �1=6

p0

pa

� �2=3

2Gt=K
0
t

2G0=K0
0

¼ 1 þ xn0s
� ��1

if p0\p0rev
1 þ xn0n0s
� ��1

if p0 � p0rev

(

n0 ¼ p0=p0rev if p0 � p0rev
p0rev=p

0 if p0\p0rev




n0s ¼ g� grevk k

1. Reversal criterion: extrinsic,

_v00v00\0

2. Memory rules: stores information

of the last reversal point (ev;rev,
erev), which also determines the

size of the first yield surface

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

Based on the works of Whittle [142],

Whittle [269], Whittle and Kavvadas

[270] and Pestana [282], MIT-S1

model is as a generalization for clays

and sands of the MIT-E3 model [142].

It introduces the void ratio as a new

independent variable with the aim of

reproducing the characteristic

contractive/dilating behavior of sands

at different confinement pressures. As

well, it considers the hysteretic,

nonlinear and plastic anisotropic

behavior of the soil, and the critical

state behavior of clays. Some

applications can be found in the work

of Whittle [65] and Nikolinakou et al.

[283]
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and assuming dS0 
 DS0 ¼ sin ~að Þ sin ~b
� �

D~aD~b where D~a

and D~b are finite spherical sectors, _e ¼ 3
P

i

Ti � _eið Þwi and

wi ¼ sin~að ÞD~aD~b= 4Vð Þ are satisfied. In this type of mod-

els, the state variables that control the value of stiffness

modulus in each plane, the number of considered planes

and variables that store information of reversion points are

identified with the state variables vhist.

The number of tensorial zones #Z in multilaminated

models will depend on the amount of planes considered.

Nevertheless, this number is generally high; therefore,

despite not being incrementally nonlinear models, for

practical purposes, it can be considered that the stiffness of

this type of models does depend continuously on the

increments in the total strain tensor _e.
Table 10 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of

Schädlich and Schweiger [154] multilaminated model that

considers soil behavior in the range of small strains.

Schädlich and Schweiger model considers the elasto-

plastic behavior of the soil using a Cap-Cone type model

(based on the model of Wiltafsky [305] and Wiltafsky et al.

[306]), which allows describing plastic behavior in each

plane. It also considers the following concepts to describe

the nonlinear, hysteretic and history dependent behavior of

the soil within yield surfaces: (1) inherent and strain-in-

duced cross-anisotropy (using the spectral decomposition

of the global elastic compliance matrix [307]); (2) depen-

dence on stiffness with stress; (3) degradation of elastic

stiffness with the strain edeg; and (4) dependence on strains

history satisfying the Generalized Masing Rules. Schädlich

and Schweiger model is based on the model of Scharinger

et al. [308], but it introduces some differences: (1) it uses a

linearization for the degradation curve of the shear modu-

lus in each plane instead of the expression proposed by

Soga et al. [309]; and (2) it reproduces the effect of loading

history using an approach similar to that of Simpson’s

brick model [31] instead of the linear approximation of the

experimental results from Richardson [29].

Multilaminate models can reproduce multiple soil

characteristics, including its complex behavior in the range

of small strains. To do this, these models use parameters

known in professional practice and a clear and not con-

trived formulation, which places them in an advantageous

position compared to other incrementally multilinear

Table 8 (continued)

Model Small strain stiffness Hysteretic behavior Comments

Papadimitriou

et al. [140]
Gt ¼ G0

1þ2 1
a1
�1

� �
QRr
ng1

� � [ G0

1þ2 1
a1
�1

� �

K 0
t ¼

2Gt 1þm0constð Þ
3 1�2m0constð Þ

G0 ¼ Bpa
0:3þ0:7e2

p0

pa

� �0:5

QR
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
s� sRð Þ : s� sRð Þ

q

Plastic modulus:

KP ¼ p0hbhf d
b

1. Reversal criterion: extrinsic,

_Q
R

e\0

2. Memory rules: stores information

of the last reversal point

3. Effect of reversals on degradation
variables: total reinitialization after

reversals

4. Effect of reversals on soil stiffness:
discontinuous stiffness recovery

This model allows simulating sands

behaviour. It is based on the work of

Manzari and Dafalias [284] and

Papadimitriou [285] and has been

subsequently developed by

Papadimitriou and Bouckovalas [286].

It uses various concepts: (1) plasticity

with kinematic hardening; (2)

nonlinearity with hysteresis in the

range of small strains based on the

models of Ramberg and Osgood [190]

and Hueckel and Nova [22]; (3) state

parameter for sands [275]; and (4) the

effect of the soil fabric. It adopts the

expression of Hardin [287] for the

calculation of G0

Fig. 31 a Bounding surface and

bubble of a bubble model.

b Conceptual scheme of the

bubble movement of a bubble

model. From [84]
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models. Even so, its use has been very limited in practical

applications, although some commercial software, such as

ZSoil, already incorporate basic multilaminate models in

their libraries.

(C) Incrementally nonlinear models

Incrementally nonlinear models emerged from the gen-

eralization of the hypoelastic theory of Truesdell [310] and

from the theoretical framework of elastoplasticity [66]. The

most important characteristics of incrementally nonlinear

models are: (1) the absence of explicit decomposition of

strain increments in reversible and irreversible parts; and

(2) the continuous nonlinear dependence of the tangent

stiffness tensor on the direction of the increment strain

tensor. The most general constitutive equation of this type

of models is expression (36) [136, 311] and it is composed

of a linear part L r0; vð Þ : d and a nonlinear part

d�1
�� ��Q r0; vð Þ :: d 	 d½ �:

_r0 ¼ L r0; vð Þ : d þ d�1
�� ��Q r0; vð Þ :: d 	 d½ � ð36Þ

It is considered that incrementally nonlinear models

have an infinite number of tensorial zones #Z ! 1. In

some cases, nevertheless, as in hypoplastic models with

intergranular strain d, the incremental nonlinearity in the

range of small strains is linked to the sign d̂ : d, not

appearing the strain rate tensor d in the resulting tangent

stiffness formulation for d̂ : d[ 0 nor for d̂ : d� 0.

Therefore, for practical purposes, such models can be

considered conceptually closer to multilinear models than

to incrementally nonlinear models when describing soil

behavior in the range of small strains.

These models can reproduce nonlinear, hysteretic and

dependent on recent history soil behavior, characteristic of

Zone II.

(C.1) Hypoplastic models

Hypoplastic models represent a particular case of

incrementally nonlinear models. Specifically, hypoplastic

theory was initially developed by Kolymbas [312]. Sub-

sequently, two hypoplastic formulations were distin-

guished: K-hypoplasticity [313] and CLoE hypoplasticity

[314, 315]. Afterward, these formulations were extended

by Gudehus [316], Bauer [317], Wolffersdorff [318],

Niemunis and Herle [151] and Herle and Kolymbas [319],

among others. The first generation of hypoplastic models

considered L r0; vð Þ ¼ L r0ð Þ and Q r0; vð Þ ¼ N r0ð Þ 	 I, that

is, _r0 ¼ L r0ð Þ : d þ N r0ð Þkdk: Using the envelopes of

Gudehus in the Rendulic space, it is possible to decompose

the effect of the linear and nonlinear part of the previous

constitutive equation (Fig. 32).

Hypoplasticity offers a theoretical framework for

describing the nonlinear mechanical behavior of granular

materials, which is capable of reproducing soil strains by

reordering their solid skeleton. Furthermore, unlike

elastoplastic theory, in hypoplastic theory it is not neces-

sary to neither define yield surfaces nor flow rules, since

these can be derived from expression (36).

Nevertheless, classic hypoplastic models have some

limitations. Among them, the requirement of a large

number of parameters that limit their practical use, as well

as the fact that they are not able to reproduce correctly soil

behavior in the range of small strains during cyclic load-

ings due to ratcheting effect. Classic hypoplastic models

must incorporate new state variables to describe the hys-

teretic and dependent on recent history soil behavior [107].

To solve this problem, diverse strategies have been pro-

posed, some of them exposed by Tamagnini and Viggiani

[66]:

• Include the void ratio as a state variable to obtain a

unified formulation for soils with different densities and

to incorporate the concept of critical state. In this case,

L r0; vð Þ ¼ L r0; eð Þ and Q r0; vð Þ ¼ N r0; eð Þ 	 I are con-

sidered. An expression of the tensors L r0; eð Þ and

N r0; eð Þ appears in the work of Wolffersdorff [318] or

Gudehus [316], including the barotropy and picnotropy

factors.

• Introduce a structure tensor to consider the inherent soil

anisotropy.

• Introduce an internal variable dependent on strains for

modelling the cyclic soil behavior.

• Combine a hypoplastic model with a paraelastic one

(hypoplastic hybrid models).

Table 11 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of the

hypoplastic model with intergranular strain of Niemunis

and Herle [151] that considers soil behavior in the range of

small strains.

According to Niemunis and Herle [151], the strain in a

granular material is composed of the granular interface

strain, which should be understood as a macroscopic

measure of the microdeformations of the interface between

particles, and the strain caused by the reordering of the

grains that constitute the solid skeleton. The intergranular

strain tensor d, which aims to characterize the strain of the

granular interface in the range of small strains, is defined

and partially solves the effect of excessive stress or strain

accumulation during cycles. Other remarkable aspect is

that this model allows considering different degradation

curves based on the rotation of the strain path which pro-

vides versatility to the model and adaptability to experi-

mental results. However, it requires parameters that are

unusual in the engineering practice. Soil model parameters

for different sands can be found in Mohammadi-Haji and

Ardakani [320]. Mašı́n [321] proposed some modifications

in this model to solve the effect of g ¼ q=p0 on G0 and the

effect that the axis p0 ¼ 0 has on the degradation curve
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when it is crossed by a stress path. Wong and Mašı́n [322]

introduced the behavior of unsaturated soil to the Niemunis

and Herle model, and recent applications can be found in

Mohyla et al. [323].

Hypoplastic models have historically been barely used

in professional practice due to their formulation and

parameters away from the elastoplastic ‘‘standard’’. How-

ever, considerable efforts are being made to incorporate

these models into commercial software. In the case of the

Niemunis and Herle model, it is considered especially

useful, beyond its ability to reproduce certain aspects of

soil behavior, the mathematical definition of the concept of

intergranular strain by means of the state variable d that

takes the role of internal strain in the sense given by

Gudehus [107]. The mathematical structure of d allows

extending its use to elastoplastic models [324], taking

advantage of its great potential, as is the case of the

EPHYSS model [156].

(C.2) Hypoplastic hybrid models

Some recent advanced hypoplastic models combine

different concepts from previous theoretical frameworks.

This section briefly shows the specific case of the combi-

nation between hypoplasticity and paraelasticity, proposed

by Niemunis and Prada-Sarmiento [176].

Table 12 analyzes small strain stiffness formulation,

hysteretic behavior treatment and general aspects of

Niemunis and Prada-Sarmiento hypoplastic hybrid model

that considers soil behavior in the range of small strains.

The Niemunis and Prada-Sarmiento model improves

the hypoplastic model with integranular strain, providing it

with greater robustness to reproduce soil hysteretic

behavior, however, as an hybrid model, it not only inherits

the strengths of the base models, but also the weaknesses,

such as the unusual parameters and the lack of familiarity

with these theoretical frameworks in the professional

practice.

Table 9 Bubble models

Model Small Strain Stiffness Hysteretic Behavior Comments

Al-Tabbaa and Wood [10] Elastic behavior (f1\0):

K 0
t ¼

p0

j�

Gt ¼
3K 0

t 1�2m0constð Þ
2 1þm0constð Þ

Plastic strains ðf1 ¼ 0; f 0 ¼ 0Þ:
h ¼ ho þ hb

ho ¼ p0�p0a
k��j�

� �
p0 p0 � p0a
� �

þ J�Ja
M2

J

� �
J

� �

hb ¼ 1
k��j�
� �

b̂
b̂max

� �ŵ
p03c

1. Reversal criterion: intrinsic,

when stress trajectory is

directed towards the bubbles

interior

2. Memory rules: stores

information of the last

reversal point. This

information defines the

bubble position until it is

displaced again

3. Effect of reversals on
degradation variables: total

reinitialization after reversals

4. Effect of reversals on soil
stiffness: discontinuous

stiffness recovery

Originally developed by Al-Tabbaa

[288]. This model intends to

reproduce the nonlinear behavior of

slightly overconsolidated soils in the

range of small strains. It considers a

bubble f1 ¼ 0 within the bounding

plasticity surface f 0 ¼ 0. Both surfaces

are based on the formulation of the

MCC model. It requires only two

additional parameters (R̂ and ŵ) with

respect to the MCC model

(v; k�; j�;MJ , and m0const)

3-SKH [123] Elastic behavior (f2\0):

K 0
t ¼

p0

j�

Gt ¼ A p0

pref

� � ~n0

R0ð Þ ~m0

Plastic strains (f ¼ 0; f2 ¼ 0; f 0 ¼ 0):

h ¼ ho þ h1 þ h2

ho ¼ p0�p0
b

k��j�

� �
p0 p0 � p0b
� �

þ q�qb
M2

� �
q

� �

h1 ¼ 1
k��j�
� �

b̂1

b̂1 max

� �ŵ
p03c Ŝ

2

h2 ¼ 1
k��j�
� �

T̂ b̂2

b̂2 max

� �ŵ
p03c

1. Reversal criterion: intrinsic,

when trajectory is directed

towards the bubbles interior

2. Memory rules: stores

information of the two last

reversal points. This

information defines the

bubbles position until they

are displaced again

3. Effect of reversals on
degradation variables: total

reinitialization after reversals

4. Effect of reversals on soil
stiffness: discontinuous

stiffness recovery

Initially developed by Stallebrass [289].

It is an extension of the model of Al-

Tabbaa and Wood [10], in which a

new bubble f 1 ¼ 0 is considered to

introduce the influence of the soil

history. The expression given by

Viggiani [290] is adopted for the

tangent elastic shear modulus Gt. The

three surfaces are based on the

formulation of the MCC model.

Messerklinger [291] identifies some

contradictions in the predictions of the

model, which are resolved by

McDowell and Hau [292] and Ması́n

[293]
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5 Conclusions

Soil behavior in the range of small strains should be con-

sidered in the analysis of geotechnical problems, especially

when it is necessary to build new structures in dense urban

areas and to protect nearby existing structures, or when

sensitive constructions are built or affected.

Several circumstances during the 70 s of the twentieth

century motivated the development of new theoretical

frameworks and constitutive models that tried to explain

the soil behavior in the range of small strains, characterized

by being nonlinear reversible, hysteretic and dependent on

recent history.

The theoretical framework of Jardine [6], based on the

theories of KYS and plasticity, allows describing the

behavior of soil stiffness according to the range of stress

and strain to which it is subjected, giving place to four

differentiated zones (Zones I to IV). This theoretical

framework has been very useful to identify the strategies to

reproduce soil behavior in the range of small strains used in

the different constitutive models that have been analyzed.

Furthermore, in order to classify these constitutive

models, the concept of tensorial zone [136, 137] has been

used, grouping: (1) within the incrementally linear models

with a single tensorial zone, the linear and the nonlinear

elastic models (Cauchy elastic models, pseudoelastic

models, hyperelastic models and hypoelastic models stricto

sensu); (2) within the incrementally multilinear models

with several tensorial zones, the hysteretic models (parae-

lastic and quasi-hypoelastic models) and the advanced

models (classic elastoplastic models, multisurface models,

brick models, bounding surface plasticity models, bubble

models and multilaminated models); and (3) within the

incrementally nonlinear models with infinite tensorial

zones, the hypoplastic and the hypoplastic hybrid models.

In addition to that, there have been established four

elements considered fundamental for the characterization

of soil hysteretic behavior and which have led to a specific

model classification criterion. These elements are: (1)

reversal criterion, which can be extrinsic or intrinsic; (2)

memory rules, which allow storing information of one,

several or all active reversal points; (3) the effect of

reversals on the variables that control the degradation,

which can be fully or partially reinitialized after a reversal;

and (4) the effect of reversals on maximum soil stiffness,

where the stiffness recovery can occur continuously or

discontinuously with the rotation angle of the recent stress/

strain path, being total or partial.

Using the previous classification criteria, a total of 54

constitutive models that consider soil behavior in the range

of small strains have been analyzed and classified. The

study of these models has focused on describing and

explaining the constitutive relations that allow the repro-

duction of nonlinear reversible, hysteretic and dependent

on recent history behavior of the soil, as well as their

applications, advantages and disadvantages. It should be

noted that the fact of not having the numerical codes of

most of these models complicates and limits their study,

idea shared by Gudehus [107].

The most relevant aspects of the formulation of those

models have been presented. All of them are capable of

reproducing, to a greater or lesser extent, the behavior of

the soil in the range of small strains. Some features that

should be highlighted follow:

i. The robust, clear and intuitive formulation of parae-

lastic models, based on the Hueckel and Nova model

[22], to reproduce soil hysteretic behavior, in addi-

tion to its versatility to be combined with other

theoretical frameworks. So far, interesting models

have been developed using concepts from paraelastic

theory combined with elastoplastic, bounding plas-

ticity, multilaminate or hypoplastic models

[140, 153, 154, 156, 174–177].

ii. The ability of quasi-hypoelastic hysteretic models

[67, 156] to integrate multiple aspects of the soil in

the range of small strains, in addition to their

flexibility to be combined with plastic models, give

them a great potential to be used in practical

applications. However, these models also present

some disadvantages [66, 182, 187].

Table 10 Multilaminated models that consider soil behavior in the range of small strains

Model Small Strain Stiffness Hysteretic Behavior Comments

Schädlich and

Schweiger

[154]

Ci ¼ Tið ÞT
P4

m¼1

kmE0
m

� �
Tið ÞT

� ��1

Ci ¼ Ci r0mn; edeg
� �

1. Reversal criterion: intrinsic, _edeg\0

2. Memory rules: it can store information of all reversal points through

en;dev;centre, cs;centre and ct;centre, which allows complying the generalized

Masing Rules

3. Effect of reversals on degradation variables: total or partial reinitialization

after reversals, depending on the number of affected planes

4. Effect of reversals on soil stiffness: discontinuous stiffness recovery (finite

planes). For practical applications it can be considered an almost

continuous recovery

See Sect.

B.2.6
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iii. The balance between complexity and usability of

elastoplastic models that gives them the greatest

potential to be used in professional practice. Among

all those analyzed in this paper, the Plaxis HS-SS

model (based on the HS-S model [67]) and the

EPHYSS model [156] stand out. The latter improves

the HS-SS model and resolves some inconsistencies

whose effects can have considerable influence on the

numerical simulations of boundary value problems,

as they are cumulative [156, 175, 243–245].

iv. The potential use of brick models, based on the

Simpson model [31], in the development of future

constitutive models. This is due to their ability to be

easily combined with classic or advanced models

(such as the HS-Brick Model [155], which improves

the HS-SS model), in addition to its clear theoretical

framework that allows to easily understand part of

the formulation of other models, as happens with the

history tensors of the advanced elastoplastic models

HS-SS and EPHYSS.

v. The ability of multilaminate models, such as the

Schädlich and Schweiger [154] model, to reproduce

multiple soil characteristics, including its complex

behavior in the range of small strains, using

parameters known in professional practice and a

clear and no contrived formulation. This place them

in an advantageous position compared to other

incrementally multilinear models, and although their

use has been limited in practical applications, some

commercial software, such as ZSoil, already incor-

porate basic multilaminate models in their libraries.

vi. The advantages of hypoplastic models with inter-

granular strain, based on the Niemunis and Herle

model [151], to define the soil behavior in the range

of small strains through the state variable d (inter-

granular strain), whose mathematical structure

allows its use to be extended to elastoplastic models

[324], such as the EPHYSS model [156]. However,

hypoplastic models have historically been barely

used in professional practice due to their formulation

and parameters away from the elastoplastic

‘‘standard’’.

In addition to these considerations, and regarding the

behavior of the soil in the range of small strains, it is

considered that the multisurface, bounding plasticity,

bubbles or hypoplastic hybrid models that have been ana-

lyzed in this paper do not present great potential for their

use in practical applications, due to: (1) their complex

Fig. 32 Graphical interpretation

of the hypoplastic constitutive

equation, from [66] a Unitary

circle in strain space. b Effect of

the linear part of equation.

c Effect of the nonlinear part of

equation

Table 11 Hypoplastic models that consider soil behavior in the range of small strains

Model Small Strain Stiffness Hysteretic Behavior Commentss

Niemunis

and Herle

[151]

M ¼ qvmT þ 1 � qvð ÞmRð ÞL r0; eð Þ þ B

q ¼ dk k= ~R

if d̂ : d[ 0:

B ¼ qv 1 � mTð Þð ÞL r0; eð Þ : d̂	 d̂þ qvN r0; eð Þ 	 d̂

_d ¼ I� d̂	 d̂qb
0
R

� �
: d

if d̂ : d� 0:

B ¼ qv mR � mTð ÞL r0; eð Þ : d̂	 d̂

_d ¼ d

1. Reversal criterion: intrinsic, d̂ : d� 0

2. Memory rules: stores information of several reversal points

given the structure of d, which constitutes a short-term

memory variable that is reinitialized after a total reversal, but

not after a partial one

3. Effect of reversals on degradation variables: total or partial

reinitialization after reversal

4. Effect of reversals on soil stiffness: continuous stiffness

recovery

See Sect.

C.1
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formulations; (2) the requirement of numerous unusual

parameters in professional practice; (3) the lack of

description of the hysteretic and dependent on recent his-

tory soil behavior in some cases; or (4) their limited use in

solving boundary value problems. Future improvements of

these models, especially in the case of multisurface models

[252], might allow them to be considered in practical

applications. It should be mentioned, however, that these

models can correctly reproduce other soil characteristics,

such as irreversible strains, plastic anisotropy, plastic

hardening, contractive/dilatant behavior, critical state in

clays and the effect of the soil fabric.

Finally, the incorporation of formulations that can

reproduce soil behavior in the range of small strains within

well-known models used in professional practice, would

allow professional engineers to familiarize themselves with

the characteristics and complexity of non-linear, hysteretic

and dependent on recent history soil behavior in the range

of small strains. Once this first goal has been achieved,

introducing more complex models into commercial soft-

ware could be less traumatic.

6 List of symbols

a Parameter whose value is a ¼ 0:385 according

to Dos Santos and Correia [231]

a0 Soil parameter in the model of Hansen [197]

a00 Soil parameter in the model of Hardin and

Drnevich [2]

~a Soil parameter in the model of Kondner

and Zelasco [194]

â0 Soil parameter in the model of Darendeli [229]

a� Soil parameter in the NAHOS model [144]

â� Soil parameter in the SC1SS model [236]

aLER ¼ n0JuLER
aSSR ¼ n0JuSSR
a1 Soil parameter in the model of Papadimitriou

et al. [140]

a1 ¼ 1 þ xv � xe
a2 ¼ 1 þ xD � xe
~a ¼ 1=E0

i

A Soil parameter in the expression of Viggiani

[290] used for the calculation of Gt in the

3-SKH model [123]

A Soil parameter in the model of Jardine et al. [207]

Â Soil parameter in the expressions that relate

G0 with e, OCR and p0

Ai Functions of soil parameters

C1 X ¼ 0ð Þ, C1 X ! 1ð Þ;C2 X ¼ 0ð Þ,
C2 X ! 1ð Þ in the model of Tatsuoka and

Shibuya [115]

AG Soil parameter in the SDMCC model [148]

A1 ¼ 1=a1ð Þ xv�xeð ÞR0 lna1ð ÞR
0�1

� �
þ lna1ð ÞR

0

A2 ¼ 1=a2ð Þ xD�xeð ÞR0 lna2ð ÞR
0�1

� �
þ lna2ð ÞR

0

b ¼ GSSR=GLER ¼ K 0
SSR=K

0
LER

b0 Soil parameter in the model of Hansen [197]

b00 Soil parameter in the model of Hardin and

Drnevich [2]

b̂
¼ 1

R̂p0c=2
p0 � p0a
� � p0 � p0a

R̂
� p0 � p0c

2

� �� ��

þJ � Ja
M2

J

J � Ja

R̂
� J

� ��

~b ¼ 1=qult soil parameter in the model of

Kondner and Zelasco [198]

b̂max ¼ 1 � R̂
� �

p0c
b̂1 ¼ 1

T̂p0c

p0 � p0b
Ŝ

p0 � p0b
T̂Ŝ

� p0 � p0b
Ŝ

þ p0a � p0c

� �� ��

þq�qb
ŜM2

q�qb
T̂Ŝ

�
� q�qb

Ŝ
þ qa

� ���

b̂2 ¼ 1
T̂ Ŝp0c

p0 � p0b
� � p0�p0b

Ŝ
� p0 � p0a
� �� ��

þ q�qb
M2

� �
q�qb
Ŝ

� q� qað Þ
� �

Þ

b̂1max 2 1 � T̂
� �

p0c
b̂2max 2T̂ 1 � Ŝ

� �
p0c

�bi Soil parameters in the SDMCC model [148]

that control stiffness strain dependency,

for i ¼ 2; 4

b̂� Soil parameter in the SC1SS model [236]

Table 12 Hybrid models that consider soil behavior in the range of small strains

Model Small Strain Stiffness Hysteretic Behavior Comments

Niemunis and Prada-Sarmiento [176] _r0 ¼ A : _eþ N r0; eð Þ _ek kw0 þ _r0PE

A ¼ L r0; eð Þ �H0 f ; v; dL
� �

1 � w0ð Þ

w0 ¼ dAR1�d0

dL�d0

D EbR

dAR1 ¼ � AR1e:AR1e
AR1e:NR1

Not defined See Sect. C.2
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B Soil parameter in the expression of Hardin

[287] for the calculation of G0 used in the

model of Papadimitriou et al. [140]

B Soil parameter in the model of Jardine

et al. [203]

B̂ Soil parameter in the expressions of Hardin

and Richart [82] that relates G0 with e

Bi Functions of soil parameters

C1 X¼0ð Þ;C1 X!1ð Þ;C2 X¼0ð Þ;C2 X!1ð Þ
in the model of Tatsuoka and Shibuya [115]

BG Soil parameter in the SDMCC model [148]

c0 Effective cohesion

cu Undrained shear stregth

C Soil parameter in the MIT-E3 model [142]

C� Soil parameter in the NAHOS model [144]

C Soil parameter in the model of Jardine

et al. [203]

Cb Soil parameter in the MIT-S1 model [149]

related to soil compressibility after a reversal

Ci i ¼ 1. . .6, soil parameters in the model

of Jardine et al. [8]

C�
i Functions that depend on r0 invariants

in the expression of E0
t

Ci Xð Þ i ¼ 1; 2 soil parameters in the model

of Tatsuoka and Shibuya [115]

CK Soil parameter in the SDMCC model [148]

Ca Secondary consolidation coefficient

C vhist;L
� �

¼ C0 � 1þ vhist;LX
� �

Ci Constitutive elastic flexibility tensor in

the i-th plane that relates _r0i and _eei in

multilaminated models

C0 Maximum flexibility tensor in the model

of Hueckel and Nova [22]

di i ¼ 1; 2 soil parameters in the model

of Tatsuoka and Shibuya [115]

dL Soil parameter in the model of Niemunis

and Prada-Sarmiento [176]

d0 Soil parameter in the model of Niemunis

and Prada-Sarmiento [176]

db ¼ �s Mb � g
� �

dbref ¼ Mb
c þMb

e � 2 �m

D Soil parameter that controls nonlinearity during

an unloading in the MIT-S1 model [149]

DK Soil parameter in the SDMCC model [148]

DR ¼ emax � eð Þ= emax � eminð Þ is the relative

density of the soil

d Strain rate tensor ( _e 
 d)

e Void ratio

emax Maximum void ratio

emin Minimum void ratio

e0 Initial void ratio

eCSð Þa Void ratio on the critical state line for p0 ¼ pa
e ¼ e� eoct1
erev Value of e in the last reversal point in the

MIT-S1 model [149]

ee ¼ ee � eeoct1
ep ¼ ep � epoct1
eR State variable that stores the total deviatoric

strain tensor value at the last reversal point

R that conforms the endpoint of the active

strain cycle in the HQH and EPHYSS

models [156, 175]

eDR ¼ e� eR

AR1e ¼ epe �R1 epe

Eu Undrained elastic modulus

Eap
s;u Apparent undrained secant elastic modulus

E
0ap

s
Apparent drained secant elastic modulus

E0
i Initial drained modulus (Janbu [81] proposed

an expression for E0
i)

E0
max Maximum stiffness modulus

E0
t;ur Drained tangent stiffness modulus during

unloadings and reloadings

E
0ap

t
Drained apparent tangent elastic modulus

E Transformed variable Ei ¼ Eð Þi¼ Pi eð Þ
in the MIT-E3 model [142]

E0 Elastic stiffness tensor

E0
m Eigenvector of the spectral decomposition

of r0

E0
max ¼ k1	 1þ 2lI

Erev Value of Ei ¼ Eð Þi¼ Pi eð Þ in the last

reversal point in the MIT-E3 model [142]

E0
max Maximum stiffness tensor

E0
t Tangent stiffness tensor

E0Zi
t

Tangent stiffness tensor corresponding

to the tensorial zone Zi

f Soil parameter in the model of Fahey and

Carter [219]

f eð Þ Function that represents the dependence

of G0 on e

f aq
� �

¼
�1 þ G0=G

e
MCC þ f2 aq

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � G0=Ge

MCC � f2 aq
� �� �2þ4f2 aq

� �q� �

2 a=eqr
� �

f2 aq
� �

¼ a=eqr
� �

aq
f 0 ¼ 0 equation that defines the bounding

plasticity surface in the model of Al-Tabbaa

and Wood [10] and in the 3-SKH model [123]

f Soil parameter in the model of Niemunis

et al. [153, 174]

f̂ Soil parameter in the model of Lee and

Salgado [225]
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f̂ 0 ¼ 1=2 a� þ sign np
� �

np
		 		1=w

� �

fK0ap
s

Function that considers the hardening of K 0ap
s

fGap
s

Function that considers the degradation of Gap
s

fk K-th yield surface

f1 = 0 equation that defines the bubble within

which an elastic soil behavior is considered

in the model of Al-Tabbaa and Wood [10]

and a dependent behavior on recent history

is considered in the 3-SKH model [123]

f2 ¼ 0 equation that defines the bubble within

which an elastic soil behavior is considered

in the 3-SKH model [123]

f m00ð Þ Yield surfaces in multisurface models

F ¼ F0 p00=pa
� ��X0hw0i

FLER Linear Elastic Region of the Puzrin and

Burland [152] model

Fss Small strain yield surface function of the

Seyedan and Solowski [252] model

FSSR Small Strain Region of the Puzrin and

Burland [152] model

F0 Soil parameter in the model of Papadimitriou

et al. [140]

g Soil parameter in the model of Fahey and

Carter [219]

ĝ Soil parameter in the model of Lee and

Salgado [225]

gi Plastic potential associated to the i-th plane

G Shear modulus

G 0ð Þij Maximum drained elastic shear modulus

according to the i-th plane and the j-th

direction

Gm ¼ Gap
t;min;n¼1=Gt;ur

Gs Secant elastic shear modulus

GSSR Shear modulus on the SSR

Gt Tangent elastic shear modulus

Gt;ur Minimum value of the tangent elastic

shear modulus

G0 Maximum shear modulus

Gref
0

Maximum apparent shear modulus for p0¼p0ref
Gap Apparent shear modulus

Gap
i Apparent shear modulus associated to the

tensorial zone Zi
Ge

MCC Elastic shear modulus used in the MCC

model

Gref
LER

Value of GLER when p0 ¼ p0ref
Ge

MCC Constant elastic shear modulus of the MCC

model

Gap
s Secant apparent shear modulus

Gap
s;0 Maximum value of Gap

s which depends on p0

Gap;a;H;ref
s;0

State variable that stores the maximum value

of the secant apparent shear stiffness modulus

for the active degradation curve a for p0¼p0ref ;2
in the HQH and EPHYSS models [156, 175]

Gap
t;min;n¼1

Minimum apparent tangent shear modulus

for primary loading (n ¼ 1)

Gap
t Tangent apparent shear modulus

Gref
t;ur

Value of Gt;ur for r03 ¼ p0ref in the SSOM and

HS-S models [67] and in the HS-SS

model implemented in Plaxis, and

p0 ¼ p0ref ;2 in the HQH and EPHYSS

models [156, 175]

G Tensorial function that relates _r0 with e; r0; v
and _e

h Soil parameter in the CASM-c model [143]

hb ¼ h00 db
		 		=hdbref � db

		 		i
hf

¼ 1 þ Fhr _epoct %ð Þ2i
� �

= 1 � F r
R

R�1

h� _epoct %ð Þi
� �

factor that consider the macroscopic effect

of soil fabric during deviatoric stress path

in the model of Papadimitriou et al. [140]

hi Factor that modifies hardening laws in the

models HS-S [67], HS-SS and

EPHYSS [156, 175]

h00 Soil parameter in the model of Papadimitriou

et al. [140]

h State variable that stores recent total

deviatoric strain history tensor in the HQH

and EPHYSS models [156, 175]

ĥ : b_e
� �� Cosine of the rotation angle in the recent

total deviatoric strain path from which

reversals appear in the HQH and EPHYSS

models [156, 175]

HR Soil parameter in the CASM-c model [143]

HU Soil parameter in the CASM-c model [143]

H m00ð Þ Hardening modulus of the yield surface f m00ð Þ

H State variable that stores recent total

deviatoric strains history tensors in the SSOM

and HS-S models [67] and in the HS-SS

model implemented in Plaxis

H0 Stiffness tensor in the model of Niemunis

et al. [153, 174] and in the model of Niemunis

and Prada-Sarmiento [176]

J ¼
ffiffiffiffiffiffiffiffi
1=2

p
sk k

J ¼ J=JSSR
Jmax Maximum value of J

Js Secant coupling modulus

Jt Tangent coupling modulus

JSSR Projection of the deviatoric stress on the SSR

J0 Initial value of J
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Ja Value of J in the center of the bubble f1
in the model of Al-Tabbaa and Wood [10]

JuLER Deviatoric stress in the LER boundary

obtained from triaxial tests

JuSSR Deviatoric stress in the SSR boundary

obtained from triaxial tests

k̂ Soil parameter that relate G0 with OCR or R0

k� Soil parameter in the CASM-c model [143]

kdc Soil parameter in the model of Papadimitriou

et al. [140]

kde Soil parameter in the model of Papadimitriou

et al. [140]

K 0 Drained elastic bulk modulus

K c;PIð Þ
¼ 0:5 1 þ tanh ln 0:000102 þ n PIð Þð Þ=cð Þð Þ0:492

� �

Kb Parameter with the value of K 0ap
s for r03 ¼ pa in

the expression proposed by Duncan et al. [71]

K 0
s Drained secant elastic bulk modulus

K 0
SSR Drained bulk modulus on SSR

K 0
t Drained tangent elastic bulk modulus

K 0
t;ur Drained linear elastic bulk modulus in

unloadings or reloadings

K0 Coefficient of lateral earth stress

K 0
0 Maximum drained elastic bulk modulus

K 0ap Drained apparent bulk modulus

K 0ap
i

Apparent bulk modulus associated to the

tensorial zone Zi

K 0ref
LER

Value of K 0
LER when p0 ¼ p0ref

K 0ap
s Drained secant apparent bulk modulus

K 0ap;ref
s

Value of K 0ap
s for p0 ¼ p0ref

K 0ref
s

Value of K 0
s for p0 ¼ p0ref ;1

K 0ap
s;0

Maximum value of K 0ap
s which depends on p0

K 0ap
t Drained tangent apparent bulk modulus

KP
¼ 4=3ð ÞM4 p0j � 1=R

� �
p0c

� �2

þ6 R� 1
� �4

q2
j

� ��1

v= k� jð Þð Þ 4=R
� �

M4p0c p0j þ R� 2
� �

p0c

� �
p0j � 1=R

� �
p0c

� �

l Soil parameter in the expression that relates

G0 with s� [105]

L r0ð Þ Fourth-order linear tensor in the first

generation of hypoplastic models

L r0; eð Þ Fourth-order linear tensor in an hypoplastic

model that introduces void ratio as a state

variable [316, 318]

L r0; vð Þ Fourth-order linear tensor in hypoplastic

models

m Soil parameter that controls stiffness

dependence on stress in many models

m0 Soil parameter in the model of Prévost and

Keane [204] that must comply m0 � 4ymax � 1

m00 Number of surfaces in multisurface models

m� Soil parameter in the CASM-c model [143]

m Soil parameter in the model of Mayne [220]

m0 Soil parameter in the model of Shibuya et al.

[221]

~m0 Soil parameter in the expression of Viggiani

[290] used for the calculation of Gt in the

3-SKH model [123]

m
^ Soil parameter that controls the opening

of the yield surface in the model of

Papadimitriou et al. [140]

~m c;PIð Þ ¼ 0:272 1� tanh ln 0:000556=cð Þð Þ0:4
� �

e�0:0145PI1:3

mij Soil parameter that controls the dependence

of G0 ijð Þ on p0=p0ref in the expression of Hardin

and Black [89]

mR Soil parameter that controls stiffness value

before a rotation of the total strain path of

1808 in the model of Niemunis and Herle

[151]

mT Soil parameter that controls stiffness value

before a rotation of the total strain path of

908 in the model of Niemunis and Herle [151]

m1 Soil parameter that controls the dependence

of K 0
s on p0 in the HQH and EPHYSS

models [156, 175]

m2 Soil parameter that controls the dependence

of Gap
s and Gt;ur on p0 in the HQH and

EPHYSS models [156, 175]

�mi Soil parameters in the SDMCC model [148]

that control stiffness dependency with OCR,

for i ¼ 1. . .4

M Slope of the critical state line in the plane q� p0

MJ Slope of the critical state line in the plane J � p0

Mb ¼ �s Mc
c �sh i þMc

e ��sh i
� �

Mb
c ¼ Mc

c þ kdc �wh i
Mc

c Soil parameter in the model of Papadimitriou

et al. [140]

Mb
e ¼ Mc

e þ kde �wh i
Mc

e Soil parameter in the model of Papadimitriou

et al. [140]

M Tangent stiffness tensor in the hypoplastic

model with intergranular strain of Niemunis

and Herle [151]

n Soil parameter that relate G0 with g
n(PI)

¼

0 if PI ¼ 0

3:37 � 10�6PI1:404 if 0\PI� 15

7:00 � 10�7PI1:976 if 15\PI� 70

2:70 � 10�5PI1:115 if PI[ 70

8
>><

>>:
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n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0
LER=GLER

p

n� Soil parameter in the MIT-E3 model [142]

n̂ Soil parameter in the model of Lehane and

Cosgrove [147]

n0 Soil parameter in the model of Shibuya

et al. [221]

~n0 Soil parameter in the expression of Viggiani

[290] used for the calculation of Gt in the

3-SKH model [123]

ng Soil parameter in the model of Lee and

Salgado [225]

ni Soil parameter that relates G0 with r0i=p
0
ref

and p0ref
nij Soil parameter that relates G0 with p0=p0ref , p

0
ref

and bij
np Factor of NAHOS model [144] which varies

from np ¼ 1 q=p0 ¼ 0ð Þ on the wet side,

np ¼ 0 q=p0 ¼ Mð Þ and np ¼ 0 q=p0 ¼ 0ð Þ
on the dry side

�ni Soil parameters in the SDMCC model [148]

that control stress stiffness dependency,

for i ¼ 1. . .4

Nb Number of Bricks in the HS-Brick Model

[155]

NG;1 Factor related to the secondary

consolidation coefficient Ca ðNG;1 ¼
ffiffiffiffiffiffi
Ca

p

according to Lo Presti et al. [325])

N r0ð Þ Second-order tensor in the first generation

of hypoplastic models

N r0; eð Þ Second-order tensor in an hypoplastic model

that introduces void ratio as a state

variable [316, 318]
R1N Normal exterior to the loading circle from

the last reversal point R1

OCR ¼ r0v;max=r
0
v

p0 ¼ r0oct ¼ 1=3r0ii
p0 ¼ p0=p0SSR
pa Atmospheric pressure

pw Water pressure

p0a Value of p0 in the center of the f1 of the

3-SKH model [123]

p0b Value of p0 in the center of the bubble f2
of the 3-SKH model [123]

p0c Size of the major axis of the bounding

plasticity surface (consolidation stress)

in the NAHOS model [144] and bubble

models of Al-Tabbaa and Wood [10]

and Stallebrass and Taylor [123]

p0j Mean stress in the image point on the

bounding plasticity surface in the models

CASM-c [143] and NAHOS [144]

p0ref Reference confinement stress

p0ref ;1 Reference mean stress in the expression of

K 0
s in the HQH and EPHYSS models [156, 175]

p0ref ;2 Reference mean stress in the expressions of

Gap
s and Gt;ur in the HQH and EPHYSS

models [156, 175]

p0rev Transformed variable p0 ¼ P0;p r0ð Þ on the

last reversal point in the models MIT-E3

[142] and MIT-S1 [149]

p0SSR Projection of the mean stress on the SSR

p0a Values of p0 in the center of the bubble f1
in the model of Al-Tabbaa and Wood [10]

p00 Mean stress that fulfills G0 p0 ¼ p00
� �

¼ Gref
0

P00 m00ð Þ Projection of P m00ð Þ ¼ og m00ð Þ=or on the

hydrostatic axis

P0 m00ð Þ Projection of P m00ð Þ ¼ og m00ð Þ=or on the

deviatoric plane

PI Plasticity index

q ¼ r01 � r03
qa Value of q in the center of the bubble f1

of the 3-SKH model [123]

qb Value of q in the center of the bubble f2
of the 3-SKH model [123]

qf Deviatoric soil strength (it can be estimated

with the Mohr–Coulomb criterion)

qj Deviatoric stress in the image point on

the bounding plasticity surface in the

models CASCM-c [143] and NAHOS [144]

_qmax Maximum value of the deviatoric stress

increment in triaxial compression

qult Maximum deviatoric stress

Q00 m00ð Þ Projection of Q m00ð Þ ¼ of m00ð Þ=or on the

hydrostatic axis

QR
e ¼

ffiffiffiffiffiffiffiffi
3=2

p
e� eRk k

Q r0; vð Þ Sixth order tensor in hypoplastic models

Q0 m00ð Þ Projection of Q m00ð Þ ¼ of m00ð Þ=or on the

deviatoric plane

r0 Soil parameter in the model of Atkinson [32]

r Soil parameter in the CASM-c model [143]

r̂ Soil parameter in the model of Ramberg

and Osgood [194]

~r Soil parameter that controls nonlinearity during

an unloading in the MIT-S1 model [149]

r̂0 ¼ r0 � r0k k
r̂00 ¼ r0 � r0S

�� ��

R0
¼ 1 � xeð Þ= xu � xeð Þ � bð Þ 1 þ xu � xeð Þð
ln 1 þ xu � xeð Þ= xu � 1ð ÞÞ

R Soil parameter in the NAHOS model [144]
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R̂ Ratio between the sizes of the bubble f1 and

the bounding plasticity surface f 0 in the

model of Al-Tabbaa and Wood [10]
~R Parameter with the maximum value of dk k in

the model of Niemunis and Herle [151]

Rf ¼ qf =qult (this factor takes values between

0.75 and 1.0)

Ro ¼ p0max=p
0

s0 ¼ r01 þ r02
� �

=2

ŝ Soil parameter in the model of Matasovic

and Vucetic [210]

�s Soil parameter in the model of Papadimitriou

et al. [140] which adopts values �s ¼ þ1

if g� �a� 0 and �s ¼ �1 if g� �a\0

s� Parameter that represents the soil structure

s00 Initial value of s0

s�f Reference value of s� for reconstituted soil

sb Soil parameter of the HS-Brick model [155]

that represents the string length of b-th brick

s ¼ r0 � r0oct1
s0 Transformed variable si ¼ sð Þi¼ Pi r

0ð Þ
s0rev Value of s0 in the last reversal point in

MIT-E3 model [142] and value of s in the

last reversal point in MIT-S1 model [149]

sR Deviatoric stress tensor in the reversal point R

S0 Surface of V

Ŝ Ratio between the sizes of the bubbles f2 and

f1 in the 3-SKH model [123]

Sij Dimensionless soil parameters in the

expressions that relate G0 ijð Þ with e, OCR

and r0i
t Time

t0 ¼ r01 þ r02
� �

=2

tp Time required to finalize primary consolidation

t0 Time in which a reversal appears

T̂ Ratio between the size of the bubble f1 and

the bounding plasticity surface f 0 in the

3-SKH model [123]

Ti Transformation matrix that relates the

plane direction with the global reference

system in multilaminated models

TOLee
abs Absolute error tolerance ee; nþ1ð Þ

abs considered

for the convergence of Dee; nþ1ð Þ
iþ1½ �

TOLee
rel Relative error tolerance ee; nþ1ð Þ

rel considered

for the convergence of Dee; nþ1ð Þ
iþ1½ �

u0 ¼ 0:50euq;SSRJ
u
SSR is a measure of the strain

incremental energy

vp Compression waves speed

vs Shear waves speed

V Representative volume

w Soil parameter in the NAHOS model [144]

Wel Elastic energy

Wmacro Global power in a sphere of volume V

Wmicro Local power in the considered planes

x Soil parameter in the expressions that

relate G0 with e

xD ¼ eq
		 		GLER=JSSR

xe ¼ aLER=aSSR
xu ¼ 2K 0

LERu
0=a2

SSR

xv ¼ evj jK 0
LER=p

0
SSR

x ¼ u X; tð Þ position of point X 2 X in the

current configuration

X ¼ cp=cref
X0 Soil parameter in the model of Papadimitriou

et al. [140]

X X 2 X point of the initial configuration

ymax ¼ smax=G0cmax
y1 ¼ ymax � 1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 � ymax= m0 þ 1ð Þ

p� �
= m0 m0 þ 1ð Þ � cmaxð Þ

Y ¼ s=p0ð Þ= s=p0ð Þmax
a Soil parameter in the model of Ramberg

and Osgood [190]

a Soil parameter in the model of Jardine et al. [203]

â ¼ xu � 1ð Þ= xu � xeð Þ ln 1 þ xu � xeð Þð ÞR0
� �

�a State variable in the model of Papadimitriou

et al. [140] that controls kinematic hardening

~a Angular coordinate in multilaminated models

â� ¼ arccos ĥ : b_e
� ��

is the rotation angle in

the recent total deviatoric strain path from

which reversals appear in the HQH and

EPHYSS models [156, 175]

a0 Soil parameter in the model of Bolton and

Whittle [222]

aq Internal variable of the Seyedan and

Solowski [252] model that replaces epq in the

calculation of hardening law to include

errors caused by constant Ge
MCC

ar Rotation angle of principal stresses

b Soil parameter in the model of Simpson [31]

b
00

Soil parameter in the model of Matasovic

and Vucetic [210]

b ¼ 1 þ g=3 � 2g2=9

b̂ Soil parameter in the model of Puzrin and

Burland [152]
~b Angular coordinate in multilaminated models

b
0 Soil parameter in the model of Bolton and

Whittle [222]

bmod ¼ 1 þ b ev � ev;0 � k� ln s0=s00
� �� �
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bR Soil parameter in the model of Niemunis

and Prada-Sarmiento [176]

b0R Soil parameter in the model of Niemunis

and Herle [151]

bii ¼ 1 � g=3ð Þ2

bij ¼ bji ¼ 1 þ g=3 � 2g2=9

c Total shear strain

c� ¼ p0=p0j
c Soil parameter in the model of Jardine et al.

[203]

ĉ Soil parameter in the model of Puzrin and

Burland [152]

cc ¼ nc0;7=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gref

0 =Gref
t;ur

q
� 1

� �

cHIST History variable that controls the degradation

of Gap
s in the SSOM and HS-S models [67]

and in the HS-SS model implemented in Plaxis

cmax Maximum or reference shear strain

coct ¼
ffiffiffiffiffiffiffiffi
4=3

p
ek k

cr Shear strain that complies sf ¼ G0cr
cref ¼ s=p0ð Þmax= G0=p

0
0

� �

cs Total shear strain in the s direction of the

considered plane

cs;centre Value of cs in the last reversal point

ct Total shear strain in the t direction of the

considered plane

ct;centre Value of ct in the last reversal point

c0:7 Shear strain value in the model of Dos Santos

and Correia [231] for which

Gap
s c0:7ð Þ ¼ 0:722G0

c1 Threshold shear strain in the model of

Papadimitriou et al. [140] from which

Gt ¼ G0= 1 þ 2 1=a1 � 1ð Þð Þ (minimum value

of Gt) is considered

cR Shear strain at the last reversal point in the

model of Pyke [158]

ĉr Shear strain in the model of Darendeli [229]

which complies Gap
s ĉrð Þ ¼ 0:50G0

cb Shear strain invariant of actual relative

strain distance between the man

(following Simpson’s analogy) and b-th

brick in the HS-Brick model [155]

cp Plastic shear strain

ceoct ¼
ffiffiffiffiffiffiffiffi
4=3

p
eek k

cHoct ¼
ffiffiffiffiffiffiffiffi
4=3

p
hk k is a history variable that controls

the degradation of Gap
s in the HQH and

EPHYSS models [156, 175]

cRoct ¼
ffiffiffiffiffiffiffiffi
4=3

p
eRk k

caur ¼ nc0;7=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gap;a;H;ref

s;0 =Gref
t;ur

q
� 1

� �

cDRoct ¼ coct � cRoct

d Soil parameter in the model of Jardine et al. [8]

d Intergranular strain tensor in the model

of Niemunis and Herle [151]

e Total strain in 1D

edeg
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
en;dev � en;dev;centre
� �2þ cs � cs;centre

� �2þ ct � ct;centre
� �2

q

ef Axial strain at failure

ei I-th principal strain, i ¼ 1; 2; 3

en;dev Total deviatoric strain due to the normal

stress to the considered plane

en;dev;centre Value of en;dev in the last reversal point

eoct ¼ 1=3eii
eq Deviatoric strain

eqr Reference deviatoric shear strain equal to

deviatoric shear strain in which sear

modulus reduces to 70% of its maximum value

er Reference strain equivalent to E0=E0
max ¼ 0:50

es ¼ 2=3 e1 � e3ð Þ
eth Total threshold strain that separates linear

from nonlinear behavior

ev ¼ eoct ¼ 1=3eii
ev;0 Initial value of ev
ev;rev Value of ev in the last reversal point in the

models MIT-E3 [142] and MIT-S1 [149]

eR Total strain in reversal point R

eErrorq Variable of the model of Seyedan and

Solowski [252] that stands for the error caused

by a constant elastic shear modulus Ge
MCC

in the MCC model

eeoct ¼ 1=3eeii
epoct ¼ 1=3epii
epq Plastic shear strain

euq;SSR Shear strain value on the SSR surface

e Total strain tensor

ei Total strain tensor of the i-th plane

ee Elastic strain tensor

emp Microplastic strain tensor in the model

of Hueckel and Nova [22]

ep Plastic strain tensor

epe ¼ ee þ emp is the paraelastic strain tensor

in the model of Hueckel and Nova [22]

epeL Paraelastic strain epe in the reversal point L
AR1epe ¼ epe �R1 epe
R1e Strain tensor in the last reversal point in the

model of Niemunis and Prada-Sarmiento [176]
DLepe ¼ epe � epeL

_epbrick�i Plastic strain tensor corresponding to i-th

brick in the model of Simpson [31]

eei Elastic strain tensor on i-th plane

epi Plastic strain tensor on i-th plane
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g ¼ q=p0

g Soil parameter in the model of Jardine et al. [8]

g1 ¼ Gref
0 =p00

� �
c1

g ¼ _e= _ek k
g0 ¼ s0=p0 in the MIT-E3 [142] model

g ¼ s=p0 in the MIT-S1 model [149]

g0rev ¼ s0rev=p
0
rev in the MIT-E3 [142] model

grev ¼ s0rev=p
0
rev in the MIT-S1 model [149]

j Slope of the swelling line in the plane t� ln p0ð Þ
j� Slope of the swelling line in the

plane ln eð Þ � ln p0ð Þ
j0 Maximum slope of the swelling line in the

plane t� ln p0ð Þ
k Slope of the primary consolidation line in

the plane ln eð Þ � ln p0ð Þ
k Lambda coefficient of Lamé

k� Slope of the primary consolidation line

in the plane t� ln p0ð Þ
_ki Plastic multiplier associated to gi

km Eigenvalue of the spectral decomposition of r0

kSi I-th eigenvalue of e in the SSOM and

HS-S models [67] and in the HS-SS

model implemented in Plaxis

K Soil parameter in the EPHYSS model [156]

l Mu coefficient of Lamé

l� Soil parameter in the NAHOS model [144]

m0 Drained Poisson’s ratio

m0const Drained Poisson’s ratio of constant value

mu Undrained Poisson’s ratio

m0ij Drained Poisson’s ratio according to the i-th

plane and the j-th direction

m0min Minimum value of drained Poisson’s ratio

m0t Tangent drained Poisson’s ratio

m0ur Drained Poisson’s ratio in reversible

unloading/reloading processes

m00 Drained Poisson’s ratio for small strain

n Scale factor that controls the shape of the

degradation curve of Gap
s . A value of n ¼ 1

is considered for the calculation of Gap
s

during primary loading and n ¼ 2 for the

calculation of Gap
s during unloading/reloading

n0 Variable that measures the mean stress

with respect to the last reversal point in the

MIT-S1 model [149]

n0s Variable that measures the deviatoric stress

with respect to the last reversal point in the

MIT-S1 model [149]

Pi Functions to calculate the transformed variables,

P0 /ð Þ ¼
P3

i¼1 /i,

P1 /ð Þ ¼ 2/2 � /1 � /3ð Þ=
ffiffiffi
6

p
,

P2 /ð Þ ¼ 2/3 � /1ð Þ=
ffiffiffi
2

p
,

P3 /ð Þ ¼
ffiffiffi
2

p
/12, P4 /ð Þ ¼

ffiffiffi
2

p
/23,

P5 /ð Þ ¼
ffiffiffi
2

p
/31

in the MIT-E3 [142] model

P0;p /p

� �
¼ 1=3

P3
i¼1 /p

� �
i

q ¼ dk k= ~R

r0i Effective i-th principal stress, i ¼ 1; 2; 3

r0oct ¼ 1=3r0ii
r0v Effective vertical stress

r0v;max Maximum historic effective vertical stress

r00 ¼ r0vð1 þ 2K0Þ=3

r0R Effective stress in the reversal point R

r Total stress tensor

r0 ¼ r� pw1 is the effective stress tensor

r0 Effective stress tensor of the image point on

the bounding plasticity surface in the

NAHOS model [144]

r0i Effective stress tensor on the i-th plane

in the multilaminated models

r0S Elastic centre in the NAHOS model [144]

r0L Effective stress tensor in the reversal point L
DLr0 ¼ r0 � r0L

s Shear stress

sf ¼ G0cr
smax Maximum shear stress

soct ¼
ffiffiffiffiffiffiffiffi
1=3

p
sk k

s1 ¼ y1G0=cmax
t ¼ 1 þ e

#0
i i ¼ 1; 2 soil parameters in the model of

Tatsuoka and Shibuya [115]

u0 Maximum effective friction angle

u X; tð Þ Position of material point X 2 X at time t

v Parameter of the model of Niemunis and

Herle [151]

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 ev � ev;rev
� �2þ E� Erevð Þ : E� Erevð Þ

q

_v00v00
¼ ev � ev;rev

� �
_ev for _ev 6¼ 0

e� erevð Þ : _e for _ev ¼ 0


 �
¼ � 0 ! load

\0 ! unload


 �

v Soil parameter in the model of Niemunis

et al. [153, 174]

v State variables

vhist State variables responsible for describing

nonlinear, hysteretic and dependent on

recent history behavior of the soil

vel;hist State variable vhist in elastoplastic models

w ¼ e � eCSð Þaþk ln p0=pað Þ
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ŵ Soil parameter in the model of Al-Tabbaa

and Wood [10] and in the 3-SKH model [123]

w0 ¼ e0 � eCSð Þaþkln p00=pa
� �

W Hyperelastic energy potential

x Soil parameter in the models MIT-E3 [142]

and MIT-S1 [149]

xs Soil parameter that controls nonlinearity

during the application of shear stress in the

MIT-S1 model [149]

X Domain on which the problem to be

solved is defined

X Second order symmetric tensor of constant

coefficients that complies that C0 �X is

semi-defined positive [22]

#Z Number of tensorial zones

1 1ð Þij¼ dij
I Ið Þijkl¼ 1=2 dikdjl þ dildjk

� �

Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffi
AijAij

p

aj j aj j ¼ a if a[ 0 and aj j ¼ �a if a\0; a 2 R

sign að Þ sign að Þ ¼ þ1 if a[ 0 and sign að Þ ¼ �1

if a\0; a 2 R

a nð Þ The superscript (n) indicates that a is evaluated

at the end of the calculation step nð Þ ! nþ 1ð Þ
a i½ � The subscript [i] indicates that a is evaluated

in the i-th iteration

ah i Parenthesis of Macauley, where

ah i ¼ a if a� 0 and ah i ¼ 0 if a\0

Aij...k ij. . .k � th component of A

_A Infinitesimal rate of A

DA Finite rate of A

bA bA¼A= Ak k if Ak k 6¼ 0 and bA¼ 0 if Ak k¼ 0

AT Transposed of A

A�1 Inverse of A

A	 B A	 Bð Þijkl¼ AijBkl

A	B A	Bð Þijkl¼ AikBjl

A	B A	Bð Þijkl¼ AilBjk

A : B ¼ AijBij

7 Abbreviations

ARCS Axis Rotation and Cubic Spline [202]

CASM-c Clay and Sand Model – c [143]

EPHYSS Elastoplastic Hysteretic Small Strain

model [156, 175]

FC?MCC Fahey Carter Modified Cam Clay model [145]

HQH Hysteretic Quasi-Hypoelastic model [156, 175]

HS Hardening Soil model [233]

HS-Brick Hardening Soil Brick Model [155]

HSMOD Modified Hardening Soil model [156, 175]

(based on plastic part of HS-S)

HS-S Hardening Soil Small model [67]

HS-S[MC] Hardening Soil Small model with

Mohr-Coulomb limit surface [67]

HS-SS Hardening Soil with Small Strain Stiffness

model of Plaxis (based on the HS-S and

recently implemented in other software)

KYS Kinematic Yield Surfaces

LER Linear Elastic Region in the model of

Puzrin and Burland [152]

MC Mohr-Coulomb model

MCC Modified Cam Clay model [74]

MIT-E3 MIT-E3 model [142]

MIT-S1 MIT-S1 model [149]

NAHOS Elastoplastic NAHOS model [144]

OCR Overconsolidation Ratio

RU?MCC Reloading-Unloading Modified Clam

Clay model [234]

S-CLAY1 Anisotropic Clay model [237]

SDMCC Strain Dependent Modified Cam

Clay model [148]

SOM Swept Out Memory region [108]

SSOM Small Strain Overlay Model [67]

SSR Small Strain Region in the model of

Puzrin and Burland [152]

USC Undrained Soft Clay model [326]

3-SKH Three Surface Kinematic Hardening

model [123]
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effective stress ratio paths. Géotechnique 47(3):475–489. https://

doi.org/10.1680/geot.1997.47.3.475

121. Pennington DS (1999) The anisotropic small strain stiffness of

Cambridge Gault clay. PhD Thesis. Bristol, England: University

of Bristol

122. Swidzinski W (2000) Determination of elastic moduli of sands

from triaxial compression test. Arch Hydro-Eng Environ Mech

47(1–4):51–73

123. Stallebrass SE, Taylor RN (1997) The development and evalu-

ation of a constitutive model for the prediction of ground

movements in overconsolidated clay. Géotechnique
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Catalunya, Barcelona, Spain

176. Niemunis A, Prada-Sarmiento LF (2011) Paraelasticity: a con-

stitutive model for soils under small strains. Seminar. Karlsruhe,

Germany: Institute for Soil and Rock Mechanics-IBF

177. Loges I, Niemunis A (2015) Neohypoplasticity—estimation of

small strain stiffness. In Triantafyllidis T (eds) Holistic simu-

lation of geotechnical installation processes. Lect Notes Appl

Comput Mech 77:163–180. Springer, Cham. https://doi.org/10.

1007/978-3-319-18170-7_9.

Small Strains in Soil Constitutive Modeling 3275

123

https://doi.org/10.1680/geng.2000.143.4.191
https://doi.org/10.1002/(SICI)1096-9853(199910)23:12%3c1215::AID-NAG29%3e3.0.CO;2-F
https://doi.org/10.1002/(SICI)1096-9853(199910)23:12%3c1215::AID-NAG29%3e3.0.CO;2-F
https://doi.org/10.1002/(SICI)1096-9853(199910)23:12%3c1215::AID-NAG29%3e3.0.CO;2-F
https://doi.org/10.1002/nag.1610020306
https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3c279::AID-CFM29%3e3.0.CO;2-8
https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3c279::AID-CFM29%3e3.0.CO;2-8
https://doi.org/10.1680/geot.1998.48.2.217
https://doi.org/10.1680/geot.1998.48.2.217
https://doi.org/10.1007/s11440-011-0137-4
https://doi.org/10.1007/s11440-011-0137-4
https://doi.org/10.1002/nag.2089
https://doi.org/10.1002/nag.2089
https://doi.org/10.1007/s11440-020-00945-5
https://doi.org/10.1002/nag.3360
https://doi.org/10.1139/t07-014
https://doi.org/10.1139/t07-014
https://doi.org/10.1002/nag.1610090308
https://doi.org/10.1002/nag.1610090308
https://doi.org/10.1016/0266-352X(85)90012-6
https://doi.org/10.1016/0266-352X(85)90012-6
https://doi.org/10.1002/(SICI)1099-1484(199905)4:3%3c215::AID-CFM61%3e3.0.CO;2-8
https://doi.org/10.1002/(SICI)1099-1484(199905)4:3%3c215::AID-CFM61%3e3.0.CO;2-8
https://doi.org/10.1002/(SICI)1099-1484(199905)4:3%3c215::AID-CFM61%3e3.0.CO;2-8
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(81)
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(81)
https://doi.org/10.1680/geot.2005.55.5.383
https://doi.org/10.1680/geot.2005.55.5.383
https://doi.org/10.1002/nag.484
https://doi.org/10.1016/j.ijplas.2020.102902
https://doi.org/10.1016/j.ijplas.2020.102902
https://doi.org/10.1007/s11440-011-0138-3
https://doi.org/10.1007/s11440-011-0138-3
https://doi.org/10.1007/978-3-319-18170-7_9
https://doi.org/10.1007/978-3-319-18170-7_9


178. Duncan JM, Chang CY (1970) Nonlinear analysis of stress and

strain in soils. J Soil Mech Found Div 96(5):1629–1953

179. Desai CS (1971) Nonlinear analyses using spline functions.

J Soil Mech Found Div 97(10):1461–1480

180. Richard RM, Abbott BJ (1975) Versatile elastic-plastic stress-

strain formula. J Eng Mech Div 101(4):511–515

181. Nelson I, Baron ML (1971) Application of variable moduli

models to soil behavior. Int J Solids Struct 7(4):399–417. https://

doi.org/10.1016/0020-7683(71)90111-9

182. Nelson I (1977) Constitutive models for use in numerical

computations. In: Proceedings of the plastic and long term

effect, DMSR. Karlsruhe, Germany. Rotterdam, Netherlands: A.

A. Balkema. vol 2, pp 45–97

183. Sandler IS (1976) The cap model for static and dynamic prob-

lems. In: The Seventeenth U.S. Symposium on Rock Mechanics.

Utah, USA, 25–27 August. American Rock Mechanics Associ-

ation, pp 1A2–1

184. Sandler IS, Baron ML (1979) Recent development in the con-

stitutive modeling of geological materials. In: Proceedings of the

Third International Conference on Numerical Methods in

Geomechanics. Aachen, Germany, 2–6 April. A.A. Balkema,

Rotterdam, Netherlands, pp 363–376

185. Jardine RJ, Potts DM (1988) Huttson tension leg platform

foundations: prediction of driven pile behaviour. Géotechnique

38(2):231–252. https://doi.org/10.1680/geot.1988.38.2.231

186. St. John HD, Potts DM, Jardine RJ, Higgins KG (1993) Pre-

diction and performance of ground response due to construction

of a deep basement at 60 Victoria Embankment. In: Houlsby

GT, Schofield AN (eds) Proceedings of the wroth memorial

symposium, predictive soil mechanics. St Catherine’s College,

27–29 July 1992. London, England: Thomas Telford.

187. Pyke R (1986) The use of linear elastic and piecewise linear

models in finite element analyses. In: Dungar R, Studer JA (eds)

Geomechanical modelling in engineering practice. A. A. Balk-

elma, Rotterdam, Netherlands

188. Frydman S, Talesnick M, Puzrin A (1995) Colinearity of

stresses, strains and strain increments during shearing of soft

clay. J Geotech Eng 121(2):174–184. https://doi.org/10.1061/

(ASCE)0733-9410(1995)121:2(174)

189. Hashiguchi K (1993) Fundamental requirements and formula-

tions of elastoplastic constitutive equations with tangential

plasticity. Int J Plast 9(5):525–549. https://doi.org/10.1016/

0749-6419(93)90018-L

190. Ramberg W, Osgood WR (1943) Description of stress-strain

curves by three parameters. Report No. NACA-TN-902.

National Advisory Committee for Aeronautics, Washington,

DC, USA

191. Idriss IM, Dorby R, Singh RD (1978) Nonlinear behaviour of

soft clays during cyclic loading. J Geotech Eng Div

104(12):1427–1447

192. Hara A (1980) Dynamic deformation characteristics of soils and

seismic response analyses of the ground. Dissertation presented

to the University of Tokyo

193. Ishihara K (1996) Soil behaviour in earthquake geotechnics.

Oxford University Press, New York

194. Kondner RL, Zelasko JS (1963) A hyperbolic stress-strain for-

mulation of sands. In: Proceedings of the second pan American

conference on soil mechanics and foundation engineering. San

Paulo, Brazil, 1963. Associação Brasileira de Mecânica dos

Solos, vol 1, pp 289–324

195. Kondner RL (1963) Hyperbolic stress-strain response: cohesive

soils. J Soil Mech Found Div 89(1):115–144

196. Duncan JM, Wong KS (1974) Hyperbolic stress-strain parame-

ters for nonlinear finite element analysis of stresses and move-

ments in soil masses. Report No. TE-74–3. National Science

Foundation, University of California, Berkeley, California

197. Hansen JB (1963) Discussion of Hyperbolic stress-strain

response: cohesive soils. J Soil Mech Found Div 89(4):241–242

198. Kulhawy FH, Duncan JM, Seed HB (1969) Finite element

analyses of stresses and movements in embankments during

construction. Contract Report S-69–8 for U.S. Army Engineer

Waterways Experiment Station, Vicksburg, Mississippi, under

contract DACW39–68-C-0078. Berkeley, California: College of

Engineering, Office of Research Services, University of

California

199. Mana AI, Clough GW (1981) Prediction of movements for

braced cuts in clays. J Geotech Eng Div 107(6):759–777

200. Seed RB, Duncan JM (1986) FE analysis: compaction-induced

stresses and deformations. J Geotech Eng 112(1):23–43. https://

doi.org/10.1061/(ASCE)0733-9410(1986)112:1(23)

201. Ahlberg JH, Nilson EN, Walsh JL (1967) Theory of Splines and

Their Applications. Academic Press, New York

202. Yniesta S, Brandenberg SJ, Shafiee A (2017) ARCS: a one

dimensional nonlinear soil model for ground response analysis.

Soil Dyn Earthq Eng 102:75–85. https://doi.org/10.1016/j.soil

dyn.2017.08.015

203. Jardine RJ, Potts DM, Fourie AB, Burland JB (1986) Studies of

the influence of nonlinear stress strain characteristics in soil-
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https://doi.org/10.1680/geot.1996.46.1.157

255. Puzrin AM, Houlsby GT, Burland JB (2001) Thermomechanical

formulation of a small-strain model for overconsolidated clays.

Proc R Soc Lond A Math Phys Eng Sci 457(2006):425–440.

https://doi.org/10.1098/rspa.2000.0673

256. Seyedan S, Solowski WT (2019) Enhancing constitutive models

for soils: adding the capability to model nonlinear small strain in

shear. Adv Civ Eng. https://doi.org/10.1155/2019/6016350

257. Yingren Z, Jian C, Zhenhong X (1986) Strain space formulation

of the elasto-plastic theory and its finite element implementa-

tion. Comput Geotech 2(6):373–388. https://doi.org/10.1016/

0266-352X(86)90031-5

258. Einav I (2004) Thermomechanical relations between stress-

space and strain-space models. Géotechnique 54(5):315–318.
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