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Abstract
Composite materials owing to low density and beneficial properties such as high stiffness, low coefficient of thermal expan-
sion, high mechanical strength, high dimensional stability, good wear resistance, and design flexibility are employed in 
various fields such as aeronautical, automobile, power generation, civil, and marine engineering etc. Over their course of 
service, damages can arise in the composite material due to aging, improper service conditions, and erroneous manufacturing 
and assembly such as inter-laminar voids, porosity, fibre waviness, wrinkles, de-bonding, and delamination. Techniques like 
structural health monitoring which utilize traditional techniques integrated with sensors to inspect the health of a structure 
can assist in localization and quantification of several types of damages present in composites based structural models. In this 
work, several monitoring methods have been reviewed for damage detection including vibration based sensing, embedded 
sensing, acoustic emissions, lamb wave method, and comparative vacuum monitoring. Several researchers have focused their 
study on the health monitoring of operational bridges, buildings, and aerospace vehicles for damage detection.

1 Introduction

1.1  Structural Health Monitoring (SHM)

Structural health monitoring (SHM) is a damage detec-
tion technique employed for three broad categories namely 
aerospace, civil, and mechanical engineering structures, to 
identify deviation from optimal working conditions. This 
technique has been put to use in monitoring aircraft primary 
structures [1], bridges [2], buildings [3], rotating machin-
ery [4], pipelines [5], wind turbines [6], railway axles [7], 
etc. Damage introduced may modify the working condition 
which, in turn, may lead to a complete breakdown or in 
severe cases cause catastrophic failures.

Practically, anyone employed in the industry wants to 
detect damage as soon as possible, so that the maintenance 
cost is least and there are no life safety issues; for example, 
monitoring of the operational health of gas turbine engines, 
gas leak detection in pipes can be hazardous to human life, 
and the health monitoring of heritage buildings after an 
earthquake. Health monitoring should be the chief concern 

when an engineering structure is approaching its initial 
expected life.

There are four disciplines which include SHM in damage 
detection are:

1. Continuous monitoring (CoM)
2. Non-destructive evaluation (NDE)
3. Statistical process control (SPC)
4. Damage prognosis (DP)

CoM is usually employed in the monitoring of rotating 
machinery used for power transmission. NDE is a monitor-
ing tool in pressure vessels and rails, used when we have a 
prior knowledge of damage location. SPC is a process of 
monitoring changes using various sensors after there has 
been a structural damage and DP is used to calculate the 
remaining useful life of that structure before failure [8].

The Paradigm of SHM
The paradigm of SHM follows a four-phase process [9].

1. Operational Evaluation
2. Data Acquisition, Normalization and Cleansing
3. Feature Selection and Information Condensation
4. Statistical Model Development
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1.1.1  Operational Evaluation

The operational evaluation aims to justify the use of SHM, 
defines damage for a system and various damage possi-
bilities for that, states conditions under which the system 
needs to be monitored, and restrictions of acquiring data 
in the operational environment. It identifies the features 
that need to be monitored and makes use of the identifying 
feature of the damage that is to be detected.

1.1.2  Data Acquisition, Normalization and Cleansing

Data acquisition is largely influenced by the monetary 
resources as it includes selecting the type of sensor used, 
number of sensors used, excitation method, and storage 
hardware which is unique for every application.

After data acquisition, there is a need to normalize the 
data for damage identification. Variability in data can arise 
due to different environmental and operational conditions. 
It is required to minimize this variability so that the data 
acquired can be compared at a similar interval between 
different operation cycles.

Data cleansing is the process of filtering the undesirable 
or incompetent set of data and this decision is based on 
prior knowledge of working with data acquisition.

1.1.3  Feature Selection and Information Condensation

In this phase, we try to identify the features which let us 
distinguish between a damaged and an undamaged struc-
ture. We try to correlate the responses of the damaged 
structure such as frequency, mode shapes, displacement, 
velocity, acceleration, etc. with the responses of an undam-
aged or original structure. In some cases, we introduce 
defects intentionally which might occur in the life cycle 
of that structure to study its responses. These defects can 
also be introduced by computer simulation. The responses 
obtained will aid us in developing techniques to retain the 
necessary structural features after damage. The statistical 
implication of the features should be categorized and used 
in the condensation process which will be advantageous.

1.1.4  Statistical Model Development

This phase deals with the development of the statistical 
model to differentiate between a damaged structure and 
an undamaged structure; although, this has been given 
least consideration because of its complexity and speci-
ficity. Statistical models need to be developed so that we 

can differentiate between the statuses of the structure and 
quantify the damage present.

1.2  Composite Materials (CM)

Composite materials can be described as the materials pro-
duced from two or more materials that can be differentiated 
at a macroscopic level to obtain desirable properties that 
cannot be attained by the parent material individually [10]. 
The CM contains two phases: a matrix phase and a rein-
forcement phase. The matrix phase can be polymer, ceramic, 
or metal and the chief purpose of the matrix is to support 
the reinforcement that aids in retaining its position [11]. 
The reinforcement can be particle reinforcement or fibrous 
reinforcement. The particle reinforcement provides stiffness, 
increases strength, and toughness of the composite and is 
favorable due to its wear-resistant properties. The fibre rein-
forcement provides exceptionally high strength to the weaker 
matrix material. Owing to the presence of covalent bonds, 
the non-metallic fibres show a higher strength to density 
ratio than the metallic fibres [12].

In addition to favorable low density, CM has properties 
such as high stiffness, low coefficient of thermal expansion, 
high mechanical strength, high dimensional stability, wear 
resistance, and design flexibility [13]. Due to these proper-
ties, CM are employed in various fields such as aeronautical, 
automobile, power generation, civil, and marine engineering 
etc. Alheety et al. [14] developed  C60-SESMP-Fe3O4 nano-
composite, which proved to be beneficial in the removal of 
arsenic contaminants from crude oil and water samples as 
it is toxic for our ecosystem [15]. Abd et al. [16] fabricated 
graphene oxides with high conductivity by the addition of 
amines to them. Majeed et al. [17] successfully produced a 
PoPDA-GO-TiO2 nano-composite for the storage of hydro-
gen gas to be used as a clean source of energy [18–20].

1.2.1  Difficulties in Working with Composite Materials

By virtue of its structure, the properties of CM are aniso-
tropic. The mechanism of failure is very complex for CM. 
Damage evolution of CM remains a very challenging work 
making the optimization of the design of the CM very dif-
ficult, which, in turn, makes it likely to be over-designed by 
the designer [21].

In addition to this, the lack of reinforcement in out of 
plane direction makes it vulnerable to impact damage. A 
matrix crack and delamination will occur in case of low to 
medium impact energy and total penetration occurs in case 
of high impact energy. At the opposite end of the impact, 
fibre breaking will occur [22]. Damages can also occur in 
CM due to aging, improper service conditions, and errone-
ous manufacturing and assembly.
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Apart from the fact that damages in CM can propose 
a safety issue because of a tradeoff between the weight 
and strength of the material [23], the manufacturing of 
CM may be potentially hazardous to humans. The pre-
impregnate process used in the manufacturing of CM is 
found to be advantageous over the traditional method but 
utilizes corrosive amines which can often act as skin, eye, 
and respiratory irritants [24]. Machining and recycling of 
the CM continuously liberate small airborne fibres which 
cause lung tissue damage when inhaled [25].

1.2.2  Need of SHM for Composite Materials

Most of the damages that occur in CM are not visible as 
they occur below the surface. So, traditional non-destruc-
tive techniques such as x-rays, thermography, and ultra-
sonic imaging are used to detect the damages. These tech-
niques can only be used when the region to be evaluated is 
accessible. Moreover, they are labour and cost-intensive 
processes [26]. Often, there is a need to disassemble the 
structure for performing the required inspection [27]. For-
eign object inclusions, inter-laminar voids, fibre waviness 
and wrinkles, debonding, and delamination are the dam-
ages that occur in composite materials. The porosity in 
CM is found to be beneficial in biomedical orthopaedic 
implants [28] and electronic applications [29, 30], but it 
can significantly reduce the strength and stiffness of the 
structural composite materials [31, 32].

Due to the above-discussed drawbacks, the use of SHM 
has become a necessity while working with composite 
materials. Many techniques of SHM are being widely 
used in research as well as industrial environments for 
detecting the performance of such materials. These tech-
niques are discussed in detail in the next section.

2  Major SHM Techniques for Composite 
Materials

Some of the major SHM techniques for composite materials 
are summarized in Fig. 1.

2.1  Vibration Sensors Based Techniques

2.1.1  Wired Setup

Kessler et al. [33] introduced damage in a composite speci-
men under different conditions and compared the natural 
frequencies of the damaged specimen and an undamaged 
control specimen using a scanning laser vibrometer system. 
The dynamic responses for all the specimens were studied 
and the effect of damages in the frequency response was 
established. The frequency reduction can be easily explained 
by structural dynamics. When a specimen is damaged due to 
one reason or the other there is a reduction in local stiffness 
ratio which affects the overall natural frequency. In the case 
of delamination, the region behaves as two separate lami-
nates which reduces the overall stiffness [34]. The localiza-
tion of the damage can also be performed by correlating the 
changes in vibration modes to loss of stiffness [35].

Ratcliffe et al. [36] compared the experimental results 
obtained from structural irregularity and damage evaluation 
routine (SIDER) algorithm and an array of micro electro 
mechanical systems (MEMS) accelerometer for damage 
detection in composites. It was established that though the 
setup time was less in the SIDER algorithm but data acquisi-
tion required ample amount of time and skilled labour [37] 
whereas in the array of MEMS accelerometer the setup time 
was more but data acquisition was rapid and remote diagnos-
tic and solitary testing can be performed. The experimental 
results for both the setups were similar, which proved that 
low-cost accelerometer can be employed instead of the high-
performance transducer.

Fig. 1  Structural health monitoring techniques for composite materials
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Mariani et al. [38] opted for a three-axis MEMS accel-
erometer for monitoring the cracks and delamination in 
composite material. The main purpose of using accelerom-
eter was cost-reduction and avoiding interaction between 
the SHM system and mechanical integrity of the compos-
ite [39, 40]. Only one accelerometer was employed and 
that also was optimally placed to avoid spreading of the 
outcomes. The specimen was subjected to cyclic loading a 
relationship between crack growth and change in compli-
ance was developed. The analytical results were in agree-
ment with the experimental testing.

Masango et al. [41] studied the structural health of a 
flexible composite sample using polyvinylidene fluoride 
(PVDF) sensors. PVDF is a slender and flexible polymer, 
having high sensitivity which makes it suitable for strain 
sensing [42, 43]. The three-point bending test was per-
formed on the workpiece. The sensor needs to be firmly 
attached to the workpiece to proper output readings [44]. 
A comparative study between the defected samples and a 
flawless sample was undertaken and the sensor validated 
its competency in detecting damage by output voltage 
variation. Lead zirconate titanate (PZT) sensors are also 
employed due to its high sensitivity but owing to its brittle 
nature, they cannot be utilized in strain sensing of flexible 
structure [45].

Carrino et al. [46] actively monitored the health of a glass 
fibre composite pipe using surface-mounted PZT sensor. A 
nonlinear Lamb wave method was employed to identify 
a “breathing” defect on the pipe. The position of PZTs is 
typically defined by preventing the direct wave packet from 
overlapping with reflections due to boundaries. A metallic 
coin was adhered to the surface to create a breathing damage 
which generated nonlinearity. This nonlinearity produced 
higher harmonics which aided in locating its source without 
defining a baseline for the structure. Nonlinear are also a 
favourable contender for detecting micro-damages [47, 48].

Fan et al. [49] performed a comparative study of vibra-
tion-based health monitoring of a composite structure. 
The vibration methods that were scrutinized were natural 
frequency-based method, mode shape-based method, cur-
vature mode shape-based methods and methods using both 
mode shape and frequencies. It was postulated that natural 
frequency-based methods could only localize and quantify 
small damage in simple structures. The mode shape-based 
and curvature-based methods only could roughly local-
ize the damage but it required optimization algorithms to 
accurately localize the damage. Yan et al. [50] also sum-
marized and evaluated various vibration damage detection 
techniques for health monitoring. The same results as above 
were concluded that the conventional structural vibration 
theory should be combined with signal processing, artificial 
intelligence, mode identification etc. to enhance the accuracy 
of damage localization in complex structures.

2.1.2  Wireless Setup

Wireless strain sensors have also become popular in the last 
two decades. Inspired by the human skin Tata et al. [51] 
developed a patch antenna for strain measurement which 
also worked as a data transmitter. Jia et al. [52] developed 
a prototype for wireless strain senor which displayed great 
linearity and sensitivity. The sensor was principally a series 
connection between the planar spiral inductor and an inter-
digital capacitor. Melik et al. [53] also developed and fab-
ricated an radio frequency MEMS strain sensor with high 
Q-factor. A MEMS differential capacitive strain sensor 
having a high-performance strain sensing microsystem was 
fostered by Suster et al. [54]. Han et al. [55] also succeeded 
in developing a wireless stress/strain measurement device 
for health monitoring of concrete structures. Other wireless 
passive strain sensors have also been developed that fully 
capable of taking accurate dynamic measurements in real-
time [56–59]. Such sensors are fully proficient in structural 
health monitoring and non-destructive evaluation of com-
posite materials and structure.

Gasco et al. [60] tested the accuracy of wireless identi-
fication and sensing platform (WISP) in strain sensing and 
compared the results to traditional wired strain gauges. Car-
bon fibre compared was tested under uniaxial loading. The 
Quasi-static indentation test was also performed to examine 
WISP’s ability to evaluate complex strain state. In both the 
case the strain values accurately measured by the WISP. The 
sensor was bonded to the surface of the composite using a 
double-sided tap which electrically insulated it. Carbon fibre 
is conductive in nature which interferes with the transmit-
ting capacity of the sensor. The use of double-sided tape did 
not interfere with the strain sensing capacity of the sensor 
[61, 62].

Manzano et al. [63] tried to fabricate a wireless, robust 
self-sensing composite to the identify the exact location of 
the impact on the workpiece. They embedded piezoelectric 
sensors in the composite with a micro-controller and power 
source. They were only able to identify the vicinity of the 
impact rather than the exact location. Only the impact loca-
tions that were towards the centre were recognized appropri-
ately. The output signal provided by the sensor was a vibra-
tion in one direction only, so the pairing of the sensors was 
the main challenge faced which was approached by [64].

Lee et al. [65] initially, injected electrodes into a cement 
composite incorporating 1.0 vol % multi-walled carbon 
nanotubes (MWCNT) as conductive filler, to fabricate a 
cement-based sensor. A wireless signal transmission module 
was also developed which can be mounted and dismounted 
from the sensor to transmit and collect data. The sensor was 
used for self-monitoring of a concrete structure at railway 
stations. The output signal from the pair was very similar 
to a wired transmission sensor and had a range of 200 m 
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in open space and 100 m in a genuine railway operational 
environment. Wireless sensors are favourable as they can be 
employed at an inaccessible location which can be difficult 
for a wired sensor [66]. The health of the concrete structure 
has been studied earlier too using a wireless sensor [67–70].

2.2  Embedded (Piezo/Optical) Sensors Based 
Technique

2.2.1  Piezoresistive Sensor

Tang et al. [39] compared the results of embedded piezoelec-
tric wafers and surface mounted piezoelectric wafers. The 
workpieces were tested in axial tensile fatigue, and pitch-
catch waveforms were recorded through their life. In the 
former group, it was found that most of the failure occurred 
at the leads of the piezoelectric wafers, specifically for a 
diameter greater than 15 mm [71] and they also acted as 
stress raisers. It was also postulated that additional difficul-
ties will develop if the thickness of the wafer was of the 
order of one to five times the average ply thickness of the 
composite material. In the latter group, it was found that fail-
ure occurred reasonably away from the piezoelectric wafers.

Alexopoulos et al. [72] embedded conductive carbon 
nanotube (CNT) fibre to the non-conductive glass fibre rein-
forced plastic (GFRP) material for sensing and damage mon-
itoring. Identical mechanical properties were obtained for 
GFRP with and without CNT fibres. A correlation between 
the mechanical stress on the specimen and electrical resist-
ance of the CNT fibre was established. These parameters 
can be represented on a parabolic or an exponential growth 
curve. CNT fibres were advantages when compared to their 
competitors i.e. carbon fibres [73] and modified (doped) 
conductive matrix because of their high modulus value and 
brittle nature.

Ding et al. [74] developed smart structural components 
by embedded electrostatic self-assembled CNT/nano carbon 
black (NCB) composite fillers into concrete columns. The 
fractional change in resistivity of the sensor was measured 
for cyclic and monotonic loading and it exhibited a stable 
and repeatable self-sensing property. The embedding does 
not influence the load-bearing capacity of the column and 
can be used in monitoring the stress/strain state of the same. 
The smart sensor can be embedded to fabricate smart prod-
ucts such as bricks, beams and pier for low-cost monitoring.

Luo et al. [75] fabricated piezoresistive fibre sensors by 
coating single-walled carbon nanotube SWCNT on non-
conducting fibres such as glass fibre, polyaramid, nylon and 
polyethylene terephthalate fibres. They were embedded in 
the polymeric composite structure. The sensors were able 
to provide the in situ resin curing information during the 
manufacturing process and detecting micro-cracks by map-
ping the stress and strain states during cyclic loading. This 

information is extremely valuable in quality assurance of 
composite material. In this study 1D fibre sensors were 
embedded as they are economical, simple and environmen-
tally nonthreatening [76–79] and their sensing character-
istics can be modified through manipulating the SWCNT 
structures in the dispersion [80].

Nag-Chowdhury et al. [81] fabricated nano-composite 
quantum resistive sensor (QRS) by deposition of MWCNT 
on E-glass fibres which was embedded in epoxy resin matrix 
for monitoring. The two parameters which were considered 
were the thickness of QRS and adhesion of the same to fibre 
and epoxy resin [82]. The mechanical integrity of GFRP was 
not compensated by inclusion of QRS [83]. QRS were able 
to monitor structural change provided that they were located 
at relevant locations. Crack creation and propagation can be 
detected by the change in resistance of QRS and no such 
change occurred in low strain conditions.

Thostenson et al. [84] employed CNT sensor in detect-
ing damage and bolt loosening in mechanically fastened 
composite joints. While designing the workpiece, empha-
sis on the loading condition and the physical contact of the 
elements was given. Experimental results revealed that the 
stresses acting in the vicinity of the bolt hole initiated trans-
verse tensile failure in the polymer matrix, resulting in lon-
gitudinal cracks due to low shear strength longitudinal to the 
fibre orientation [85, 86]. The sensor successfully detected 
the onset and progression of the cracks.

Ladani et  al. [87] investigated the fatigue failure of 
adhesive bonded composite joints using carbon nano fibres 
(CNF). It was found that the conductivity of CNFs increased 
by five orders in magnitude by inclusion in epoxy adhesive 
which enabled the use of electrical response to monitor dis-
bond length. The resistance change was monitored using a 
four-probe test. A correlation between the change in resist-
ance and disbond length and size were formed. For deter-
mining the crack length CNT fibres are also employed in 
epoxy adhesive under tensile fatigue loading [88–90]. But 
CNF are better alternative as they are cheaper and widely 
available [91].

Hasan et al. [92] developed conductive coated polyether 
ether ketone (PEEK) by plasma treating it and coating the 
same with Silver (Ag) nanoparticles. It was found that as the 
weight percentage (wt. %) of Ag increased on the surface 
of PEEK the electrical resistance decreased. The principle 
of bonding Ag particle on filaments was discussed in detail 
in [93]. For the given setup, an optimal value of 4.39 wt. 
% of Ag was found. The Ag coated PEEK monofilament 
was integrated into glass fibre (GF) / polypropylene (PP) 
thermoplastic composites. A gradual increase of change in 
fractional resistance for the steady increase in stress up to 
325 MPa before fracture of the composite shows the poten-
tial of Ag coated PEEK monofilament to be used as strain 
sensor in high temperature and pressure applications.
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Lu et al. [94] embedded graphene platelets (GnPs) in 
epoxy for monitoring damage owning to its high sensitivity. 
It was discovered that only after the percolation threshold of 
0.76 vol. %, the electrical resistance of GnPs increased due 
to overlapping and/or tunnelling [95, 96]. The relationship 
between strain and resistance was linear which confirmed 
that it can be used as strain sensor.

Steinke et al. [97] monitored the damage of aramid com-
posites under dynamic loading conditions. The workpiece 
i.e. Aramid fibre reinforced polymer composite was modi-
fied by embedding piezoresistive laser-induced graphene 
(LIG) interface for impact sensing. It was found that by 
monitoring the electrical impedance during the impact using 
the four-point probe resistance monitoring method, a cor-
relation was found between projectile velocity and change 
in electrical impedance and a prediction can be made of the 
extent of damage and failure. The relation between change in 
resistance and delamination was also established. The LIG 
interface embedded aramid composite also showed improved 
toughness which demonstrates the multifunctionality of 
LIG-treated aramid composites.

2.2.2  Optical Fibre Sensor

Takeda [98] stipulated the advantage of using the optical 
fibre sensor (OFS) in health monitoring in composite mate-
rial as early as 2000. The sensor of diameter 52 µm was 
embedded in carbon fibre reinforced polymer (CFRP). It was 
also established that when the sensor was embedded in par-
allel to the fibres in the lamina it did not demote the material 
strength [99]. The strain on the composite was measured as a 
function of wavelength peak shift in reflected light.

Jones et al. [100] studied the ability of OFS in health 
monitoring of ageing aircraft in 2002. Crack growth and 
delamination in bonded repairs were studied using the sen-
sor. The sensor was tested for known strain and the experi-
mental results were encouraging. Preference to embedded 
sensors was given as surface sensor cause residual thermal 
and loading induced strain gradients which reduced the qual-
ity and intensity of the output signal.

Leng et al. [101] monitored the cure processing of CFRP 
composite laminates with and without damage. The moni-
toring was carried out by embedded Fabry–Perot interfer-
ometer (EFPI) and fibre Bragg grating (FBG) sensors in the 
laminate. It was established that both can be employed to 
monitor and detect the damage in composites. Both the EFPI 
[102] and FBG [103] sensors have a thermal expansion coef-
ficient similar to quartz material and found to be temperature 
insensitive. Three-point bending test was performed on the 
specimens. The experimental result presented that flexural 
strain in CFRP composite with damage was more than the 
CFRP composites without damage for the same load in 0 
and  90o direction.

Holmes et al. [104] manufactured a planar optical sen-
sor using flame hydrolysis deposition and reduced its sub-
strate to < 50 μm via physical machining. The planar sensor 
using an embedded planar optic sensor was validated on 
laminated fibre reinforced composite material for measur-
ing the through-thickness and in-plane strains. It is first of 
its kind, scalable demonstration of through-thickness strain 
monitoring of advanced composites. These planar optical 
sensors have a negligible influence on the structural integrity 
ones the surface was roughened and edges tapered. Its results 
were verified and consistent against strain calculations from 
classical laminate theory and strain values measured from 
foil strain gauges and digital image correlation. Zhang et al. 
[105] theoretically proposed the use of polarisation main-
taining (PM) optical fibre for determining the through- thick-
ness strain of a composite material.

Qiu et al. [106] reviewed various OFS for SHM of com-
posite materials. It was established that FBG sensors owing 
to their small size, lightweight and flexible layout was more 
advantageous than other OFS. Other OFS considered were 
Raman optical time-domain reflectometry (ROTDR), Raman 
optical frequency domain reflectometry (ROFDR), Brillouin 
optical time-domain reflectometry (BOTDR), Brillouin 
optical-fibre frequency domain reflectometry (BOFDR) and 
monitoring of structures by optical fibres (SOFO). The need 
for the development of OFS was also emphasised to make 
them more economical and prediction of the growing need 
for OFS mainly FBG was made in every sector of the market 
[107–109].

Rito et al. [110] studied the patch repair of GFRP under 
four-point flexural loading in fatigue using chirped FBG 
(CFBG) sensors. The fatigue disbanding initiated at the 
edges and progressed towards the centre. For the undamaged 
specimen, the edges of the patch were noticeable within the 
reflected spectra. During loading, the disbonds were either 
in adhesive/patch interface or at the adhesive/parent inter-
face. In both cases, the progression of damage was visible 
in the reflected spectra. Similar results were also found in 
theoretical Finite element modelling of the specimen. It was 
postulated that two sensors should be incorporated within 
the bond-line so that both susceptible edges of the repair can 
be examined. Previous studies also suggested that damage 
identification in the CFBG sensor is much easier than in 
FBG sensors [111–113].

Kister et al. [114] integrated Braggs grating sensor into 
an all-composite bridge to test its structural integrity. The 
interfacial bonding strength of the adhesives was tested 
using the pull-out test to evaluate the effect of dry and wet 
conditions on the fibre bonding. For bonding cyanoacrylate 
and epoxy adhesives were used. The durability of the sensor 
protection systems was assessed by carrying out three-point 
bending tests on composite samples. 100% sensor survival 
rate was achieved after three year of bridge construction 
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and the protection strategies for the sensor were found to 
be successful. Details for integrating Bragg grating sensor 
technology in bridge construction can be obtained in [115]. 
Later it was also ascertained that knowledge regarding the 
position, weight, speed and configuration can be extracted 
by continuous monitoring of the bridge [116].

Hegde et al. [117] investigated and compare two types 
of the multifibre assembly consisting of high-birefringent 
(HiBi) sensing fibre and a single-mode PM fibre. PM-HiBi 
and PM-HiBi-PM were the two fibre assemblies for which 
experimental and theoretical studies were carried out for 
health monitoring under static and dynamic loading. The 
polarization behaviour of both the assembly was analysed 
theoretically using the Stokes matrix method for the mono-
chromatic case. The experimental results proposed that the 
PM–HiBi–PM fibre configuration presented better response 
than PM-HiBi fibre and hence can be used in other smart 
structures for non-destructive testing. The PM–HiBi–PM 
fibre sensor showed a pronounced frequency shift indicat-
ing a better sensitivity in picking up the structural defects 
than the PM-HiBi configuration. Different factors such as 
pre-stress conditions, input azimuth, fibre coating, and fibre 
splicing also affect the dynamic performance of polarimetric 
fibre optic sensor (PFOS) [118].

Rufai et al. [119] embedded distributed optical sensor 
(DOF) in GFRP for cure monitoring. A single length of 
a fibre can be used as a multiple in DOF sensors, making 
them appropriate for strain measurement in large structures 
[120–122]. A portion of the DOF was micro-braided using 
fibreglass and the rest was left bare. A quasi‐static four‐point 
bending test was performed on the specimen and the strain in 
the length of DOF was documented. The result for both the 
portions were compared and it was postulated that, micro-
braiding was much more advantages than the other because 
of better strain measurement sensitivity. Micro-braiding aids 
in protecting, handling and improving the mechanical prop-
erties of the fibre [123].

Nguyen et al. [124] investigated the advantage of using 
whispering gallery modes (WGMs) optical sensor for health 
monitoring of composites. In WGM sensors, a dielectric 
microparticle is side coupled to an optical fibre. One end 
is coupled to tunable laser and other to a photodetector to 
monitor the transmission spectrum. A minute modification 
in the shape, size or refractive index of the micro-particle 
causes a shift in the WGM of the optical sensor. By combing 
the analytical and FEM model this shift can be interpreted 
to calculate the strain on the specimen. A force as small as 
 10–5 N can also be detected [125]. WGM sensor can also 
be employed to detect temperature [126], pressure [127], 
acceleration [128] and force [129].

Hegedus et al. [130] embedded a fibre bundle of the rein-
forcing E-glass fabric of the polymer composite structure 
for structural health monitoring without any special surface 

preparation. A general-purpose resin system was selected 
as a matrix for the composite. The load was applied to the 
specimen. Arbitrarily chosen fibre bundle was illuminated 
and microscopic inspections of the ends were performed. 
In the case of fibre breakage and fibre-matrix debonding, 
the power of the emitted light decreased to zero. The break-
age can be recognized by emitted light visible at that point. 
Similar studies have been performed using cheaper E-glass 
fibre bundles and different matrix resin for structural health 
monitoring for composites [131, 132]. It is advantages to use 
E-glass Fibre as its light-transmitting capacity is not limited 
to a few metres but they have to be specifically made.

2.3  Acoustic Emissions

Groot et al. [133] studied the frequency response of acoustic 
emission signal under different loading conditions of CFRP 
to failure. Upon investigation, it was postulated that a matrix 
failure and fibre failure produced a frequency of 100 kHz and 
300 kHz respectively, whereas the intermittent frequency 
response was for debonding and pull-out failures. Real-time 
analysis for each category of failure was performed, which 
is more efficient as compared to the analysis performed after 
the failure [134–136].

Morscher [137] studied the modal acoustic emission to 
monitor damage in the ceramic composite. The investigation 
established that as the specimen was damaged with increas-
ing strain, the elastic modulus decreased which in turn 
decreased the speed of sound through the specimen and the 
frequency response of acoustic emission located the dam-
age precisely. The modal analysis of acoustic emission from 
CRFP laminates was similarly advantageous as compared to 
the classical acoustic emission analysis for damage detec-
tion, localization and orientation [138].

Das et al. [139] employed piezoelectric sensors and actua-
tors for delamination detection in composite material. The 
main aim of the study was to optimally place the sensor to 
locate the delamination in the material. The placement of 
the sensor was based on the intensity of the sensor output 
signal and the concept of certainty region. Optimization 
of the placement of sensor for locating damage is tackled 
using methodologies such as formulating a mixed integer 
programming problem [140], state-space model and a back 
propagation strategy of neural networks [141], power-effi-
cient approach [142], and combinatorial approach for modal 
shape identification [143, 144].

Fu et al. [145] performed a comparative study between 
the results of surface-mounted and fibre optic acoustic 
emission sensor (FOAES) for structural health monitor-
ing of CRPF. The three-point bending test was performed 
in both cases. The elastic wave energy released by the 
damaged specimen was detected by the FOAES to detect 
damage time and quantification of the damage. In this 
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analysis, the FOAES was fabricated, consisting of silica 
capillary tube and fused-tapered fibre and then calibrated 
for the specimen. The major techniques of FOAES studied 
till now have the drawback of being expensive and com-
plicated [146–150].

Aggelis et al. [151] studied the acoustic and ultrasonic 
behaviour of cross-ply laminates for damage monitoring. 
The damage can be identified by studying output signals 
of acoustic emission and ultrasonic waves. When dam-
age is introduced in the specimen, the average energy of 
the acoustic emission decreases [152]. For shear fracture, 
there is a higher rise time and lower amplitude than ten-
sile fracture [153]. The damage also alters the mechani-
cal properties of the specimen which influence the pulse 
velocity and transmission efficiency of the ultrasonic 
waves [154].

Masmoudi et al. [155] prepared two groups of the speci-
men without and with an embedded piezoelectric sensor. 
The inclusion of the sensor in the composite laminate does 
not affect the mechanical behaviour of the same [156]. 
The acoustic emission technique was employed for in-situ 
monitoring of both the groups under three-point bending 
test. There was a very low degradation of the properties 
in the embedded category but these sensors have higher 
sensitivity than surface-mounted sensors. The analysis of 
the acoustic emission signal aided in recognizing the dam-
age mechanism in the laminate [157, 158].

Martins et al. [159] monitored the health of GFRP rein-
forced by tufting using piezoresistive effect and acoustic 
emission technique. Tufting is said to improve the fracture 
toughness [160, 161] in composite laminates and damage 
resistance from impacts [162–164]. Both the approaches 
were found to be valuable in identifying delamination 
and tuft fracture. The delamination resulted in structure 
unloading and loss of resin contact which decreased the 
electric resistance, whereas in the case of tuft fracture 
the electric resistance increased due to an increase in the 
longitudinal strain [165–168]. The change in electrical 
resistance was in correction to the energy of the acoustic 
emission signal.

Denghong et  al. [169] studied the health of ceramic 
composites using acoustic emission techniques. Ceramic 
composites are employed in high-temperature applications 
but are highly susceptible to random vibrations [170]. The 
material damage in random vibration environment has not 
been explored fully using acoustic emission technology 
[171]. This technology was found to be feasible in evalu-
ating damage and load on the specimen. Similar to other 
composites, the type of damage in ceramic composites can 
also be identified by studying the acoustic emission signal 
[172, 173]. But, the same type of damage produced differ-
ent characteristics of the signal at a different location in the 
structure.

2.4  Lamb Wave Method

The lamb waves are generated from a transmitter and they 
travel through the solid up to the receiver, in case of an 
abnormality or damage, they get diffracted or reflected 
by the boundaries of the discontinuity, thus detecting the 
damage in a structure [174]. Prasad et al. [175] constructed 
tomograms by generating and sensing Lamb Wave for an 
anisotropic composite for damage detection. The PZT sen-
sors were surface mounted and excited. It was established 
that the modified cross-hole configuration was more suit-
able in detecting damage than the conventional cross-hole 
configuration [176].

Rosalie et al. [177] embedded PZT sensors in Aluminium 
fiber reinforced polymer composite for damage detection. 
Lamb waves were employed in constructing tomograms for 
health monitoring of the workpiece. The setup was success-
ful in in-situ structural health monitoring of flat plates. This 
technique also has the potential for large scale application 
as well [178, 179].

Giurgiutiu et al. [180] embedded piezoelectric wafer 
active sensors (PWAS) in a composite that acted as a trans-
mitter and receiver of Lamb waves for monitoring. The 
PWAS can detect cracks, delamination and corrosion dam-
age in thin-walled structures [181, 182]. The experimental 
setup was efficient in detecting a hole of diameter 0.8 mm 
in unidirectional and 2.7 mm in quasi-directional composite 
laminates. The lamb waves can also detect damage in thick 
plates [183] and large structures [184].

Giurgiutiu et al. [185] also detected damage in large com-
posite plates. The minimum damage diameter detected was 
2.77 mm. It was established that placement of the PWAS 
transducer is one of the key factors influencing the dam-
age detection abilities. In composites, the anisotropic wave 
propagation characteristics complicates the tuning effect 
between PWAS transducer and composite plates [186] which 
is similar to the tuning effect between the PWAS transducer 
and metallic plates [187].

Munian et al. [188] proficiently predicted the delamina-
tion length and thickness position by employing the lamb 
wave method for delamination detection in a composite. 
It was postulated that as the depth of the delamination 
increased the power of the reflected signal decreased and 
the detection abilities increased when the frequency of the 
incident wave is closer to the resonance frequency of the 
sub-laminate [189, 190]. Detecting damages in beams can 
also performed using lamb wave method [191, 192].

Gorgine et al. [193] investigated the feasibility of the 
lamb wave method in the health monitoring of composites 
in real-world conditions. The temperature was found to 
affect the dielectric permittivity and the piezoelectric coef-
ficient of the actuator and sensor. The presence of moisture 
in composite decreased its flexural strength and velocity of 
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the wave. The amplitude normalization was sufficient to 
compensate for the presence of external vibrations in the 
structure. Applied load and bond defects similarly influenced 
the propagated wave characteristics.

2.5  Comparative Vacuum Monitoring (CVM)

Roach et al. [194] studied the CVM sensor under fatigue 
testing for crack detection. The sensor was discovered to be 
reliable without giving any false-alarms and detecting cracks 
effectively. In the CVM sensors, a very small volume of gas 
or air is retained at a low vacuum. The fluid in the sensor is 
very sensitive to the ingress of air. When there is a crack on 
the component to which the sensor has adhered, it causes a 
leakage which aids in damage detection well before the criti-
cal length of the crack is achieved; the crack size is directly 
proportional to the rate flow due to leakage [195, 196].

As the CVM system is a vacuum-based, pneumatic sen-
sor and adheres itself to the component, they are generally 
employed for in-situ inspection in inaccessible and hazard-
ous locations. Such as fuel tanks in an aircraft for damage 
detection. Moreover, they are an economical and reliable 
damage sensing setup. The CVM sensor can detect cracks 
as small as 0.250 mm [197]. Delamination can also be moni-
tored in composites using CVM [198]. Barton et al. [199] 
extensively reviewed the CVM for health monitoring of 
composite structure in aircraft structures.

Wheatley et al. [200] employed CVM as means of NDE 
for crack detection in an aircraft. The sensor was adhered 
to the component using a stiff adhesive and the system was 
vacuum based. The inspection time in CVM is exponentially 
reduced and can adjust itself to complex shapes.

Stehmeier et al. [198] embedded the CVM sensor in 
between the component having a lap joint to detect crack and 
corrosion damage. 5 CVM sensors were embedded in the lap 
joint and it was subjected to fatigue testing. This technology 
successfully detected cracks of 1.9 mm.

Kousourakis et  al. [201] embedded CVM sensors in 
CFRP laminates to investigate its effects on the interlami-
nar properties. It was established that the fracture toughness 
of the composite increases with the gallery diameter of the 
sensor up to a critical value because of blunting effect of 
the crack tip around the edges of the galleries [202]. But the 
composite tends to have an unstable delamination charac-
teristic. The shear strength was also found to be decreased 
due to reduction in the area because of galleries [203, 204].

2.6  Other SHM Techniques

Afshari et al. [205] predicted the remaining reliability 
of the composite material after each impact using prob-
ability density evolution method (PDEM). Reliability 
was described as "the ability of a system to complete the 

required functions in the given conditions, during a speci-
fied period" [206, 207]. PDEM model was first proposed 
by Li and Chen in 2004 [208]. Analytical as well as the 
experimental evaluation was performed for the Twintex 
laminate and they predicted identical trends similar to the 
population level response. Analytical results are advanta-
geous as they are economical [209] whereas the experi-
mental results accurately predicted the reliability [210].

Grassia et al. [211] developed a neural network to per-
form as the fingerprint of the reference structure. The 
algorithm required the strain reading at different loca-
tions of the sensor without any prior knowledge of load, 
mechanical property and geometry. The neural network 
was developed by establishing a correlation between the 
strain developed at a location and strain quantified in its 
locality. The strain was calculated by using a large number 
of strain gauges under biaxial loading of the specimen. 
The damage was detected by comparing the result of the 
strain value presented by the strain gauge and value pre-
dicted by the neural network.

James et al. [212] studied the impact velocity for generat-
ing barely visible impact damage (BVID) of 1-inch damage 
diameter on CFRP coupons of 2–6 mm thickness. Impact 
testing machine was employed to study the structural health 
of composite. It was found that for thin coupons (2–4 mm) 
hemispherical indentations were found after impact same 
as the tip of the indenter. But, for the case of thick coupon 
(5–6 mm) flatter indentations were found irrespective of the 
hemispherical indenter. This occurrence of this phenomenon 
was attributed to the increase in the flexural stiffness of the 
thick coupons. This confirmed that controlled damage was 
unproblematic to be obtained in thin coupons as compared 
to thick coupons [213].

Verijenko et al. [214] embedded metastable ferrous alloy 
in composite laminates for structural health monitoring. The 
metastable ferrous alloy had an austenitic structure at room 
temperature, but upon application of strain, it transformed 
to a thermodynamically stable martensitic structure, which 
resulted in the change in magnetic susceptibility [215, 216]. 
This change in magnetic susceptibility can be correlated 
with the strain experienced by the material. The inclusion 
does not effect on the material strength and no delamination 
occurred between the inserts and laminate. Several work-
pieces were loaded to failure and consistent results were 
presented which made the technology successful.

Qin et al. [217] embedded glass-coated ferromagnetic 
microwave in the composite for damage detection. The 
microwaves were found to have a negligible effect on the 
strength of the composite material. In the case of wire 
breakage, there was a significant change in the effective 
permittivity upon the application of a magnetic field which 
can be utilized in damage detection. The smaller spacing 
of the ferromagnetic wires was discovered to be desirable 
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for fine-tuning but there was an increase in the plasma fre-
quency [218].

Patil et al. [219] combined vibration-based method and 
modal analysis for localization and quantification of impact 
damage in composite materials. Ultrasonic C-scanning was 
utilized for damage detection. BVID was detected by com-
paring the frequency response function of the undamaged 
and damaged workpiece as the low velocity impact was the 
most reoccurring damage in in-service composites [220].

3  Summary of Major SHM Techniques for 
Composite Materials

Summary of the major SHM techniques particularly appli-
cable to composite materials is provided in Table 1.

3.1  Applications of SHM Techniques

Engineering structures are susceptible to a wide range of fac-
tors such as environmental and induced by humans, which 
can shorten their life by introducing some sort of damage 
in them [221]. As discussed above, the different techniques 
monitor the structural health of composite materials, which 
are employed in a broad spectrum of applications. The struc-
tural health monitoring of civil structures is of utmost impor-
tance as their life cycle is shortened by damages produced; 
identifying the damage and determining the remaining life of 
the structure is crucial [222, 223]. Several researchers have 
focused their study on the health monitoring of operational 
bridges [150, 224–229].

Ko et al. [2] discussed the advantages of sensor and sig-
nal processing in evaluating the structural integrity, reliabil-
ity and durability of large scale bridges. Nair et al. [230] 
reviewed the employment the acoustic emission technology 
in structural monitoring of bridges which presented the tech-
niques promising future. Gatti [231] studied the vibrational 
response of static and dynamic loading of a concrete bridge 
built in the late 1960s for health monitoring of the opera-
tional bridge. Alampalli [232] employed the SHM tech-
nique to study the in-service performance of FRP material 
in bridge applications. Kister et al. [114, 116] embedded 
FOS in the bridge during construction for damage detection 
and it was found to be fully operational when it was tested 
after three years.

After bridges, the building is the second most monitored 
civil structures [233–239]. Gonzalez et al. [240] developed 
a neural network by employing modal parameter to identify 
seismic damage on a five-storey building. Bandara et al. 
[241] also developed an artificial neural network from the 
vibration response of different floors in the building. The 
neural network was successful in identifying the damaged 
floor from a ten-storey building. Mishra [242] proposed the 

advantages of machine learning in damage detection in a 
heritage building. It was established that it would minimize 
maintenance repairs and ensure the longevity of heritage 
sites. Gopinath et al. [243] reported the results of the long 
term and short term monitoring on damage detection in a 
heritage building. He was successful in damage localization 
and quantification.

The structural monitoring of large structures is not eco-
nomical as the sensor systems are found to be expensive for 
accurate results. Pachon et al. [244] evaluated algorithms 
for optimal placement of the sensor in a heritage building. 
The SEMRO method displayed the most promising results, 
requiring only eight sensors with a maximum error of 1%. 
He also worked on reducing the number of the sensor in the 
monitoring of a bridge structure [245]. The bridge structure 
required only four sensors with a maximum error of less than 
2%. Upon damage detection, in the case of timber beams, it 
is repaired or retrofitted with a composite material. Rescalvo 
et al. [246] employed an acoustic emission technique in rec-
ognizing delamination between wooden beams and CRPF 
material. This technique aided in locating the wood-resin 
breaking zones.

Composite materials are extensively used in aerospace 
vehicles owing to their favourable properties. Therefore, 
plenty of research is correspondingly conducted on the 
health monitoring of such vehicles [247–251]. Alvarez et al. 
[252] embedded FBG sensor in the composite material of 
the front spar of an aircraft wing for strain sensing. The 
system was found to be robust and accurately transmit data 
about the damage. Ochoa et al. [1] studied the propagation 
of ultrasonic guided waves for health monitoring of aircraft 
primary structure. Wang et al. [253] developed a lightweight 
network of piezoelectric sensors with shared signal transmis-
sion to the monitoring of aircraft skin. Bergmayr et al. [254] 
detected damage in an aircraft spoiler using strain measure-
ments. The strain sensors were effective in damage localiza-
tion and monitor debonding propagation.

Structural health monitoring has also shown promising 
results in damage detection, localization and quantification 
in a wide range of applications ranging from pipelines, rail-
way axles, wind turbine tower, rotating elements etc.

4  Research Gaps

1. Real-time damage identification and updating of com-
posites based structural models using smart wireless 
sensors needs further exploration.

2. Application of combined SHM, damage identification, 
finite element model updating in prediction behavior of 
composites based building model under the effect of an 
earthquake needs to be explored further.
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3. There is a need to generalize the various health moni-
toring techniques and optimize the embedded sensing 
process in the non-destructive evaluation for complex 
geometric shapes of composite materials.

4. It would also be obligatory to devise robust structural 
health monitoring techniques which are efficient under 
severe working conditions without affecting the perfor-
mance of the composites based system under considera-
tion.

5  Conclusion

An abundant and adequate quantity of literature has been 
published on structural health monitoring recognizing its 
applications and importance in various fields. This review 
paper focuses mainly on the advanced health monitoring 
techniques for damage detection in composite materials 
specifically vibration-based sensors, embedded sensors, 
acoustic emissions, lamb wave method, and comparative 
vacuum monitoring. By virtue of the desirable properties 
of composite materials, they are employable in various 
fields, but due to their anisotropic structure, the mecha-
nism of failure is complex and damages like inter-laminar 
voids, porosity, fibre waviness and wrinkles, de-bonding 
and delamination may occur during their working. Struc-
tural health monitoring techniques are employed to iden-
tify the damage before complete failure and advanced 
techniques can identify very minute cracks also. A limited 
amount of study has been published on real-time damage 
identification cum updating using smart wireless sensors, 
optimized embedded sensing process and robust cum effi-
cient structural health monitoring techniques under severe 
and variable working conditions. The SHM techniques 
discussed in this paper namely vibration-based sensing, 
embedded sensing, acoustic emissions, lamb wave method, 
and comparative vacuum monitoring technique are indi-
vidual in their sense and are very application specific. The 
employability of these techniques depends upon several 
factors which include, but are not limited to sensitiv-
ity, accuracy, resolution, frequency range, mode of data 
transfer, processing hardware and its speed, sampling rate, 
sensor location and number, safety requirements, environ-
mental conditions and economical aspects. Due to such 
complex situation, it is practically not possible to label 
any one single SHM technique as the best. However, after 
a thorough reading of this review paper, one can compare 
the pros and cons of different SHM techniques in order to 
find the most suitable SHM technique under given set of 
operational requirements.
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