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Abstract
Drug discovery and development process is very lengthy, highly expensive and extremely complex in nature. Traditional 
methods involve expensive techniques and take many years to bring a new drug to the market. With the advent of new tools 
and technologies in this field, the major challenge is to reduce the time and cost required for the development of a new drug. 
These complex problems involve extremely high computations and can be addressed with the help of Artificial Intelligence 
based techniques. In this paper, we have broadly discussed different emerging applications of artificial intelligence in the 
field of drug discovery and development including identification of gene targets for diseases, repurposing of existing drugs 
through pathway networks, improvements in structure modelling, virtual screenings and hit identification, ADMET predic-
tion, lead identification, clinical trials etc. using various artificial intelligence methods and their inter comparisons. This 
review presents the literature survey of different research articles published in reputed journals of international publishers 
such as Springer, Science Direct, IEEE Xplore, Elsevier etc. This is a systematic review of 143 publications to provide an 
organized summary. In addition to the in-depth analysis the foreseen challenges and existing limitations associated with 
drug discovery and development process are also pointed out in bold and humble suggestions have been made for necessary 
improvements. Readers, who are new to the field, will find it useful for enhancing their view about the field.

1  Introduction

Human genome has approximately 568 protein kinases and 
156 protein phosphatases that play an important role in 
indispensable biological processes such as differentiation, 
proliferation and apoptosis. The activation or deactivation 
of these protein kinases is achieved in different ways; such as 
binding with activator or inhibitor proteins; to kinase itself, 

through autophosphorylation or dimerization induced cis-
phosphorylation etc. Under physiological conditions, their 
expression and activation is precisely regulated inside cells. 
However, just like pulling the strings of an intricately woven 
net, deregulation of kinase activity changes the spatio-tem-
poral landscape of gene expressions which further leads to 
various disease conditions including development of tumors. 
Now, with the advent of science and instrumentation, the 
mechanistic defects that cause disease are deeply understood 
which have created an immense scope for the development 
of new drugs for their remedy. Enormous sums of money 
is being spent every year for the realization of these rem-
edies, but endeavour goes down the drain when nine out 
of ten drugs fail in between the phase 1 trials or regulatory 
approval thus creating a huge gap in demand and delivery. 
To fill the gap, computational technology could be explored 
to rescue the problem. In the past few years Artificial Intel-
ligence (AI) has become a pertinent topic in the field of drug 
discovery with an aim to reduce time, research expenses, 
and failure rates in clinical trials. The availability of large 
datasets for life sciences and rapid evolution of machine 
learning (ML) algorithms have led many AI based compa-
nies to focus on drug discovery [1]. AI has a wide range 

 *	 Rajneet Kaur Bijral 
	 rajbijral@gmail.com

	 Inderpal Singh 
	 ipsinghbijral@gmail.com

	 Jatinder Manhas 
	 manhas.jatinder@gmail.com

	 Vinod Sharma 
	 vnodshrma@gmail.com

1	 Department of Computer Science and IT, University 
of Jammu, Jammu, J&K, India

2	 Bioinfores, Jammu, J&K, India
3	 Department of Computer Science and IT, Bhaderwah 

Campus, University of Jammu, Jammu, J&K, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-021-09661-z&domain=pdf


2514	 R. K. Bijral et al.

1 3

of applications in medical sectors from hospital to clinical 
research to cut down cost and to improve the outcome of the 
patients. Many pharmaceutical companies have been using 
AI in the development of drugs. Figure 1 shows market share 
of the top ten companies across the world [141]. The global 
market of drug discovery is segmented into four regions; 
North America, Europe, Asia-Pacific countries (APAC), and 
Rest of the World [142]. North America comprising the US, 
Canada and Mexico is the fastest growing AI based drug dis-
covery market and the US is the major contributor. Figure 2 
shows the percentage wise contribution of four regions in AI 
aided drug discovery. Application of AI in the field of drug 
discovery along with molecular dynamics simulations could 
automate and fleet the drug discovery process.

1.1 � Motivation of the Study

Protein Kinases play a vital role in the cellular activa-
tion processes. Phosphorylation of protein kinase is the 
critical process that regulates different cellular activities 
including cell cycle, growth, motility, proliferation, differ-
entiation, apoptosis, etc. With the recent advancement in 
our understanding regarding the fundamental mechanisms 
related to the cell signalling have shown that deregulation 
of the kinases activity leads to oncogenesis. Identification 
and characterization of new diseases and their causative 
defects have created a huge scope for development of new 
drugs for therapeutic intervention. Traditional medicinal 

pipelines are time consuming, costly and alone cannot fill 
the demand and delivery gap, thus AI methods have come 
to rescue this problem. Advent of AI in the field of drug 
discovery and development has exponentially lowered the 
time and hence cost required to bring a new drug to the 
market.

1.2 � Contribution of the Study

In this review, we have covered the systematic review 
of recent research trends in the field of drug discovery 
using AI, that includes the application of AI in the differ-
ent phases of drug design and development: i) Identifica-
tion of target, ii) Drug screening for hit identification, iii) 
Lead identification, iv) Clinical trial, v) Drug repurposing. 
Article discusses different AI techniques used to extract 
the patterns for the identification of drug-targets that are 
difficult for humans to identify through traditional methods 
alone. Second, its application to virtually screen the tar-
gets against millions of compounds significantly reduces 
the cost and time required in wet labs by reducing the 
experimentally screenable compounds. Third, generation 
and assessment of optimized structures by AI models for 
lead optimization. Fourth, AI application in the clinical 
trials and drug repurposing that have shown recommend-
able results is discussed. Different AI based tools available 
online for predicting 3D structure of protein and ligand 
binding site prediction are also covered in the review. 
Lastly, we have also discussed the critical issues and limi-
tations associated with each stage of the drug discovery 
process along with the future directions associated with 
them.

2 � Drug Discovery Process

The overall process of drug discovery is time consuming, 
complex and depends on numerous factors. It starts with 
identification of the biological target i.e. cause of the disease, 
then the identification of the first chemical compound that 
shows activity against the given target, this first compound 
is called a ‘hit’. Hits are found by screening the chemical 
libraries or isolated naturally from bacteria, plants and fungi 
[2]. The next step is to isolate the lead compound; it is the 
compound that shows propitious potential for the develop-
ment of the drug against the given target. The selected lead 
is further modified for its enhanced specificity and potency 
even at lower concentration; this process is known as lead 
optimization. Then the clinical trial of the drug is done to 
know its effect. Overall, phases of drug discovery and devel-
opment are shown in Figure 3.
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Fig. 1   Countries having biggest pharmaceutical market share in the 
world
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butions of four regions for AI 
based drug discovery
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3 � AI, machine learning and deep learning

AI enables the system to perform tasks that require human 
intelligence. In the process, information is acquired, rules 
are developed for using information, approximate or definite 
conclusions are drawn and then self-correction is done [3]. 
The main advantage of an AI approach is that they learn 
from examples and even develop a model if our understand-
ing of the underlying process is limited [4]. AI has various 
applications in the field of health care which include diag-
nosis and treatment of many diseases. ML is the subfield of 
AI that has the ability to automatically improve with experi-
ence. ML makes predictions using computational statistics, 
which can be classified into unsupervised, supervised and 
reinforcement learning. In unsupervised learning techniques, 
hidden patterns in the data are extracted and this information 
is used to form clusters in meaningful ways. Disease target 
identification by clustering through feature methods can be 
done by unsupervised ML. In supervised learning techniques 
the model is trained on input data that have output associated 
with it, then the model thus developed is used to predict the 
output for unseen input data. Classification and regression 
methods are used to develop the predictive model based on 
labelled data. Supervised Learning algorithms can be used 
for disease diagnosis, clinical and medical research [5]. The 
reinforcement learning system learns by interacting with 
the environment and by using feedback from its experiences 
and actions. DL is the subset of ML in which the system 
learns without human intervention from both unstructured 
and unlabeled data. AI has its applications in various fields; 
speech recognition [129], health care [124], gaming [125], 
automobiles [126], social media [128], agriculture [127] etc. 
Figure 4 shows the application of AI in different sectors. 
K. Das et al. [120] proposed a model for the treatment of 
Epilepsy based on Electroencephalogram (ECG) signals. 
The framework thus proposed consists of feature extraction 
(current maxima, lower threshold and target point selection), 
second module consists of pattern matching (segment and 
domain matching) and in the third module they were able to 
detect epilepsy seizure from ECG signals. The accuracy and 
F1 score of the proposed model was reported as 92.66% and 
94.86 % respectively. D. D. Chakladar et al. [123] proposed 
a framework for classifying the cognitive state of a user 

by using the Filter Bank Cognitive State Pattern (FBCSP) 
method and Long Short-Term Memory (LSTM) based Deep 
ensemble. For the experimentation purpose the ECG signals 
were divided into equal size multiple frequency bands and 
extraction of features was done by the Common Spatial Pat-
tern (CSP) algorithm. Deep ensemble models thus proposed 
consisted of multiple LSTM networks connected in parallel. 
Accuracy of 87% was obtained and was able to estimate the 
cognitive state in a low computing environment. Das. Chak-
landar et al. [122] presented a hybrid model based on bidi-
rectional long short-term memory (BLSTM) and LSTM for 
the classification of workload during multitasking mental 
activities of humans. “STEW” Data set consists of two tasks: 
“no task” and “simultaneous capacity (SIMKAP) based mul-
titasking activity” was used for experimentation. The pre-
sented model was able to attain the classification accuracy of 
86.33% and 82.57% for “no task” and “simultaneous capac-
ity (SIMKAP)- based multitasking activity” respectively. S. 
Mukherjee et al. [121] a DL based model for the automatic 
detection of four classes of diseases in plant leaves. For clas-
sification they have adopted GoogleNet to identify disease 
types and an accuracy of 85.04% has been reported. From 
the literature it has been reported that AI has a wide range of 
applications. AI can be employed in the drug discovery and 
development process to improve the decision making pro-
cess involving abundant, high-quality data, thus promoting 
data-driven decision making and reducing the failure rates 
in drug discovery [4].

4 � AI in Drug Discovery Process

4.1 � Application of AI in Target Disease Gene 
Prediction

AI has been appreciated in the past few years and has been 
successfully applied in various stages of drug discovery. The 
Human Genome Project was completed in 2013 since then 
numerous updates of draft assemblies have been made avail-
able to the academicians and industry for understanding the 

Fig. 3   Overall drug discovery process

Fig. 4   Application of AI in different sectors
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Human Genome and the quest to understand the genomic 
factors associated with the disease. Thousand Genome Pro-
ject and HapMap project have also provided wealth of infor-
mation regarding the alternate loci and alternate genotypes 
(i.e. Insertions, Deletions and Substitutions etc.). Screening 
of the clinical cases and comparisons with the healthy con-
trols led to the identifications of risk alleles (i.e. an alternate 
genotype at a certain locus with high correlation with the 
disease phenotype), massive genome wide association stud-
ies (GWAS) further identified the causative genotypes from 
the correlated milieu as a function of tradeoff between strin-
gency and sensitivity addressed in the statistical methods. 
Interestingly, after the development and clinical validation 
of the Drugs, variable response amongst patients prompted 
genotyping which led to identification of certain germline 
variants and somatic mutations. Structural and biophysi-
cal investigations on the target protein and drug molecules 
further elucidated the atomistic explanation for the variable 
responses which included identification of nonsynonymous 
variations causing sensitivity to the therapy or resistance 
perse. ML methods have been used in the identification of 
various disease targets. Its classifiers can be trained on vast 
genetic data usually in excess of gigabytes and Gene Ontol-
ogy for predicting disease gene association [6]. Decision 
Tree based classifiers trained on the morbid and drugga-
ble dataset, metabolic and transcriptional interactions, pro-
tein–protein interaction, tissue expression and sub-cellular 
localization are network attributes to predict the genes that 
are associated with morbidity and may be druggable. Based 
on these applications, researchers have concluded that 
plasma membrane localization and transcription factors 
are vital factors for druggability and morbidity. In a recent 
study, Random Forest (RF) based model outperformed other 
classification methods of ML such as Naive Bayes (NB), 
linear and radial SVM (SVM) with an accuracy of 80% for 
prediction of Autism Spectrum Disorder (ASD) genes [7]. 
In the 2019 [8] manifold learning-based method was pro-
posed by assuming that the distance between genes and its 
associated disease is shorter as compared to non-associated 
disease-gene pairs. The model thus developed is capable of 
identifying new disease-gene associations when studied for 
Lung Cancer and Bladder Cancer. A Deep Neural Network-
based technique has also been developed for the identifica-
tion of association between infectious disease and host genes 
by considering sequence and protein interaction as network 
features [9]. They found that out of 100 highly infectious 
disease-genes associated with them, 73 were verified experi-
mentally. A model was developed to track the changes that 
occur in human muscles due to age [10]. Several ML super-
vised methods were compared, out of which linear-Kernel 
SVM and Deep feature selection models were the best model 
suited for the identification of ageing biomarkers. They con-
cluded that ageing biomarkers could be used for anti-aging 

therapy. E. Ferrero et al. [11] trained different ML based 
classifiers such as SVM, RF, gradient boosting machine and 
neural network to explore disease-gene association. It was 
reported that neural network based classifiers achieved an 
accuracy of > 71%. They used the developed model for the 
prediction of 1431 novel targets. Joen et al. [12] proposed an 
SVM based model to classify cancer drug targets and non-
cancer drug targets for pancreatic cancers (PaCa), ovarian 
cancers (OvCa) and breast cancers (BrCa). Thirteen bio-
logical and network features were identified, out of which 
relevant were selected using SVM-recursive feature elimi-
nation method the key features thus obtained were mRNA 
expression, gene essentiality, somatic mutation pattern, 
DNA copy number and protein–protein interaction. 257 anti-
body targets were identified, out of which 30 affected all the 
three types, whereas 88, 28 and 53 were specific for PaCa, 
BrCa and OvCa, resp. They were also able to identify 345 
peptide targets. DGLinker [135] is a web server developed 
for the prediction of candidate genes for human diseases. It 
is a user-friendly interface that uses the biomedical infor-
mation from various biological and phenotypic databases 
and uses ML based techniques for the prediction of new 
disease-associated genes. From the past few decades ML 
based algorithms have been applied in bioinformatics for the 
prediction of disease-gene association [136, 137].

4.1.1 � Critical Issues and Future Directions

Different databases from different sources are available 
for target identification. The major issue is to manage the 
heterogeneity among these databases. Data recorded in 
these databases are collected under different experimental 
conditions, and the format of recording is not similar. To 
address this problem integrated or curated databases have 
been created. The curated databases are DisGeNet [109], 
Therapeutic target database (TTD) [110], STRING [111], 
LinkedOmics [112], Open-Target platform [113], DepMap 
portal [114], HMDD [115] and Comparative Toxicog-
enomics Databases (CTD) etc.[116]. Curated databases 
have major limitations, such as lack of validation for the 
target-disease association. Some of the curated databases 
have a number of publications as supporting evidence but 
they lack direct correlation with potency of target modi-
fication. Another limitation of these curated databases 
is that they lack target druggability information. Target 
druggability softwares have been developed including 
TractaViewer [117] and Drug Tragetor [118] to find out 
the molecular Ligand abilities and potential safety risks. 
Usage of curated databases should be increased. Moreover, 
curated databases lack programmatic accessibility. There 
is a need to increase program accessibility to accelerate 
usage of curated databases.
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4.2 � Application of AI in Drug Screening

To reduce the R&D expenditure in the process of drug 
discovery, AI techniques can be explored for the identifi-
cation of target-specific molecules that involve screening 
of large compound libraries. Selecting drug candidates for 
particular targets with desirable properties is an important 
step in the drug discovery process. Physical properties and 
chemical properties of the compound must be considered 
as they substantially affect the bioavailability, toxicity 
and bioactivity of drug molecules. Virtual-ligand based 
or structure-based design approach is applied on available 
data for profile selection which substantially reduces the 
final size of the compound library for in-vitro validation.

4.2.1 � AI in Predicting Physical Properties

Physical properties greatly affect the biological properties 
of the drug by modifying its solubility, stability, protein 
binding and absorption. Drug’s Physical properties i.e. 
hydrophobicity, pKa and solubility affects the bioavailabil-
ity of the drug. The concept of inverse design is introduced 
that starts with the desired properties of the compound 
and then the probable molecules are searched. Genera-
tive modeling of ML has been employed [13] for the joint 
probability distribution of both molecular representation 
and physical properties to retrieve inverse design. Molec-
ular fingerprint, coulomb matrix, potential energy func-
tions, bag of molecular bonds and fragments, density of 
electrons, atom and bond weighted graph, atomic charge 
association in 3D and SMILES strings are used by AI 
based tools for molecular representation.

4.2.2 � AI in Predicting Bioactivity

The traditional ML based techniques namely gradient 
boosting machines (GBMs) [14], deep neural network 
(DNNs) [15] and RF [16] have been applied to interpolate 
the transformation done in drug-compounds by retrosyn-
thesis. In recent years matched molecular pair (MMP) 
analysis, i.e. the impact of bioactivity and molecular prop-
erties by introducing a single chemical transformation in 
a drug compound [17] has been widely used in de novo 
design. DNN coupled with MMP performs better than 
GBMs and RF in predicting the bioactivity of the com-
pound [18]. With the availability of large dataset for public 
domain, ML along with the MMP has been used to predict 
the bioactivity properties namely absorption, distribution, 
metabolism, and excretion (ADME) [19], intrinsic clear-
ance [20], oral exposure [21] and mode of action.

4.2.3 � AI in Predicting Toxicity

Drug toxicities and its side effects are an important issue in 
the regulatory clearance of drugs. Traditional in vitro and 
in vivo tests are performed to scrutinize drug safety. “organ 
on a chip” an in vitro model [22] has been developed in 
recent years to reduce the cost, but still this approach is time-
consuming and costly. Computational methods have shown 
considerable dominance in comparison to experimental 
methods as they are fast, inexpensive, more accurate and 
can be applied prior to the synthesis of compounds [23]. In 
recent years various ML based methods include probabilis-
tic neural network [24], SVM [25] and NB [26] have been 
used to predict chemical carcinogenesis of the compound. 
DeepTox [27] is a DL based tool for predicting toxicity, 
the tool first normalizes the chemical representation of the 
compound, chemical descriptors are computed and they are 
used as the input to ML methods. The descriptors are clas-
sified into two categories: static or dynamic. Static Descrip-
tors include surface areas, atom counts and the absence or 
presence of a predefined substructure in a compound; dif-
ferent infinite numbers of dynamic features are calculated. 
The DeepTox Algorithm predicts the toxicity of compounds 
with good accuracy. S. Jain et al.[138] developed a model 
using RF, deep neural network, conventional and graph con-
volutional neural network approach for prediction of toxic-
ity of small molecules using ChemIDplus dataset consist-
ing of > 80,000 compounds having measurements against 59 
acute toxicity endpoints. They were able to predict 36 out 
of 59 points. Some of the tools used for predicting toxicity, 
chemical synthesis and molecular properties of the com-
pounds are listed in Table 1.

4.2.4 � Critical Issues and Future Directions

The major issue is the quality and quantity of data for screen-
ing the drugs. Small amount of data is available and data is 
dispersed across many literatures and is ambiguous. Curated 
databases (MoleculeNet [133]) can solve this problem. The 
transfer learning concept can be explored in this area to have 
effective results. ML based models are based on intrinsic 
feature and have low interpretability [134] can be solved by 
building a data driven feature generation model. Another 
challenge prediction of ligand based property is the activity 
cliff. Activity Cliff means chemicals having similar structure 
but exhibiting different properties. To solve this problem, 
one needs to have the information beyond the structure of 
the compound which is quite challenging.

4.3 � Application of AI in Lead Optimization

Drug-like molecules for specific targets involve exten-
sive virtual screening of compound libraries. Once 
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drug-candidate is identified then it is further refined or modi-
fied to make it more target specific and effective that involves 
two step processes, first step is retrosynthesis that is to recur-
sively transform the drug molecule into smaller fragment 
and second step is to find out the organic reaction that will 
transform the fragment into target compound. Finding the 
suitable organic reaction is quite cumbersome as it requires 
scanning of a large number of reactions. AI techniques can 
be explored to pick the most feasible reaction. Previously the 
Expert based system was used to solve the problem of pre-
diction of reaction and retrosynthesis but these techniques 
were not widely used by chemists because these algorithms 
required human intervention, as the dataset thus used do not 
have molecular context knowledge. A deep neural network 
based model [28] has been reported to solve reaction conflict 
that occurs in the early rule-based system; the model was 
trained on 3.5 million reactions. They attained an accuracy 
of 95% (for top10) in retrosynthesis and 97% of accuracy 
for reaction prediction. AI and Monte Carlo tree search [29] 
have been combined for the synthesis of organic molecules 
by retrosynthesis. The performance of MCTS, neural Best 
First Search (BFS) and heuristic Best First Search (BFS) for 
497 different molecules has been studied; 92% of the test set 
was solved by MTCS, whereas neural BFS and Heuristic 
BFS solved 71% and 4% respectively. Search problem in 
retrosynthesis is complex and deep reinforcement learning 
[30] is used for identification of reactions in each step of the 
retrosynthesis. Neural networks have been trained to esti-
mate the cost of the molecule on the basis of its molecular 
structure. AI techniques can be trained on available data-
set to predict the probability of the selection of the reac-
tion for the transformation of molecules from one stage to 
another, linking each transmission with its predecessor and 
also considering the yield and cost of the transformation. 
Auto in-silico ligand directing evolution (AILDE) [139] has 
been developed for lead optimisation. In the developed 

Framework compound library were constructed, molecular 
dynamics simulation was used for conformational sampling 
and fragment growing for ligand modifications. However, an 
assumption was made that there were no changes in the bind-
ing mode. AILDE was not able to perform well in case of an 
activity cliff. AI can be employed for the prediction of opti-
mal and feasible retrosynthesis routes for drug molecules.

4.3.1 � Critical Issues and Future Directions

Although the emergence of AI based methods in retrosyn-
thesis looks promising. There are critical issues associated 
with these methods. The first issue is that a mostly similarity 
based approach is used for the prediction of the next step in 
the reaction based on existing reaction knowledge. The result 
is based on an empirical approach for the automation of ret-
rosynthesis. As the model is restricted to operate and give 
suggestions on the basis of the data provided to it. Signifi-
cant amount of uncertainty is suggested by the model extrap-
olating outside its training data. The second issue associated 
with AI based retrosynthesis is lack of high quality data. The 
major issue associated with the data are; kinetic associated 
with the reaction and order of catalysts and reagents. Need 
is to accelerate standardized matrix and quality shirt data set 
with common benchmark to have favourable results from AI 
based models.

4.4 � Application of AI in Clinical Trial

It has been reported that to bring a single drug to market 
it takes about 1.5–2.0 billion USD [31]. Clinical trials of 
drugs take about half of the time of the whole drug devel-
opment process. Failure of it is not only a waste of time but 
also money spent in preclinical phases of drug development. 
The success of the clinical trial depends on various factors 
including recognition of the disease, identification of target 

Table 1   Tools for prediction toxicity, chemical synthesis and molecular properties

Tools Description Websites References

Chemputer Tool for reporting a chemical synthesis procedure https://​zenodo.​org/​record/​14817​31 [92]
ORGANIC Molecular generation tool for creation of molecules 

with desired properties
https://​github.​com/​aspuru-​guzik-​group/​ORGAN​IC [93]

DeepNeuralNet- QSAR Tool for prediction of Molecular activity https://​github.​com/​Merck/​DeepN​eural​Net-​QSAR [94]
Hit Dexter ML based models for the predicting molecules that 

might respond to biochemical assays
http://​hitde​xter2.​zbh.​uni-​hambu​rg.​de [95]

ODDT Chemoinformatics and molecular modeling toolkit https://​github.​com/​oddt/​oddt [96]
REINVENT RNN (recurrent neural network) and RL (reinforce-

ment learning) based Molecular de novo design
https://​github.​com/​Marcu​sOliv​ecrona/​REINV​ENT [97]

SCScore A model to evaluate scoring function of the com-
plexity of a molecule synthesis

https://​github.​com/​conno​rcoley/​scsco​re [107]

NeuralGraph Fingerprints Novel molecules Property prediction tool https://​github.​com/​HIPS/​neural-​finge​rprint [108]
DeepTox Tool for Toxicity predictions www.​bioinf.​jku.​at/​resea​rch/​DeepT​ox [27]

https://zenodo.org/record/1481731
https://github.com/aspuru-guzik-group/ORGANIC
https://github.com/Merck/DeepNeuralNet-QSAR
http://hitdexter2.zbh.uni-hamburg.de
https://github.com/oddt/oddt
https://github.com/MarcusOlivecrona/REINVENT
https://github.com/connorcoley/scscore
https://github.com/HIPS/neural-fingerprint
http://www.bioinf.jku.at/research/DeepTox
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and finding out the effect of the drug molecule in the patient. 
AI technique’s' ability to automatically identify the pattern 
from large datasets could be explored to reduce the time 
required in clinical trials. AI platform (AiCure) has been 
used on mobile devices to measure medication adherence 
phase II for patients suffering from schizophrenia [32]. The 
comparison of AI platform and modified directly observed 
therapy (mDOT) shows that mean cumulative adherence 
reported for AI platform and mDOT was 89.7% and 71.9% 
respectively for patients receiving ABT-126.

4.4.1 � Critical Issues and Future Directions

The major issue in application of AI in clinical trials is 
the necessity of a high volume of labelled data sets for the 
training of models. Another issue is the need for regulat-
ing relevant ethical issues (patient privacy, securing data, 
retaining confidentiality) for using healthcare data for AI. 
To effectively explore the numerous steps of clinical trials, 
data scientists and medical scientists need to work together 
to have promising results. Data should be collected in such 
a way that it carries information about correlation of trial 
design features and trial performance.

4.5 � Application of AI in Drug Repurposing

Drug repurposing is the process in which reuse of existing 
drugs is explored and implemented for new medical therapy. 
The advantage of drug repurposing is that already approved 
drugs can omit the phase I of the clinical trial and toxic-
ity testing thus reducing the development time and risk in 
drug development. A deep neural network (DNN) model 
[33] has been proposed by using transcriptional data to clas-
sify therapeutic categories of different drugs. The data set 
consisted of 433, 454 and 308 drugs for PC3, MCF7 and 
A549 cell lines respectively. The proposed model was able 
to classify drugs based on their toxicity and therapeutic use. 
Study performed by Li et al. [34] suggested a DL based 
drug repurposing approach based on chemical structure and 
transcriptome expression data. They were able to report the 
repurposing of Pimozide used in the treatment of Tourette’s 
Disorder for the treatment of non-small cell lung cancer. 
Zeng et al. [35] proposed deepDR, a DL based approach for 
drug repositioning by predicting a new drug-disease associa-
tion. Proposed model consisted of a heterogeneous network: 
seven networks of drug-drug and one network for drug-
side-effect, drug-disease and drug-target. deepDR first con-
structed the PPMI (positive point wise mutual information) 
matrices for each network then the features were extracted 
by Multimodal Deep Autoencoder and finally features were 
used by collective Variational Autoencoder (cVAE) for the 
prediction of drug-disease association. The accuracy thus 
obtained by the deepDR for predicting association between 

drug and disease was 82.6%. A deep generative adversarial 
autoencoder (AAE) and variational autoencoder (VAE) were 
implemented and compared by Kadurin et al. [36] for the 
identification of molecular properties that had known anti-
cancer properties. AAE and VAE performance was com-
pared by conducting three experiments, in the first experi-
ment they compared models with reconstruction error, and 
it was found that AAE is better than VAE with reconstruc-
tion error of 9.52 as compared to VAE with reconstruction 
error of 14.60. In the second experiment, VAE and AAE 
were compared by their ability to generate molecular vec-
tors. VAE performed better than AAE in terms of cover-
age. In the third experiment two models were compared in 
terms of feature extraction where both the models performed 
well. The association between drug-disease can be used for 
drug repurposing Zhang et al. [37] represent the association 
between drug-disease as bipartite networks. They proposed 
a similarity-based inference method (NTSIM) for prediction 
of unknown association between drug-disease and similar-
ity-based classification method (NTSIM-C) for classification 
of therapeutic association. Moghadam et al. [38] presented 
scored mean kernel fusion (SMKF) method to predict drug 
candidate by considering six features that are drug chemi-
cal structure, drug side effect, drug’s receptor phenotype, 
protein–protein interactions, drug sequence alignment with 
receptor protein and disease phenotype. The model was 
developed to know the effect of disease and drug features in 
predicting drug-disease association.

4.5.1 � Critical Issues and Future Directions

Major issue in drug repurposing is intellectual property con-
sideration. Legal issues related to patenting the new medical 
use for already existing drugs impede the drug repurpos-
ing. Electronic Health Recorder (EHR) has been used to 
overcome the limitation related to data availability for drug 
repurposing. The need is to advance technology for inte-
gration and extraction of heterogeneous large scale data. 
Options including patent pools, open licensing should be 
explored for rare and neglected diseases from intellectual 
property prospective to enhance drug repurposing.

5 � AI in Predicting the 3D Structures 
of Protein and Protein Ligand Binding Site 
Prediction

5.1 � AI in Predicting the 3D Structure of Protein

Proteins are complex macromolecules in our cells which 
regulate physiology. Knowing the 3D structure from the 
sequence of the proteins is vital for drug discovery as it helps 
to determine its function, topology and druggable pockets. 
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It also helps to find the drug molecule that will bind with 
it. Prediction of protein structure by experimentation is a 
very complex, time consuming and tedious task. AI-based 
techniques are implemented in this area to increase the accu-
racy and efficiency of structure prediction. AlphaFold, an AI 
based system was developed [39] by combination of three 
neural networks for protein structure prediction based on 
distance prediction between the residue pairs, quantification 
of the candidate structure was done by Global Distance Test 
(GDT_TS) and then the protein structure was generated. The 
system was able to predict the structure with high accuracy 
because it was based on the distance between residues and 
angle between peptide bonds and the system was made to 
learn probability distribution to generate the structure of 
protein. FoldRec [140] is the model for recognition of pro-
tein folding to incorporate the interaction among proteins. 
In the proposed model recognition is done by combination 
of cluster-to-cluster model and protein similarity network. 
Some of the tools for 3D structure prediction of proteins are 
listed in Table 2.

5.2 � AI in Protein–Ligand Binding Site Prediction

Onco or disease marker proteins with aberrant activity 
require binding with other bio-molecules or ions to form 
specific interactions to attain specific functions. These bio-
molecules or ions are called ligands, specific positions or key 
amino residues in proteins where the ligand binds are called 
ligand binding sites (LBSs). The identification of these LBSs 
helps us to effectively explore the mechanism behind the 
pathogenesis of diseases, thus helping in the process of drug 
design and development. With the development of computer 
technology in recent years, AI algorithms have been used not 
only in ligand binding site prediction but also for binding 
affinity prediction. Identification of protein–ligand interac-
tions has an extensive impact in the field of drug discovery 
as it not only helps to identify the lead hits but also in the 
process of drug repositioning. With the emergence of large 
collections of protein–ligand complexes complemented by 
binding data, as found in PDBbind or BindingMOAD, new 
opportunities for parameterization and evaluating scoring 
functions have arisen. With huge data collections available, 
it becomes feasible to fit scoring functions in a QSAR style, 

i.e., by defining protein–ligand interaction descriptors and 
analyzing them with modern ML methods [40]. Some of 
the ML and DL based LSB prediction and protein–ligand 
prediction methods are listed in Table 3.

Protein ligand binding sites are a class imbalance and 
dichotomous problem. Many ML algorithms have been 
implemented to predict the protein ligand binding sites 
including; Linear regression, Support Vector Machine, 
Naïve Bayes classifier, RF algorithm and KNN algorithm 
some of them are demonstrated in Fig. 5.

Linear regression is simple to implement but its accu-
racy is poor because of under-fitting. Naïve Bayes classifier 
is a simple, fast and effective algorithm for classification 
problems but it requires prior probability and not effective 
for data that have correlation between samples. Although 
the KNN algorithm is quick, simple and has less training 
cost, it performs poorly for class imbalance problems. RF 
algorithm works on a decision tree that performs poorly 
for class imbalance. SVM (SVM) has excellent classifica-
tion accuracy, high generalization ability and exceptional 
ability to classify high-dimensional small sample data; it 
has been used recently in the field of LSB prediction and 
protein–ligand interaction. Some of the published research 
using SVM is discussed below.

In 2009 Chauhan J S et al. [45] developed the ATPint 
web server to identify ATP binding residue in the protein. 
Two SVM based models are developed; the first model is 
developed using the primary sequence of the proteins and 
the second model is developed by using PSI-BLAST gen-
erated position specific scoring matrix (PSSM). The first 
model attains the maximum Matthews's Correlation Coef-
ficient (MCC) of 0.33 with accuracy of 66.25% and second 
model performance is recorded as MCC 0.5, which is better 
than the first. In 2011, MetaDBSite server based on SVM 
developed by Jingna Si et al. [51] predicted the protein-
DNA binding residues by considering sequence informa-
tion. MetaDBSite integrates the results of six predictive 
tools: BindN-rf [82], DNABindR [83], BindN [84], DISIS 
[85], DBS-PRED [86] and DP-Bind [87]. Input parameters 
of the SVM model are attained by the result of DNABindR, 
BindN, DISIS, and BindN-rf, while DBS-PRED and DP-
Bind provide auxiliary parameters. The output obtained by 
MetaDBSite is better than any single prediction model. On 

Table 2   Tools for predicting 3D structure of proteins

Tools Description Websites References

RaptorX Tool for protein function and structure prediction http://​rapto​rx.​uchic​ago.​edu/ [88]
AlphaFold Tool for the prediction of Protein 3D structure https://​deepm​ind.​com/​blog/​alpha​fold [39]
ESyPred3D Tool for homology modeling http://​www.​fundp.​ac.​be/​urbm/​bioin​fo/​esypr​ed/ [89]
Phyre and Phyre2 Tool for for protein structure prediction http://​www.​sbg.​bio.​ic.​ac.​uk/​phyre2 [90]
HHpred Tool for template detection, alignment, 3D modeling http://​prote​vo.​eb.​tuebi​ngen.​mpg.​de/​hhpred [91]

http://raptorx.uchicago.edu/
https://deepmind.com/blog/alphafold
http://www.fundp.ac.be/urbm/bioinfo/esypred/
http://www.sbg.bio.ic.ac.uk/phyre2
http://protevo.eb.tuebingen.mpg.de/hhpred
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Table 3   Machine learning and deep learning based LSB prediction and protein–ligand prediction methods

Authors/year Method Machine learning and deep learning technique

W. Deng et al. (2004) Knowledge-based scoring functions, structure–activity 
relationship (QSAR) approach [41]

Kernel-Partial Least Squares

T. Guo et al. (2005) Novel statistical descriptor (the Oriented Shell Model) 
[42]

support vector machine

K. Ye et al. (2007) Multi-RELIEF [43] RELIEF algorithm
C. Sotriffer et al. (2008) SFCscore [44] Partial Least Squares Analysis

Multiple Linear Regression
J. S. Chauhan et al. (2009) ATPint [45] Support Vector Machine
B. Huang et al.(2009) MetaPocket [46] Hierarchical Clustering Algorithm
J. A. Capra et al.(2009) ConCavity [47] K-Means algorithm
P. J. Ballester et al. (2010) RF-Score [48] Random Forest algorithm
J. D. Durrant et al. (2010) NNScore [49] Artificial Neural Network
J. D. Durrant et al. (2011) NNScore 2.0 [50] Artificial Neural Network
J. Si et al. (2011) MetaDBSite [51] Support Vector Machine
K. Chen et al. (2012) NsitePred [52] Support Vector Machine
Y. Dou et al. (2012) L1pred [53] L1-Logreg Regression classifier
M. Brylinski et al.(2013) eFindSite [54] Support Vector Machine
J. Yang et al. (2013) COACH [55] Support Vector Machine
B. Panwar et al. (2013) VitaPred [56] Support Vector Machine
D. J. Yu et al. (2013) TargetS [143] Support Vector Machine
P. Chen et al. (2014) LigandRFs [57] Random Forest algorithm
M. Suresh et al. (2015) Naïve Bayes method [58] Naïve Bayes classifier
Y. Komiyama et al. (2015) Utprot [59] Support Vector Machine

Artificial Neural Network
The Random Forest algorithm
Genetic Algorithm

D. J. Yu et al. (2015) OSML[60] Support Vector Machine
R. Krivák et al. (2015) PRANK [61] Random Forest algorithm
B. Alipanahi et al. (2015) DeepBind [62] Convolutional Neural Networks (CNNs)
P. Chen et al. (2016) LigandDSES [64] Random Forest algorithm
J. W. Jian et al. (2016) ISMBLab-LIG [63] Artificial Neural Network
M. M. et al. (2016) SAnDReS [65] Regression Analysis
S. Zhang et al. (2016) Multimodal Deep Belief Network [66] Deep Belief Network (DBN)
J. Jiménez et al. (2017) DeepSite [67] Deep Convolutional Neural Networks (DCNNs)
M. Wen et al. (2017) DeepDTIs [68] Deep Belief Network
Q. Wu et al. (2018) COACH-D [69] Support Vector Machine
R. Krivák et al. (2018) P2Rank [70] Random Forest algorithm
H. Öztürk et al. (2018) DeepDTA [71] Deep Convolutional Neural Networks (DCNNs)
J. Jiménez et al.(2018) KDEEP [72] 3D-Convolutional Neural Networks (DCNNs)
I. Lee et al. (2019) DeepConv-DTI [73] Deep Convolutional Neural Networks (DCNNs)
L. Zheng et al. (2019) OnionNet [74] Deep Convolutional NeuralNetworks (DCNNs)
Z. Zhao et al. (2019) SXGBsite [75] Synthetic Minority Over-Sampling Technique (SMOTE) 

and Extreme Gradient Boosting (XGBoost)
Y. Cui et al. (2019) DeepCSeqSite [76] Deep Convolutional Neural Networks (DCNN)
L. Pu et al. (2019) DeepDrug3D [77] Deep Convolutional Neural Networks (DCNN)
da Silva. et al. (2020) Taba [78] Linear Regression

Least Absolute Shrinkage, and Selection Operator 
(Lasso)

Lasso with cross-validation
Ridge with cross-validation

H. Zhang et al. (2020) DeepBindPoc [79] Deep Convolutional Neural Networks (DCNN)
I. Kozlovskii et al. (2020) BiteNet [80] 3D-Convolutional Neural Networks (DCNNs)
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Table 3   (continued)

Authors/year Method Machine learning and deep learning technique

M. M. Stepniewska-Dzi-
ubinska et al. (2020)

Kalasanty [81] U-Net: Convolutional networks for biomedical image 
segmentation

N. Verma et al.(2021) SSnet [130] Deep Convolutional Neural Networks (DCNN)
F. Hu et al.(2021) Multi-PLI [132] Deep Convolutional Neural Networks (DCNN)
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the test set, MetaDBSite reported an ACC, Spe, Sen of 0.77 
and MCC of 0.32. Ke Chen et al. [52] in 2012 proposed 
the NsitePred algorithm SVM based model for predicting 
binding residues for ATP, ADP, AMP, GTP and GDP from 
protein sequences. First, secondary structure, dihedral angles 
and relative solvent accessibility are extracted, then the 
PSSM profile of the given protein sequence is tested, and an 
eigenvector for the given protein is generated for describing 
the residue. NsitePred performs better than ATPint [45] and 
GTPbinder [98]. Yank Zhang et al. [55] in 2013 presented 
a SVM-based method, combining sequence information-
based prediction and template-based methods TM_SITE and 
S-SITE along with the prediction result of the three methods 
FINDSITE [99], ConCavity[100], and COFACTOR[101] for 
training SVM. COACH model performs better than classi-
cal prediction algorithms with MCC = 0.54 and Pre = 0.59.

In the early 2000s, DL has surpassed ML in various fields 
such as speech recognition [102], image recognition [103], 
text classification [106], image segmentation [104] and 
semantic modeling [105]. DL solve the complex problem 
even if the dataset is very large, inter-connected and unstruc-
tured that make it well suited to solve the complex problem 
in the field of drug discovery and medical domain such as 
image-base diagnosis of diseases, predicting the chemical 
activity of compound, designing the chemical structure of 
compound and protein LBS prediction. In the past few years, 
DL has been used by researchers for protein ligand-bind-
ing-sites prediction. Some of the DL based LBS prediction 
methods are discussed below.

Durrant et al. [49] proposed a scoring function based on 
a neural network trained on 4141 protein–ligand complexes 
from the Protein Data Bank. Neural network having one hid-
den layer.

and five neurodes was trained to find out the influence of 
the training set size and architecture of the network on the 
accuracy and robustness of the network output DL based 
deep belief network (DBN) named as DeepDTIs was pro-
posed by Wen et al. [68] for effective prediction of drug-tar-
get interaction. They tested their model with an independent 
test set and compared them with other algorithms: RF, Ber-
noulli Naïve Bayesian (BNB) and Decision Tree (DT). The 
dataset being used was taken from the DrugBank database 
containing 1412 drugs, 1520 targets and 2,146,240 DTPs. 
The features being used included—Extended Connectiv-
ity Fingerprints (ECFP) and protein sequence composition 
descriptors (PSC) for drugs and target representation. DBN 
performed better than BNB and DT. Testing was done on 
external EDTIs data extracted from the DrugBank database 
containing1412 drugs, 1520 targets and 2,146,240 DTPs. 
The performance of the model was measured on parameters 
including Area under the ROC Curve (AUC), accuracy, sen-
sitivity and specificity 91.58, 85.88, 82.27 and 89.53, respec-
tively. 3D-Convolutional Neural Networks KDEEP [71] 

predicted binding affinity and compared it with another ML 
approach. Dataset PDBbind (v.2016) has been used to con-
tain 13,308 protein − ligand complexes and their correspond-
ing experimentally determined binding affinities. The 3D 
convolution neural network was compared with RF-Score, 
X-Score, and cyScore. They reported the comparison of 
Pearson's correlation coefficient (R) of 0.82 and a RMSE of 
1.27 in pK units between experimental and predicted affin-
ity. A study done by Ztu et al. [70] considered only sequen-
tial information of both target and drug for binding affin-
ity prediction using a DL based model. CNN based model 
DeepDTA was developed on two Kinase dataset Davis and 
KIBA dataset. The Concordance Index (CI) was used for 
the performance measure of the model and it was compared 
with the Kronecker Regularized Least Squares (KronRLS) 
based approach and SimBoost based approach. Nested cross 
validation was used to decide the best parameters for each 
test set. Lee et al. [72] proposed a Drug Target Interaction 
(DTI) prediction model based on convolution neural net-
works by performing convolution on various lengths of 
amino acids sub sequences. The model was trained which 
contained data from three databases: DrugBank, KEGG, 
and IUPHAR; duplicates from the dataset were removed. 
Dataset contained 11,950 compounds, 3,675 proteins and 
32,568 DTIs. Negative DTI dataset was inevitably gener-
ated randomly. Biasness from randomly generated negative 
DTIs dataset was reduced by building ten sets from a posi-
tive dataset. Validation dataset was created from the MATA-
DOR dataset, and all DTIs observed in the training dataset 
were excluded. Evaluation of the model was done on two 
independent test datasets from the PubChem BioAssay data-
base and ChEMBL KinaseSARfari. Hyperparameters such 
as learning rate and window sizes are tuned during cross val-
idation to increase the performance of the model. They first 
determined the learning rate of the model, then the selection 
of the activation function and regularization parameters were 
set. Grid-search method was employed for optimization of 
other hyperparameters for neural networks. DeepCSeqSite 
proposed by Cui et al. [75], in which several convolutional 
layers were stacked on each other to extract hierarchical fea-
tures. Convolutional kernels combined extracted features 
and for prediction softmax was used. In 2020, Zhang, H. 
et al. proposed DeepBindPoc based on DL; the model was 
developed by incorporating the information of the binding 
pocket and associated ligand. The model contains densely 
connected 16 layers outputting 100 units. The ReLU activa-
tion function is used for the hidden layer and output layer 
employed by the sigmoid activation function. One of the 
advantages of DNN is that it learns more high-level and 
abstract features of very complex data. BiteNet [80] DL 
based model identifies binding sites by spatiotemporal fea-
tures identification. It represents the structure of the pro-
tein as a 3D image with a channel corresponding to atomic 
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densities. It has been observed that it takes about 0.1 s for 
the analysis of single conformation and about 1.5 min for 
analyzing MD trajectory of 1000 frames, each frame con-
taining about 2000 atoms. SSnet [130] a deep neural network 
based model was developed for prediction of protein ligand 
interaction by utilising secondary structure information and 
torsion of the protein backbone. It was observed that SSnet is 
not biased towards any specific conformation and was able to 
extract information for protein ligand interaction prediction. 
DEELIG [131] a DL based model uses the spatial relation-
ship among data for prediction of affinity and binding of 
proteins. Multi-PLI [132] a DL based model was developed 
to overcome generalizability and heterogeneous data issues 
that occur in structure based models. Classification was used 
to find out whether it was binding or not binding. Regression 
was used for finding binding affinity. It was found out that 
the model was able to predict amino acids that were essential 
for the binding of ligands.

5.3 � Critical Issues and Future Directions

Tools have been developed for protein structure prediction 
but still there are many issues. Energy functions needed for 
prediction are approximated for computational efficiency as 
a result of which accurately balancing non-polar and polar 
interaction at the interface is a challenging task. However, 
only modelling subset with ordered water molecules can be 
done but it is a computationally costly process. The need is 
to develop both robust techniques for prediction of protein 
structure and conformation. Analysis of the energy land-
scape along with molecular dynamics trajectory can be 
exploded to capture a flexible dynamics system. The binding 
site prediction depends on structure information of protein. 
As the protein structure database will grow in future it will 
open up the opportunities for the improvement of binding 
site prediction and functions.

6 � Open Research Challenges 
and Opportunities in Drug Discovery

The major challenge faced by pharmaceutical companies to 
develop a new drug is its cost and time required. AI tech-
nologies have been successfully applied in various fields: 
Natural Language Processing, Signal Processing, computer 
vision, agriculture Sector etc. and has the potential to reduce 
the time and cost required developing a new drug. Many 
researchers have shown that the future of drug discovery 
is very promising as covered in our review. Still, applica-
tion of AI in the field of drug discovery is very challenging. 
Drug discovery is a very complex process and it requires 
knowledge of various fields (chemistry, biology and medi-
cine). Second, reliability and safety are the major issues in 

the decision-making process of the discovery as it directly 
affects public health. High quality data is the main con-
cern. Data labelling in drug discovery is very complicated. 
Moreover, data available is very less as compared to the 
large amount of information available in records, as open 
data sharing is not common in pharmaceutical companies. 
The data that is available is not in uniform format. The solu-
tion of this problem is to start an initiative to share data for 
the betterment of Public Health. To deal with heterogene-
ity of the data a “one-short learning” algorithm has been 
developed by Stanford University [119]. Fourth, Lead opti-
mization is a challenging phase to develop effective drugs 
with desired properties and sometimes these parameters are 
incompatible and independent. This makes the process very 
complicated. Optimizing each parameter individually and 
improving our model this problem can be solved. Another 
major challenge faced by companies using AI in drug dis-
covery is that they have to undergo a rigorous process to 
have copyright for their work as most of the countries do not 
give patents to these inventions.

7 � Discussion and Conclusion

Drug discovery and development is a complex process and 
typically costs billions of USD and takes about 10–12 years 
to bring a drug to the market. To address this problem dif-
ferent AI based techniques have been explored. An exam-
ple of this is drug screening, there are millions of drug-like 
compounds at online databases and laboratory screening of 
each of these compounds traditionally costs 60–100 USD 
and takes several months to screen a significant batch, yet, 
it remains unfeasible to screen all available compounds even 
through high throughput robotics. With the advent of AI 
in the drug screening process, billions of compounds can 
be screened in a few days. Many AI based tools and meth-
ods have been developed to facilitate the different phases 
of drug development process from 3D structure prediction, 
target disease gene prediction, protein–ligand binding site 
prediction, drug screening, predicting physical property, 
toxicity and bioactivity, lead optimization, clinical trial to 
drug repurposing. In the past few years, AI computational 
methods have shown a great impact in the field of drug dis-
covery that lead many pharmaceutical companies to invest in 
AI-based R&D programs and to have collaboration with AI 
start-ups and academic institutions. Takeda Pharmaceuticals 
Company and MIT’s School of Engineering have collabo-
rated to work together to start a drive to explore the appli-
cation of AI in the field of healthcare and drug discovery. 
However, there are still some challenges to overcome. Just 
like organic chemists have over the years adopted a uni-
versal nomenclature of chemical compounds, the universal-
ity of health care record format and curation of metadata 



2525Exploring Artificial Intelligence in Drug Discovery: A Comprehensive Review﻿	

1 3

of patients is still to be achieved. Enormous expanses of 
experimental screening information available at the research 
journal archives do not follow a common format and thus 
often requires manual reformatting before funnelling into 
an AI algorithm that in itself limits the efficient use of AI in 
this field. Even after successful identification of the genes 
implicated in disease development and identification of 
structural details of its protein product, its druggable pocket 
and key target amino acid residues identification through a 
bunch of AI algorithms, yet there is no integrated workflow 
which address this process end to end and this necessitates 
development of such a platform. Proteins are drug targets 
and are dynamic in nature, the excessive reliance on their 
experimentally available structures alone for AI based drug 
discovery can bias the results, thus conformational ensem-
bles generated through the molecular dynamics simulations 
could also be included in such a procedure to boost identifi-
cation of novel compound scaffolds for intellectual property. 
By and large, we feel safe to say that a strong foothold of 
AI is already into the drug discovery and development and 
due to realization of its strength; the associated issues will 
be addressed.
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