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Abstract
A comprehensive review of variable-length pendulums is presented. An attempt at a unique evaluation of current trends in 
this field is carried out in accordance with mathematical modeling, dynamical analysis, and original computer simulations. 
Perspectives of future trends are also noted on the basis of various concepts and possible theoretical and engineering applica-
tions. Some important physical concepts are verified using dedicated numerical procedures and assessed based on dynamical 
analysis. At the end of the review, it is concluded that many variable-length pendulums are very demanding in the modeling 
and analysis of parametric dynamical systems, but basic knowledge about constant-length pendulums can be used as a good 
starting point in providing much accurate mathematical description of physical processes. Finally, an extended model for 
a variable-length pendulum’s mechanical application being derived from the Swinging Atwood Machine is proposed. The 
extended SAM presents a novel SAM concept being derived from a variable-length double pendulum with a suspension 
between the two pendulums. The results of original numerical simulations show that the extended SAM’s nonlinear dynamics 
presented in the current work can be thoroughly studied, and more modifications can be achieved. The new technique can 
reduce residual vibrations through damping when the desired level of the crane is reached. It can also be applied in simple 
mechatronic and robotic systems.

List of Symbols
�	� Resonance frequency, Hz
�	� Damping constant
u	� Perturbation parameter from the periodic 

equation
a	� The amplitude of the oscillation of the suspen-

sion point of the pendulum, m
a0	� Portable acceleration, m/s2

q	� Model respond parameter
�0	� Mean resonance frequency, Hz
b0	� Time-average oscillator damping
E(t)	� External driving force, N
h0	� Damping variable in the damping and resonant 

frequency
f (t)	� Mathieu/periodic function with minimal period 

�

r	� Amplitude of excitation, m

�	� Angular displacement, rad
𝜑̇	� Angular velocity, rad/s
𝜑̈	� Angular acceleration, rad/s2

l	� Length of the pendulum, m
l0	� Average value of the pendulum length, m
l(t)	� Pendulum displacement, m
l̇(t)	� Pendulum velocity, m/s
l̈(t)	� Pendulum acceleration, m/s2

�	� Gain coefficient of exponential amplitude
h	� Depth amplitude modulation, m
a(t) , b(t)	� Varying envelope function
m	� Mass of the pendulum, kg
F	� Control action force
�(t)	� Harmonic oscillator with zero-average pertur-

bation time-dependent
� , �	� Parameters of the oscillatory system
z	� Generic time-dependent function
A	� Amplitudes of the periodic forcing, m
Ai	� Arbitrary amplitudes, m
�i	� Excitation frequencies, rad/s
�i	� Phase shifts, rad
ẋ	� Velocity m/s
ẍ	� Acceleration m/s2

f0	� Excitation force, N
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T 	� Kinetic energy, Nm
Ts	� Sum of kinetic energy of a slider, Nm
Tb	� Sum of kinetic energy for a pendulum, Nm
U	� Potential energy, Nm
c	� Viscous damping coefficient, Ns/m
k	� Spring constant, N/m
M	� Counter mass/travelling and hoisting compo-

nent, kg
�	� Angular position of flywheel, rad
Tf 	� Frictional torque, Nm
x	� Horizontal displacement/slider displacement, m
�	� Forcing or pertubation parameter
y	� Vertical displacement, m
ym	� Mass vertical displacement, m
ye	� Beam elastic displacement in y-direction, m
xe	� Beam elastic displacement in x-direction, m
v	� Relative speed/velocity, m/s
I	� Moment of the inertia, kgm2

Ic	� Constant of inertial of all part, kgm2

Iv	� Adjustable inertia, kgm2

�f 	� Coefficient of friction
�m	� Mass ratio
R	� Radius, m
Δ	� Difference

1  Introduction

The variable-length pendulum may be treated as a second-
order nonlinear differential equation with a step function 
dependent coefficients which can be transformed into 
equivalent discrete dynamical systems [1, 2]. It can also be 
treated as a control system due to time-varying control laws 
of changing its length [3], as well as it has various applica-
tions in mechatronic systems, which include: robots, electro-
mechanical systems like induction motors, purely electrical 
networks like dc-dc power converters, lifting devices like 
mine elevators or cranes, earthquakes detection based on 
various concepts of inverted pendulums or even wave energy 
converters (WEC) [4, 5].

We begin from some methods of forcing of the analyzed 
dynamical system. Work [6] proves the effectiveness of real 
experimental data of reconfiguration of coupled pendulums 
on a data flow visual programming using LabVIEW. The 
Lyapunov exponents and forcing amplitude in controlling 
the chaotic motion of a driven pendulum is studied in [7]. 
[8] applied the Poincaré-Birkhoff fixed point theorem and 
shows that there exist a stable and unstable periodic solution 
of a forced pendulum of variable length. [9–12] indicate 
that if a threshold velocity is adequately chosen to regulate 
a rotational pendulum’s control action, the controlled pen-
dulum can reach stable rotations for both forcing scenarios, 
irrespective of the initial conditions and forcing parameters.

The variable-length pendulum is a physical concept 
associated with parametric oscillations governed by certain 
forms of differential equations and functional principles. A 
parametric oscillator can be treated as a harmonic oscilla-
tor whose physical features change over time [13]. Some 
specific time-dependent variables are associated with the 
resonance frequency or damping of the oscillator.

The most known oscillator is given as a linear second-
order differential equation in the form:

where �-the time-dependent parameter changing with the 
period T, �-constant. For instance, coefficient of the paramet-
ric oscillator can be identified with the use of semi-empirical 
methods based on a coupled oscillator approach [14].

In [15], the fundamental behavior of parametrically 
excited Kochin oscillator model with double degeneracy of 
frequencies was referenced to Mathieu’s oscillator. It follows 
that there is a structural instability of parametric oscilla-
tions. [16] finds out that thwarting modifies the dynamics 
of two and three coupled parametric oscillators after being 
theoretically analyzed using a nonlinear Mathieu equation 
and validated by numerical simulations. The complexity 
and asymmetry of periodic motions of a parametric Duffing 
oscillator are dependent on the contribution of harmonic 
amplitudes of the periodic signal [17, 18]. The oscillating 
pendulum amplitude can be suppressed efficiently by a con-
trollable moving mass [19–21].

Parametric resonance takes place in dynamical processes 
when the external frequency is twice the system’s natural 
frequency as in the case of the vertically forced pendulum 
and the result is given by the Mathieu equation [22]:

where u(t)-perturbation from the periodic equation, � cos t
-an energy source of parametric excitation [13].

Mathieu functions sometimes called angular Mathieu 
functions are the solutions of Mathieu’s differential equa-
tion given in the form:

where a , q-model parameters, x(t) is the linear term, i.e. 
Eq. (3) is linear with respect to x(t) [13]. The equation of 
the parametric oscillator in Eq. (1) can be extended to a 
non-homogeneous one by adding an external driving force 
�(t) , governed by:

(1)d2x(t)

dt2
+ �(t)

dx(t)

dt
+ �2(t)x(t) = 0

(2)ü(t) + (a + 𝛽 cos t)u(t) = 0 ,

(3)
d2y(t)

dt2
+ (a − 2q cos 2x(t))y(t) = 0 ,

(4)d2x(t)

dt2
+ �(t)

dx(t)

dt
+ �2(t)x(t) = �(t) .
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Considering the external driving force to be the mean reso-
nance frequency �0, that is �(t) = �0 sin�0t , the solution to 
Eq. (4) is given as follows:

A parametric oscillator is a harmonic oscillator with time-
varying physical properties. Parameters �0, and �, are time-
dependent. Therefore, it is assumed to vary periodically with 
the same period T. In finding the solution of Eq. (1) we 
assumed the damping to be sufficiently strong so that the 
amplitude of the parametric oscillations in the absence of the 
driving force � does not diverge. At this state, the parametric 
pumping slip to lower the effective damping in the system. If 
the solution in Eq. (5) will be dependent on constant �0, and 
�0 , then as �0, approaches the threshold, 2�0 , the amplitude 
diverges. When �0 is greater than or equal to 2�0 , the system 
enters a parametric resonance, and the amplitude begins to 
increase exponentially even in the absence of a driving force 
�(t).

When the Mathieu function f (t) , varies periodically, then 
one finds a particular as an example of Hill equation [23], 
i.e. Mathieu equation when f (t) is a simple sine wave, i.e.:

where f (t) has the minimal period � , that is f (t + �) = f (t).
The special case of the Hill equation presented with the 

periodic function is called the Meissner equation [24, 25], 
of which example can be written in many different ways, 
and for instance:

Many authors and researchers have applied various methods 
for analyzing dynamical systems (variable-length or para-
metric pendulums). Some of the system equations studied 
by many authors and their main conclusions are summarized 
in the next Section.

2 � The Variable‑Length Pendulum Systems

In [26], the authors provide the equation of motion of a sim-
ple pendulum with a fixed length l0 as:

�-angle between the pendulum and the downward verti-
cal axis, g-acceleration due to gravity, and dots denote the 

(5)x(t) =
2�0

�2

0

(
2�0 − �0

) cos�0t .

(6)
d2y(t)

dt2
+ f (t)y(t) = 0 ,

(7)
d2y(t)

dt2
+

(
1 + r

sin (�t)

|sin (�t)|
)
y(t) = 0 .

(8)𝜑̈(t) +
g

l0
sin𝜑(t) = 0,

second derivative with respect to time t , l0-constant length 
of the pendulum.

For the linearized system:

where � =
g

l0�
2
 , � =

g

l0
 , � = �t , �-natural frequency of oscil-

lation of the system, b-damping coefficient, and � is equiva-
lent to the � phase shift in time t . ± is used to present two 
forms of differential equations in the literature. Taking into 
account the above, Hill equation is obtained:

where 𝜀 = l1∕l0 < 1 , l(t) = l0 + l1-length with periodic vari-
ation with respect to time t. Parameter � and � are the per-
turbation parameters.

Successively, the Mathieu equation was found by keeping 
the terms in Eq. (10) at first order in �

The bifurcation effect of the oscillation is based on the 
Mathieu equation. Its relates to a period-doubling bifurca-
tion, which in turn leads to chaos due to the period-doubling 
cascade. It was observed that decreasing the damping coef-
ficient b leads to a decrease in the periodic attractors of the 
basin of attraction. A pendulum with constant length can 
be stabilized around the upward position for any parameter 
values, which is different from a pendulum with a varying 
length that can not be stabilized around the upward position 
for any parameter values.

Work [27] demonstrates the equation of motion for a 
laboratory parametric oscillator as presented in Fig. 1, i.e.:

(9)𝜑̈(t) ± (𝛼 − 𝛿cos𝜏)𝜑(t) + b𝜑̇(t) = 0,

(10)𝜑̈(t) +
𝛼 + 𝜀 cos t

1 + 𝜀 cos t
𝜑(t) = 0,

(11)𝜑̈(t) + (𝛼 + 𝜀(1 − 𝛼) cos t)𝜑(t) = 0 .

(12)𝜑̈(t) + 2
l̇(t)

l(t)
𝜑̇(t) + 2b𝜑̇(t) +

g

l(t)
𝜑(t) = 0 ,

Fig. 1   Schematic of the parametrically driven pendulum
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where 2 l̇(t)

l(t)
 is the parametric driving. The solution is found 

in Eqs. (14, 15) in the form of a coefficient for cosine and 
sine functions, respectively of Eq. (13).

�-gain coefficient of exponential amplitude, h-depth of 
modulation of the amplitude, a(t) , b(t)-varying envelope 
functions.

The system’s mechanical strength is maintained by 
increasing or decreasing the amount of modulation through 
the parametric resonance. The experiment demonstrates cha-
otic properties of the system that allow for observation of 
nonlinear dynamics behaviour.

In [28], the authors solve a problem of damped sway of 
a suspended payload that was achieved by moving a pivot 
base in vertical direction, as it can be seen in Figs. 2, 3, 4.

The second-order nonlinear dynamical system is gov-
erned by the balancing momentum equation:

where m1 -a point-focused forced mass of the mathemati-
cal pendulum of length l ; m2-the second mass at the end of 

(13)�(t) = a(t) sin
(
�0t

)
+ b(t) sin

(
�0t

)
,

(14)
a(t)

(
3

2
h�2

0
+ 2��0 + 2b�0 + 2b�h

)

+ b(t)
(
2b� + 2h��0 − h��0 − hb�0

)
= 0

(15)
a(t)

(
2b� − 2h��0 + h��0 + hb�0

)

+ b(t)
(
3

2
h�2

0
− 2��0 − 2b�0 − b�h

)
= 0,

(16)y(t) = y0 + Δy(t) sin(2�t) ,

(17)
(m1 + m2)ÿ(t) + bẏ(t) = F(t) −

(
m1 + m2

)
g

− m2l
(
𝜑̈(t) sin𝜑(t) + 𝜑̇(t)2 cos𝜑(t)

)
,

the pendulum; F-the control action force that also keeps the 
system from free-falling by preliminary compensating the 
gravity force.

The experimental validation is done by considering the 
horizontal motion only. The simulation validation is done on 
a nonlinear two-dimensional model of a quadrocopter car-
rying a suspended payload using the Lyapunov approach’s 
nonlinear control feedback design. The proposed system 
finds its application in a crane, where it can be used to 
damp the residual vibrations when the desired crane posi-
tion is reached. Other areas of applications can be found in 
mechatronic systems and flexible robotics—a pendulum-like 
robot [29–31], where similar problems can occur.

In [32], the comparative Fourier and wavelet approach is 
used to analyze the motion of a variable-length pendulum. 
The equation of motion is presented as follows:

Fig. 2   Problem motivation and formulation of the constrained space 
for a quadrocopter with suspended load

Fig. 3   Problem motivation and formulation of the simplified model of 
the pendulum with moving base

Fig. 4   Problem motivation and formulation of the further simplified 
model to a pendulum with a free moving mass pivot
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where s(t) = l(t) �(t) is the length spanned by the oscillation 
during its motion. Finally, the solution is found:

where �-phase shift, and �(t) =
√

g

l(t)
.

The oscillation and the length change time intervals indi-
cate a frame for comparison of the signal frequency. More-
over, the wavelength change of the pendulum translation 
performs better than Fourier transformation did. The two 
approaches provided an easy-to-interpret visual inspection 
of time-frequency analysis.

Work [33] describes some aspects of Mathieu and Hill 
equations with a nonlinear equation and used general asymp-
totic methods to obtain results, as well as using Matlab to 
verify the idea. Hill’s model is presented with a kinematic 
simulation of a simple harmonic oscillator with zero-aver-
aged perturbation time-dependent �(t) as:

where x-displacement, �0-natural mean resonance frequency 
of the oscillator.

The Mathieu equation is given in the form:

where, a(t) and q(t) are continuous and have a common 
period T .

The equation of the unstable mode of oscillation system 
with its phase portrait is given as follows:

Numerical solution of Eq. (22) is computed and presented 
in Figs.  5, 6 for the value of �0 = 20 and � =

�0

4
 . The 

(18)ms̈(t) = −mg sin𝜑(t) ,

(19)�(t) = �0 sin (�(t)t + �) ,

(20)ẍ(t) + 𝜔2

0
[1 + 𝜉(t)]x(t) = 0 ,

(21)ẍ(t) + a(t)ẋ + q(t)x(t) = 0 ,

(22)ẍ(t) + 𝜔2

0
[1 + sin𝜑(t)]x(t) = 0 .

asymptotic effect is confirmed in our work using the numeri-
cal solution of Eqs. (23, 24), as it is presented in Figs. 7, 8, 
9, 10.

and

where � and � are parameters of the oscillatory system, �
-parametric harmonic excitation frequency, and �-forcing or 
perturbation parameter that may cause chaotic dynamics.

In [34] the authors analyze oscillations of a parametric 
pendulum providing the governed equation of the motion not 
in the vicinity of equilibrium, as it follows:

(23)� =

√√√√
(
�2

0
− �2 + ��

�2

0

2

)
,

(24)ẍ(t) + 2𝛾 ẋ(t) + 𝜔2

0
[1 + 𝜆 sin 𝛽t]x(t) = 0 ,

Fig. 5   Unstable time trajectory of the oscillation system in Eq. (22) 
for �0 = 20 and � =

�0

4

Fig. 6   Phase portrait of the unstable mode of the oscillation system in 
Eq. (22) for �0 = 20 and � =

�0

4

Fig. 7   Comparison between numerical and analytical solution in Eqs. 
(23) and (24) for the system parameters: � = 0.1 , �0 =

√
2 , � = 10 , 

� = 10 , � = 0.196
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If resonance appears at frequency �
2
 then it follows that

For 𝜀 ≪ 1, � =
Ω

�0

 ( Ω-unknown constant), � =
1

�
 , when � is 

depleted from resonance, then complex variables are 
introduced

where � A states the amplitude of the periodic forcing.
The Hamiltonian equation is obtained as below:

The phase planes are investigated, making it possible to pre-
dict strongly modulated regimes and large amplitude with 
initial excitation. The resonance problem can be eliminated 
by changing the forcing term, i.e. for t = 0.

Moreover, the work [34] introduces the motion on the 
complex path and the oscillation effect by specifying the 
nonlinear dynamics of a pendulum that exaggerates the static 
and non-stationary oscillations dynamics. The semi-inverse 
path has been found to represent the pendulum with high 
powers throughout the semi-linear process. The techniques 
predict evolution with a weak flexibility.

In [35] we find the equation of a vertical excitation of a 
pendulum with mass m as it follows:

Taking z in upright direction, � = −gẑ-gravitational accel-
eration, l-length of pendulum, the equation becomes:

Taking z̈ to be generic time-dependent function and given 
approximation for small angles sin� = �:

The parametric excitation is considered and simplified to a 
real inverted pendulum problem, leading to

(25)
d2�

dt2
+ sin� + �A cos ((� + �s)t) sin� = 0 .

(26)
d2�

dt2
+

�

2
� + ��(−

�

2
� + �)

+ �A cos ((� + �s)t) sin� = 0 .

(27)𝜓 =
(
𝜑̇ + i

𝜔

2
𝜑

)
, 𝜓∗

j
=
(
𝜑̇ − i

𝜔

2
𝜑

)
.

(28)
H = − a2

(
s

2
+ �

�

4

)
− �J0

(
2

�
a
)

− A�J2

(
2

�
a
)
cos 2�.

(29)
L(𝜑, 𝜑̇, z, ż) =

1

2
Ml2

(
𝜑̇(t)2 +

1

l2
ż2(t)

)

−Mlż(t)𝜑̇(t) sin𝜑(t) −Mgz(t) −Mglcos𝜑(t) .

(30)
d2𝜑(t)

dt2
=

g

l

(
1 +

1

g
z̈(t)

)
sin𝜑(t) .

(31)𝜑̈(t) =
(
𝜔2 +

1

l
z̈(t)

)
𝜑(t) .

Fig. 8   Comparison between numerical and analytical solution in 
Eqs.  (23) and (24) for the system parameters: � = 0.1 , �0 =

√
2 , 

� = 100 , � = 50 , � = 0.08

Fig. 9   Comparison between numerical and analytical solution in 
Eqs.  (23) and (24) for the system parameters: � = 0.1 , �0 =

√
2 , 

� = 100 , � = 50 , � = 0.02

Fig. 10   A stable time trajectory of oscillations on the phase portrait 
in Eqs.  (23) and (24) for the system parameters: � = 0.1 , �0 =

√
2 , 

� = 10 , � = 10 , � = 0.196
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where Ai-arbitrary amplitudes, �i-excitation frequencies, �i

-phase shifts, i = 1, …N.
Considering the more general equation

where �2

0
= 1 and A∗

i
= A results in the following 

transformation

The applied perturbative analysis and numerical integration 
explored an inverted pendulum’s stability with generating 
parametric excitation described by a superposition of differ-
ent sines values. Different frequencies and phase and analyti-
cal, critical amplitude for the stabilization has abstained. It is 
determined that the amplitude depends on the size and mass 
used as panels for the scale screening units and is tested with 
different sine values.

The above reviews give a generalized analytical idea on 
a pendulum with fixed- and variable-length with their pos-
sible area of applications. Now, we will look at the variable-
length pendulum with stiffness and damping as investigated 
by different authors. In [36] one finds an analysis without 
the damping force, while [37–39], and [40] include damping 
force in the analysis.

2.1 � Variable‑Length Pendulum with Stiffness 
and Damping

In [36] the equation y = a sin�t for modeling a pendulum 
harmonic oscillations (as shown in Fig. 11) is considered. 
It presents the equation for the oscillations of the pendulum 
as it follows:

where � is the angular position.

(32)z(t) =

N∑
i=1

Aisin(�it + �i) ,

(33)𝜑̈(t) =
(
𝜔2

0
− f (t)

)
𝜑(t) ,

(34)f (t) =
1

l

N∑
i=1

Ai�
2

i
sin(�it + �i) .

(35)
d

dt

(
l2(t)

d�(t)

dt

)
= l(t)

(
g + a0

)
sin�(t) ,

The pendulum’s harmonic oscillations depend on peri-
odic variations of the pendulum’s length. The largest Lya-
punov exponent, bifurcation diagrams and Poincaré maps on 
phase plane diagrams were shown and inspected. Maps of 
dynamic modes were obtained, identifying a range of param-
eters containing 2-periodic cycles, leading to the occurrence 
of chaos. Thus, a conventional system of a pendulum with 
a periodically varying length on a vibrating base near the 
resonance between the oscillation frequencies of the suspen-
sion point’s length and oscillations has a chaotic behavior in 
the vicinity of the upper equilibrium position.

In [37], the authors use a semi-analytical method to study 
the motion of period-1 to period-2 bifurcation trees in a 
periodically forced nonlinear spring pendulum as shown in 
Fig. 12.

The equation of dynamics describes the concept of such 
a system as it follows:

and

The discrete periodic nodes of periodic motions, the numeri-
cal simulations, and the corresponding harmonic amplitude 
spectrum and phases were presented. Taylor series expan-
sion and perturbation methods were used for the research 
studies. It was determined that the pendulum spring system 
dynamics were too large and too complex to be analysed. 
The spring pendulum system needs to be clearly understood 
as a nonlinear system.

In [38], the authors use the sum of the kinetic energy of 
the slider (Ts) and the pendulum (Tb) for a two-degree-of-
freedom rigid pendulum as shown in Fig. 13.

The differential equations of dynamics are derived from 
the sum of kinetic energy and the rigid pendulum’s poten-
tial energy for both the first and second mutation. Also 

(36)
mẍ(t) − m(l(t) + x)𝜑̇(t)2 = mg cos𝜑(t)

− k1x − k2x
3 − bẋ(t) − Q0 cos𝜔t sin𝜑(t) ,

(37)

m(l + x)2𝜑̈(t) + 2ẋ(t)(l + x)m𝜑̇(t) = −mg(l + x)

⋅ sin𝜑(t) − b𝜑̇(t)(l + x)2 − Q0(l + x) cos𝜔t cos𝜑(t) .

Fig. 11   A variable-length 
pendulum

Fig. 12   Physical model for a nonlinear pendulum periodically excited 
for f0 = Q

0
cos�t sin�
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considered the kinetic and potential energy for three degrees 
of freedom and derived the dynamics equation for both the 
first and second mutation. The second-order differential 
equations are given as follows:

where l-the pendulum elongation, l0-constant length, x-the 
slider displacement, 𝜑̇ is the angular velocity, 𝜑̈ is the angu-
lar acceleration, and M is the mass of the slider body.

We see that a successive expansion in the forms of repre-
sentation of the energies is introduced. The dynamic behav-
ior is classified in two ways based on computational analy-
sis of Lyapunov exponents using two proven methods. The 
numerically obtained phase planes and Poincaré maps show 
that some parameters exhibit similar dynamic behavior, such 
as quasi-periodic and chaotic motions.

A pendulum-spring system with variable-length is shown 
in Fig. 14 [39]. The equations of motion describe a three-
degrees-of-freedom system, of which kinetic energy has the 
form:

The potential energy has the form:

(38)
l̈(t) = −

c

m
l̇(t) −

k

m

(
l(t) − l0

)
+ l(t)𝜑̇(t)2

− ẍ(t) sin𝜑(t) + g cos𝜑(t) ,

(39)𝜑̈(t) = −
1

l
(t)(2𝜑̇(t)l̇(t) + ẍ(t) cos𝜑(t) + g sin𝜑(t)) ,

(40)ẍ(t) =

(
cl̇(t) + k

(
l(t) − l0

))
sin𝜑(t) + Q0 cos𝜔t

M
.

(41)
T(𝜑, l, x, 𝜑̇, l̇,ẋ) =

1

2
(M + m)ẋ2(t) +

1

2
m[l̇2(t)

+ l2(t)𝜑2(t) + 2ẋ(t)l̇(t) sin𝜑(t) + l(t)𝜑̇(t) sin𝜑(t)

− l̇(t) cos𝜑(t))] .

(42)
U(�,Δl, x) =

1

2
k(Δl(t) + Δllt)

2 − mg(Δl(t)

+ l(t))cos�(t) .

Applying the Euler-Lagrange equation and using the Ray-
leigh dissipation function of the pendulum, the equation of 
the pendulum angle, pendulum elongation, and the slider 
displacement were given respectively for the second deriva-
tive of state variables, i.e.:

where

The result shows that the variable-length spring pendulum 
suspended from the periodically forced slider can exhibit 
quasi-periodicity, and chaotic motions in a resonance state. 
It was concluded that near the resonance, the influence of 
coupling of bodies on the system dynamics could lead to 
unpredictable dynamical behavior.

In [40], a discrete wave modulated step function of 
length is used to excite a parametric pendulum subjected to 
a mathematical analysis similar in [39], Eqs. (43)–(45), and 
numerical modeling. Eq. (45) represent the acceleration of 
the slider. The numerical results show that semi-periodic 
solutions of ordinary differential equations with linear 
boundary value conditions exist. Conditions for synchro-
nization of the systems and trajectories of the numerical 
solutions on time-history plots and phase planes confirm 
the analytical derivations and correctness of numerical 
modeling.

(43)𝜑̈(t) = −
1

l(t)

(
2𝜑̈(t)l̇(t) + p cos𝜑(t) + g sin𝜑(t)

)
,

(44)
l̈(t) = −

c

m
l̇(t) −

k

m

(
l(t) − l0

)
+ l(t)𝜑̇2(t)

− ẍ(t)sin𝜑(t) + g cos𝜑(t),

(45)ẍ(t) = p .

p =M−1
(
cl̇(t) + k(l(t) − l0)

)
sin𝜑(t)

+ Q0M
−1 cos𝜔t.

Fig. 13   The analyzed systems: rigid pendulum (a), the first (b) and 
the second (c) parametric mutation in an elastic form

Fig. 14   Variable-length forced spring pendulum system of three-
degrees-of-freedom (left), dimension of loaded and unloaded linear 
spring (right)
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2.2 � Applications

After seeing the various analysis of the variable-length pen-
dulum presented by different authors on different models, 
using different approaches, below are distinguish applica-
tions of the variable-length pendulum systems. There are 
various areas of application of these forms of pendulums, 
which include: energy harvesters (for example, in WEC), 
load-lifting devices (in cranes), robotics [4, 6, 41–47], and a 
pendulum-like robot in [29–31], to mention but a few.

In [41], the authors develop an experimental rig attached 
to a test device and obtain the required pendulum and energy 
harvester, see Fig. 15. A mathematical model is given in 
the form:

where �-angular position of flywheel, A cos�t-kinematic 
vertical excitation, Tf -frictional torque.

Analyzing the dependence of the dynamical response on 
length of the pendulum, both numerically and experimen-
tally, the shorter the pendulum length, the better gain of 
energy is achieved. It was concluded that several pendu-
lums could be used to improve the dynamical response of 
the overall system.

In [43] present a flexural pendulum absorber that is 
attached to a linear system, as shown in Fig. 16. The system 
is modeled using a linear mass-spring-damper with mass m.

The following equations were used to describe the veloc-
ity v at any point on the neutral beam axis.

where ym-vertical displacement of the mass, x̄e-beam elastic 
displacement in x-direction, ȳe-beam elastic displacement in 

(46)

⎧
⎪⎨⎪⎩

I1𝜑̈(t) + c𝜑̇(t) + m𝜔2Al(t) cos (𝜔t) sin𝜑(t)+

mgl(t) sin𝜑(t) = 0,

I2𝜃̈(t) + c2𝜃̇(t) + Tf sgn𝜃̇(t) = 0,

(47)
v =

[
̇̄xe(x, t) − ̇̄ym(t) cos (𝜑(t)) − 𝜑̇(t)ȳe(x, t)

]
i

+
[
̇̄ye(x, t) + ̇̄ym(t) sin (𝜑(t)) + 𝜑̇(t)x̄e(x, t) + 𝜑̇(t)

]
j ,

the y-direction, i , j-component of vector. The equations of 
motion are described in term of ȳm and �(t) , and x̄e and ȳe for 
the primary and secondary equations, respectively.

The assumed flexural modes of the beam determined the 
possibility of Neimark-Sacke and Pitchfork’s local bifur-
cation mode and resulted in a higher response rate for the 
system. The auto-parametric absorber rigid pendulum has 
shown to provide a longer lifespan than a standard rigid 
pendulum as provided by [36]. Therefore, auto-parametric 
pendulum absorption systems work well at a minimum 
amplitude of excitation.

In [6], a numerical simulation on the parametric equation 
of a pendulum and a real-time remote experimentation is 
conducted, as shown in Fig. 17.

The system kinetic and potential energies are considered, 
and using the Euler-Lagrange equation, the system equations 
are obtained:

where l1 and l2 are the lengths varying parameters of the first 
and second pendulum, respectively, l3 is the spring distance 
from the pivot.

(48)
m1l

2

1
(t)𝜑̈1(t) + m1gl1(t)𝜑1(t) + kl2

3
(t)(𝜑1(t)

− 𝜑2(t)) = 0 ,

(49)
m2l

2

2
(t)𝜑̈2(t) + m2gl2(t)𝜑2(t) + kl2

3
(t)(𝜑2(t)

− 𝜑1(t)) = 0 ,

Fig. 15   Schematics of the system mathematical model

Fig. 16   Flexural pendulum absorber attached to a linear primary sys-
tem

Fig. 17   Schematics of the connected pendulum system
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The simulation result shows a good agreement with the 
experimental data with an error at a low percentage. The 
dynamical model given by Eqs.  (48) and (49) is solved 
numerically as shown in Figs. 18, 19 and 20. New research 
should investigate the effect of the change on the system’s 
natural frequencies with significant changes in the sample 
systems such as spring and stiffness, bob size, etc.

Wave energy can be converted to other applicable forms 
of energy using the concept of the parametric pendulum. In 
[4], the concept of a parametric pendulum with a WEC was 
studied. It can be illustrated as in Figs. 21 and 22.

The equation of motion associated with the model in 
Fig. 21 follows:

where f̈ (t) is the time-dependent excitation force.
The device can be actively controlled by the natu-

ral frequency of the pendulum and the amplitude of 

(50)ml2(t)𝜑̈(t) + c𝜑̇(t) + mgl(t)sin𝜑(t) = ml(t)f̈ (t)sin𝜑(t) ,

excitation A that can be lowered. For a harmonic forcing, 
f (t) = A∗ cos(�t) . Therefore, Eq. (50) can be rewritten:

where A∗ is the amplitude along the ramp A

sin�
 , � is the angle 

between the water surface and the pendulum’s point of 
rotation.

(51)
ml2(t)𝜑̈(t) + c𝜑̇(t) + mgl(t)sin𝜑(t)

= −Ml(t)𝜔2A∗cos𝜔t sin𝜑(t) ,

Fig. 18   Time domain plots for both pendulums in mode 1 with the 
parameters: m1 = m2 = 0.5kg , l3 = 0.55m , g = 9.8 , and k = 19.7N∕m

Fig. 19   Time domain plots for both pendulums in mode 2 with the 
parameters: m1 = m2 = 0.5kg , l3 = 0.55m , g = 9.8 , and k = 19.7N∕m

Fig. 20   Spectral response depicting combined modes of system 
vibration with the parameters: m1 = m2 = 0.5kg , l3 = 0.55m , g = 9.8 , 
and k = 19.7N∕m

Fig. 21   Original parametric 
pendulum in WEC concept

Fig. 22   Pendulum configuration with reduced gravity force with 3D 
(left) and side (right) view
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It was assumed that more energy could be collected by 
adding a flywheel to the design and thus, Eq. (51) becomes:

for � = MR2∕(ml2(t)).
The numerical and experimental results have confirmed 

the increase in the pendulum’s rotational motion without any 
additional mechanisms. It has been found that new technol-
ogy allows the pendulum to operate in response to a regular 
sea state without the use of new devices such as gearboxes 
or some other active control devices.

The work [44] is concerned with the primary parametric 
resonance as presented in Fig. 23. A triple pendulum (see 
Fig. 24) replaced the simple pendulum, estimated to make an 
angle of 120o between the arms of the triple-pendulum with 
three equal masses distributed at the three arms.

For the standard design, the axis moves through f (t) , and 
the motion ratio is given as follows:

where Ic is the constant of inertia of all the parts that are free 
to move in angular space, Iv is the adjustable inertia, and c is 
the viscous damping coefficient.

The natural frequency is given in Eq. (54) and is affected 
when the lengths l1 and l2 vary in time.

The moment of inertia is the varying Iv , which is altered by l1 
and l2 . The work aims to solve the problem of WEC applica-
tion, and provides flexibility and configuration.

Logarithmic analysis techniques have been incorporated 
and are of great value. The value was used during the numer-
ical simulation. The super harmonics and fast-moving design 
system was found to be;

(52)
ml2(t)(1 + 𝜂)𝜑̈(t) + c𝜑̇(t) + mgl(t) sin 𝛽sin𝜑(t)

= ml̈(t)f (t)sin𝜑(t) ,

(53)

(
Ic + Iv

)
𝜑̈(t) + c𝜑̇(t) + m(l1(t)

− l2(t))
[
g + f̈ (t)

]
sin𝜑(t) = 0 ,

(54)�0 =

√√√√mg

(
l1(t) − l2(t)

)
(
Ic + Iv

) .

where r-amplitude of excitation (crank-arm radius) and jc
-ratio of the length of the crank.

Analysis of excitation were carried out with different val-
ues of l and v , with varying configurations of l1 and l2 . It was 
found that the triple-pendulum can change its size but does 
not control its response.

2.3 � Load Oscillations

In [48], a water plant-related problem was used with dry 
friction, which added to the excitement of the water-filled 
container, see Fig. 25. Theory of Lyapunov stability is asso-
ciated with the obtained time history of the charged water 
tank according to the level of the stick-slip phase and slip 
phase created by the Hopf bifurcation scenario of the equi-
librium position.

Dynamics model of the system as shown in Fig. 25c is 
derived in the form:

(55)f̈ (t) = 𝜔2r

(
cos𝜔t +

cos2𝜔t

jc

)
,

(56)

(M + m)g𝜇f = (M + m)ẍf

+

∞∑
i=1

mili𝜑̈i

(
cos𝜑i − 𝜇f sin𝜑i

)

−

∞∑
i=1

mili𝜑̇
2

i

(
sin𝜑i + 𝜇f cos𝜑i

)
+ kxf ,

(57)mil
2

i
𝜑̈i + miliẍf cos𝜑i + migli sin𝜑i + ci𝜑i = 0 ,

Fig. 23   Sketch of the pendulum-based WEC

Fig. 24   Sketch of the triple-pen-
dulum that replaced the simple 
pendulum

Fig. 25   Configurations of a tank on a moving belt: a solid-cargo-
filled tank (a); a liquid-filled tank (b); multidimensional-mode equiv-
alent model of a liquid-filled tank (c)
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for i = 1, 2,….
Dynamical model for the system shown in Fig. 25a is 

derived in the form:

where �f  is the coefficient of friction between the tank and 
belt, �0 is expressed by �f  v0 , v0 is the relative speed of the 
tank.

The stiffness of the spring, k the roughness of the contact 
plates, and the ratio between the water and the reservoir con-
tributed to the bifurcation area’s change. Nonlinear vibra-
tional phenomena can be studied and also more observations 
can be stored in the water-spring-water system placed on a 
moving belt.

In [49], the authors present a robust quasi-linear param-
eter varying tracking fault-tolerant control of a 3-DOF 
mechanical crane, see in Fig. 26. The control algorithm was 
created to minimize vibrations of load and to monitor the 
desired path using a quasi-linear parameter-varying system 
with H∞ basis.

The system’s state-space model is presented in the 
equation:

where M states the traveling and hoisting component of the 
crane. The H∞ performance guarantees robustness against 
noise measurement and faults.

The results show the efficacy of the proposed method. 
This is achieved by tracking a predefined position of the cart 
and load while oscillations are attenuated despite actuator 
faults. Noise measurement should be included. The slider 
mode controller can be used to compare the developed sys-
tem with a complete nonlinear controller.

(58)(M + m)ẍs + k

[
xs +

(M + m)g𝜇0

k

]
= (M + m) g𝜇f ,

(59)
(M + m)ẍs + k

[
xs +

(M + m)g𝜇0

g

]
= Fsx

+
(
mg + Fsy

)
𝜇f ,

(60)
q̈ = −M(q)−1cq̇ −M(q)−1C(q, q̇)q̇ −M(q)−1

G(q) +M(q)−1F ,

3 � A Variable‑Length Pendulum system: 
Swinging Atwood’s Machine

One of the areas of the variable-length pendulum is the 
Swinging Atwood’s Machine (SAM). In this case, the pen-
dulum’s mass swings in a two-dimensional plane, producing 
a chaotic behavior without colliding with the other mass 
known as the counterweight [50–52]. The inextensible mass-
less string suspended on two frictionless pulleys connects 
the two groups (see also [53]), as presented in Fig. 27.

When the compensation is less than the pendulum mass, 
the system will have a large parameter space, which leads 
to rich dynamical behaviour [50, 54]. These categories are 
terminating or non-terminating, chaotic or quasi-periodic, 
bounded or unbounded, singular or non-singular, which 
depends on the pendulum’s reactive centrifugal force coun-
teracting the counterweight [55–59].

3.1 � Equations of Motion

The system is of two degrees of freedom. The equation of 
motion is derived using Lagrange equation L = T − U and 
Hamiltonian H = T + U [50], T and U are the kinetic and 
potential energies, respectively.

The two ordinary differential equations cover dynamics in 
�(t) and l(t) , since for the first state-space variable, we find

and for the second one, the following equation is applied

Considering Fig. 27

(61)
𝜕L

𝜕𝜑
=

d

dt

(
𝜕L

𝜕𝜑̇

)
,

(62)
𝜕L

𝜕l
=

d

dt

(
𝜕L

𝜕l̇

)
.

(63)T =
1

2
Ml̇2(t) +

1

2
m
(
l̇2(t) + l2(t)𝜑̇2(t)

)
,

Fig. 26   Three degree of free-
dom mechanical crane

Fig. 27   The physical model of SAM
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where M-the non-swinging mass, m-the swinging pendulum 
mass, l(t)-distance of the swinging mass to its pivot point.

We find the Lagrangian:

Since the Hamiltonian is expressed in terms of the canonical 
momenta pl and p�:

where pl = (M + m)l̇(t) , p𝜑 = ml2(t)𝜑̇(t).
The equations for the state-space variables � and l are 

obtained from Eqs. (61) and (62), respectively:

Taking the mass ratio �m =
M

m
 , Eq. (68) becomes

When the pulleys are considered, the system is said to have 
a moment of inertia Ip and radius R , with effective mass Mt . 
The moment of inertia and the effective mass are given in 
Eqs. (70) and (71), respectively.

The Hamiltonian is given as follows:

w h e r e  pl = −Mt

(
R𝜑̇(t) − l̇(t)

)
  ,  a n d 

p𝜑 = MtR
(
R𝜑̇(t) − l̇(t)

)
+ ml2(t)𝜑̇(t) = −Rpl + ml2(t)𝜑̇(t).

The numerical solutions are presented in Figs. 28, 29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 39. The value of � =

�

2
 is 

kept constant with zero initial velocities in all cases, but the 
value of �m varies in time.

We observe rotations greater than � , but assuming that 
the string can wind up and unwind the string loop on the 
support, such angles are justified. The influence of the angle 
of contact of the string with the pulley has been omitted. 

(64)U =Mgl(t) − mgl(t) cos�(t) ,

(65)
L =

1

2
Ml̇2(t) +

1

2
m
(
l̇2(t) + l2(t)𝜑̇2(t)

)

−Mgl(t) + mgl(t) cos𝜑(t) .

(66)H =
p2
l

2(M + m)
+

p2
�

2ml2(t)
+Mgl(t) − mgl cos�(t) ,

(67)l(t)𝜑̈(t) + 2l̇(t)𝜑̇(t) + g sin𝜑(t) = 0 ,

(68)ml(t)𝜑̇(t)2 −Mg + mg cos𝜑(t) = (M + m)l̈(t) .

(69)
(
𝜇m + 1

)
l̈(t) − l(t)𝜑̇(t)2 + g

(
𝜇m − cos𝜑(t)

)
= 0 .

(70)Ip = R2[
M − mg(Δt)2

2h
− (M − m)] ,

(71)Mt = M + m +
2Ip

R2
.

(72)
H =

1

2

[
p2
l

Mt

+

(
p� + Rpl

)2
l2(t)

]
+ gl(t)(M−

m cos�(t)) + gR(m sin�(t) −M�(t)) ,

The Figs. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 show 
the SAM mass’s nonsingular orbits under swinging, that 
is, no physical contact between the swinging assembly and 
the pulley. It can be seen that the SAM is integrable when 
�m = 3 , and from the results, the system is not integrable 
for �m ∈ (0, 1) ∪ (3,∞) . The figure show the selection of 
nonsingular orbits of an orbit of SAM with different values 
of �m , � =

�

2
 and zero initial velocity.

4 � The Original Modification of SAM

Based on the concepts delivered in the above review and to 
exhibit even potentially richer dynamics of the Swinging 
Atwood’s Machine, an original and novel Modified SAM is 
proposed, as it can be seen in Fig. 40. Another spring pendu-
lum is added on the opposite side of the non-swinging mass 
M . A suspension system with a stiffness k and a damper c 
placed between the two pendulums with masses m1 and m2 . 

Fig. 28   An orbit of the SAM for �m = 2.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 29   An orbit of the SAM for �m = 3.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)
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Point 01 is fixed, while 02 is movable and can oscillate in the 
plane (X, Y) , which allow the variation of the length l1 and 

the double pendulum couplings. The length l20 is measured 
between the two pendulums, and l2 is the extension due to 

Fig. 30   An orbit of the SAM for �m = 5.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 31   An orbit of the SAM for �m = 6.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 32   An orbit of the SAM for �m = 16.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 33   An orbit of the SAM for �m = 19.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 34   An orbit of the SAM for �m = 21.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 35   An orbit of the SAM for �m = 24.0 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)
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the spring between the two pendulums. Areas of application 
of the original Modified SAM model can include; load lift-
ing devices such as cranes, wave variation, suspension sys-
tems, elastic robotic links, to mention a few. The Modified 
SAM also aimed at modeling physical systems and dynamics 
of loads carried by cranes placed on ships sailing at seas.

4.1 � The Equations of Motion of the Modified SAM

Using the Euler-Lagrange method we find:

•	 the kinetic energy: For a simplicity we define 
s21(t) = sin(�2(t) − �1(t)) and c21(t) = cos(�2(t) − �1(t)) . 

Fig. 36   A “Smile” orbit of the SAM for �m = 1.7 , � =
�

2
 , and ini-

tial velocity equal to zero. In the radial direction, we measure l(t) ; in 
angular direction, we measure �(t)

Fig. 37   An orbit of the SAM for �m = 2.4 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 38   An orbit of the SAM for �m = 1.2 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 39   An orbit of the SAM for �m = 1.6 , � =
�

2
 , and initial veloc-

ity equal to zero. In the radial direction, we measure l(t) ; in angular 
direction, we measure �(t)

Fig. 40   Physical model of the proposed original Modified SAM
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•	 the potential energy: 

where M-the non-swinging mass, m1 and m2 are the masses 
of the two pendulums, �1 and �2 are the angles between the 
movable pulley with length l1 and the angle between the first 
pendulum with 

(
l20 + l2

)
 , respectively, l2 is the extension due 

to the spring with stiffness, k , and c is the damper, l1 is vari-
able, since l20 is constant, and l2 is the elongation.

With the Lagrange equation, L = T − U we find four 
degrees of freedom in the directions l1 , l2 , �1 , and �2.

The Euler-Lagrange equation yields:

 where i = 1, 2, 3, 4 , and R-Rayleigh dissipation function:

cl̇2(t) states a non-conservative force.
There is constraint superposed on the first pendulum, i.e. 

if in the numerical integration procedure l1(t) ≥ 0 then we 
assume l1(t) = 0 , since it has not been reported.

The following equations of motion are finally obtained:

•	 for q1 = l1 : 

(73)

T =
1

2
Ml̇2

1
(t) +

1

2
m1

(
l̇2
1
(t) + l2

1
(t)𝜑̇2

1
(t)
)
−

m2 l̇1(t)l2(t)𝜑̇2(t)s21(t)−

l20m2 l̇1(t)𝜑̇2(t)s21(t)+

m2l1(t)l̇2(t)𝜑̇1(t)s21(t)+

m2l1(t)l2(t)𝜑̇1(t)𝜑̇2(t)c21(t)+

l20m2l1(t)𝜑̇1(t)𝜑̇2(t)c21(t)+

m2 l̇1(t)l̇2(t)c21(t)+

1

2
m2l

2

2
(t)𝜑̇2

2
(t) + l20m2l2(t)𝜑̇

2

2
(t)+

1

2
l2
20
m2𝜑̇

2

2
(t) +

1

2
m2l

2

1
(t)𝜑̇2

1
(t) +

1

2
m2 l̇

2

2
(t)+

1

2
m2 l̇

2

1
(t).

(74)
U =
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2
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2
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•	 for q2 = l2 : 

•	 for q3 = �1 : 

•	 for q4 = �2 : 

4.2 � Simulation Results

A simulation results of the described Modified SAM concept 
are presented in Figs. 41 and 42. The computation is per-
formed in Python using the NumPy, SciPy, and Matplotlib 
libraries from Spyder in an Anaconda python environment. 
For simplicity, we assume that the initial angular positions 
of the pendulums are equal but in the opposite direction, 
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i.e., �1 = −�2 . This application shows the Modified SAM’s 
chaotic dynamics with a double pendulum and suspension 
system between the pendulums with different values m1 , m2 , 
�1 and �2.

Figure 41 shows the periodic motion of the first pendulum 
of mass m1 with �1 and l1 , while Fig. 42 shows the periodic 
motion of the second pendulum of mass m2 with �2 and (
l20 + l2

)
.

Current SAM concept is based on a variable-length dou-
ble pendulum model with suspension between the two pen-
dulums used. The presented results show nonsingular orbits 
after swinging—no physical contact between the swing-
ing assembly and the fixed points. Interestingly, in some 
regimes, compact regions of attraction appear in the system, 
see Fig. 42.

5 � Conclusion

The existing literature on variable-length/parametric pen-
dulums is reviewed and particularly discussed. The math-
ematical model representing the system model and area 
of application in each of the references is presented. The 
method used, the finding, conclusions, and possible areas of 
improvement were clearly stated. It was suggested that the 
pendulum system could be applied in engineering applica-
tions. Also, consideration should be given to the pendulum 
length response to ensure that the response time is reduced 
to the minimum for adequate system handling.

Most of the literature does not consider how fast the 
length response changes in time. Only [32] tried to investi-
gate the pendulum variable-length response time but had a 
negative linear trend and slope. The pendulum’s variable-
length response will be considered. It should ensure rapid 
changes in time.

A new model for the mechanical application of varia-
ble-length pendulum concept is proposed, the equations 
of dynamics are simulated numerically to prove richness 
of dynamical behaviour, as well as the obtained results are 
discussed.

The Modified SAM presents a novel SAM concept 
applicable in the modeling of engineering objects. It bases 
on a variable-length double pendulum with a suspension 
between the two pendulums. From the numerical simulation 
results, it is clearly seen that the nonlinear dynamics of the 
Modified SAM presented in current work can be thoroughly 
studied, and more modifications can be achieved. The new 
technique can reduce residual vibrations through damping 
when the desired level of an engineering object, e.g., a crane, 
is reached. It can also be used in the modeling of nonlin-
ear mechatronic and robotic multidimensional systems. A 
deeper explanation and details on the string-pulley contact 
under variation of forces acting on the string will be devel-
oped in the future.
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Fig. 41   An orbit of the Modified SAM for M = 15 , m1 = 3.5 , �1 =
�

6
 , 

and initial velocity equal to zero. In the radial direction, we measure 
l1(t) ; in angular direction, we measure �1(t)

Fig. 42   An orbit of the Modified SAM for M = 15 , m1 = 3.5 , 
m2 = 3.7 , �1 =

�

6
 , �2 = −

�

6
 and initial velocity equal to zero. In the 

radial direction, we measure (l20 + l2(t)) ; in angular direction, we 
measure �2(t)
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